Saltar para:
Logótipo
Comuta visibilidade da coluna esquerda
Você está em: Início > Publicações > Visualização > Lesion-Aware Chest Radiography Abnormality Classification with Object Detection Framework

Publicações

Lesion-Aware Chest Radiography Abnormality Classification with Object Detection Framework

Título
Lesion-Aware Chest Radiography Abnormality Classification with Object Detection Framework
Tipo
Artigo em Livro de Atas de Conferência Internacional
Ano
2023
Autores
Pedrosa, J
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Ver página do Authenticus Sem ORCID
Sousa, P
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Silva, J
(Autor)
Outra
A pessoa não pertence à instituição. A pessoa não pertence à instituição. A pessoa não pertence à instituição. Sem AUTHENTICUS Sem ORCID
Ana Maria Mendonça
(Autor)
FEUP
Aurélio Campilho
(Autor)
FEUP
Ver página pessoal Sem permissões para visualizar e-mail institucional Pesquisar Publicações do Participante Ver página do Authenticus Sem ORCID
Ata de Conferência Internacional
Páginas: 806-813
36th IEEE International Symposium on Computer-Based Medical Systems, CBMS 2023
L¿Aquila, 22 June 2023 through 24 June 2023
Indexação
Publicação em ISI Web of Knowledge ISI Web of Knowledge - 0 Citações
Publicação em Scopus Scopus - 0 Citações
Outras Informações
ID Authenticus: P-00Z-7AA
Abstract (EN): Chest radiography is one of the most ubiquitous medical imaging modalities. Nevertheless, the interpretation of chest radiography images is time-consuming, complex and subject to observer variability. As such, automated diagnosis systems for pathology detection have been proposed, aiming to reduce the burden on radiologists. The advent of deep learning has fostered the development of solutions for both abnormality detection with promising results. However, these tools suffer from poor explainability as the reasons that led to a decision cannot be easily understood, representing a major hurdle for their adoption in clinical practice. In order to overcome this issue, a method for chest radiography abnormality detection is presented which relies on an object detection framework to detect individual findings and thus separate normal and abnormal CXRs. It is shown that this framework is capable of an excellent performance in abnormality detection (AUC: 0.993), outperforming other state-of-the-art classification methodologies (AUC: 0.976 using the same classes). Furthermore, validation on external datasets shows that the proposed framework has a smaller drop in performance when applied to previously unseen data (21.9% vs 23.4% on average). Several approaches for object detection are compared and it is shown that merging pathology classes to minimize radiologist variability improves the localization of abnormal regions (0.529 vs 0.491 APF when using all pathology classes), resulting in a network which is more explainable and thus more suitable for integration in clinical practice.
Idioma: Inglês
Tipo (Avaliação Docente): Científica
Nº de páginas: 8
Documentos
Não foi encontrado nenhum documento associado à publicação.
Recomendar Página Voltar ao Topo
Copyright 1996-2025 © Faculdade de Direito da Universidade do Porto  I Termos e Condições  I Acessibilidade  I Índice A-Z
Página gerada em: 2025-11-14 às 18:11:34 | Política de Privacidade | Política de Proteção de Dados Pessoais | Denúncias | Livro Amarelo Eletrónico