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Abstract 

The automotive industry is currently facing challenges in the reduction of emissions and 

fuel consumption. These targets can only be achieved with the use of lightweight materials for 

the vehicle structures, such as carbon fibre composites and aluminium alloys. The construction 

techniques for vehicle bodies with these materials differ greatly from the techniques used for 

the most commonly used steel bodies, with adhesive bonding being used extensively due to its 

capability to bond dissimilar materials. However, the use of adhesive bonding poses several 

challenges to the automotive engineers, as the dissimilar bonded joints must be designed to 

perform well under impact and extreme temperature conditions. 

The aim of this work is to understand and predict the behaviour of dissimilar adhesive 

joints, using composite and aluminium adherends, under quasi-static and impact loads. A 

variety of testing temperatures (ranging from -30 to 80ºC) was considered, taking into account 

the requirements for the automotive industry. A numerical simulation procedure was also 

performed in parallel and produced numerical models which where validated against the 

experimentally obtained data in both quasi-static and impact conditions. It was possible to 

conclude that dissimilar adhesive joints, if used in conjunction with modern crash resistant 

adhesives, can effectively be used for the construction of automotive structures, without 

significant sacrifices in joint performance, with good energy absorption capabilities under 

impact. Moreover, their performance can also be simulated using advanced cohesive zone 

models minimizing the need to perform extensive experimental impact testing. 
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Resumo 

Atualmente, a indústria automóvel enfrenta desafios significativos na redução de emissões 

e consumo de combustível. Esses objetivos só poderão ser alcançados pelo uso de materiais 

leves nas estruturas do veículo, tais como compósitos de fibra de carbono e ligas de alumínio. 

As técnicas de construção de estruturas de veículos com recurso a estes materiais diferem muito 

das técnicas utilizadas em estruturas de aço, sendo adotado o uso de ligações adesivas devido à 

sua capacidade de unir materiais dissimilares. No entanto, o uso de adesivos estruturais coloca 

novos desafios aos engenheiros de projeto, já que as juntas adesivas de substratos dissimilares 

devem ser projetadas para suportar condições de impacto e de temperatura extrema. 

Com este estudo pretendeu-se determinar e compreender o comportamento de juntas 

adesivas com materiais similares, usando aderentes de material compósito e de alumínio, 

sujeitos a carregamentos quase-estáticos e de impacto. Os ensaios foram realizados numa ampla 

gama de temperaturas (variando de -30 a 80ºC), levando em consideração os requisitos da 

indústria automóvel. Um procedimento de simulação numérico foi realizado em paralelo ao 

trabalho laboratorial, gerando modelos numéricos que, após validação experimental, 

permitiram prever o comportamento mecânico das juntas em condições quasi-estáticas e de 

impacto. Modelos de dano coesivas foram utilizados para simular a falha do adesivo e a 

delaminação dos compósitos, enquanto modelos de dano foram usados para simular 

deformação plástica e falha nos substratos de alumínio. Concluiu-se que é possível utilizar 

juntas adesivas dissimilares na construção de estruturas de veículos, sem ser necessário 

sacrificar o comportamento mecânico da ligação e com boas capacidades de absorção de 

energia ao impacto. Foi também possível concluir que a aplicação de modelos de dano coesivo 

permite simular com sucesso a performance deste tipo de juntas dissimilares, reduzindo assim 

a necessidade de efetuar ensaios de impacto.



 

vi 

Contents  

 

Acknowledgements ................................................................................................................... iii 

Abstract ..................................................................................................................................... iv 

Resumo ..................................................................................................................................... v 

Contents .................................................................................................................................... vi 

List of acronyms ........................................................................................................................ ix 

Notation ..................................................................................................................................... x 

List of figures ............................................................................................................................ xii 

List of tables ........................................................................................................................... xvii 

1 Introduction .......................................................................................................................... 1 

1.1 Background and motivation ................................................................................................. 1 

1.2 Objectives ........................................................................................................................... 1 

1.3 Research methodology ....................................................................................................... 2 

1.4 Dissertation outline ............................................................................................................. 2 

2 Literature Review ................................................................................................................. 4 

2.1 Survey of adhesive joints .................................................................................................... 4 

2.1.1 Failure modes and joint design………………………………………………………...6 

2.1.2 Types of adhesives……………………………………………………………………..9 

2.2 Adhesive joints in the automotive industry ......................................................................... 10 

2.2.1 Structural adhesives used in the automotive industry……………………………..11 

2.2.2 Substrates used in the automotive industry…………………………………………13 

2.3 Effect of temperature and impact loads ............................................................................. 18 

2.3.1 Adhesives under impact loads and temperature influence………………………...20 

2.3.2 Aluminium substrates under impact loads and temperature………………………21 

2.3.3 CFRP substrates under impact loads and temperature……………………………23 

2.4 Strength prediction of single lap joints ............................................................................... 26 

2.4.1 Numerical methods……………………………………………………………………26 

3 Experimental details ........................................................................................................... 31 



 

vii 

3.1 Material selection .............................................................................................................. 31 

3.2 Adhesive characterization ................................................................................................. 33 

3.2.1 Tensile test……………………………………………………………………………..33 

3.2.2 Double cantilever beam……………………………………………………………….40 

3.3 Fabrication and testing of single lap joints ......................................................................... 50 

3.3.1 CFRP plates manufacturing………………………………………………………….50 

3.3.2 Joints 

manufacturing…………………………………………………………………………………52 

3.3.3 Joints configurations…………………………………………………………………..53 

3.3.4 Testing procedure……………………………………………………………………..54 

4 Numerical simulation details ............................................................................................... 56 

4.1 Cohesive zone modelling .................................................................................................. 56 

4.2 Quasi-static model ............................................................................................................ 56 

4.3 Dynamical model .............................................................................................................. 60 

5 Results and discussion ....................................................................................................... 63 

5.1 Experimental results ......................................................................................................... 63 

5.1.1 Quasi-static tests………………………………………………………………………63 

5.1.2 Impact tests…………………………………………………………………………….71 

5.1.3 Combined temperature-strain rate analysis………………………………………...78 

5.2 Numerical results of SLJs.................................................................................................. 88 

5.2.1 Quasi-static…………………………………………………………………………….89 

5.2.2 Impact…………………………………………………………………………………..92 

6 Conclusions ........................................................................................................................ 95 

7 Future works ...................................................................................................................... 97 

References .............................................................................................................................. 98 

 



 

viii 



 

ix 

List of acronyms  

 

CBBM  Compliance based beam method 

CBT  Corrected beam theory 

CCM  Compliance calibration method 

CFRP  Carbon fibre reinforced polymer 

CZM  Cohesive zone model 

DCB  Double cantilever beam 

DLJ  Double lap joint 

ENF  End notched flexure 

FEA  Finite element analysis 

FPZ  Fracture plastic zone 

RT  Room temperature 

LT  Low temperature 

HT  High temperature 

SLJ  Single lap joint  



 

x 

Notation 

𝑎   Crack length 

𝑎𝑒q   Equivalent crack’s length 

𝐶   Compliance 

𝐸   Young’s modulus 

𝐸𝑥   Longitudinal normal modulus 

𝐺𝑥𝑦   Longitudinal shear modulus 

𝐸f   Corrected bending modulus 

𝐺   Shear modulus 

𝐺𝐼c   Critical strain energy release rate or fracture toughness in mode I 

𝐺𝐼𝐼c   Critical strain energy release rate or fracture toughness in mode II 

𝑘   Shear stress distribution constant 

𝐾   Elastic constitutive matrix 

𝑃   Applied force 

𝑇𝑔   Glass transition temperature 

𝑡   Thickness 

𝑡𝑛   Cohesive strength in tension 

𝑡𝑠   Cohesive strength in shear 

𝑤   Width of the specimen 

σ   Tensile strength 

𝛿𝑜,𝑖   Cohesive strength critical relative displacement 

𝛿𝑚𝑎𝑥,𝑖   Maximum relative displacement 



 

xi 

𝛿   Displacement 

𝛥   Correction factor of crack’s length 

𝑣  Poisson’s ratio 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xii 

List of figures 

Figure 1 - Comparison between riveted and adhesive bonded joints [1]. .................................. 5 

Figure 2 - Representation of failure modes: cohesion and adhesion [1]. ................................... 6 

Figure 3 - Failure modes with composite substrates [7]. ............................................................ 7 

Figure 4 - Types of stresses in adhesive joints. (a) normal (or direct) stress, (b) shear stress, (c) 

cleavage, (d) peel stress (adapted from [5]). .............................................................................. 8 

Figure 5 - Adhesive bonded joints configurations: (a) Single lap joint, (b) Double lap joint, (c) 

Double scarf joint, (d) double stepped-lap joint (adapted from [7]). ......................................... 9 

Figure 6 - Landscape of adhesives for structural automotive applications [1]. ........................ 11 

Figure 7 - Properties comparison [9]. ....................................................................................... 13 

Figure 8 - Types of composite materials [17]........................................................................... 16 

Figure 9 - Examples of configurations for plies orientation [19]. ............................................ 17 

Figure 10 - Overview of ply-level failure modes [21].............................................................. 18 

Figure 11 - Effect of strain rate in failure load of joints with aluminium substrates and three 

different adhesives. (Adapted from Harris and Adams, 1985) [25]. ........................................ 19 

Figure 12 - Absorbed energy at impact conditions for three types of substrates and two 

adhesives. (Adapted from Harris and Adams, 1985) [25]. ....................................................... 20 

Figure 13 - Representative XN1244 adhesive tensile stress–strain curves as a function of 

temperature and test speed (the curves for 150◦C — 0.1 mm/min and 150◦C — 1 mm/min are 

nearly coincident) [27].............................................................................................................. 21 

Figure 14 - Representative true stress versus true plastic strain curves at wide range of strain 

rates for AA6060 T6 and AA6082 T6 alloys0 [36]. ................................................................. 22 

Figure 15 - (a) Dependence of the strain rate on modulus, (b) Dependence of the strain rate on 

tensile strength. [37]. ................................................................................................................ 23 

Figure 16 - Stress–strain curves for unidirectional laminate, (a)longitudinal direction, (b) 

transversal direction, at 20 and 60°C. Strain rate around 750 s-1 [39]..................................... 24 

Figure 17 - GIc  of unidirectional CFRP as function of strain rate and temperature [40]. ........ 25 

Figure 18 - GIIc of unidirectional CFRP as function of strain rate and temperature [41]. ........ 25 



 

xiii 

Figure 19 - The three modes of loading [1]. ............................................................................. 27 

Figure 20 - Representation of the damage zone and corresponding bi-linear traction-separation 

law in an adhesively bonded joint [55]. .................................................................................... 28 

Figure 21 - Example of the triangular traction-separation law [56]. ........................................ 29 

Figure 22 - Traction-separation law with pure and mixed laws [58]. ...................................... 30 

Figure 23 - Yield stress versus plastic strain of the aluminium alloys used (AA5754 H22 and 

AA6060 T6). ............................................................................................................................. 33 

Figure 24 - Geometry of bulk specimens according to EN ISO 527-2 (dimensions in mm) [60].

 .................................................................................................................................................. 34 

Figure 25 - Mould for producing the bulk specimens with steel plates and silicone rubber frame.

 .................................................................................................................................................. 34 

Figure 26 - Cure cycle of Nagase-ChemteX adhesive XNR6852 E-3. .................................... 35 

Figure 27 - INSTRON® universal test machine. ...................................................................... 36 

Figure 28 - Young´s modulus of adhesive XNR6822E-3 as a function of strain rate. ............. 37 

Figure 29 - Tensile strength of adhesive XNR6822E-3 as a function of strain rate................. 38 

Figure 30 - Values of Young´s modulus of adhesive XNR6852 E-3 estimated for impact 

conditions.................................................................................................................................. 39 

Figure 31 - Values of tensile strength of adhesive XNR6852 E-3 estimated for impact 

conditions.................................................................................................................................. 39 

Figure 32 - DCB specimen geometry (dimensions in mm). ..................................................... 40 

Figure 33 - Adhesive applied in the open substrates. ............................................................... 40 

Figure 34 - Shot blasting machine. ........................................................................................... 41 

Figure 35 - Mixing machine SpeedMixer® DAC 150.1 FVZ-K. ............................................. 42 

Figure 36 - DCB setup. ............................................................................................................. 43 

Figure 37 - Loading scheme of the DCB specimen. ................................................................. 43 

Figure 38 - Representation of linear regression of the correction crack length factor [66]. .... 45 

Figure 39 - Schematic representation of the FPZ (adapted from [67]). ................................... 46 

Figure 40 - Results of fracture toughness in mode I (GIC) for adhesive XNR6852 E-3 as a 

function of strain rate and temperature. .................................................................................... 47 



 

xiv 

Figure 41 - Example of R-curve from the DCB test performed at 10 mm/min for a testing 

temperature of 24°C.................................................................................................................. 48 

Figure 42 - Example of failure surface of a DCB..................................................................... 48 

Figure 43 - Extrapolation of values of fracture toughness in mode I (GIC) under impact 

conditions as a function of temperature. ................................................................................... 49 

Figure 44 - Hot press pressure machine. .................................................................................. 51 

Figure 45 - Cutting machine used for to cut the squares of CFRP. .......................................... 52 

Figure 46 - Mould used to manufacture SLJs. .......................................................................... 53 

Figure 47 - Geometry of SLJ specimens (dimensions in mm). ................................................ 54 

Figure 48 - Elements introduced in FE software for the static analysis. .................................. 57 

Figure 49 - Triangular law for adhesive XNR6852 E-3 in quasi-static conditions. ................. 58 

Figure 50 - Triangular law for CFRP at quasi-static conditions............................................... 58 

Figure 51 - Boundary conditions applied for the quasi-static model. ...................................... 59 

Figure 52 - Representative mesh in the overlap area................................................................ 59 

Figure 53 - Boundary conditions applied for the impact model. .............................................. 60 

Figure 54 - Triangular law for adhesive XNR6852 E-3 in impact conditions. ........................ 61 

Figure 55 - Triangular law for CFRP in impact conditions. ..................................................... 62 

Figure 56 - P-δ curves of SLJs using similar substrates tested at quasi-static conditions and RT.

 .................................................................................................................................................. 64 

Figure 57 - Failure load of SLJs using similar substrates (CFRP and aluminium alloys) tested 

at quasi-static conditions as a function of temperature............................................................. 66 

Figure 58 - Energy absorbed by SLJs using similar substrates (CFRP and aluminium alloys) 

tested at quasi-static conditions as a function of temperature. ................................................. 67 

Figure 59 - Failure load of SLJs using dissimilar substrates (CFRP and aluminium alloys) tested 

at quasi-static conditions as a function of temperature............................................................. 70 

Figure 60 - Energy absorbed by SLJs using dissimilar substrates (CFRP and aluminium alloys) 

tested at quasi-static conditions as a function of temperature. ................................................. 71 

Figure 61 - Failure load of SLJs using similar substrates (CFRP and aluminium alloys) tested 

at impact conditions as a function of temperature. ................................................................... 73 



 

xv 

Figure 62 - Energy absorbed by SLJs using similar substrates (CFRP and aluminium alloys) 

tested at impact conditions as a function of temperature. ......................................................... 74 

Figure 63 - P-δ of SLJs using CFRP similar substrates tested at impact conditions as a function 

of temperature. .......................................................................................................................... 75 

Figure 64 - Representative scheme of frictional sliding phenomenon. .................................... 75 

Figure 65 - Failure load of SLJs using dissimilar substrates (CFRP and aluminium alloys) tested 

at impact conditions as a function of temperature. ................................................................... 77 

Figure 66 - Energy absorbed by SLJs using dissimilar substrates (CFRP and aluminium alloys) 

tested at impact conditions as a function of temperature. ......................................................... 78 

Figure 67 - Failure load of SLJs with AA5754 H22 similar substrates as function of temperature 

and strain rate............................................................................................................................ 79 

Figure 68 - Failure load of SLJs with AA6060 T6 similar substrates as function of temperature 

and strain rate............................................................................................................................ 79 

Figure 69 - Failure load of SLJs with CFRP similar substrates as function of temperature and 

strain rate. ................................................................................................................................. 80 

Figure 70 - Energy absorbed by SLJs with AA5754 H22 similar substrates as function of 

temperature and strain rate. ...................................................................................................... 81 

Figure 71 - Energy absorbed by SLJs with AA6060 T6 similar substrates as function of 

temperature and strain rate. ...................................................................................................... 81 

Figure 72 - Energy absorbed by SLJs with CFRP similar substrates as function of temperature 

and strain rate............................................................................................................................ 82 

Figure 73 - P-δ curves of SLJs with AA6060 T6 similar substrates tested at RT as function of 

strain rate. ................................................................................................................................. 83 

Figure 74 - Stress propagation through the SLJ in impact conditions...................................... 83 

Figure 75 - Stress propagation through the SLJ in quasi-static conditions. ............................. 84 

Figure 76 -  Failure load of SLJs with AA5754 H22 + CFRP dissimilar substrates as function 

of temperature and strain rate. .................................................................................................. 85 

Figure 77 - Failure load of SLJs with AA6060 T6 + CFRP dissimilar substrates as function of 

temperature and strain rate. ...................................................................................................... 85 



 

xvi 

Figure 78 - Failure load of SLJs with AA5754 H22 + AA6060 T6 dissimilar substrates as 

function of temperature and strain rate. .................................................................................... 86 

Figure 79 - Energy absorbed by SLJs with AA5754 H22 + CFRP dissimilar substrates as 

function of temperature and strain rate. .................................................................................... 87 

Figure 80 - Energy absorbed by SLJs with AA6060 T6 + CFRP dissimilar substrates as function 

of temperature and strain rate. .................................................................................................. 87 

Figure 81 - Energy absorbed by SLJs with AA5754 H22 + AA6060 T6 dissimilar substrates as 

function of temperature and strain rate. .................................................................................... 88 

Figure 82 - Comparison between experimental and numerical P-δ curves of SLJs with similar 

substrates of AA6060 T6 under quasi-static conditions. .......................................................... 89 

Figure 83 - Comparison between experimental and numerical P-δ curves of SLJs with similar 

substrates of CFRP under quasi-static conditions. ................................................................... 90 

Figure 84 - Comparison between experimental and numerical P-δ curves of SLJs with dissimilar 

substrates of AA6060 T6 + CFRP under quasi-static conditions. ............................................ 91 

Figure 85 - Comparison between experimental and numerical P-δ curves of SLJs with similar 

substrates of AA6060 T6 under impact conditions. ................................................................. 92 

Figure 86 - Comparison between experimental and numerical P-δ curves of SLJs with similar 

substrates of CFRP under impact conditions. ........................................................................... 93 

Figure 87 - Comparison between experimental and numerical P-δ curves of SLJs with dissimilar 

substrates of AA6060 T6 + CFRP under impact conditions. ................................................... 94 

 



 

xvii 

List of tables 

Table 1 - Example of the mechanical properties of some structural adhesives (adapted from 

[7]). ........................................................................................................................................... 12 

Table 2 - Comparison between aluminium alloys used in different car components in Europe 

versus North America [11]. ...................................................................................................... 15 

Table 3 - General properties of the crash-resistant adhesive used (Nagase-ChemteX XNR6852 

E-3). .......................................................................................................................................... 31 

Table 4 - Designation of substrates tested. ............................................................................... 32 

Table 5 - Elastic properties of the aluminium alloys used (AA5754 H22 and AA6060 T6). .. 32 

Table 6 - Properties of pre-preg SEAL® Texipreg HS 160 RM [65]. ..................................... 50 

Table 7 - Different combinations of similar and dissimilar SLJs. ............................................ 54 

Table 8 - Failure surfaces of SLJs using similar substrates (CFRP and aluminium alloys) tested 

at quasi-static conditions as a function of temperature............................................................. 65 

Table 9 - Failure surfaces of SLJs using dissimilar substrates (CFRP and aluminium alloys) 

tested at quasi-static conditions as a function of temperature. ................................................. 69 

Table 10 - Failure surfaces of SLJs using similar substrates (CFRP and aluminium alloys) tested 

at impact conditions as a function of temperature. ................................................................... 72 

Table 11 - Failure surfaces of SLJs using dissimilar substrates (CFRP and aluminium alloys) 

tested at impact conditions as a function of temperature. ......................................................... 76 

 



Impact strength of dissimilar joints for the automotive industry  

 

1 

 

1 Introduction 

This dissertation presents a study on the mechanical behaviour of adhesive joints with 

dissimilar adherends under static and impact conditions, tested under a range of temperatures 

suitable for the automotive industry. To accomplish this aim, several experimental and 

numerical studies were made. 

In this introductory chapter, a brief description of the research problem is made, the 

intended objectives are listed as well as the necessary steps undertaken for successful 

accomplishment of the research work. The methodology followed in this work is also described. 

 

1.1  Background and motivation 

With the increasing restrictions in emissions that automotive industry is currently being 

subjected, coupled with the drive for manufacturing higher performing cars, a light-weight 

approach for vehicle design is now essential. In order to tackle such objective, the automotive 

industry has significantly increased the application of light-weight materials such as aluminium 

and composite materials instead of more common materials like steel. It is within this context 

that adhesive bonding has gained importance, as this is the optimal method for joining 

dissimilar materials. However, the design of structural bonded joints for the automotive 

industry, especially those with dissimilar substrates, still poses significant challenges for the 

design engineers, especially when considering the necessity of performing well under impact 

loads (ensuring passenger safety) and the large temperature ranges involved. This is a relatively 

new field which requires further experimentation as well as the development of innovative and 

advanced numerical models. 

 

1.2  Objectives 

The objectives of this thesis are twofold. The first objective is to fully understand the 

mechanical behaviour of dissimilar adhesive joints, using composite and aluminium substrates, 

tested under quasi-static and impact loads, performing a comparison with the behaviour of joints 
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with similar substrates. A variety of testing temperatures (ranging from -30 to 80ºC) was also 

considered, taking into account the requirements for the automotive industry. 

The second objective consists in the development of a numerical simulation procedure, 

developing experimentally validated numerical models able to predict adhesive joint behaviour 

under both quasi-static and impact conditions.  

 

1.3  Research methodology 

 The main goals of this thesis were achieved through the performance of step by step 

research procedures, which can be divided in the following chronological order: 

1. A detailed literature review, considering some of the most recently published works, was 

performed focusing on themes such as: adhesive bonding, composite materials, aluminium 

alloys and impact tests, as well under the influence of temperature; 

2. Single lap joints (SLJs) made with carbon fibre reinforced polymer (CFRP) and aluminium 

substrates (in both similar and dissimilar configurations) were manufactured to perform quasi-

static and impact tests, under different testing temperatures (from low to high); 

3. Double cantilever beam (DCB) tests were performed to characterize the crash-resistant 

adhesive under three different strain rates from the range of low to high temperatures; 

4. Numerical simulations were developed using Cohesive Zone Models (CZM) to evaluate the 

obtained experimental results under quasi-static and impact conditions and tested at room 

temperature (RT). 

 

1.4  Dissertation outline 

 This dissertation is divided in seven chapters, which include an introduction and the 

main conclusions. In the introductory chapter, a brief description of the study is described, as 

well as background, motivations and objectives of the thesis. 
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 The chapter regarding the literature review comprehends a brief description of adhesive 

bonding, and considerations regarding the mechanical properties of different types of adhesives. 

Once a structural adhesive was used in this work, a detailed description was performed on its 

mechanical properties under the influence of strain rates and temperature. The mechanical 

properties of the CFRP used were analysed under different strain rates and testing temperatures. 

The quasi-static and impact behaviour of SLJs was considered.  

 The experimental details chapter clarifies in detail the manufacturing process of the 

SLJs tested, the specimens’ geometry and testing procedures.  

 The numerical details chapter reports the 2D finite element models built, both under 

quasi-static and impact simulations.  

 The experimental results chapter presents the results of the adhesive characterization 

regarding the fracture energy in mode I as a function of strain rate and testing temperature, as 

well the quasi-static and impact tests of SLJs as a function of temperature. Failure loads and 

energy absorbed, fracture modes and the corresponding simulations are also presented. 

 The last two sections of this document are the conclusions and future works. Here, 

conclusions are drawn regarding the main topics of research, complemented by a discussion of 

the most relevant suggestions for further work. 
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2 Literature Review 

2.1 Survey of adhesive joints 

An adhesive joint is a bonded connection between two similar or different materials using 

non-metallic fillers (adhesives). The materials which are joined together by the adhesive are 

commonly designated as substrate or substrates [1]. 

According to Adams and Wake [2] an adhesive can be defined as a material which, when 

applied to surfaces, can join them together and resist separation. Adhesive is the general term 

and includes cement, glue, paste, etc. It´s known that adhesives are used for centuries, since 

biblical times. For example early hunters used beeswax to join feathers to arrows to improve 

their aim, this can be considered as a primitive adhesive [3]. 

In the last century, or so, with the appearance of the first synthetic polymers, namely 

epoxy resins, engineers started to look to adhesives as a meaningful alternative to bolting, 

riveting, brazing and welding in structural bonding, thus leading to creation of the structural 

adhesive [4]. Structural adhesives can be defined as an adhesive used when the load requirement 

to cause separation is substantial such that the adhesive provides for the major strength and 

stiffness of the structure [2]. 

When compared with more traditional techniques for joining materials, adhesives can 

offer some advantages such as [5]: 

• Possibility to bond dissimilar materials; 

• The ability to bond thin sheets of-material; 

• Good stress distribution (Figure 1), which consequently leads to a good resistance 

to dynamic-fatigue; 

•  Very convenient and often cost-effective technique, since can of be automated; 

• Design flexibility, allowing the use of new concepts and materials; 

• Regular contours, since it avoids holes (rivets and screws) and welding marks;
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Figure 1 - Comparison between riveted and adhesive bonded joints [1]. 

 

There are some disadvantages when it comes to adhesive joints [6]: 

• Need to avoid peel and cleavage stresses (the biggest enemy of adhesive joints); 

• Limited resistance to extreme environmental conditions like as high temperature 

and humidity; 

• Necessity of fastening tools to keep the parts in position since the bonding process 

is not instantaneous; 

• Requirement of extremely careful surface preparation, to avoid bad adhesion; 

• Often requires high temperatures for curing (applied with oven, press, heater pads 

etc.); 

• Quality control is difficult to perform; 

• Low maximum service temperature. 
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2.1.1  Failure modes and joint design 

For bonded joints of metallic substrates, three different failure modes can occur in 

adhesive joints (Figure 2) [1]. The first, cohesive failure in the adhesive, can be due to a few 

reasons, like inadequate overlap length, thermal stresses or gross void defects. Sometimes, 

when ductile substrates are used, this kind of failure can be caused by the onset of plastic 

deformation on the substrates, introducing excessive peel stresses in the ends of the overlap 

leading to cohesive failure in the adhesive. The second one, adhesive (interfacial) failure 

appears in the interface between the adhesive and the adherend and is caused by poor surface 

preparation. This can be the case if the adherend is contaminated with grease, rust, loose 

particles or when the superficial energy of the adherend surface is much lower than that of the 

adhesive. The third failure mode, cohesive failure in the adherend, occurs when the adherend 

reaches its limit in terms of material strength. This is considered as an ideal case since it means 

that the bonded region did not fail.  

 

Figure 2 - Representation of failure modes: cohesion and adhesion [1]. 
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 Due to the anisotropic characteristics of composite materials, a more detailed analysis 

is needed when it comes to the failure mode of adhesive joints that employ these materials as 

substrates. In FRP (fibre reinforced polymer) composite joints, according to ASTM D5573 

standard, there are seven typical characterized modes of failure. Six of them are illustrated in 

Figure 3 and the last one is a mixed failure, that is, typically a combination of two or more of 

those represented below. 

 

Figure 3 - Failure modes with composite substrates [7]. 

 

 The big novelty when compared with the failure modes in metal joints is the addition of 

a new mechanism of failure, delamination of the composite materials, that in the image above 

is referred as fibre-tear failure. This additional failure mode is related with the inherent 

properties of composite materials, which will be addressed later in this review. 

 Bonded joints can be subjected to various types of stress (Figure 4) depending of the 

geometry of the joint, the way that the load is applied and the properties of the adhesives and 

substrates. While some of the load types are suitable for bonded joints (shear stress), others 

exist that must be avoided (cleavage and peel stresses) [6, 7]. The different types of stresses 

present in bonded joint are [1]: 

• Normal stresses (stresses which occur on a perpendicular plane where they act 

and can be compressive or tensile);  

• Shear stresses (stresses parallel to the plane where they act);  
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• Peel stresses (stresses that appear on the edges of adhesive layer due to eccentric 

loading);  

• Cleavage (stresses originated from an offset tensile force or bending moment).  

 

Figure 4 - Types of stresses in adhesive joints. (a) normal (or direct) stress, (b) shear stress, (c) cleavage, (d) peel 

stress (adapted from [5]). 

 

As mentioned before, geometry is a major factor when it comes to the types of stresses 

present in a bonded joint, thus during the design stage, peel and cleavage stresses should be 

minimized. Design changes on the substrates, the use of double lap joints (DLJ) and even the 

use of local mechanical restraints are a few of the most common methods suggested to avoid 

the most problematic situations. The most studied joint configurations in the literature are [7]: 

• SLJs);  

• Double-lap joints (DLJs);  

• Scarf joints;  

• Stepped lap joints.  
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Figure 5 - Adhesive bonded joints configurations: (a) Single lap joint, (b) Double lap joint, (c) Double scarf 

joint, (d) double stepped-lap joint (adapted from [7]). 

 

Single lap joints are the most commonly studied adhesive joints due to their simplicity 

and to the fact that this is the joint configuration that best represents the adhesive joints used 

industrially. 

 

2.1.2  Types of adhesives 

Due to the large variety of properties they exhibit and the different possible chemical 

compositions, adhesives can be classified according to a wide range or parameters. The most 

common classification parameter used are: source, chemical structure, function, reaction 

method and physical form. 

The source can be synthetic or natural. Examples of synthetic adhesives are: acrylics, 

epoxies, silicones and polyesters. Examples of adhesives derived from natural sources are: 

natural rubber, animal glue and casein-based, and protein- based adhesives. 

In terms of chemical structure as categorizing parameter, the major different types are: 

thermoplastics, thermosets, elastomers and hybrid. Thermoplastic adhesives are cured by 

cooling from a melted state or by loss of solvent. They can be melted after curing if subjected 

to temperatures above Tg (glass transition temperature). Due to this fact, they are usually unable 

to handle high temperature and their use is not recommended for service temperatures above 

60°C. These materials are also characterized as having poor creep resistance and fair peel 

strength. Thermosetting adhesives, after the cure cycle, cannot be heated and melted again. 

These can be found as a one-part  or two-part system (resin and hardener come separately). The 
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one-part system usually requires high temperature to cure, and its shelf life is reduced. On the 

other hand, the two-part systems cure at RT and have a longer shelf life, but the working 

temperature is lower than the one-part adhesives. Elastomeric adhesives are not especially 

strong but present a higher toughness, elongation and superior peel strength. Currently, many 

adhesives on the market are hybrid formulations, which mix more than one type of adhesives 

in one single product, offering a combination of the best properties from those adhesives. The 

combination of different adhesives provides tougher and more flexible adhesive, with better 

mechanical properties when subjected to impact [1]. 

Adhesives can also be classified regarding their function, and this is a very important 

division, as it separates the adhesives between structural and non-structural. While non-

structural adhesives are most used as sealants, structural adhesives can withstand significant 

loads. Examples of non-structural adhesives are: synthetic rubbers and polyesters.  Examples 

of structural adhesives are: epoxies, phenolics and polyurethanes. 

The physical form of adhesives is another classification parameter. Adhesives are available 

as liquids, pastes, films and powder. This is a very useful classification method to the industry, 

mainly due to its implications in the joint manufacture process. For example, while liquid 

adhesives have good gap filling capabilities they can flow out from the joint during 

manufacture, something which does not occur with paste or film adhesives but the last struggle 

to properly wet the surfaces. 

The reaction method is also an important classification parameter with practical 

importance, as it divides adhesives according to their cure method. Adhesives can cure by 

chemical reaction, by loss of solvent, by loss of water or by cooling from melted state. 

 

2.2  Adhesive joints in the automotive industry  

 The automotive industry has significantly increased the use of adhesives for joining 

load-bearing components in an effort to reduce vehicle weight, improve fuel economy and 

reduce emissions. However, the design process of a bonded structure can be complex, as the 

properties of adhesives vary widely from brittle to highly deformable adhesives [1]. Adhesives 

are viscoelastic, and their properties greatly depend on several factors such temperature, 
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humidity and loading rate. While some design criteria consider these effects [5], there is still 

limited information regarding the impact behaviour of bonded joints [8], especially when used 

with composite substrates. Adhesive joints in the modern automotive industry can be found in 

three main areas of application: the body shop, the paint shop and the trim shop. In the body 

shop adhesives are used for hem flange bonding, anti-flutter bonding, and hybrid joining. The 

use of adhesives in the paint shop is limited to a few minor applications, but in the assembly 

lane/trim shop the use of adhesives is extensive, as most of the trim pieces are bonded to the 

vehicle. 

 

2.2.1  Structural adhesives used in the automotive industry  

Due to this wide range of application, the types of adhesives used in the automotive 

industry are varied (Figure 6). For many automotive components, the forces involved are small 

and non-structural adhesives can be used. However, for structural applications the loads can be 

considerably higher. 

 

Figure 6 - Landscape of adhesives for structural automotive applications [1]. 
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The range of strength of structural adhesives used in automotive production is marked 

at one end by windshield adhesives with rather low modulus and high elongation and at the 

other end by very high strength epoxy adhesives. The top end of adhesives for automotive 

bodies are crash-supportive epoxy-hybrid adhesives which have a somewhat lower shear 

modulus than very high strength epoxies, but significantly higher elongation. The most 

common adhesives used in this industry are epoxies, acrylics and polyurethanes. Table 1 

indicates examples of the typical properties for some structural adhesives. 

Table 1 - Example of the mechanical properties of some structural adhesives (adapted from [7]). 

 

 

 Epoxy adhesives are very versatile type of adhesive since they can be applied in every 

type of substrates used in the industry except plastic. Modern modified epoxies have improved 

in terms of impact and peel strength when compared with older versions of brittle epoxy, 

making of them the best choice to crash resistant applications. Epoxies adhesives are available 

in one-part or two-part system. The service temperature ranges between -40 to 100°C with 

modified epoxies going up 180°C. This type of adhesive usually presents high strength and 

temperature resistance, relatively low cure temperatures, easy to use and low cost. 

Acrylics adhesives are known as resin-based adhesives. It’s a versatile adhesive because 

it has the capability of fast curing and tolerate dirtier and less prepared surfaces. It is also 

resistant to water and humid conditions. The service temperature ranges between -40 to 120°C 

and cure through a free radical mechanism.  

Polyurethanes adhesives have high peel strength, toughness, durability and flexibility, 

but exhibit generally lower mechanical strength when compared to epoxies. Due to their low 

modulus and high ductility, a more uniform stress distribution takes place on the bonded joint, 

which leads to a good behaviour to fatigue. Their high failure strain makes it a good adhesive 
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for the absorption of impact. This type of adhesive is also available in one-part or two-part 

system. The service temperature ranges between -200 to 80°C and they cure at RT. 

 

2.2.2  Substrates used in the automotive industry  

 Although the majority of structural pieces used in the automotive industry are still made 

from steel, it is also true that the aluminium and composite materials are gaining more and more 

space in the industry. Vehicle bodies, that before were mainly made of steel, now increasingly 

include assemblies made of aluminium. Additionally, the use of composite materials for 

bonnets and other body panels is becoming more frequent [1]. Since various types of loads are 

applied in different parts of a car, the use of different materials and geometries is necessary for 

optimize weight reduction and overall structural stiffness. These two parameters are the focus 

of the industry at the moment, in order to reduce emissions and increase performance. Figure 7 

demonstrates the advantages of aluminium and CFRP in comparison with a steel construction. 

 

Figure 7 - Properties comparison [9]. 
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2.2.2.1  Aluminium  

 The characteristic properties of aluminium, like high strength stiffness to weight ratio, 

good formability, good corrosion resistance, and recycling potential make it the ideal candidate 

to replace heavier materials (steel or copper) in the car to respond to the weight reduction 

demand within the automotive industry. Despite aluminium density (2700 kg/m3) being about 

one third of the steel (7600 kg/m3), the weight reduction when replacing steel by aluminium in 

car manufacturing is around 50% because, to ensure strength and stiffness equivalent to that of 

steel, the cross-sectional areas of aluminium elements need to be larger. The utilization of 

aluminium in structural parts of vehicles is continually increasing as new alloys and design 

solutions are developed.  The use of aluminium alloys used in cars have increased more than 

80% in total mass during the past 5 years. An increase from about 110 kg to approximately 

between 250 to 340 kg was though to occur  from 1996 to 2015 [10]. 

  The 5000 and 6000 alloy series are particularly interesting for the automotive industry 

since they allow the construction of the majority of the structure of a car body and because of 

the improved bare metal corrosion when compare to steel [11]. The current requirements for 

frontal impact can already be achieved using the AA6060 T6 alloy for construction of a space 

frame-based vehicle.  

 Aluminium is also a good material for application in structures aiming at the absorption 

of energy since it presents a mass-specific energy absorption capacity twice of that for mild 

steels and is comparable with the latest high-strength steels (HSS steels). However, it is 

important to mention that the behaviour of a given element during impact also strongly depends 

on shape, wall thickness or the use of filling material [12, 13]. 

  Table 2 shows some of the most important aluminium alloys that are used in different 

parts of a vehicle in Europe and America. 
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Table 2 - Comparison between aluminium alloys used in different car components in Europe versus North 

America [11]. 

 

 

2.2.2.2  Composite materials  

 Composite materials, as the name indicates, are made of dissimilar constituents, 

combined in order to obtain better properties than each constituent would have by their own. 

The basic composite parameters provide the design flexibility enabling fibre architectural 

design, adjustment of the fibre content, and the fibre packing ability. These types of materials 

are increasingly used in automotive, aeronautical and aerospace industries because their high 

specific strength. Composite materials also performed well under fatigue conditions. Other 

good properties of these materials are: high specific stiffness, corrosion resistance and low 

thermal expansion coefficient [14-16] 

 The basic constituents of a composite material are the load-carrying fibres, also known 

as reinforcement, and the matrix, which in general is called the resin system during processing 

phase and matrix in the consolidated phase, that is needed to keep the fibres together, in the 

appropriate direction and protected from environment and abrasion. Matthews and Rawlings 

[17] did a schematic classification of the most common composite types (Figure 8). 
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Figure 8 - Types of composite materials [17]. 

 

 The most common composite type used in the automotive industry is the carbon fibre 

reinforced polymer (CFRP), that consists in a polymer matrix reinforced with carbon fibres 

[18]. Considering that the strength is provided mainly by the fibres, composites materials are 

considered an anisotropic material, being stronger in the direction of the fibres and weaker in 

the perpendicular direction.   

 These types of materials present some disadvantages as well, like high cost when 

compared with most common materials (steel and aluminium) and possibility of failure 

delamination between plies, specially under impact conditions [14-16].  

 Since fibre direction is fundamental to define mechanical properties is possible during 

design to have that in consideration. The composite plies can be stacked in different directions 

providing a more isotropic finished product when loads are applied in different directions 

(Figure 9).  
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Figure 9 - Examples of configurations for plies orientation [19]. 

 

 As composite materials are a combination of materials the failure analysis is a complex 

subject due to the interactions between fibres and matrix. Completely different failure modes 

are observed when composites are compared to metallic materials. In composites it is typical to 

observe a damaged area, where different mechanisms of failure can be presented (Figure 10): 

fibre breakage, fibre micro buckling, fibre pull-out, matrix cracking, delamination and 

debonding [20]. Three different failure modes should be taken in account when composites are 

associated with adhesive joints: tensile failure in the fibre direction, tensile failure perpendicular 

to the fibre direction and interlaminar shear failure. Although a few failure modes are presented, 

due to the high strength in the fibre direction and the direction of load under tests, the real 

concern is the interlaminar shear failure, also referred as delamination.  
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Figure 10 - Overview of ply-level failure modes [21]. 

 

2.3  Effect of temperature and impact loads  

 As mentioned before, cars are subject to all type of loadings and conditions and the 

industry takes to serious the safety of the car´s users, thus an understanding of the behaviour of 

adhesive joints in such conditions, and all the materials that are involved in this kind of 

connections, is needed. A revision of the influence of impact loads and temperature are made 

regarding the properties of adhesives, aluminium and CFRP materials, as well as the overall 

behaviour of adhesive joints Especially when taking into account the effect of temperature a 

few more concepts, like Tg and thermal expansion needed to be enlightened.  

 The Tg is the most critical value referring to temperature in polymers. It is a property of 

the amorphous part and marks the transition from a glass-like to a rubber-like structure. In 

amorphous polymers, when they go above the Tg, the long coiled molecular chains can 

rearrange and extend, causing fast stress relaxation due to the viscoelastic nature of the polymer, 

lowering its modulus and strength. This is mostly unwanted in rigid structures so structural 

adhesives should normally work below their Tg [1, 2].  

 The thermal expansion coefficient can be defined as the amount of expansion (or 

contraction) per unit of length of a material resulting from one-degree change in temperature. 

If the thermal expansion coefficient of the adhesive is not close to the one of the substrates, 

additional interfacial stresses are created which can lead to a premature failure of the joint [22, 
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23]. Since this coefficient is generally higher for the adhesive when compared to the most 

commonly used materials for the substrates, this is an important factor to consider when 

creating an adhesively bonded structure. This expansion can be reduced by the addition of 

mineral fillers [1]. 

 Regarding impact loads analysis, the energy that adhesive joints are capable of 

absorbing is an important factor, since, in case of accident it is important to guarantee the 

structural integrity of the car structure, but, at the same time it is necessary that the structure 

absorbs the energy of the collision, otherwise this energy will be transferred to the passengers 

[24]. 

 Harris and Adams in 1985 [25] tested SLJs with various substrates and adhesives types 

for both quasi-static and impact conditions. They conclude that, regardless the strain rate, the 

energy absorption was not directly provided by the adhesive, but is derived instead from the 

plastic deformation of the substrate. As a ductile and strong adhesive was being used, the plastic 

deformation of the substrate is what determined the failure load and absorbed energy. High 

strength substrates produced high failure loads but very low absorbed energy while the opposite 

occurred for more ductile substrates. 

 From Figure 11 it is possible to notice that SLJs with ductile adhesives performs better. 

The ductile adhesives allowed better stress distribution along the overlap leading to failure in 

the substrate. 

 

Figure 11 - Effect of strain rate in failure load of joints with aluminium substrates and three different adhesives. 

(Adapted from Harris and Adams, 1985) [25]. 
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 From Figure 12 is possible to observe that brittle adhesive break very easily and are 

unable to plastically deform the metal substrates, leading to very small absorbed energy. In 

contrast, ductile adhesives can hold the joint together during the impact and enable large energy 

absorption, especially when used in conjunction with, low strength, ductile substrates. 

 

Figure 12 - Absorbed energy at impact conditions for three types of substrates and two adhesives. (Adapted from 

Harris and Adams, 1985) [25]. 

 

2.3.1  Adhesives under impact loads and temperature influence 

 Adhesives, owing to their polymeric nature, are highly sensitive to strain rate and 

temperature. A few studies have concerned on the effect of temperature and strain rate on 

adhesive behaviour.  

 Sharon et al. [26] studied the effects of loading rate and temperature on the viscoelastic 

related properties of four structural adhesives. They conclude that the yield stress and modulus 

decreased with temperature while the loading rate presented a pronounced effect on the yield 

stress which increased with increasing loading rate and had a negligible influence on the 

modulus. 
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 A similar study was done by Banea et al. [27] to find the tensile properties of a high 

temperature epoxy with a Tg of 155°C (Figure 13). It is easy to perceive the effect of temperature 

and loading rate on tensile stress-strain curve of the adhesive. They found that the ultimate 

tensile stress decreased linearly with temperature while increased logarithmically with the 

loading rate. The Young´s modulus presents a similar behaviour than ultimate tensile stress, as 

function of loading rate while the decrease as function of temperature as nonlinear. It’s also 

worth mentioning that the effect of temperature on the properties was more significant than that 

of the strain rate. 

 

Figure 13 - Representative XN1244 adhesive tensile stress–strain curves as a function of temperature and test 

speed (the curves for 150◦C — 0.1 mm/min and 150◦C — 1 mm/min are nearly coincident) [27]. 

  

2.3.2  Aluminium substrates under impact loads and temperature 

 Aluminium has traditionally been considered to have low strain rate sensitivity, 

however this strongly depends of the alloy. Holt [28] found that pure aluminium reveals 

moderate sensitive to strain rate. The flow stress of pure aluminium increases linearly with the 

logarithm of strain rate at RT, and the strain rate sensitivity increases at rates above 1x103s-1 

[29]. However, with increasing alloy content or processing, such as heat treating or cold 

working, the strain rate sensitivity for aluminium alloys decreases [28-30]. Negative strain-rate 

sensitivity, cause by dynamic strain aging, was found by some authors for some alloys in the 

AA5xxx series [31-33]. 
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  Oosterkamp et al. [34] did compression tests on AA6082 and AA7108 in tempers T6 

and T79 at strain rates ranging from 0.1 to approximately 2000 s-1. At RT, they found a very 

low, yet slightly positive, increase in flow stress with strain rate.  

 Smerd et al. [35] studied the stress-strain behaviour in tension of two non-tempered 

aluminium alloys for a four strain rates from 3.3x10-3 s-1 to 1500 s-1 and for four temperatures 

(23, 50, 150 and 300°C). The results show that strain rate sensitivity to was low for both alloys 

at al temperatures tested. 

 Chen et al. [36] studied the stress-strain behaviour of four aluminium alloys for a wide 

range of strain rates (Figure 14). They found that while AA6060 T6 and AA6082 T6 exhibit 

only slight sensitivity to the strain rate, and could probably be modelled as rate-insensitive with 

good accuracy, AA7003 T6 and AA7108 T6 show a marked sensitivity to strain rate, which 

should be included in simulations. 

 

Figure 14 - Representative true stress versus true plastic strain curves at wide range of strain rates for AA6060 

T6 and AA6082 T6 alloys0 [36]. 

 

 It can be concluded that the bulk mechanical behaviour of aluminium alloys does not 

appear to present significant sensitivity to the range of temperatures and strain rates typical of 

automotive industry construction. 
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2.3.3  CFRP substrates under impact loads and temperature 

 Considering that composite materials are anisotropic and composed by two constituents, 

the behaviour analysis as a function of temperature and strain rate isn´t straight forward. While 

the carbon reinforcements are highly insensitive to temperature variation and loading rate, the 

matrix is made of a polymer material, the same family material that adhesives are made of. 

 From what was mentioned a above regarding adhesives, it is expected that temperature 

and strain rate have influence in the CFRP properties. This topic was investigated by several 

authors. 

 Harding and Welsh [14] studied the effect of strain rate in the longitudinal tensile 

properties of unidirectional CFRP and found no significant effects of strain rate. Taniguchi et 

al. [37] performed a more detailed study of the effect of strain rate also for unidirectional CFRP, 

since transversal tensile properties and shear properties were also determined as function of 

strain rate (Figure 15). 

 

Figure 15 - (a) Dependence of the strain rate on modulus, (b) Dependence of the strain rate on tensile strength. 

[37]. 

 

 From Figure 15, it is possible to confirm that the longitudinal tensile properties were 

unaffected by the strain rate but regarding the transversal tensile properties and shear properties 

the same conclusion cannot be made. While for transverse tensile modulus and transverse 

strength the increase with strain rate is slight, for shear modulus and shear strength this trend is 

more pronounced.  
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 Hou and Ruiz [38] also concluded in their study that properties that are dominated by 

the matrix like compression strength, Poisson’s ratio, in-plane shear modulus, shear modulus 

and shear strength are strain rate dependent. The properties dominated by the fibres like tensile 

modulus and strength are virtually rate independent. 

 Gómez-del Río et al. [39] studied the effect of low temperature on the dynamic tensile 

properties of unidirectional and quasi-isotropic CFRP. For unidirectional CFRP, they found that 

the effect of temperature was negligible in the longitudinal direction whereas in the transversal 

direction the strength increased appreciably (Figure 16).  

 

Figure 16 - Stress–strain curves for unidirectional laminate, (a)longitudinal direction, (b) transversal direction, at 

20 and 60°C. Strain rate around 750 s-1 [39]. 

 

 Machado et al. [40] studied the effect of both temperature and strain rate on fracture 

energy in mode I (GIc) [40] (Figure 17) and mode II (GIIc) [41] (Figure 18) of CFRP plates. 

They tested double cantilever beam (DCB) specimens at -30, 20 and 80°C, with strain rates of 

0.2 and 11 s-1. With the use of a logarithmic trend function, they extrapolated the values for 

impact condition. This work has demonstrated a significant influence of the strain rate and 

temperature on fracture energy of both modes of the composite materials, with higher strain 

rates and lower temperatures causing a decrease in the GIc and GIIc values. 
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Figure 17 - GIc  of unidirectional CFRP as function of strain rate and temperature [40]. 

 

 

Figure 18 - GIIc of unidirectional CFRP as function of strain rate and temperature [41]. 

 

 Understanding the capability of a composite structure to absorb energy through-

controlled failure mechanisms is critical to improve safety of a vehicle under impact conditions. 

The energy absorption of composite materials depends on several parameters such as: type of 
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fibre and matrix, fibre architecture, specimen geometry, fibre volume and processing 

conditions, and testing speed. The rate at which the structure is loaded has an important effect 

on both the material´s behaviour and the structure response of the target [42]. The energy 

absorbed response of composite materials has been assessed by several authors with diverse 

results. While some authors [43-47] have found a decrease of the energy absorption of 

composite structures with the increase of strain rate, other authors such as Thornton [48] and 

Farley [49] found a significant increase of the energy absorption of composites with the increase 

of strain rate. These works suggest that that the configuration and the materials comprising the 

composite has significant influence on the energy absorption process. 

 

2.4  Strength prediction of single lap joints 

 Strength prediction of SLJs can be made by analytical and numerical approaches. There 

are several useful analytical methods available to predict strength joints but despite their 

simplicity, they are very restricted to well defined geometries and loading conditions. For more 

complex geometries and more powerful material models, the use of finite element analysis 

(FEA) is preferred, due to the improved flexibility of this type of approach. 

 

2.4.1  Numerical methods 

 The first authors that used FEA for adhesive joints were Wooley and Carver [50] in 

1971, followed by Adams and Peppiatt [51] in 1974. Despite the work of Wooley and Carver 

[50] being considered as a significant evolution in the prediction of the failure load in SLJs, 

these models do not consider fracture mechanics. Linear elastic finite models have been recently 

combined with fracture mechanics to create cohesive damage models, which offer the 

possibility of predicting the crack propagation as a result of simulated degradation of the 

material. To explain how the cohesive zone model works it is necessary to understand a few 

concepts of fracture mechanics. 
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2.4.1.1 – Fracture critical energy 

 In fracture mechanics it is assumed that materials in a structure are not necessarily a 

continuum medium, this means that defects can occur in the manufacturing process, for 

example, and it is essential to understand how these defects can evolve during the life time of 

the structure, if it leads to a catastrophic failure or if can safely being used despite a possible 

stable propagation. 

 The basic principles of fracture mechanics, mainly due to Griffith [52], state that all 

bodies have a defect distribution and fracture occurs from the critical one. There are two 

different criteria that allow to develop the principle above, a stress concentration factor-based 

criterion and energetic criterion. Griffith established that an internal defect will propagate when 

the available energy at the tip of the defect (G - release rate energy), due to the loading, equals 

the energy needed for crack propagation (Gc - critical release rate energy), that is a material 

property. Kinloch [5] refers that is advantageous to use the energy criterion instead of the factor 

criterion, in what concerns adhesive joints. 

 

Figure 19 - The three modes of loading [1]. 

 

Regarding fracture mechanics, there are three fracture modes that depend mainly how the 

load is applied: Mode I, II and III (Figure 19). Mode I loading occurs when the load is applied 

perpendicularly to the plane of the crack, conducting to the tensile mode, Mode II, where a 

shear load is applied parallel to the plane of the crack and perpendicular to its front, in-plane 

shear mode and Mode III, where a shear load is applied on a parallel plane to the crack and also 

parallel to the crack’s front, out-of-plane shear mode. In homogenous and isotropic materials 

crack tend to propagate in mode I. However, in bonded joints the direction of crack propagation 
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is restricted by the substrates causing, in most of the cases, a mixed-mode propagation in mode 

I+II. 

For each loading mode there are a few tests to determine the fracture energy. For mode I, Double 

Cantilever Beam (DCB) and Tapered Double Cantilever Beam (TDCB), while End-Notched 

Flexure (ENF), End Loaded Split (ELS) and Four-Point Notched Flexure (4ENF) are used for 

mode II [1]. 

 

2.4.1.2 - Cohesive damage model 

 The necessity to make a bridge between stress analysis criteria and classical fracture 

mechanics led to the creation of a computational tool called the Cohesive Zone Model (CZM). 

The combination of the stress criteria with the fracture mechanics data made possible to 

determine the crack initiation and growth. The CZM was first introduced by Barenblatt [53] 

based on the Griffith´s theory of fracture, however the first researcher that applied it to the 

computational frameworks of FE modelling was Hillerborg et al. [54], who established the 

relation between traction and the crack opening displacement, and consequently the law of 

traction-separation (Figure 20). 

 

Figure 20 - Representation of the damage zone and corresponding bi-linear traction-separation law in an 

adhesively bonded joint [55]. 
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 The traction-separation law (Figure 21) describes the material behaviour in two distinct 

phases, the first related to the damage initiation phase, that can be delimited by the elastic 

behaviour and its limit and another related to the damage propagation phase. Traction-

separation laws can present various shapes like triangular, the most common, trapezoidal and 

exponential, these shapes are related with the plastic behaviour of the material. Although 

trapezoidal law is mainly used on ductile materials, and the triangular law is used on brittle and 

composite materials, some authors use triangular law for ductile materials as it is the most 

common. 

 

Figure 21 - Example of the triangular traction-separation law [56]. 

 

 Figure 21 presents a triangular traction-separation law that can be divided in two 

triangles. The first one is defined by the elasticity modulus (the slope) and limited by the 

cohesive strengths (𝜎𝑡,𝑖) that correspond to the peak on the graphic and defines the critical 

relative displacement (𝛿𝑜,𝑖), once it is exceeded the failure starts, defining the second triangle, 

the sum of both areas corresponds to the critical failure energy. So, knowing the elastic 

modulus, the cohesive strength and the critical failure energy, it is possible to find the maximum 

relative displacement (𝛿𝑚𝑎𝑥,𝑖) [56, 57]. 

 The traction separation law can be made for the three modes (I, II and III) referred 

earlier. Also mentioned earlier was that in bonded joints the direction of crack propagation is 

described by a mix-mode propagation in mode I+II. Figure 22 shows a pure-mode (tension and 

shear) law, and the mixed mode law. 
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Figure 22 - Traction-separation law with pure and mixed laws [58]. 

 

 Regarding to the mathematical approach, as the initial behaviour of the law is elastic it 

can be modelled by the elastic constitutive matrix, 𝐾 (Equation 1) [59]. 

 
 

𝑡 = {
𝑡𝑛

𝑡𝑠
} = [

𝐾𝑛𝑛 𝐾𝑛𝑠

𝐾𝑛𝑠 𝐾𝑠𝑠
] {

𝜀𝑛

𝜀𝑠
} = 𝐾𝜀 

(Eq. 1) 

 For thin adhesive layers, several considerations can be made: 𝐾𝑛𝑛=𝐸, 𝐾𝑠𝑠=𝐺 and 𝐾𝑛𝑠=0, 

where E and G are the Young’s modulus and shear modulus, respectively. 

 The complete separation and mixed-mode failure displacement are predicted by the 

following linear power law form equation of the required energies for failure in the pure modes 

(Equation 2) [59]. 

 𝐺𝑛

𝐺𝑛
𝑐 +

𝐺𝑠1

𝐺𝑠1
𝑐 = 1 (Eq. 2) 

 To implement this method, varied property data of the substrates and the adhesives is 

required, such as the Young´s modulus (E) and shear modulus (G), cohesive strength in tension 

and shear (𝑡𝑛 and 𝑡𝑠, respectively), the tensile (𝐺𝐼c) and shear toughness (𝐺𝐼𝐼c), that can be 

obtained experimentally. 
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3 Experimental details 

3.1  Material selection 

 One adhesive was selected for this study, a ductile, one-component, epoxy based 

adhesive, Nagase-ChemteX XNR6852 E-3, supplied by Nagase ChemteX® (Osaka, Japan) 

(Table 3). This adhesive was selected because is a crash resistant adhesive and has been study 

by the adhesive group in previous works. The CFRP selected for this specific lay-up and fibre 

orientation was due the existence of data from previous works performed by the adhesive group. 

Table 3 - General properties of the crash-resistant adhesive used (Nagase-ChemteX XNR6852 E-3). 

 

 

 Three different materials for the substrates were used in this study, two aluminium 

alloys (AA5754 H22 and AA6060 T6) and a composite material (CFRP). The aluminium alloys 

were selected as a request from Aston Martin Lagonda®, aiming to evaluate the behaviour of 

adhesive joints with these alloys as substrates, as well with CFRP, under conditions typical of 

the automotive industry (Table 4), that is, under quasi-static and impact conditions for a range 

of temperature between -30 to 80°C. These types of materials are currently being used in the 

latest models commercialized, as well as prototypes being developed by this car manufacturer.  
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Table 4 - Designation of substrates tested. 

 

 

Elastic and plastic aluminium properties were provided by Aston Martin Lagonda®, and are 

presented in the Table 5 and the Figure 23. The substrates thicknesses previously indicated are 

representative of the average value for each material being used in the vehicles manufactured 

by Aston Martin Lagonda®. 

Table 5 - Elastic properties of the aluminium alloys used (AA5754 H22 and AA6060 T6). 
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Figure 23 - Yield stress versus plastic strain of the aluminium alloys used (AA5754 H22 and AA6060 T6). 

 

3.2  Adhesive characterization  

 Because the adhesive used in this work is still in the development stage, the properties 

could change from batch to batch. To verify the properties of the adhesive and understand the 

effect of temperate on the adhesive, tensile tests were performed under different displacements 

rates, and three temperatures, -30, 24 and 80°C. DCB tests were also performed to determine 

the fracture energy tests in mode I. 

 

3.2.1  Tensile test  

 Bulk tests were performed to obtain the Young’s modulus and the tensile stress of the 

adhesive since they are the properties needed to introduce into the Finite Element Analysis 

(FEA) model. Specimens were manufacture according to EN ISO 527-2 standard using the 

geometry represented in Figure 24. 
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Figure 24 - Geometry of bulk specimens according to EN ISO 527-2 (dimensions in mm) [60]. 

 

3.2.1.1 Manufacture 

 To produce the adhesive bulk specimens, bulk sheet plates were manufactured. To do 

so, a steel mould was used, with the help of a silicon rubber frame to ensure that the adhesive 

does not flow out, following a design based on French standard NF T76-142 (Figure 25). To 

ensure that the bulk sheet plate is free from contamination, the mould was first abraded with 

sandpaper and then degreased with acetone. To finish the mould preparation, three layers of 

mould release agent (Loctite® Frekote 770-NC) were applied to promote easier removal of the 

cured bulk sheet plate from the mould. 

 

Figure 25 - Mould for producing the bulk specimens with steel plates and silicone rubber frame. 
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 Decreasing the viscosity of the adhesive was achieved using a high speed centrifugal 

mixing machine (SpeedMixer® DAC 150.1 FVZ-K). Mixing the adhesive raises its temperature 

and thus lowers its viscosity.  To apply the adhesive into the cavity mould, a spatula was used, 

applying an excessive amount of material to guarantee that voids are avoided. After the 

conclusion of adhesive application, the mould was closed and inserted into a hot press at curing 

temperature and under pressure, according to the specific cure cycle (Figure 26). 

 

Figure 26 - Cure cycle of Nagase-ChemteX adhesive XNR6852 E-3. 

 

 As soon as the cure cycle was completed, the bulk sheet plates were removed from the 

mould and machined with the dogbone shape geometry described in Figure 24. To allow 

displacement measurement and recording using an extensometer video system, two dark lines 

were drawn on the specimens perpendicular to the longitudinal direction. 

 

3.2.1.2 Testing procedure  

 The tests were carried out in an INSTRON® universal test machine (Norwood, 

Massachusetts, USA) (Figure 27), equipped with a load cell with a capacity of 30 kN. A tensile 

test consists in imposing a displacement rate in the longitudinal direction of the specimen until 

failure. During the test an increasing load is applied by the machine and recorded by the load 

cell. An optical method was used to record the displacement of the specimen, with a digital 

camera taking pictures of the gauge length between the two lines during the test, allowing to 

4 
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record all the stages until failure. An image processing and analysing software was used to 

obtain the strain for each specimen. The width and thickness of each specimen were measured 

in order to calculate the stress of each strain stage.  

 

Figure 27 - INSTRON® universal test machine. 

 

 At least four specimens of each adhesive for each condition were tested. The strain rate 

conditions were, 0.004 s-1, equivalent to a displacement rate of 1 mm/min, and 0.42 s-1, which 

is equivalent to a displacement rate of 100 mm/min. For each strain rate tests were performed 

at three different temperatures (-30, 24 and 80°C).  

 The conversion of machine cross-head displacement to strain rate was conducted, 

resorting to Equation 3 to correctly estimate the effect of the testing speed, since it is more 

accurate to use the actual strain rate of the tested material. 

 
𝜀̇(𝑡) = (

𝐿(𝑡) − 𝐿0

𝐿0
) =

𝑣(𝑡)

𝐿0
 (Eq. 3) 
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 Where, 𝐿0 is the original length, 𝐿(𝑡) corresponds to the length at each time 𝑡, and 𝑣(𝑡) 

corresponds to the speed at which the ends are moving away from each other. For bulk tests 80 

mm was used for the value of 𝐿0 as corresponds to the gauge length.  

 With the tensile test, the Young’s modulus and the tensile strength were obtained. 

Young’s modulus was determined considering the slope of stress-strain curve whereas tensile 

strength is obtained directly from the stress-strain curve. 

 

3.2.1.3 Bulk tensile tests results  

From the bulk tensile tests, only two adhesive properties were obtained: Young’s 

modulus (E) (Figure 28) and tensile strength (σ) (Figure 29). These properties were selected 

since those were the only properties required in the FE simulation. 

Figure 28 presents the measured Young´s modulus and respective standard deviations. 

It is possible to notice that Young´s modulus decreases linearly with the increase of temperature 

and increases with strain rate. As the temperature approaches Tg, the adhesive becomes more 

ductile. 

 

Figure 28 - Young´s modulus of adhesive XNR6822E-3 as a function of strain rate. 
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 Figure 29 presents the measured tensile strength and the respective standard deviation. 

The tensile strength decreases with increase of temperature and increases with strain rate. As 

the temperature approaches Tg, the adhesive presents a considerable reduction in the tensile 

strength. 

 

Figure 29 - Tensile strength of adhesive XNR6822E-3 as a function of strain rate. 

 

 For both properties, Young´s modulus and tensile strength, it is possible to notice that 

the effect of temperature is considerable more significant than that of the strain rate. 

 Young´s modulus (Figure 30) and tensile strength (Figure 31) were extrapolated using a 

logarithmic trendline to impact condition with a value of 180000 mm/min for the three different 

temperatures. 
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Figure 30 - Values of Young´s modulus of adhesive XNR6852 E-3 estimated for impact conditions. 

  

 

Figure 31 - Values of tensile strength of adhesive XNR6852 E-3 estimated for impact conditions. 
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3.2.2  Double cantilever beam 

 In this work DCB tests were selected to determine the fracture energy in mode I. 

Because the need to determine the fracture energies at different temperatures, and the relatively 

small size of the temperature chamber, an adaptation to the normalized specimens was made, 

making then slightly shorter, changing the total length from 290 to 190 mm (Figure 32). 

 

Figure 32 - DCB specimen geometry (dimensions in mm). 

 

3.2.2.1  Manufacture 

To obtain the fracture energies in mode I of the adhesive in study specimens were 

produced according to the geometry represented in Figure 32. The substrates used were made 

of steel (DIN 40 CrMnMo 8-6-4) to avoid plastic deformations (Figure 33).  

 

Figure 33 - Adhesive applied in the open substrates. 
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For surface preparation the steel substrates were sandblasted at a pressure of 6 bar with 

aluminium oxide particles and then cleaned with acetone to degrease the surfaces, since a proper 

adhesion is fundamental. 

 

              Figure 34 - Shot blasting machine. 

 

To ensure the adhesive thickness, spacers and a razor blades were used. Calibrated tape 

of 0.2 mm was used in the opposite extreme of crack initiation and at the begin of the crack a 

0.1 mm razor blade, with 0.05 mm tape glued on each side, was used. The razor blade serves 

other purpose as well, since it introduces a specific geometry at the beginning of the crack that 

controls the crack initiation in the middle of the adhesive layer and thus ensures a stable crack 

propagation through the test. 

The adhesive was placed in the SpeedMixer® DAC 150.1 FVZ-K, a mixing machine, as 

used in the tensile test, and was then applied in both substrates using a spatula. The substrates 

were assembled in the mould, aligned by the mould pins. 
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Figure 35 - Mixing machine SpeedMixer® DAC 150.1 FVZ-K. 

 

The mould was closed and inserted in the hot plates hydraulic press at the cure cycle 

referred above in the tensile test manufacturing procedure.    

Once the cure cycle was finished, the mould was removed from the press, and then, the 

specimens were unmoulded. During the cure cycle excessive adhesive flowed out from the bond 

line. To enable clear measurement of the pre-crack length the excess of adhesive was removed 

from the sides of the specimens with sand paper and a milling machine. 

 

3.2.2.2  Testing procedure 

 The tests were performed on INSTRON® universal testing machine, according to 

ASTM D3433 standard. The setup used to test the DCB specimens is shown on Figure 36. 
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Figure 36 - DCB setup. 

 

 In this test, the loading was applied perpendicularly to the adhesive layer (Figure 37). 

For DCB tests, four specimens of XNR6852 E-3 were tested for three different displacement 

rates (1, 10 and 100 mm/min) that is equivalent to the following three strain rates (0.083, 0.83 

and 8.33 s-1). For each strain rate, the tests were performed for three different temperatures (-

30, 24 and 80°C). The conversion from displacement rate to strain rate was performed resorting 

to Equation 3. For DCB tests 0.2 mm was used for the value of 𝐿0 as corresponds to the adhesive 

thickness. 

 

Figure 37 - Loading scheme of the DCB specimen. 
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3.2.2.3 Data reduction schemes for fracture energy determination 

Compliance Calibration Method 

 This method is based on Irwin-Kies equation and it also uses the load displacement data 

and the real crack’s length [61, 62]. Equation 4 gives the failure energy based on Irwin-Kies 

theory, 

 
𝐺𝐼𝑐 =

𝑃2

2𝑏

𝑑𝐶

𝑑𝑎
  

(Eq. 4) 

 Where 𝐺𝐼𝐶, is the energy available for an increment of the crack propagation, 𝑃 is the 

applied load, b is the width of the specimen, 𝐶 is the compliance (Equation 5) and, 𝑎 is the crack 

length. 

 
𝐶 =

𝛿

𝑃
 

(Eq. 5) 

 The partial derivative of compliance is calculated using the displacement (𝛿) and the 

applied load (𝑃). The compliance, based on the flexibility of the substrate, is given by a 

polynomial function of third degree (Equation 6) which is a function of the crack length 

 𝐶 = 𝐶3𝑎3 + 𝐶2𝑎2 + 𝐶1𝑎 + 𝐶0 (Eq. 6) 

 

Corrected Beam Theory 

 As in the previous method, this method requires load-displacement data and also the 

real crack’s length, which it also derives from the Irwin-Kies theory [62]. The failure energy is 

given by the following equation: 

 𝐺𝐼𝑐 =
3𝑃𝛿

2𝑏(𝑎 + |𝛥|)
 (Eq. 7) 

 

 The crack tip rotation and deflection are considered in this method. In order to supress 

such effect, a correction factor of crack’s length is used, 𝛥, which was proposed by Wang and 

Williams [63] in 1992 and is given by Equation 8: 
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 𝛥 = ℎ√
1

13𝑘
(

𝐸𝑥

𝐺𝑥𝑦
) (3 − 2 (

Γ

1 + Γ
)

2

) (Eq. 8) 

 Where 𝐸𝑥 and 𝐺𝑥𝑦 correspond to the longitudinal normal and shear modulus of the 

substrate, h is the thickness of the substrate and 𝑘 is the shear stress distribution constant for 

correcting the deflection caused by shear force, which is 0.85 for DCB specimens. 

 Γ =
√𝐸𝑥𝐸𝑦

𝑘𝐺𝑥𝑦
 (Eq. 9) 

and, 𝐸𝑦 is the Young’s modulus of the substrates in the thickness direction [64]. 

 The crack’s length correction factor is set by a linear regression 𝐶 = 𝑓(𝑎), which can be 

obtained experimentally, loading the specimen with three different loads, obtaining three 

different cracks’ lengths (Figure 38) [65]. 

 

Figure 38 - Representation of linear regression of the correction crack length factor [66]. 

 

Compliance Based Beam Method 

 This method is based on beams’ theory, which allows to define the compliance of 

substrates. Since this theory does not take in consideration the stress concentration and rotation 

of the substrates near the crack, a corrected bending modulus is used [67]. 

The failure energy is given by Equation 10. 

 𝐺𝐼𝑐 =
6𝑃2

𝑏2ℎ
(

2𝑎𝑒𝑞
2

ℎ2𝐸𝑓
+

1

5𝐺13
) (Eq. 10) 

 



Impact strength of dissimilar joints for the automotive industry  

 

46 

 

where, 𝐸f and 𝐺13 are, respectively, the corrected bending modulus and shear modulus of the 

specimens and 𝑎𝑒q is the equivalent crack length.  

 Contrarily to the previous methods, as it can be seen in Equation 10, instead of the use 

of real crack’s length, this method has its own definition of equivalent crack length. This 

measurement depends only of the specimen’s compliance during the test. Equivalent crack’s 

length is measured until half of the Fracture Process Zone (FPZ) (Figure 39), which is defined 

by the existence of multiple micro-cracks and plasticization’s ahead the major crack that absorb 

some of the energy (Figure 44). For ductile adhesives, the energy dissipated in the FPZ is 

higher. This method is based on the beam theory of Timoshenko [67-69]. 

 

Figure 39 - Schematic representation of the FPZ (adapted from [67]). 

 

3.2.2.4 Double cantilever beam tests results  

The fracture toughness in mode I (GIC) was obtained for the adhesive under different 

strain rates and temperatures (Figure 40). 



Impact strength of dissimilar joints for the automotive industry  

 

47 

 

 

Figure 40 - Results of fracture toughness in mode I (GIC) for adhesive XNR6852 E-3 as a function of strain rate 

and temperature. 

 

The value of GIC increases with the increase of both temperature and strain rate. As the 

temperature approaches Tg the adhesive becomes noticeably more ductile and tough. The values 

of GIC in impact conditions (180000 mm/min) were extrapolated as explained in the end of the 

present sub-chapter. 

The use of CBBM allowed to obtain the resistance curve (R-curve) of each experiment. 

The values were obtained from the plateau in the R-curve of each experiment, that occurred 

when the crack propagation stabilized. A representative R-curve is shown in Figure 41. 
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Figure 41 - Example of R-curve from the DCB test performed at 10 mm/min for a testing temperature of 24°C. 

 

 An inspection of the fracture surfaces allowed to conclude that mixed failure in the 

adhesive layer occurred, with a combination of adhesive and cohesive failure for all 

temperatures and strain rates. Further analysis of the fracture surface makes it evident that the 

adhesive suffered plastic deformation in all cases, since it presents a whitish colour, whereas its 

colour before the test was beige (Figure 42). 

 

Figure 42 - Example of failure surface of a DCB. 
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Fracture toughness in mode I (GIC) was extrapolated using a logarithmic trendline to 

impact condition with a value of 180000 mm/min for the three different temperatures (Figure 

43). 

 

 

Figure 43 - Extrapolation of values of fracture toughness in mode I (GIC) under impact conditions as a function 

of temperature. 

 

 Unlike the CFRP resin, the adhesive exhibits an increase in the fracture toughness with 

increase of strain rate. The positive influence of strain rate in the fracture energy was already 

observed by some authors [70, 71]. Such phenomena can be explained by the fact that the 

adhesive in this study is a modified epoxy, that demonstrates a combination of the best 

properties of epoxy and polyurethane adhesives. Kinloch et al. [72] tested both an unmodified 

and a rubber-modified epoxy and reached to the conclusion that while the unmodified adhesive 

did not exhibit great improvement of the fracture energy with the strain rate, the multiphase 

microstructure of the rubber-modified epoxy led to a significant increase of the fracture energy 

at higher strain rates. 
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3.3  Fabrication and testing of single lap joints  

For a better understanding of the behaviour of dissimilar joints, both similar and 

dissimilar configurations of SLJs (aluminium and CRFP substrates) were manufactured. The 

adhesive used was the Nagase-ChemteX XNR6852 E-3. 

 

3.3.1  CFRP plates manufacturing  

 The CFRP specimens tested in this work consisted on unidirectional laminates of CFRP 

cut from bulk laminates, which were produced by hand lay-up and cured in a hot plate press. 

The bulk laminates with dimensions of 300x300 mm2 were fabricated from stacking of 

unidirectional 0°lay-up (with the aim to obtain better properties in the loading direction) in a 

total of 14 plies of carbon/epoxy pre-preg (SEAL® Texipreg HS 160 RM) with 0.15 mm of ply 

thickness. The cure cycle applied was of 130°C for one hour.  

 Campilho [65] determined the mechanical properties of the pre-preg being used. Table 

6 presents the Young´s modulus (𝐸), the shear modulus (𝐺), and the Poisson´s ratio (𝑣) in the 3 

axis direction (x,y,z), being E1 the normal direction, E2 the transverse direction and E3 the out 

plane direction. As previously mentioned, the tensile properties of CFRP are known not to vary 

significantly with strain rate. 

Table 6 - Properties of pre-preg SEAL® Texipreg HS 160 RM [65]. 

 

 

 The manufacture process of CFRP substrates consisted on pilling manually one pre-

preg composite layer above another until the desired thickness was obtained. The process can 

be divided in the following steps: 
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• The prepreg roll was removed from the freezer, being left to warm at RT; 

• The pre-peg was cut in 300x300 mm squares using a metal cutter; 

• The protecting Teflon layer was removed from each ply; 

• The plies were positioned on top of each other, pressure was applied with one weight 

to avoid air bubbles and ensure correct position. The fibre direction (0º orientation) was 

ensured; 

• For the last layer, the paper protection was kept, protecting the bulk plate during the 

curing cycle (Figure 44). 

 

Figure 44 - Hot press pressure machine. 

 

 It was also necessary to prepare the mould used on the hot plates press. The process is 

therefore described. 

• The first step consisted in sanding the aluminium plates surfaces and cleaning them with 

acetone; 

• At least three layers of release agent were applied (Loctite® Frekote 770-NC). 

 The plates were then cured in a hot plate press (Figure 44) with an applied pressure of 

137 bar and with a temperature of 150°C during one and half hour. 

 The last stage consisted in cutting the square with the necessary dimension for future 

use. In this case, a diamond disc cutting machine, model DV 25 Batisti Meccanica was used 
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(Figure 45). Edge finishing was carried out 40 manually by using a 120-grit sandpaper with the 

aim to remove the loose fibres and smoothen the sharp edge. 

 

Figure 45 - Cutting machine used for to cut the squares of CFRP. 

  

3.3.2  Joints manufacturing  

The SLJs used in this work were produced using a mould (Figure 46). First the mould 

was cleaned with acetone and three layers of mould release agent were applied on the surface. 

Spacers and calibrated tape were used to ensure the correct position and adhesive thickness. 

The aluminium specimens were cleaned with isopropanol, followed by an hour on an oven at 

190º C and then cleaned again with isopropanol to ensure that all the grease is removed. The 

CFRP specimens were sandblasted before being degreased with acetone to ensure good 

adhesion. The adhesive was spread manually, taking care to ensure that no air bubbles stay 

trapped in the adhesive. Once the setup was ready the mould was closed, and it was placed in 
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the hot plate press according to the adhesive cure cycle stated above. The pressure applied 

during curing was of 137 bar. 

 

Figure 46 - Mould used to manufacture SLJs. 

  

3.3.3  Joints configurations  

 The geometry used in both quasi-static and impact tests was chosen as its configuration 

is representative of the joints used in an automotive structure, with the thickness, overlap length 

of substrates and adhesive layer thickness being defined to be as close as possible to those used 

in the final application. 

 The CFRP substrates of the SLJs used have a thickness of 2.1 mm. The aluminium 

substrates used have a thickness of 1.5 and 2 mm for the alloys AA5754 H22 and AA6060 T6, 

respectively. The overlap length used was 25 mm for all ranges of temperature tested. The 

thickness of the adhesive layer used was 0.2 mm. The dimensions of the SLJ specimens used 

are shown in Figure 47. 
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Figure 47 - Geometry of SLJ specimens (dimensions in mm). 

 

 All the combinations tested in this work are presented in Table 7. 

Table 7 - Different combinations of similar and dissimilar SLJs. 

Combinations with similar substrates  

AA5754 H22 + AA5754 H22 

AA6060 T6 + AA6060 T6 

CFRP + CFRP 

Combinations with dissimilar substrates  

AA5754 H22 + AA6060 T6 

AA5754 H22 + CFRP 

AA6060 T6 + CFRP 

  

3.3.4  Testing procedure 

3.3.4.1  Quasi-static conditions 

 The quasi-static tests of SLJs were performed in a universal testing machine, model 

INSTRON® 3367 (Norwood, Massachusetts, USA) with a load cell capacity of 30 kN. All tests 

were performed at a constant cross-head rate of 1 mm/min, which corresponds to an average 
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strain rate of 0.08 s-1 in the adhesive layer. The conversion from displacement rate to strain rate 

was performed resorting to Equation 3. For SLJs tests 0.2 mm was used for the value of 𝐿0 as 

corresponds to the adhesive thickness. 

 In tests performed under LT (low temperature) and HT (high temperature), a heated 

climatic chamber was integrated in the testing machine. In the case of LT, the same chamber 

was used, with nitrogen being injected in a controlled manner to achieve the lower temperature. 

With the use of a thermocouple positioned in contact with each SLJ the temperature was 

measured, ensuring a homogeneous temperature distribution. Each test was only performed 

after a period of 10 minutes at the intended temperature. While the tests were being performed 

the SLJs remained enclosed in the chamber under a constant temperature. 

 A total of four specimens were tested for each overlap and temperature condition, and 

force-displacement (P-δ) curves were obtained for all SLJs tested. 

 

3.3.4.2  Impact conditions  

 The impact tests were performed in a Rosand® Instrumented Falling weight impact 

tester, type 5 H.V. (Stourbridge, West Midlands, U.K.) coupled with a load cell of 60 kN. This 

equipment consists of a mass being dropped from a certain height, until it impacts the specimen. 

The specimen is mounted and kept vertically with the use of a specially designed grip. The 

impactor strikes the lower section of the grip, accelerating the test assembly so that the specimen 

is loaded in tension-shear. A total impactor weight of 26 kg was used in the setup of the testing 

machine. An impact speed of 3 m/s was used, corresponding to an available impact energy of 

117 J. 

 For tests performed at LT, gaseous nitrogen was applied directly in every SLJ. In the 

case of HT, a heat gun to heat-up the SLJs was used. In both stages of temperature, a 

thermocouple was attached in the beginning of the area of overlap length to measure and control 

the temperature of the specimen. Each test occurred when the adhesive layer temperature was 

found to be stabilized at the desired value. 

 A total of four specimens were tested for each overlap and temperature condition, and 

a P-δ curve was obtained for each SLJ tested. 
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4 Numerical simulation details  

 A numerical analysis was performed to predict the SLJ strength under quasi-static and 

impact conditions. For this purpose, Abaqus® (Dassault Systèmes, Suresnes, France) was FEA 

software used. Quasi-static and dynamical simulations were only developed for RT because 

there was no information available regarding cohesive properties for the adhesive and the 

substrates at low and high temperature.  

 P-δ curves were determined and the prediction of the failure load was recorded. The 

software also allows to extracted information regarding crack initiation and propagation and 

state of plasticity from cohesive elements. 

 

4.1  Cohesive zone modelling 

 The triangular CZM was used due to its simplicity and common use in previous studies. 

This model is available in the Abaqus® and enables the use of mixed mode loading (Figure 22). 

The adhesive layer was modelled with 0.2 mm thick cohesive elements, the same thickness of 

the adhesive layer to control the zone of crack initiation.  

 

4.2  Quasi-static model 

 For the numerical simulation, a few conditions were considered with the objective of 

making the models as reliable as possible. Since three distinct types of materials were used 

during this work, the elements used to simulate them need to be chosen according to their 

physical behaviour. Figure 48 shows the model of a dissimilar joint with aluminium and CFRP 

substrates, where all the different types of elements used in all the possible configurations are 

presented. As mentioned before, for the adhesive a 0.2 mm layer was modelled with cohesive 

elements. For CFRP substrates elastic orthotropic properties (engineering constants) were used 

but it was also necessary to resort to cohesive elements to predict a possible failure by 

delamination. To simulate this type of failure, a 0.15 mm layer was added at 0.15 mm from the 

interface between adhesive and CFRP. The thickness of 0.15 mm corresponds to one ply of the 
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prepreg used to manufacture the CFRF substrate, close to the close to the adhesive/substrate 

interface. Aluminium substrates were simulated with elastic isotropic and plastic properties. 

For aluminium damage initiation and evolution, ductile damage parameters were used. Due to 

the limited information available, this data was only used for modelling the AA6060 T6 alloy. 

Data from Chen et al. [73] was adapted as the alloy used in their work is quite similar to AA6060 

T6.  

 

Figure 48 - Elements introduced in FE software for the static analysis. 

 

 The elastic properties used for aluminium alloys (Table 5 and Figure 23) and CFRP 

(Table 6) have already been introduced in Chapter 3. The curves of yield stress- plastic strain 

for the aluminium alloys are presented in the Figure 23. The data related with the aluminium 

alloys was provided by Aston Martin Lagonda®.  

 Triangular laws for adhesive (Figure 49) and for cohesive layer of CFRP (Figure 50) 

were performed for both loading modes. The adhesive tensile properties, Young’s modulus (E) 

and normal cohesive stress (𝑡𝑛0), were obtained from bulk tensile tests. Fracture toughness in 

pure mode I (𝐺𝑛0) was obtained from DCB tests. The other properties, shear modulus (G), shear 

cohesive stress (𝑡𝑠0) and fracture toughness in pure mode II (𝐺𝑠0), needed to complete the 

triangular law was obtained from a previous works [40, 41, 74], as well the cohesive and elastic 

properties for the CFRP.  
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Figure 49 - Triangular law for adhesive XNR6852 E-3 in quasi-static conditions.  

 

 

Figure 50 - Triangular law for CFRP at quasi-static conditions. 

 

 The boundary conditions were defined as indicated in Figure 51. In one end a clamped 

condition was added to simulate the static grip of tensile machine while in the other end a 
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longitudinal displacement was applied, restrained in the perpendicular direction of the 

displacement, simulating the grip that applies the force during the test. 

 

Figure 51 - Boundary conditions applied for the quasi-static model. 

 

 The model also considered thermally induced stresses, introduced during the cooling 

from the curing stage (from 150ºC to RT). For this purpose, all models include an initial step 

where the temperature differential is applied, and the resultant stresses are calculated 

considering the elasticity of the materials and the respective coefficients of thermal expansion. 

 The mesh design was constructed with elements of different sizes, resorting to biasing 

techniques (Figure 52). The mesh was based on that employed for prior works and optimized 

to improve convergence. While joints containing only elastic and cohesive elements are 

significantly less prone to convergence problems, the models where the substrates include more 

computationally intensive plastic formulations were found to require more attention. The same 

optimized mesh was used for all the model under study using cohesive elements, for CFRP 

substrates and for adhesive, with 0.15 mm and 0.2 mm length was used, respectively. The 

density of elements was decreased as they move away from the ends of the overlap zone. 

  

Figure 52 - Representative mesh in the overlap area. 
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 For the visualization of the level of CZM degradation, scalar stiffness degradation 

(SDEG) was requested in the field outputs. This also enables the monitoring of the crack 

propagation. 

 Regarding to the element types, the bondline area was defined as a 4-node-two-

dimensional cohesive element (COH2D4) and substrates were defined as a 4-node bilinear 

plane stress quadrilateral, reduced integration, hourglass control (CPS4R). 

 

4.3  Dynamical model 

 To recreate the impact conditions of the drop weight test, a two-dimensional model was 

created resorting to Abaqus/Explicit. Most crash simulations are based on explicit FE-codes 

since these can simulate fast events within a reasonable execution time. Geometrically wise, 

the model was similar to the one used for quasi-static simulations with one modification, the 

addition of a mass to the non-clamped edge that represents the impact block in the experimental 

tests.  

 The boundary conditions were like those used in the static model with the difference 

being instead of a longitudinal displacement in the non-clamped end of the joint, a velocity field 

of 3000 mm/s was applied to mass that was added to the model (Figure 53). To simulate the 

117 Joules of impact energy with a 3m/s velocity of the mass, the density was defined to 

guarantee that the mass was 26 kg. The mesh geometry used was the same as the static model 

and SDEG field output was also requested. 

 

Figure 53 - Boundary conditions applied for the impact model. 

 

 Following the same procedure described for the quasi-static model, the dynamical 

model also included thermally induced stresses during cooling. 
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 For adhesive properties, Young’s modulus (E), normal cohesive stress (𝑡𝑛0) and fracture 

toughness in pure mode I (𝐺𝑛0) were extrapolated from experimental results resorting to a 

logarithmic trend line as described in the results chapter. Shear modulus (G), shear cohesive 

stress (𝑡𝑠0) and fracture toughness in pure mode II (𝐺𝑠0) was obtained from a previous work [40, 

41, 74]. Again, a new triangular cohesive law was made for the adhesive at impact (Figure 54) 

 

Figure 54 - Triangular law for adhesive XNR6852 E-3 in impact conditions. 

 

 As stated in the literature review chapter, the aluminium alloys are insensitive to the 

strain rate (AA6060 T6), or slightly sensitive (AA5754 H22) and the properties used for the 

static model could be used for the dynamic as well. The CFRP behaves in a different manner, 

while strain rate insensitive in the tensile direction (due to the fibres) the same does not occur 

in the other modes of loading (those governed by the matrix properties). Given the available 

data, determined in previous works, the CFRP properties from the elastic domain were kept 

constants and only the fracture energies were considered to vary as a function of the strain rate. 

A new triangular cohesive law was made for CFRP at impact, shown in Figure 55. 
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Figure 55 - Triangular law for CFRP in impact conditions. 
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5 Results and discussion 

5.1  Experimental results 

5.1.1 Quasi-static tests 

For quasi-static tests of SLJs, although four specimens were tested for each combination 

of substrates and for three different temperatures, only three tests were considered as valid 

results for most configurations. This was due to surface contamination of some specimens, 

which failed with almost negligible load even after careful degreasing. The tests were 

performed with a displacement rate of 1 mm/min. The load, displacement and energy were 

recorded by the universal testing machine.  

 

5.1.1.1  Joints with similar substrates  

Figure 56 shows the representative P-δ curves for SLJs with similar substrates at RT for 

quasi-static conditions. SLJs with aluminium substrates exhibits a significantly large 

deformation in the plastic domain while SLJs with CFRP substrates, despite the larger failure 

load, presents a brittle behaviour. 
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Figure 56 - P-δ curves of SLJs using similar substrates tested at quasi-static conditions and RT. 

 

Figure 56 also exhibits two phenomena related to the failure process of aluminium and 

CFRP. The load-displacement curves of AA5754 H22 alloy exhibit instability during plastic 

deformation, caused by the Portevin Le Chatellier effect [31-33], which occurs for AA5xxx 

series alloys. Also noticeable is the decrease in stiffness of the CFRP SLJ as it approaches the 

failure point. This can be attributed to the gradual breakage of fibres that occurs during the test. 

In fact, the failure of the fibre can be heard in moments preceding complete delamination 

failure. 

The type of failure surface is a critical parameter to study and better understand the 

mechanical behaviour of adhesive joints. Table 8 shows the typical quasi-static failure surface 

of all joint similar configurations under study. 
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Table 8 - Failure surfaces of SLJs using similar substrates (CFRP and aluminium alloys) tested at quasi-static 

conditions as a function of temperature. 

 -30°C (LT) 24°C (RT) 80°C (HT) 

A
A

5
7
5
4
 H

2
2

 

   

A
A

6
0
6
0

 T
6
 

 

 

 

 

 C
F

R
P

 

   

 

By analysing Table 8, it becomes clear that the aluminium joints either fail by cohesive 

failure in the adhesive, or cohesive failure in the substrate. When cohesive failure in the 

adhesive occurs, it is possible to notice that, prior to failure, a large deformation in the 

aluminium substrates happens, thus the aluminium controls the failure. In the case of alloy 

AA6060 T6 at RT the failure mode is unstable, since half the samples failed by the adhesive 

and the other half by the substrates, but the failure loads remain constant. Having all that in 

account it can be concluded that the aluminium joints fail because the onset of plastic 

deformation of aluminium, again introducing high peel stresses in the end of the overlap for 

those who fail by the adhesive. In the cases where CFRP joint delamination occurs, this happens 
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because the adhesive can withstand the high load transmission and the epoxy from the 

composite is more brittle than the adhesive ergo it delaminates. 

From now on and to simplify the reading process, in the figures the aluminium alloys will 

be referred as Al 1.5 for AA5754 H22 alloy and Al 2.0 for AA6060 T6 alloy. The results of 

failure load of the similar joints are presented in Figure 57.  

 

Figure 57 - Failure load of SLJs using similar substrates (CFRP and aluminium alloys) tested at quasi-static 

conditions as a function of temperature. 

 

 From Figure 57 it is possible to observe that the aluminium SLJs are not sensitive to 

different temperatures. However, the failure load of CFRP joints appears to slightly decline 

with the increasing temperature. This can be justified with the changing properties of the epoxy 

resin, not just from the adhesive, but also from the composite substrate. Although ductility 

increases with temperature, the tensile strength decreases, and this balance promotes lower 

failure load at high temperature. The adhesive is ductile enough through the temperature range 

to avoid large stress concentrations and early failure, ergo the decrease of tensile strength is 

more noticed. It is also possible to perceive that the failure load of the CFRP joints is well 
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higher than those of the aluminium joints, which leads to the conclusion that failure occurs with 

major influence of the substrates properties. 

The behaviour of the SLJs can also be studied in terms of absorbed energy, shown in Figure 

58.  

  

Figure 58 - Energy absorbed by SLJs using similar substrates (CFRP and aluminium alloys) tested at quasi-static 

conditions as a function of temperature. 

 

The main information gathered from Figure 58 is that SLJs from aluminium substrates 

absorb significantly more energy than those with CFRP substrates, despite the higher failure 

load exhibited by CFRP SLJs. As Figure 56 shows, aluminium alloys undergo significantly 

more plastic deformation before failure. AA6060 T6 alloy absorbs more energy than the 

AA5754 H22, since the thickness of the substrates of AA6060 T6 is higher and therefore they 

can withstand higher deformation before failure. There is no temperature dependence on the 

absorbed energy regarding the aluminium SLJs. However, the CFRP SLJs are temperature 

sensitive being able to absorb more energy at RT. Since no difference was noticed with the 

aluminium joints this disparity of energy absorbed in the CFRP joints must be caused by the 

epoxy from the composite material, being too brittle at low temperature, therefore unable to 

absorb energy, and losing properties as it approaches Tg.  
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5.1.1.2  Joints with dissimilar substrates 

In terms of failure mode (Table 9), the AA5754 H22 + AA6060 T6 combination fails 

cohesively by the adhesive, again this can be explained by the onset of plastic deformation of 

the aluminium, introducing high peel stresses in the adhesive. For AA5754 H22 + CFRP 

combination, a mixed failure of delamination and cohesive failure occurs for all temperatures 

except for -30°C, where two distinct types of failure, either by delamination or failure by the 

aluminium substrate, can be observed. For AA6060 T6 + CFRP combination, cohesive failure 

in the aluminium substrate is perceived since the aluminium is weaker than the CFRP. The 

difference in the failure mode between the two different aluminium alloys when combined with 

the CFRP can be explained by the difference amongst the thickness of the substrates. AA6060 

T6 substrates have 2 mm of thickness, in contrast to 1.5 mm for the AA5754 H22 substrates, 

which is closer to the 2.1 mm of the CFRP substrates. The inferior difference between 

thicknesses   promotes lower peel stress distribution along the overlap which means that failure 

changes from delamination (AA5754 H22 + CFRP) to cohesive failure in the aluminium 

substrate (AA6060 T6 + CFRP). 
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Table 9 - Failure surfaces of SLJs using dissimilar substrates (CFRP and aluminium alloys) tested at quasi-static 

conditions as a function of temperature. 
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The results of failure loads of the dissimilar joints are presented in Figure 59.  
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Figure 59 - Failure load of SLJs using dissimilar substrates (CFRP and aluminium alloys) tested at quasi-static 

conditions as a function of temperature. 

 

 The maximum failure load for each situation is defined by the weakest substrate, failing 

by the AA5754 H22 alloy in the first two combinations (AA5754 H22 + AA6060 T6 and 

AA5754 H22 + CFRP) and by the AA6060 T6 in the third one (AA6060 T6 + CFRP). No 

temperature dependence is noticed since the only substrate sensitive to temperature at the range 

in study is the CFRP.  

 From Figure 60 it is possible to conclude that the energy values for dissimilar substrates 

joints are between those of aluminium and CFRP joints with similar substrates. This can be 

explained by the fact that just one substrate deforms (the aluminium one) in contrast with the 

similar joints of aluminium where the deformation is symmetric until the peel stress disrupts 

the adhesive. 
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Figure 60 - Energy absorbed by SLJs using dissimilar substrates (CFRP and aluminium alloys) tested at quasi-

static conditions as a function of temperature. 

 

5.1.2  Impact tests 

 For impact tests of SLJs, four specimens were tested for each combination of substrates 

and for three different temperature, using adhesive Nagase-ChemteX XNR6852 E-3. The 

specimens were tested with a speed of 3 m/s. A mass of 26 kg was used for the impactor, 

corresponding to an impact energy of 117 J, sufficient to break all specimen configurations. 

The load, displacement and energy were recorded by the machine.  

 

5.1.2.1 Joints with similar substrates 

 Table 10 presents representative images of the failure section and thus the failure mode 

for all combinations with similar substrates at impact conditions for all testing temperatures. 
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Table 10 - Failure surfaces of SLJs using similar substrates (CFRP and aluminium alloys) tested at impact 

conditions as a function of temperature. 
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 For all temperatures tested, the joints with similar substrates of CFRP failed by 

delamination. However, there are some changes with variation of temperature. For LT and HT 

there is presence of cohesive failure in the adhesive since the crash resistant epoxy becomes 

stiffer at LT and more flexible at HT, as well as the CFRP resin. The presence of such mixed 

failure mode allows to conclude that the adhesive is being loaded until failure, due to decrease 

of mechanical properties of both the adhesive and CFRP. Regarding the joints with similar 

aluminium alloys, these failed in the clamped zone for both alloys and for all testing 

temperatures. The increase of mechanical properties with strain rate and stress concentrations 

due to the holes of the substrates in the clamped zone could help to explain the observed 

behaviour.  

 From Figure 61 it can be observed that the maximum load is achieved by the joint with 

CFRP substrates at RT.  
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Figure 61 - Failure load of SLJs using similar substrates (CFRP and aluminium alloys) tested at impact 

conditions as a function of temperature. 

 

 Although the adhesive becomes more flexible, reducing the peel loads in SLJs of CFRP 

substrates for HT, the proximity to the Tg also leads to lower tensile and shear strength, even 

when considering strain rate dependency. It is the occurrence of a mixed failure mode, with 

simultaneous delamination and cohesive failure that leads to the lower failure loads. At LT both 

the adhesive and the CFRP resin become more brittle. Because the joints with AA6060T6 

substrates display a higher failure load than the ones with CFRP substrates it is safe to say that 

LT affects the CFRP resin more significantly. 

 For SLJs with AA6060 T6 substrates, despite a noticeable decrease from LT to RT in 

the average value of maximum load, no tendency can be considered since these values fall under 

the respective standard deviations. The same behaviour can be observed in SLJs with substrates 

made from AA5754 H22 aluminium alloy. 

 Figure 62 presents the value of energy absorbed for all combinations with similar 

substrates at impact conditions for all testing temperatures. 
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Figure 62 - Energy absorbed by SLJs using similar substrates (CFRP and aluminium alloys) tested at impact 

conditions as a function of temperature. 

 

  No clear tendency can be found for joints with similar substrates of aluminium, for both 

alloys under study, as function of temperature regarding the energy absorbed at impact 

conditions. However, as can be perceived in Figure 63,  an increase in energy absorbed at impact 

is observed for joints with similar CFRP substrates as temperature increases. That tendency can 

be explained by a combination of factors. As stated previously, the literature describes cases 

where composite structures are able to sustain higher loads and absorb more energy under 

impact [48, 49]. Some authors [75, 76] have presented work demonstrating that through the 

failure process of composite materials, the frictional sliding of the fibre within the matrix might 

be responsible for a large fraction of energy absorption. Figure 64 shows this effect 

schematically. This type of frictional sliding has been shown to be a complex phenomenon [77] 

involving both the Van der Walls forces and the mobility of macromolecules at the interface, 

which results in larger energy absorption for higher impact strain rates [78]. However, increased 

energy absorption under impact conditions cannot be totally due to the process of delamination 

and fibre pull-out. The energy absorption and toughness of bulk polymeric materials (which 

include both the adhesive and the matrix of the composite under study) has been described to 

increase with the strain rate [79]. Such effect may be due to secondary connections between the 
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polymeric chains, which are affected by both the temperature and the strain rate and result in 

higher energy absorption [80]. The secondary connections have been previously identified as 

responsible for a significant level of rate sensitivity of material properties, which occurs close 

to strain rate and temperature conditions related to the β-transition viscoelastic behaviour [81]. 

 

Figure 63 - P-δ of SLJs using CFRP similar substrates tested at impact conditions as a function of temperature. 

 

 

Figure 64 - Representative scheme of frictional sliding phenomenon. 
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5.1.2.2 Joints with dissimilar substrates 

 Table 11 presents representative images regarding the failure mode for each dissimilar 

combination tested at impact conditions for all testing temperatures. Again, all the joints failed 

in the clamped zone except for AA6060 T6 + CFRP combination at LT, where severe 

delamination occurred. This can be explained by the viscoelastic and viscoplastic properties of 

both the adhesive and CFRP resin becoming more brittle for LT. Since delamination is 

presented we can affirm that the LT effect was more significant for CRFP resin. 

Table 11 - Failure surfaces of SLJs using dissimilar substrates (CFRP and aluminium alloys) tested at impact 

conditions as a function of temperature. 
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The results of failure load of joints with dissimilar substrates at impact conditions for all 

testing temperatures are presented in Figure 65. 
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Figure 65 - Failure load of SLJs using dissimilar substrates (CFRP and aluminium alloys) tested at impact 

conditions as a function of temperature. 

 

 Regarding the maximum failure load, no clear tendency was found with the variation of 

temperature. Again, the maximum failure load is defined by the weakest substrate, the 

aluminium alloy AA5754 H22 for the first two combinations (AA5754 H22 + AA6060 T6 and 

AA5754 H22 + CFRP) and by the AA6060 T6 in the third one (AA6060 T6 + CFRP). 

 The values of absorbed energy are presented in Figure 66. For all dissimilar 

combinations, a higher value of energy absorbed was measured for RT. This phenomenon could 

be explained by the fact that the crash resistant epoxy, due to its behaviour as a function of 

temperature, becomes stiffer at LT and more flexible at HT, as it becomes closer to Tg. A 

balance between ductility and strength at RT could promote which is also the case for the CFRP 

resin. 
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Figure 66 - Energy absorbed by SLJs using dissimilar substrates (CFRP and aluminium alloys) tested at impact 

conditions as a function of temperature. 

 

5.1.3  Combined temperature-strain rate analysis 

 To aid in the proper evaluation of the combined effect of temperature and strain rate on 

the mechanical behaviour of the joints, this section includes three-dimensional plots of the 

failure load and absorbed energy as a function of the parameters under study. 

 

5.1.3.1  Joints with similar substrates 

 From Figure 67 to Figure 69 it is shown the failure load of SLJs with similar substrates 

as function of temperature and strain rate.  
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Figure 67 - Failure load of SLJs with AA5754 H22 similar substrates as function of temperature and strain rate. 

 

Figure 68 - Failure load of SLJs with AA6060 T6 similar substrates as function of temperature and strain rate. 
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Figure 69 - Failure load of SLJs with CFRP similar substrates as function of temperature and strain rate. 

 

 For all types of substrates an increase of failure load with the increase of strain rate was 

noticed. While, for SLJs with aluminium substrates, the influence of temperature mainly affects 

the adhesive properties, with the failure load slightly lowering with the increasing of 

temperature, the SLJs with CFRP substrates demonstrate a peak in the value of failure load for 

RT independently of the strain rate. The values of failure load are higher for SLJs with CFRP 

than with aluminium, this behaviour can be explained because CFRP is significantly stiffer than 

the aluminium alloys.  

 Overall, increases in strain rate improve the SLJs performance regarding the material 

used for substrates. However, the influence of temperature has a significant effect in the SLJs 

with CFRP substrates, while for the aluminium ones there is almost no sensitivity. 

 From Figure 70 to Figure 72 it is shown the energy absorbed by SLJs with similar 

substrates as function of temperature and strain rate. It can be noted that, for SLJs with CFRP 

substrates, the axis orientation is different than the ones with aluminium substrates to improve 

the visualization of the graphic surface. 
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Figure 70 - Energy absorbed by SLJs with AA5754 H22 similar substrates as function of temperature and strain 

rate. 

 

Figure 71 - Energy absorbed by SLJs with AA6060 T6 similar substrates as function of temperature and strain 

rate. 
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Figure 72 - Energy absorbed by SLJs with CFRP similar substrates as function of temperature and strain rate. 

 

  Notwithstanding the fact that the failure load increases with the strain rate, SLJs with 

aluminium alloys substrates present higher capacity of energy absorption at quasi-static 

conditions as can be perceived by Figure 73. This occurrence can be explained by the fact that, 

when impact conditions are presented, the shock wave passes the overlap, where the adhesive, 

due to its viscoelastic behaviour, does not allow large deformations, and propagates along the 

length of the substrate until encounters a weak spot, that is the hole in the clamped zone, where 

the stress concentration are high. The failure occurs in this weakened section with limited 

energy absorption. Figure 74 shows the propagation of the stress wave along the joint during 

an impact test, calculated using the numerical models presented before. Whereas, in a quasi-

static situation, all the SLJs is under a uniformly increasing stress state, until, at some point, the 

onset of plastic deformation occurs in the region of the overlap, and at the same time, the 

adhesive allows deformation due to the relaxation of the polymeric chains, thus permitting 

larger deformations in both substrates and absorbing more energy. Figure 75 shows the 

evolution of stress distribution during a quasi-static test. 
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Figure 73 - P-δ curves of SLJs with AA6060 T6 similar substrates tested at RT as function of strain rate.  

 

 

Figure 74 - Stress propagation through the SLJ in impact conditions. 
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Figure 75 - Stress propagation through the SLJ in quasi-static conditions. 

 

 Figure 74 and Figure 75 also clearly demonstrate that the performance of adhesively 

bonded joints under impact is not only a function of the intrinsic material properties under large 

strain rates but also of the stress fields present. 

Regarding the SLJs with CFRP substrates, there is an increase in the energy absorption 

level under impact conditions, and it can result from a combination of factors. While both the 

adhesive and the CFRP matrix become tougher and more flexible with temperature, the 

frictional sliding of the fibre within the matrix during the delamination process might be 

responsible for most of the energy absorption.  

 

5.1.3.2  Joints with dissimilar substrates 

 From Figure 76 to Figure 78 it is shown the failure load of SLJs with dissimilar 

substrates as function of temperature and strain rate.  
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Figure 76 -  Failure load of SLJs with AA5754 H22 + CFRP dissimilar substrates as function of temperature and 

strain rate. 

 

Figure 77 - Failure load of SLJs with AA6060 T6 + CFRP dissimilar substrates as function of temperature and 

strain rate. 
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Figure 78 - Failure load of SLJs with AA5754 H22 + AA6060 T6 dissimilar substrates as function of 

temperature and strain rate. 

 

 Although Figure 76 presents a slight increase with temperature at high strain rates, this 

variation falls under standard deviation, so there is no virtually influence of temperature in the 

failure load in SLJs with dissimilar substrates of AA5754 H22 + CFRP. The same happens to 

SLJs with the other two combinations of materials for substrates.  

 The results of this experimental work demonstrate that, when joining dissimilar 

materials, the failure load will be imposed by the weakest material, as expected. Again, the 

strain rate improves the performance of SLJs regarding the combination of materials selected 

for the substrates. And, because for all the combinations at least one substrate is made from 

aluminium, the behaviour in terms of failure load tends to mimic the ones observed for SLJs 

with aluminium substrates, as the failure is controlled mainly by the onset of plastic 

deformation.  

 From Figure 79 to Figure 81 it is shown the energy absorbed by SLJs with dissimilar 

substrates as function of temperature and strain rate. 
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Figure 79 - Energy absorbed by SLJs with AA5754 H22 + CFRP dissimilar substrates as function of temperature 

and strain rate. 

 

Figure 80 - Energy absorbed by SLJs with AA6060 T6 + CFRP dissimilar substrates as function of temperature 

and strain rate. 
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Figure 81 - Energy absorbed by SLJs with AA5754 H22 + AA6060 T6 dissimilar substrates as function of 

temperature and strain rate. 

 

  Regarding the SLJs with dissimilar substrates of aluminium AA6060 T6 and CFRP, a 

behaviour similar to the one presented on SLJs with similar AA6060 T6 substrates is noticed, 

with lower energy absorbed for quasi-static conditions, since just the thinner substrate deforms. 

The lower peak of energy absorbed for impact at LT is due to the failure mode occurred was 

delamination. The aluminium-aluminium dissimilar joints offer very low temperature 

dependence with regards to absorbed energy. The dissimilar joints with composite are slightly 

more sensitive to temperature, although the effect is much less pronounced than that of 

composite-composite SLJs 

 

5.2  Numerical results of SLJs  

 As mentioned in the numerical detail chapter, numerical simulations were only made 

for RT once there was no information available regarding shear properties for the adhesive at 
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low and high temperature. Representative numerical P-δ curves are presented and compared to 

experimental data. No simulations are presented for configurations using the aluminium alloy 

AA5754 H22 due to the insufficient information regarding ductile damage modelling. 

 

5.2.1  Quasi-static 

5.2.1.1  Substrates with similar materials 

 Figure 82 shows the P-δ curves for the experimental results and the numerical 

simulations of SLJs with similar substrates of AA6060 T6 under quasi-static conditions. 

  

Figure 82 - Comparison between experimental and numerical P-δ curves of SLJs with similar substrates of 

AA6060 T6 under quasi-static conditions. 

 

 The shape of the curve is similar, although, the transition from elastic to plastic 

behaviour is more abrupt in the numerical simulation. The failure load and the displacement are 

higher in numerical simulation than the experimental results. Closer results were expected; 

therefore, the difference could be explained by the limited information regarding materials 

properties. In addition, the ductile parameters are derived from those of a slightly different 
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aluminium alloy, which might also explain this difference. Analysing Figure 82, it is possible 

to notice that, in the numerical simulation, the increase in maximum load in the plastic domain 

is higher than that observed for experimental results.  

 Figure 83 shows the P-δ curves for the experimental results and the numerical 

simulations of SLJs with similar substrates of CFRP under quasi-static conditions. 

  

Figure 83 - Comparison between experimental and numerical P-δ curves of SLJs with similar substrates of 

CFRP under quasi-static conditions. 

 

 In this case, the shape of the plots is quite similar, as well as the maximum load values. 

However, the value for the numerical failure load should be higher than the experimental load, 

since in numerical simulations perfect conditions exist which cannot be recreated 

experimentally. That might have occurred because the mechanical properties of the adhesive 

measured in bulk might differ slightly from those exhibited when present in an adhesive joint.  
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5.2.1.2  Substrates with dissimilar materials 

 Figure 84 shows the P-δ curves for the experimental results and the numerical 

simulations of SLJs with dissimilar substrates of AA6060 T6 + CFRP under quasi-static 

conditions. 

  

Figure 84 - Comparison between experimental and numerical P-δ curves of SLJs with dissimilar substrates of 

AA6060 T6 + CFRP under quasi-static conditions. 

 

 As previously observed using other configurations, the shape of the plots is similar 

between experimental and numerical results. The maximum load and the displacement are 

higher in the numerical simulation. The reason of such behaviour is the same that was presented 

in the case of SLJs with similar substrates of aluminium AA6060 T6. 

 Overall, the quasi-static models here presented were able to simulate reasonably well 

the mechanical behaviour of most of the configurations under study. This is especially true 

when the failure is controlled by delamination of CFRP substrates, which depends on previously 

validated mechanical properties. However, this is not the case for the failure of aluminium 

substrates which lack detailed plastic and damage properties for accurate modelling 
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5.2.2  Impact 

5.2.2.1  Substrates with similar materials 

 Figure 85 shows the P-δ curves for the experimental results and the numerical 

simulations of SLJs with similar substrates of AA6060 T6 under impact conditions.  

 

Figure 85 - Comparison between experimental and numerical P-δ curves of SLJs with similar substrates of 

AA6060 T6 under impact conditions. 

 

 For this case, the numerical P-δ curve is not in accordance with the experimental data. 

This is mostly due the lack of property data related with damage initiation and propagation 

regarding the aluminium alloy in study. 

 Figure 86 shows the P-δ curves for the experimental results and the numerical 

simulations of SLJs with similar substrates of CFRP under impact conditions. 
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Figure 86 - Comparison between experimental and numerical P-δ curves of SLJs with similar substrates of 

CFRP under impact conditions. 

 

 The shape of the P-δ curves are very similar. The results are very close except for a 

difference in the displacement with the numerical simulation presenting a lower value that the 

experimental results. 

 

5.2.2.2  Substrates with dissimilar materials 

 Figure 87 shows the P-δ curves for the experimental results and the numerical 

simulations of SLJs with dissimilar substrates of AA6060 T6 + CFRP under impact conditions. 
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Figure 87 - Comparison between experimental and numerical P-δ curves of SLJs with dissimilar substrates of 

AA6060 T6 + CFRP under impact conditions. 

 

 The behaviour found is similar to that identified for SLJs containing substrates with 

AA6060 T6. However, for this case the maximum load and the displacement between 

experimental and simulated data are somewhat close.   

 The presented impact models were also able to simulate well the mechanical behaviour 

of most of the configurations under study. Again, modelling the failure process of aluminium 

was found to be less accurate than simulating cohesive delamination. However, the results still 

demonstrate that this type models can be successfully used for predicting the behaviour of 

complex adhesive joints under impact. 
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6 Conclusions  

 An in-depth analysis of the quasi-static and impact behaviour of dissimilar adhesive 

joints subjected to a wide range of temperatures was performed in this work. A list of the 

conclusions drawn from this work follows: 

• The Young´s modulus and tensile stress of the studied crash-resistant adhesive both 

increase with the increase of strain rate and decrease of temperature; 

 

• The fracture energy in mode I (𝑮𝑰𝑪) of the studied crash-resistant adhesive was found 

to increase with the increase of strain rate and increase of temperature; 

 

• The CFFR-CFRP joint configuration exhibited the highest failure load for all 

conditions except for the impact test at -30°C, where the performance of all joints under 

study was similar. The aluminium joints with similar substrates exhibited low 

temperature sensitivity and failure loads significantly lower than those exhibited by the 

CFRP-CFRP joints. 

 

• The performance of the dissimilar joints (maximum load) was found to be limited by 

the aluminium deformation in all conditions tested; 

 

• In quasi-static conditions the aluminium-aluminium similar joints absorbed the most 

energy for all temperatures tested due to large level of plastic deformation present. In 

impact conditions, the CFRP-CFRP joints were those that absorbed more energy due 

to frictional sliding during delamination. At low temperatures this effect is less 

pronounced, and the aluminium alloys absorb more energy; 

 

• A significant difference in absorbed energy from static to impact was found when 

testing the joints with aluminium substrates. This is due to the fact that failure occurred 

in the clamped section during impact testing; 

 

• This work suggests that quasi-static testing and modelling can be used for the impact 

strength prediction of joints bonded with crash resistant adhesives. It was verified 

experimentally that under impact these joints offer failure loads consistently above 
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those encountered at low strain rates. If the joint is able to sustain a given quasi-static 

load, under impact it will always perform better. However, this work does not allow to 

extract the same conclusions with regards to energy absorption due to incomplete data, 

as under impact the aluminium substrates failed near the clamps with low energy 

absorption.   

 

• The effect of temperature on joint performance is only pronounced for the CFRP-CFRP 

SLJs, due to the large temperature dependence of these materials as they approach Tg. 

As expected, in joints bonded with a crash resistant adhesive and containing aluminium 

substrates the effect of temperature is very limited, as the substrate is temperature 

insensitive and the adhesive, although losing strength, becomes tougher.  

 

• The quasi-static models using cohesive zone modelling were able to simulate 

reasonably well the mechanical behaviour of most of the configurations under study, 

especially when predicting the failure of CFRP substrates. However, given the limited 

property data, proper modelling of the aluminium failure process was not possible. 

 

• The impact models developed during this work were also able to simulate reasonably 

well the mechanical behaviour of most of the configurations under study. Again, the 

failure process of CFRP materials was found to be more accurately modelled that then 

the failure process of aluminium. 

 

 As a final remark, it is possible to conclude that dissimilar adhesive joints, if used in 

conjunction with modern crash resistant adhesives, can effectively be used for the construction 

of automotive structures, without significant sacrifices in joint performance, including energy 

absorption under impact. Moreover, their performance can also be simulated using advanced 

cohesive zone models minimizing the need to perform extensive experimental testing. 
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7 Future works 

 Due to the complexity of the impact phenomena, there are many experimental 

procedures that can be performed to further explore the behaviour of the adhesive joints when 

subjected to high strain rates. A few ideas are listed in this section: 

• Due to the difficulties found in modelling the mechanical behaviour of the SLJs with 

aluminium substrates, an important complementary work could consist in a detailed 

characterisation of the aluminium substrates, especially their plastic behaviour and 

ductile damage mechanisms. This would allow to more accurately predict the joint 

failure loads and the displacement at failure. 

• As the failure of the joints was mostly by delamination, the use of techniques that 

mitigate this type of failure should also be explored. Usage of fibre metal laminates or 

geometrical modifications that reduce the peel stresses in the composite are of special 

interest. 

• Experiments with alternative substrates geometries and mechanical properties to 

balance the stiffness of the joint. By adjusting the substrates, it might be possible to 

improve significantly the performance of the joints, especially under impact conditions. 

• The use of mixed adhesives could be explored also in attempt to improve the stress 

distribution of the joint, reducing peel loads both on the composite and the aluminium 

substrates. 

• To further validate the results and procedures described in this thesis, it would be 

interesting to perform testing on component scale specimens, with geometries closely 

resembling that of a finished automotive component. 
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