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Necessary Conditions for Impulsive Nonlinear
Optimal Control Problems without a priori

Normality Assumptions1

A. Arutyunov,2 V. Dykhta,3 and F. Lobo Pereira4

Communicated by B. Polyak

Abstract. First-order and second-order necessary conditions of opti-
mality for an impulsive control problem that remain informative
for abnormal control processes are presented and derived. One of
the main features of these conditions is that no a priori normal-
ity assumptions are required. This feature follows from the fact that
these conditions rely on an extremal principle which is proved for
an abstract minimization problem with equality constraints, inequality
constraints, and constraints given by an inclusion in a convex cone.
Two simple examples illustrate the power of the main result.
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1. Introduction

Let us consider the following fixed-time optimal control problem:

(A) min J (x0, u,w)=L0(a), (1)

s.t. dx(t)=f (t, x(t), u(t))dt+G(t, x(t))dw(t), t ∈ [t0, t1], (2)
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L1(a)≤0, L2(a)=0, (3)

dw∈K. (4)

Here,

a= (x(t0), x(t1)), x(t0)=x(t−0 )=x0, x(t1)=x1, t0<t1

are given. The mappings

f : [t0, t1]×Rn×Rm→Rn, G : [t0, t1]×Rn→Rn×k,

Li : Rn×Rn→Rd(Li), i=0,1,2,

are given, with d(Li) the dimension of the vector function Li, d(L0)=1,
and dw is a k-dimensional Borel measure associated with the function of
bounded variation w(t), right continuous on (t0, t1]. The cone K is defined
by

K={dw∈C∗([t0, t1];Rk) :∀ continuous φ such that

φ(t)∈K0 ∀t,
∫
B

φ(t)dw≥0,∀ Borel B⊂ [t0, t1]},

where K is a given convex, closed, pointed cone from Rk and K0 is its
dual. In another words, the measure dw satisfies∫

B

dw(t)∈K, for all Borel subsets B.

The pair (u,w) is called an admissible control if u∈Lm∞ and w ∈BV k is
such that dw∈K.

Let us describe our assumptions for problem A:

(H1) The functions L0,L1,L2 are C2.
(H2) The function f is twice differentiable w.r.t. x and u for almost

all t ∈ [t0, t1]; the function f plus the first-order and second-
order derivatives are measurable w.r.t. t and bounded on any
bounded subset.

(H3) The matrix function G∈C2.
(H4) The matrix G satisfies the Frobenius condition, i.e.,

Gix(t, x)G
j (t, x)−Gjx(t, x)Gi(t, x)≡0, (5)

where Gi is the ith column of G.



JOTA: VOL. 124, NO. 1, JANUARY 2005 57

Notice that, under (H4), the dynamic system (2) is robust w.r.t. approx-
imations of the generalized control dw by conventional controls v(·) ∈
Lk∞([t0, t1];K); see Refs. 1–4. If the Frobenius condition holds, then for
any given admissible control (u,w) and initial condition x0, the corre-
sponding trajectory (whose existence is assumed) is the unique right-con-
tinuous function of bounded variation on (t0, t1], with x(t0)=x0 such that

x(t)=x0 +
∫ t

t0

f (θ, x(θ), u(θ))dθ

+
∫

[t0,t ]
G(θ, x(θ))dwc(θ)+

∑
Si≤t

(z(1; si, ci)−x(s−i )). (6)

Here, dwc represents the continuous part of dw,

dwa(t) :=
∑

ciδSi

is the atomic part, si ∈ [t0, t1] are the jump times of dw (times of impulses),
δS is the Dirac measure at time s, ci ∈K are the jumps of dw, and the
function zi(τ )= z(τ ; si, ci) is the solution to the limiting system

dzi/dτ =G(si, zi)ci, zi(0)=x(S−
i ); (7)

hence,

zi(1)=x(s+i ).

The robustness of the system (2), due to (H4), implies that the solution
(6) belongs to the closure of the set of absolutely continuous solutions of
equation (2) corresponding to (u,w)∈L∞ ×AC.

An admissible control process is a triplet (x0, u,w), where (u,w) is an
admissible control and the corresponding state trajectory satisfies the given
endpoint constraints. The problem under consideration is to minimize J
over the set of admissible control processes.

By (x∗
0 , u

∗,w∗) and x∗, we denote respectively an admissible control
process and the corresponding state trajectory investigated for a minimum
of problem (A). It is assumed that this control process satisfies the follow-
ing additional assumption:

(H5) dw∗(t)=v∗(t)dt+
∑
s∈S∗

csδs(t), (8)
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where ν∗(t)= ẇ∗(t) a.e. with respect to the Lebesgue measure on [t0, t1]5,
S∗ ⊂ [t0, t1] is the set of jump times of w∗(·), assumed to be finite, and

cs = [w∗(s)] :=w∗(s+)−w∗(s−),

i.e., the function w∗(·) has no singular continuous part and has a finite
number of jump times.

Moreover, since (x∗
0 , u

∗,w∗) is investigated for a local minimum only
(in the sense of Definition 1.1 below), then without loss of generality
we can assume that all endpoint inequality constraints are active at the
optimal trajectory x∗, i.e.,

L1(a
∗)=0, where a∗ = (x∗(t0), x∗(t1)). (9)

Dynamic optimization problems arising in a variety of application areas
such as finance, mechanics, resources management, and space navigation
(see Refs. 4–10, just to mention a small but representative sample of refer-
ences), whose solutions might involve discontinuous trajectories, have been
considered over the years, motivating a significant research effort on the
impulsive control problem.

In order to not obscure the aim of this article, we selected the sim-
plest control problem paradigm enabling us to deal with the issues relevant
to first-order and second-order conditions for impulsive control problems
that remain informative, even for abnormal control processes. It is not
difficult to see that this result can be derived for a number of different
and more complex control formulations. In particular, by standard state-
variable manipulations, one can convert Bolza and Lagrange types of cost
functionals into the one stated here.

The approach of this article can be used to derive these opti-
mality conditions for problems with regular control constriants of the
type R(u, t)= 0. Under regularity assumptions (see Ref. 11), the implicit
function theorem can be used to solve (for each t) this equation in u, thus
converting the control problem into the one considered here.

Definition 1.1. We say that the admissible process (x∗
0 , u

∗,w∗) is a
local minimizer of the problem (A) if ∃ε > 0 and, for any finite-dimen-
sional subspace R⊂Lm∞[t0, t1],∃εR >0 such that process (x∗

0 , u
∗,w∗) yields

the minimum to problem (1)–(4) with the additional constraints

‖a−a∗‖<ε, ‖dw−dw∗‖C∗([t0,t1];Rk) <ε,
‖u−u∗‖Lm∞[t0,t1]<εR, u(·)∈R.

5Heretofore, L-a.e. denotes a.e. w.r.t. the Lebesgue measure.
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The defined type of local minimum is finite dimensional in u and
weak in dw.

In this article, we obtain first-order and second-order necessary condi-
tions of optimality for the problem under consideration. The main features
of the results is that no a priori normality assumptions are required and
that they are informative for abnormal control processes as well. Another
issue concerns the fact that, in the problem considered, the function G

depends also on x. The proof of these conditions is based on a nonlin-
ear transformation of the initial problem A (Ref. 4) into another one for
which G does not depend on x and first-order and second-order necessary
conditions of optimality were derived in Ref. 12.

In spite of the well-developed theory of higher-order necessary con-
ditions of optimality for conventional optimal control problems (see for
example, Refs. 11, 12, 14), it is somewhat surprising that, from the vast
amount of literature addressing optimal impulsive control problems (Refs.
1–3, 15–22), only a few publications are available (Refs. 23–25, 27).

We notice that, while the conditions in Refs. 23, 24 become trivial
(i.e., degenerate, for abnormal problems), ours remain informative. Also,
our results differ substantially from these conditions as it can be seen
from the fact that these follow directly from the maximum principle in
the case the optimal trajectory is absolutely continuous, i.e., with no
impulses.

In Ref. 3, second-order necessary conditions of optimality of the
Legendre-Jacobi-Morse type for time-optimal control are derived by using
in an essential way an extremal principle and the notion of index of
quasiextremality provided in Ref. 26.

However, the approach followed here differs substantially from all the
ones in the references cited above as we regard this problem as a specific
instance of a general abstract problem for which powerful second-order
optimality conditions are derived.

This article is organized as follows. In Section 2, we introduce key
definitions and state first-order and second-order necessary conditions of
optimality for the dynamic optimization problem described in Section 1.
Issues concerning abnormality, geometric interpretation, and computation
are also discussed. In Section 3, we present the proof, which is orga-
nized in three parts: transformation of the given problem into another
one for which there are first-order and second-order necessary conditions
of optimality available; statement of the mentioned optimality conditions
for the problem considered; and decoding of the thus obtained first-order
and of second-order conditions in terms of the data of the original prob-
lem. Finally, in Section 4, two examples illustrate the application of these
conditions.
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2. Second-Order Necessary Conditions of Optimality

Let us state the necessary conditions of optimality for problem A.
Before presenting the main result, we discuss some auxiliary concepts
which are fundamental for the statement of our main result: local maxi-
mum principle, critical cone, and quadratic form.

2.1. Local Maximum Principle. Let

F(t, x, u, v)=f (t, x, u)+G(t, x)v

and let

ψ ∈Rn, λ= (λ0, λ1, λ2)∈R1 ×Rd(L1)×Rd(L2).

Define the Pontryagin function H =H0 +H1 and the endpoint Lagrangian
lλ by

H0(t, x,ψ,u)=〈ψ,f (t, x, u)〉,
H1(t, x,ψ, v)=〈ψ,G(t, x)v〉,
lλ(a)=λ0L0(a)+〈λ1,L1(a)〉+〈λ2,L2(a)〉.

Definition 2.1. We say that a process (x∗
0 , u

∗,w∗) satisfies the Euler-
Lagrange conditions or the local maximum principle if there exists λ �= 0
such that

λ0 ≥0, λ1 ≥0, 〈λ1,L1(a
∗)〉=0 (10)

and the vector function ψ , solution to the adjoint system

−dψ(t)=H0x(t)dt+Hxv (t)dw∗(t), −ψ(t1)= lλx1
(a∗), (11)

which satisfy the following conditions:

ψ(t0)= lλx0
(a∗), (12)

Hu(t)=0, L-a.e., (13)

〈Hv(t), v〉≤0, ∀(t, v)∈ [t0, t1]×K, (14)

〈Hv(t), ω̄∗(t)〉=0, dw∗-a.e., (15)

where

ω̄∗(t)=dw∗(t)/d|w∗(t)|
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is the Radon-Nicodym derivative of the measure dw∗ with respect to its
total variation measure.

Notice that the solution to the adjoint system (11) is in the same
sense as the one to (6), i.e.,

ψ(t1)=−lλx1
(a∗)

and that

ψ(t)=−lλx1
(a∗)+

∫ t1

t

H0x(θ)dθ +
∫ t1

t

Hxv(θ)dw
∗
c (θ)

+
∑
si>t

(ψ(si)−q(0; si, ci)), t ∈ [t0, t1). (16)

Here, the functions qi(τ )=qi(τ ; si, ci) are solutions to the adjoint limiting
system

−dqi/dτ =Hxv(si, zi(τ ), qi(τ ))ci, qi(1)=ψ(si), (17)

with the corresponding solution zi(τ ) to the system (7) when x(s−i ) =
x∗(s−i ). The notation

Hxv(t)= ∂2H

∂v∂x
(t)

refers to the evaluation of the function Hxv along the process examined
(this notation is adopted also for other functions in similar contexts). We
remark that any adjoint trajectory ψ(t) and the function H(t) depend on
λ due to the transversality condition (12).

Denote by

�=�(x∗
0 , u

∗,w∗)

the set of all normalized Lagrange multipliers λ,‖λ‖ = 1, satisfying the
local maximum principle. It is well known that � �= ∅ is a first-order nec-
essary condition for a weak local minimum for problem A. However, we
shall prove here that it is also necessary for the local minimum in the sense
of Definition 1.1. Note that the local maximum principle holds without
(H5).
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2.2. Critical Cone. In order to ensure a compact statement of the
second-order conditions, we shall use the total derivative w.r.t. time along
the solution to the following ordinary differential system:

ẋ=F(t, x, u, v), (18a)

−ψ̇=Hx(t, x,ψ,u, v), (18b)

ẇ=v, v(t)∈K. (18c)

For example,

(Ḣv)x = (∂/∂x)[(d/dt)(∂H/∂v)]|t,x∗(t),u∗(t),w∗(t)).

Under the Frobenius condition, this derivative does not depend on v, but
in any other case, we put always v∗(t)= ẇ∗(t); see (8). Denote by BV n(S∗)
the set of n-dimensional vector functions of bounded variation whose
jump times are supported on S∗. Clearly, each term in (x∗(·),ψ(·),w∗(·))
is in a BV (S∗) space of the corresponding dimension.

Definition 2.2. A variation (δx0, δu, δw) ∈ Rn × Lm∞ × BV k(S∗) is
called critical if the corresponding state trajectory variation δx ∈BV n(S∗)
satisfies the following conditions:

〈Lia(a∗), δa〉+〈Lix1(a
∗),G(t1)δw1〉

{≤0, i=0,1,
=0, i=2, (19)

δa= (δx(t0), δx(t1)), δw1 = δw(t1), (20)

d(δx)/dt=Fx(t)δx+Fu(t)δu− (Ḣv)Tψ(t)δw, t /∈S∗, (21)

d(δw)∈K+Lin {dw∗}, δw(t0)=0, (22)

δx(s)= δq(1; s, c), ∀s ∈S∗. (23)

Here,

G(t1)=G(t1, x∗(t1)),

δq(τ ; s, c) := δqs(τ ) is the solution to the system

d(δqs)/dτ =H1ψx(s, z
s(τ ), c)δqs, (24a)

δqt0(0)= δx0, (24b)

δqs(0)= δx(s−), s > t0, (24c)

and the function zs(τ ) is solution of (7) when si = s, x(s−)=x∗(s−); recall
that c= [w∗(s)].

Denote by Kcr the cone of all critical variations.
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2.3. Quadratic Form. For any λ∈�, define the quadratic form

�λ(δx0, δu, δw)= δaT lλaa(a∗)δa+Qλ
1(δa, δw1)

−
∫ t1

t0

Qλ(δx, δu, δw)(t)dt, (25)

where Qλ and Qλ
1 are the following quadratic forms:

Qλ(δx, δu, δw)= δuT Hλ
uuδu+2δxT Hλ

xuδu−2δwT (Ḣ λ
v )uδu

−δwT (Ḧ λ
v )vδw−2δwT (Ḣ λ

v )xδx+ δxT Hλ
xxδx, (26)

Qλ
1(δx(·), δw1)=2[δx(t0)

T lλx0x1
(a∗)G(t1)− δx(t1)T Hλ

xv(t1)]δw1

+δwT1 GT (t1)[lλx1x1
(a∗)G(t1)−Hλ

xv(t1)]δw1

−
∑
s∈S∗

[δxT (s)
λ(s)δx(s)− δxT (s−)
λ(s−)δx(s−)].

(27)

Here, dependence on top Qλ is omitted, Hλ refers to the Pontryagin
function evaluated along (t, x∗,ψ,u∗, v∗),ψ satisfied (11) for a certain λ,
and δx(·) is the corresponding solution to (24) with (22), (23), δx(t−0 )=
δx0,w(t

−
0 )= 0. Only 
λ(t)∈BV n×n(S∗) remains to be defined in formula

(27). For this, let z∗(τ ; t) and q∗(τ ; t) be solutions of

dz∗/dτ =G(t, z∗)w∗(t), z∗(1; t)=x∗(t),
−dq∗/dτ =H1x(t, z

∗, q∗,w∗(t)), q∗(1; t)=ψ(t),

and let the n×n matrix Z(τ ; t) satisfy

−dZ/dτ =ZH1ψx(t, z
∗(τ, t),w∗(t)), Z(0; t)= I.

Then,


λ(t)=−ZT (1; t)
(∫ 1

0
Z−1T (τ ; t)H1xx(τ ; t)Z−1(τ ; t)dτ

)
Z(1; t), (28)

where the expression H1xx(τ ; t) is a short notation for H1xx evalu-
ated along (t, z∗(τ ; t), q∗(τ ; t),w∗(t)). We remark that 
(t−0 )= 0 because
w(t−0 )=0.
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2.4. Main Result. Let π be the orthogonal projection from Rk onto
the linear subspace N defined by

N =K ∩ (−K).
Obviously, C∗([t0, t1],N) is the maximal linear subspace contained in K.
Consider the following modified variational equation:

d(δx)/dt=Fx(t)δx+Fu(t)δu− (Ḣv)ψ(t)πδw, t /∈S∗, (29)

with jump conditions (23), (24), where

δx(t0)= δx0 ∈Rn, δu∈Lm∞, δw∈Lk∞. (30)

Consider the quadratic form �λa defined on Rn×Lm∞ ×Lk∞ ×Rk obtained
from �λ by formally replacing δw1 by h. Put L= (L1,L2) and consider the
set of all tuples (δx0, δu, δw,h)∈Rn×Lm∞ ×Lk∞ ×Rk such that the corre-
sponding solution of (29) with (23), (24) satisfies

La(a
∗)δa+Lx1(a

∗)G(t1)πh=0, h∈Rk.
This set, denoted by Kπ , is obviously a linear subspace of Rn × Lm∞ ×
Lk∞ ×Rk.

Define the linear operator A :Kπ →Rd(L) by the formula

A(δx(0), δu, δw,h)=Lx0(a
∗)δx0 +Lx1(a

∗)δx1 +Lx1(a
∗)G(t1)πh,

where δx is the corresponding solution to (29), (30), (23), (24). Put

d= codim(ImA)
and denote by �a(x

∗, u∗,w∗),�a for short, the set of vectors λ ∈�(x∗,
u∗,w∗) such that the index6 of the form �λa on the subspace Kπ is not
greater then d.

Theorem 2.1. Necessary Conditions of Optimality. Let the control
process (x∗, u∗,w∗) be a local optimal to the problem A. Then, �a �= ∅
and, for any (δx0, δu, δw)∈Kcr , we have

max
λ∈�a

�λ(δx0, δu, δw)≥0. (31)

The proof of this theorem is presented in Section 3.

6The index of a quadratic form q on a given subspace V is the dimension of a subspace
of V of maximum dimension where the quadratic form is negative definite.
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Notice that, by definition, the cone �a ⊆�. (therefore, Theorem 2.1)
is stronger than the well-known conditions for which cone �a in (31) is
replaced by �; see Refs. 24, 25.

Remark 2.1. It can be shown easily that d is equal to the dimension
of the kernel of the block matrix operator

AB
G(t1)π


 :Rd(L)→Rn+k+d(L),

where

A=Lx0(a
∗)+�(t1)T Lx1(a

∗),

B=Lx1(a
∗)T �(t1)

t1∫
t0

�−1(t)�(t)×�(t)T �−1(t)T dt�(t1)
T Lx1(a

∗),

where � is a fundamental solution to the system (29); i.e., � is the solu-
tion to the system

(d/dt)�(t)=Fx(t)�(t), L-a.e., �(t0)= I, (32)

�(t) is the n× (m+k) block matrix defined by

[Fu(t)|− (Ḣv)ψ(t)π ],

and AT denotes the transpose of A.

Remark 2.2. The second-order necessary conditions of optimality are
also significant for the abnormal case (see Refs. 11, 12, 27). For prob-
lem A, the abnormality of the admissible control process (δx0, u(·),w(·))
implies that the convex hull of �(δx0, u(·),w(·)) contains 0. Notice that,
for the abnormal case, the second-order conditions in which � is used
instead of �a in formula (31) become trivial (i.e., uninformative).

Remark 2.3. The last term in the expression of Qλ
1 features the left

limits δx(s−)T ,
λ(s−), s ∈ S∗. We note that it is not necessary to extract
limits from the left in order to compute these terms. For example, to com-
pute 
λ(t−) at some fixed point t ∈S∗, t > t0, with the formula (28), it suf-
fices to solve first the system of differential equations

dz∗/dτ =G(t, z∗)(w∗(t)− ct ), z∗(1; t)=x∗(t),
−dq∗/dτ =H1x(t, z

∗, q∗, (w∗(t)− ct )), q∗(1; t)=ψ(t).
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Then, Z(τ, t−) is obtained by integrating the differential equation

−dZ/dτ =ZH1ψx(t, z
∗(τ, t), (w∗(t)− ct )), Z(0; t)= I.

Clearly, only two Cauchy problems need to be solved for each atom.

3. Proof of Theorem 3.1

For simplicity, we organize the proof in four steps.
Step 1. Transformation of Problem A into Problem B. Denote by

ξ(t, y,w) the solution to the following system of partial differential equa-
tions which, under the Frobenius condition, is completely integrable,

∂ξ/∂w=G(t, ξ), ξ |w=0 =y. (33)

Since we are interested in only a local minimum, we may assume without
any loss of generality that G is bounded. Hence, the global solution ξ is
defined on the whole space [t0, t1]×Rn. Let

η(t, x,w)= ξ(t, x,−w)
and let us apply the following nonlinear transformation (Refs. 4, 17, 18,
23) to problem A:

� : (x(·), u(·),w(·)) → (y(·), u(·),w(·), v(d·)), (34a)

y(t)=η(t, x(t),w(t)), v(dt)=dw(t). (34b)

Now, we consider the following problem:

(B) min I (y0, u, v) := L̃0(b),

s.t. L̃1(b)≤0, L̃2(b)=0,

ẏ=g(t, y, u,w),
dw(t)=v(dt), w(t0)=0, v∈K,

where

b := (y0, y1,w1),

L̃i(b)=Li(y0, ξ(t1, y1,w1)),

(y0, y1,w1)= (y(t0), y(t1),w(t1)),
g(t, y, u,w)= (ηt (t, x,w)+ηx(t, x,w)f (t, x, u))|x=ξ(t,y,w).

Now, the pair (y,w) is the state variable and the pair (u(·), v(d·))∈Lm∞ ×
(Ck)∗ is the control variable. The minimization in problem B is carried
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out over all the control processes (y0, u(·), v(dt)) satisfying its constraints.
Notice that the component y(·) of the trajectory (y(·),w(·)) is absolutely
continuous, but the component w(·) is a function of bounded variation.
The inverse transformation �−1 is defined by the equality

x(t)= ξ(t, y(t),w(t)).

From this property and Definition 1.1, the proposition below follows.

Proposition 3.1. The process (x∗
0 , u

∗(·),w∗(·)) is a local optimum for
problem A if and only if the (y∗

0 , u
∗(·), v∗(dt)) = (x∗

0 , u
∗(·), dw∗(·)) is a

local optimum process for problem B.

Step 2. Necessary Conditions of Optimality for Problem B. In Ref. 27,
first-order and second-order necessary conditions of optimality for a local
minimizer (in the sense of Def. 1.1) of problem B are obtained. Let us
write them down now.

Define the Pontryagin function H̃ and the endpoint Lagrangian l̃µ for
problem B,

H̃ (t, y,w,p,pw,u, v)=〈p,g(y,w,u, t)〉+〈pw, v〉,
l̃µ(b)=µ0L̃0(b)+〈µ1, L̃1(b)〉+〈µ2, L̃2(b)〉.

Here,

µ= (µ0,µ1,µ2)∈R1 ×Rd(L1)×Rd(L2),

p and pw are respectively η-dimensional and k-dimensional vectors. Due
to Theorem 2.2 and its Remark in Ref. 27, the process (y∗

0 , u
∗, v∗) satisfies

the Euler-Lagrange conditions and the second-order necessary conditions
of optimality. The first-order conditions imply the existence of µ �= 0 and
vector functions (p,pw) such that

µ0 ≥0, µ1 ≥0, (35)

−ṗ(t)= H̃y(t), L-a.e., (36)

−ṗw(t)= H̃w(t), L-a.e., (37)

(p(t0),−p(t1))= (l̃µy0
(b∗), l̃µy1

(b∗)), (38)

−pw(t1)= l̃µw1
(b∗), (39)

H̃u(t)=0, L-a.e., (40)

〈H̃w(t), v〉=〈pw(t), v〉≤0, ∀v∈K,∀t ∈ [t0, t1], (41)

〈H̃w(t), ω̄∗(t)〉=〈pw(t), ω̄∗(t)〉=0, v∗-a.e. (42)
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Here,

b∗ = (y∗(t0), y∗(t1),w∗(t1))

and

ω̄∗(t)= dv∗

d|v∗| (t)

is the Radon-Nicodym derivative of the measure v with respect to its total
variation measure. Notice that, from the convention explained earlier, we
have that L̃1(b

∗)=0.
Denote by M the set of all normalized vectors µ that satisfy Eul-

er-Lagrange conditions for the process (y∗
0 ,w

∗, u∗, v∗) and consider the
following variational system:

d(δy(t))/dt=gy(t)δy(t)+gu(t)δu(t)+gw(t)δw(t), (43a)

d(δw)(t)= δv(dt), (43b)

δw(t0)=0, δu∈Lm∞, δv∈K+Lin{v∗}, (43c)

with boundary conditions

L̃2b(b
∗)δb=0, L̃1b(b

∗)δb≤0, (44)

where

δb= (δy(t0), δy(t1), δw(t1)).

These conditions, together with the inequality

〈L̃0b(b
∗), δb〉≤0, (45)

describe the critical cone K̃cr at the point (y∗
0 , u

∗, v∗) for problem B.
For any µ∈M, define the quadratic form

�̃µ(δy0, δu, δv)

=−
t1∫
t0

∂2H̃

∂(y,w,u)2
(t)[(δy(t), δw(t), δu(t))]2dt+ δbT l̃µbb(b∗)δb. (46)
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Here, (δy, δw) is the solution to the system (43) corresponding to δu and
δv∈K+Lin{v∗} with initial condition δy(t0)= δy0.

Let

N =C∗([t0, t1],N)

and consider the variational system (43) with dv restricted to N . Due to
the definition of the operator π , the differential equation (43a) can be
written as

d(δy(t))/dt=gy(t)δy(t)+gu(t)δu(t)+gw(t)πδw(t), (47)

where δw is an arbitrary function from BV k(S∗) such that δw(t0)=0. The
equality (47) generates a new linear operator D by the formula

D(δy0, δu, δw)= L̃b(b∗)δb, (48)

where L̃= (L̃1, L̃2) and δy is the solution to (47) with initial condition
δy(t0)= δy0.

Let

d̃= codim(ImD).

Consider the set kerD, i.e., the set of all triples

(δy0, δu, δw)∈Rn×Lm∞ ×BV k(S∗)

such that the corresponding solution to (47) satisfies

L̃b(b
∗)δb= L̃y0(b

∗)δy0 + L̃y1(b
∗)δy(t1)+ L̃w1(b

∗)δw(t1)=0. (49)

Consider the set of all vectors µ∈M such that the index of the quadratic
form �̃µ restricted to the set kerD is not greater than d̃. Denote such a
set by Ma . From Theorem 2.2 and its Remark in Ref. 27, it can be seen
readily that Ma �=∅ and that, ∀(δy0, δu, δw)∈ K̃cr ,

max
µ∈Ma

�̃µ(δy0, δu, δw)≥0. (50)

We shall need the following extension of (50). Consider the space E=
Rn×Lm∞ ×Lk∞ ×Rk consisting of elements e= (δy0, δu, δw,h). Define the
quadratic form �̃

µ
a on E by formally replacing δw(t1) by h∈Rk in �̃µ and

define the linear operator Ã :E→Rd(L) by

Ã(e) := L̃y0(b
∗)δy0 + L̃y1(b

∗)δy(t1)+ L̃w1(b
∗)h, (51)



70 JOTA: VOL. 124, NO. 1, JANUARY 2005

where δy(·) is the corresponding solution to (47). Put

K̃π =KerÃ.

Proposition 3.2. We have that d̃ = codim (ImÃ) and also µ ∈Ma is
equivalent to the fact that the index of the form �̃

µ
a considered on the lin-

ear subspace K̃π is not greater than d̃.

This proposition follows from the fact that BV k is dense in Lk∞ with
respect to the Lk2 metric and its proof is based on standard Lebesgue inte-
gration arguments.

Step 3. Decoding of the Local Maximum Principle. From the defini-
tion of ξ and η, it follows that η satisfies the partial differential system

ηw(t, x,w)+ηx(t, x,w)G(t, x)=0, (52)

with boundary condition η(t, x,0)= x. Moreover, the following equalities
hold:

η(t, ξ(t, y,w),w)=y, ξ(t, η(t, x,w),w)=x. (53)

We shall use these relations and their consequences obtained by differen-
tiation.

Let us consider the following proposition.

Proposition 3.3. The function σ(t, y,p,w)=ηTx (t, ξ(t, y,w),w)p is a
solution to the following completely integrable system:

σw=−Hxv(t, ξ(t, y,w), σ, u, v), σ |w=0 =p. (54)

Proof. Obviously, σ satisfies the initial condition. Denote the left-
hand side of (52) by F(t, x,w). By differentiating σ with respect to w, and
using Fx ≡0, we obtain

σw(t, y,p,w)=ηTxx(t, ξ(t, y,w),w)GT (t, ξ(t, y,w))p
+ηwx(t, ξ(t, y,w),w)p

=Fx(t, ξ(t, y,w),w)p
−GTx (t, ξ(t, y,w))ηTx (t, ξ(t, y,w),w)p

=−Hxv(t, ξ(t, y,w), σ (t, y,p,w)).

This proves Proposition 3.3.
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Proposition 3.4. Let

s(t, x,ψ,w)= ξTy (t, ηx(t, x,w),w)ψ.

Then, the function

p(t)= s(t, x∗(t),ψ(t),w∗(t)) (55)

is a solution to (36) if and only if the function

ψ(t)=σ(t, y∗(t), p(t),w∗(t)) (56)

is solution to the system (11).

Proof. Any solution (x(·),ψ(·)) to the systems (2), (11) can be
approximated in the weak star topology of the space of functions of
bounded variation by solutions to the system (18). Hence, it is sufficient
to prove that the relations (55) and (56) hold for any absolutely contin-
uous trajectory of the system (18). For this, it suffices to prove that the
formula

(d/dt)σ (t, y,p,w)=−Hx(t, ξ(t, y,w), σ (t, y,w), u, v) (57)

holds, with

(ẏ, ṗ, ẇ)= (g,−H̃y, v).

We have

(d/dt)σ (t, y,p,w)=−ηTx (t, ξ(t, y,w),w)H̃y(t, y,p,u,w)
+(d/dt)ηTx (t, ξ(t, y,w),w)p. (58)

Note that the function H̃ may be represented in the form

H̃ (t, y,p,u,w)=H0(t, ξ(t, y,w), σ (t, y,p,w), u)

+〈p,ηt (t, ξ(t, y,w),w)〉.

By differentiating w.r.t. y, we obtain

H̃y(t, y,p,u,w)= ξTy (t, y,w)[H0x(t, ξ(t, y,w), σ (t, y,p,w), u)

+[ηTx (t, ξ(t, y,w),w)p]xf (t, ξ(t, y,w), u)

+ηtx(t, ξ(t, y,w),w)p].
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By substituting this equality in (58), we obtain

(d/dt)σ (t, y,p,w)=−H0x(t, ξ(t, y,w), σ (t, y,p,w), u)

−[ηTx (t, ξ(t, y,w),w)p]xf (t, ξ(t, y,w), u)

−ηTtx(t, ξ(t, y,w),w)p
+(d/dt)ηTx (t, ξ(t, y,w),w)p. (59)

By considering the identity Fx(t, x,w)≡0 and using it in the last term of
(59), we obtain

(d/dt)[ηTx (t, ξ(t, y,w),w)p]x
= [ηTx (t, ξ(t, y,w),w)p]t + [ηTx (t, ξ(t, y,w),w)p]xf (t, ξ(t, y,w), u)

−Hxv(t, ξ(t, y,w), ζ(t, y,p,w), u, v)v.

By substituting in (59), we obtain (57). This proves Proposition 3.4.

In a similar way (see the details in Refs. 4, 18, 23), we can obtain the
important equality

−ṗw= H̃w(t, y,p,u,w)=−(d/dt)Hv(t, ξ(t, y,w), σ (t, y,p,w)). (60)

Let us consider the transversality conditions for the adjoint systems. We
have

p(t0)= L̃y0(b
∗)= ξTy (t0, y∗(t0),0)Lx0(a

∗)=Lx0(a
∗),

−p(t1)= L̃y1(b
∗)= ξTy (t1, y∗(t1),w∗)Lx1(a

∗),
−pw(t1)= L̃w1(b

∗)=GT (t1, x∗(t1))Lx1(a
∗)=Hv(t1, x∗

1 ,ψ(t1)).

From these relations and Proposition 3.4, it follows that the set of
adjoint trajectories p(·) and ψ(·) can be obtained from each other by
coordinates transformation. Moreover, bearing in mind the equality (60),
we obtain

pw(t)=−Hv(t), ∀t ∈ [t0, t1],

since under (H4) the function t→Hv(t)∈AC. Due to this and the obvi-
ous equality H̃u(t)=Hu(t), we conclude that the sets � and M are dis-
tinguished only by the notation. From now on, we shall use the common
notation λ and � instead of µ and M. This conclusion is stated as follows.
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Proposition 3.5. � �= ∅ ⇔M �= ∅. That is, the conditions of the local
maximum principle in problems A and B are equivalent.

Step 4. Decoding of the Second-Order Conditions. We shall prove
that the cone K̃cr and the form �̃λ are transformed into Kcr and �λ

respectively by the simple linear mapping of the y-variations

� : δx(t)= ξy(t)δy(t). (61)

Since this transformation is invertible [det ξy(t) �=0 on [t0, t1] due to (33)],
then in order to obtain the second-order necessary conditions of optimal-
ity for problem A from those for problem B, we need to show the follow-
ing proposition.

Proposition 3.6. The following equalities hold:

�′◦K̃cr =Kcr , �′◦�̃λ=�λ, ∀λ∈�. (62)

Proof. The linear relations (44), (45) specifying the critical cone can
be transformed easily into (19). Let us prove that, for t /∈S∗, the following
formulas hold:

gy(t)= (ηx(t)fx(t)+ η̇x(t))ξy(t), (63)

gw(t)=ηx(t)(fx(t)G(t)− Ġ(t))=−ηx(t)(Ḣv)ψ(t), (64)

gu(t)=ηx(t)fu(t). (65)

In fact, by using the equality Fx ≡0, we obtain

gy(t)= [ηxx(t)f (t)+fx(t)ηx(t)+ηtx(t)]ξy(t)
={[Fx(t)ηx(t)+ (d/dt)ηx(t)]−Fx(t)v∗(t)}ξy(t).

Analogously, by using the additional equality Ft ≡ 0, we obtain (64) and
(65).

From (63)–(65) and (61), we see that (43a) is rewritten in the form
(21). For any s ∈Sd(w∗), let

z(τ ; s)= ξ(s, y∗(s),w∗(s−)+ τ [w∗(s)]), τ ∈ [0,1],

−q(τ, s)= ξy(s, y∗(s),w∗(s−)+ τ [w∗(s)])δy(s), τ ∈ [0,1].

It is easy to check that these functions satisfy equations (7), (24) and
describe the jump conditions of the variation δx in (23) and (24). The
proof of the second equality in (64) is analogous to the corresponding one
in Ref. 23; therefore, it is omitted.
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From Propositions 3.2 and 3.6, it follows that condition (31) is equiv-
alent to condition (50) for problem (B); hence, (31) is obtained. Theorem
3.1 is proved.

4. Examples

Example 4.1. Take n≥ 5, k=n− 1, x= col(x1, . . . , xn)∈Rn, and let Q
be a symmetric k×k matrix such that the index of each of the matrices Q
and −Q is not less than 2. The case k=4 and Q=diag(1,1,−1,−1) is a
good example. Consider the problem

min J =〈ζ, (x1(1), . . . , xk(1))〉,
s.t. dxi =fi(x, t)dt+dwi, i=1, k, w= col(w1, . . . ,wk),

dxn=fn(x, t)dt+〈Qcol(x1, . . . , xk), dw〉,
t ∈ [0,1], x(0)=0, xn(1)=0, K=Rk,

where ζ ∈Rk is a given nonzero vector; for i= l, . . . , n, let the fi be arbi-
trarily given smooth functions such that

fi(0, t)≡0, fix(0, t)≡0, fnxx(0, t)≡0.

Because of the symmetry of Q, it can be shown easily that the Frobenius
condition holds. We investigate the admissible control process (0,0,0) and
prove that it is not a locally optimal control process.

Fix any λ ∈ �. From (14), for ψ(·) = ψλ(·) = (ψ1(·), . . .ψn(·)), we
obtain ψi(t)≡ 0, i= l, . . . , k, and from (11), we have ψn(t)≡ψn,0 = const.
Hence, by using (11), (12), and ζ �=0, we obtain

�={λ :λ0 =0, λ2,i =0, i=1, n−1, λ2,n=−λ2,n+1};
consequently, � consists of only two vectors,

¯̄λ=−λ̄, λ̄= (1/
√

2)(0, . . . ,0,1,−1) and ψn,0 =±1/
√

2.

It can be shown easily that

d=1, �λa(δw)=ψn,0
∫ 1

0
〈Qcol(δx1, . . . , δxk), δw〉dt.

Hence,

�λa(δw)= (1/2)ψn,0〈Qcol(δx1(1), . . . , δxk(1)), col(δx1(1), . . . , δxk(1))〉.
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This implies that, for any ψn,0 =±1, the index of the function �λa is not
less than 2. So, �a = ∅; consequently, the process (0,0,0) is not optimal.
Also notice that this process is abnormal, that

max
λ∈�

�λ(δw)≥0, ∀δw,

because of λ̄, ¯̄λ∈�, and that the last inequality is not useful.
Example 4.2. Consider the following optimal control problem with

parameters α1, α2.

min x3(1),

s.t. dx1 =x2dt, x1(0)=0,

dx2 =dw, x2(0)=x20<0,

dx3 = (α1x1 +α2x2)dw, x3(0)=0,

dw≥0.

The control function

w∗(t)=−x20, ∀t ∈ (0,1],

with w∗(0)= 0 satisfies the maximum principle for any parameter values.
The corresponding trajectories and adjoint variables are, respectively,

(x∗
1 (t), x

∗
2 (t))= (0,0),∀t ∈ (0,1],

with

(x∗
1 (0), x

∗
2 (0))= (0, x20),

and

(ψ1(t),ψ2(t)= (0,0), ∀t ∈ (0,1],

with

(ψ1(0),ψ2(0))=x20(α1, α2) and ψ3 ≡−1.

The critical cone for the control is described by the conditions

δẋ1 = δw, δx1(0)= δx1(0
+)=0,

δẋ2 =0, δx2(0)=0,

d(δw)∈C∗([0,1],R+)+γ δ0, γ ∈R.



76 JOTA: VOL. 124, NO. 1, JANUARY 2005

Since H1ψx ≡0, δx1(·), and δx2(·) are continuous; hence, δx2 ≡0. The
fact that H1xx ≡0 implies that ψ≡0. Therefore, the form � is given by

�(δw)=2α1δx1(1)δw1 +α2δw
2
1 −2α1

∫ 1

0
δw(δw+ δx1)dt.

The necessary conditions of Theorem 2.3 amount to the inequal-
ity �≥ 0 on kcr ; consequently, the function δw∗ ≡ 0 has to minimize �
on Kcr . From the maximum principle, we have that α1 ≤ 0. Notice that
it suffices to consider a needle-shaped variation δw concentrated at a left
semineighborhood of point t=1.

If α1<0 and α2>0, then the control w∗ is globally optimal.
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