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Abstract. Three-dimensional models, or pharmacophores, describing
Euclidean constraints on the location on small molecules of functional
groups (like hydrophobic groups, hydrogen acceptors and donors, etc.),
are often used in drug design to describe the medicinal activity of poten-
tial drugs (or ‘ligands’). This medicinal activity is produced by interac-
tion of the functional groups on the ligand with a binding site on a target
protein. In identifying structure-activity relations of this kind there are
three principal issues: (1) It is often difficult to “align” the ligands in
order to identify common structural properties that may be responsi-
ble for activity; (2) Ligands in solution can adopt different shapes (or
‘conformations’) arising from torsional rotations about bonds. The 3-D
molecular substructure is typically sought on one or more low-energy con-
formers; and (3) Pharmacophore models must, ideally, predict medicinal
activity on some quantitative scale. It has been shown that the logical
representation adopted by Inductive Logic Programming (ILP) naturally
resolves many of the difficulties associated with the alignment and multi-
conformation issues. However, the predictions of models constructed by
ILP have hitherto only been nominal, predicting medicinal activity to
be present or absent. In this paper, we investigate the construction of
two kinds of quantitative pharmacophoric models with ILP: (a) Models
that predict the probability that a ligand is “active”; and (b) Models
that predict the actual medicinal activity of a ligand. Quantitative pre-
dictions are obtained by the utilising the following statistical procedures
as background knowledge: logistic regression and naive Bayes, for prob-
ability prediction; linear and kernel regression, for activity prediction.
The multi-conformation issue and, more generally, the relational rep-
resentation used by ILP results in some special difficulties in the use
of any statistical procedure. We present the principal issues and some
solutions. Specifically, using data on the inhibition of the protease Ther-
molysin, we demonstrate that it is possible for an ILP program to con-
struct good quantitative structure-activity models. We also comment on
the relationship of this work to other recent developments in statistical
relational learning.



1 Introduction

The primary goal of the pharmaceutical industry is to find, develop and market
new drugs for previously untreatable diseases or which have better properties
than existing drugs. The development of a new drug is a time-consuming, ex-
pensive process—it can take anywhere from 12 to 16 years from the start of a
research program to final approval; and the cost can be up to US$700 million.
It is clearly of significant humanitarian and commercial interest to investigate
techniques and tools that can assist in making the process more efficient.

Most drugs molecules work by binding to “target sites”—commonly proteins—
within the body. By interaction with these targets, drugs can modulate their ac-
tions. The process of drug development begins with the selecting an appropriate
target with which the drug could interact to modulate disease. In some cases, the
detailed structure of the target binding site is known (by the use of X-ray crys-
tallographic techniques) or can be guessed (by structure prediction techniques
or from the structure of similar molecules); but this situation is still rare and
the identification of potential drugs has to proceed without this knowledge.

Chemistry for drug development (see Fig. 1) is concerned with the identi-
fication of “ligands”: small molecules that are potential drugs. The search for
ligands commences with some compounds that are known to interact with the
target. These compounds, or “leads”, may be identified in a number of ways, for
example from large scale empirical testing of available chemicals. They will have
some activity, i.e. ability to interact with the target, but may do so only weakly,
and may possess other undesirable properties, for example metabolic instability.
Once a set of leads have been isolated, their chemical structure can be refined
to improve biological activity and reduce side effects. A computational activity
that assists this is concerned with constructing models that relate activity to
molecular structure. These “structure-activity relationships”, or SARs, describe
how the structural differences of a set of leads affects their activity, and can be
used to suggest new molecules to make which should have enhanced activity.
Chemical synthesis and testing of such molecules leads to the discovery of more
active molecules until, ultimately, ligands of the desired activity and properties
are discovered. These compounds now begin the long process of development
including biological trials for efficacy, safety trials, formulation and advanced
testing, patent development and finally, application for clinical trials.

The whole process is critically dependent on effective initial chemistry: pro-
posal of a large number of ligands for development and testing, most of which
turn out to be useless is clearly to be avoided. In this, good SAR models can
play an important role. “Traditional” SAR methods (“1-D” and “2-D” methods
in Fig. 1), generate many features for each lead (effectively, a form of domain-
specific propositionalisation) and use statistical modelling tools on the resulting,
table containing the feature-values for a set of leads and their activity. The fea-
tures, or molecular descriptors , can be properties of the whole molecule, such as
partition coefficient, molecular volume, number of rings, etc., and, if the series
of leads share a common core, properties of the substructures at the positions
of variation The modelling task is to construct a predictive model that relates



Chemistry Pharmacology, Safety etc.Research

Compounds
Synthesise

Get

Leads
Potential Activity

Predict

Protein to inhibit

Choose
Target

Biological
Trials

‘‘Grid’’−based

Structure−Activity
Relationships

(SARs)

1−D 2−D 3−D

Target−Ligand
Models

Ligand−only
Models

Models
Pharmacophore

Models

Qualitative Quantitive

Fig. 1. A simplified view of the chemistry involved in the drug-design process (adapted
from a figure kindly provided by Dr. Stuart Green, University of Leeds). The focus of
this paper is shown in bold-face.



feature-values to activity. Such models have been widely applied, and there are
many examples of successful SAR analyses [12]. There are four principal difficul-
ties with this approach. First, much depends on the ability to identify molecular
descriptors that retain all the information necessary for obtaining a good model.
Second, constructing reliable models is not easy. The molecular descriptors can
number into several millions, and special care must be taken avoid chance corre-
lations. Third, the models are not always easy to use in refining leads. It is easy
to calculate the value of a molecular descriptor for a given lead (for example,
an electronic partial charge), but quite a different matter to design a molecule
that will possess that value. Finally, by dealing with bulk molecular properties,
rather than a more explicit representation of the molecules, no account is taken
for the three-dimensional shape of the leads.

Leads, being small molecules are flexible and can adopt different shapes (con-
formations) by torsional rotations about bonds within the molecule. Molecules
rapidly convert from one conformation to another, so that no single conforma-
tion can be isolated and tested for a given activity. Hence in general one does
not know a priori which conformation of a molecule is an active conformation
for a given form of activity. Computational chemists usually employ one of two
approaches to this problem. In the first, the shape and electrostatic interactions
are dealt with via a calculated interaction with a “probe” atom or group at
points on a three-dimensional grid which surrounds the molecules. Statistical
methods are then used to identify those parts of the molecule which are respon-
sible for activity. The analysis can be displayed graphically to aid in the design
of new molecules. The major disadvantage with this approach is that, in order
to compare values at the calculated points between molecules, the conformation
of the molecules, and a common coordinate frame, or alignment, must be chosen
in advance of the analysis. This is equivalent to deciding on the manner in which
the molecules interact with the target. If the molecules contain a large common
structural element this alignment may be straightforward, but this is often not
the case.

The second approach uses a representation of biological activity called a
pharmacophore. This is an abstraction of the molecular structure to the, usu-
ally, small number of key features which contribute the majority of the activity,
together with their geometric arrangement represented by pairwise distances (see
Fig. 2, from [8]). An advantage of the pharmacophore representation is that it
expresses biological activity in a language that is familiar to chemists within the
pharmaceutical industry. These representations are also readily convertible into
search queries of compound databases, which is an effective means of identifying
additional active molecules [9].

That Inductive Logic Programming (ILP) is particularly well-suited to rep-
resent and discover SARs has been argued persuasively elsewhere [8, 20]. The
most important reasons given are: (i) the comprehensibility of the models con-
structed allow an easy translation of the models into new chemical structures;
(ii) ILP programs do not need to align the leads to a common spatial reference
frame; and (iii) the first-order representation used by ILP naturally deals with
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Fig. 2. A schematic diagram of how a “pharmacophore” definition (right) is related
to a lead-target interaction (from [8]). The pharmacophore contains the key functional
interactions and the geometric relationships between them expressed as distances d1,
d2, and d3. For example, the functional groups may be a hydrogen donor and two
hydrogen acceptors; d1 might be 4.5 Angstroms, d2 might be 5.0 Angstroms, and d3
might be 3.75 Angstroms.

difficulties arising from the fact that the leads may assume several shapes (or
conformations), not all of which may be responsible for the biological activity.
Non-relational learning algorithms—those that need a feature vector represen-
tion of data—require modification to handle point iii. Furthermore, given even
just two shapes for each molecule, these approaches either require worst-case
exponential time (in the number of molecules) to perform the alignment men-
tioned in point ii, or must at times work with an incorrect alignment—one in
which the parts of the molecules responsible for interaction are not aligned with
each other. Regarding point i, comprehensibility, the most complex SARs found
by ILP using only the structures of leads and their activities are pharmacophore
models in the form of rules like the following:

Molecule M is “active” if:
M has a hydrogen donor at position P1 and
M has a hydrogen acceptor at position P2 and
M has a hydrogen acceptor at position P3 and
the distance between P1 and P2 is 4 ± 1 Å and
the distance between P1 and P3 is 3 ± 1 Å and
the distance between P2 and P3 is 5 ± 1 Å.

Here, positions P1, P2, and P3 are points in 3-dimensional space and the rule
represents a “3-point pharmacophore”. The rule, evidently simple to understand,
nevertheless highlights an important shortcoming of SARs constructed by ILP:
they are classificatory in nature and unable to quantify their predictions of ac-



tivity1. In this paper, we investigate identification by ILP of two kinds of quan-
titative SARs, namely, class-probability models of the form:

The probability of molecule M being “active” is P if:
M has a hydrogen donor at position P1 and
M has a hydrogen acceptor at position P2 and
M has a hydrogen acceptor at position P3 and
the distance between P1 and P2 is X1 and
the distance between P1 and P3 is X2 and
the distance between P2 and P3 is X3 and
P is the probability of being “active” given X1, X2, X3.

and regression models of the form:

The affinity of molecule M is A if:
M has a hydrogen donor at position P1 and
M has a hydrogen acceptor at position P2 and
M has a hydrogen acceptor at position P3 and
the distance between P1 and P2 is X1 and
the distance between P1 and P3 is X2 and
the distance between P2 and P3 is X3 and
A is the expected affinity given X1, X2, X3.

We will call these “quantitative pharmacophore models”: specifically, the rules
above are 3-point quantitative pharmacophore models. The reason for interest
in the regression model is evident: when accurate quantitative information of
lead-activity is available, SARs that relate lead-structure to activity are most
useful. Even when we only have categoric information about the lead-activity
(for example, leads are “active” or “inactive”), class-probability models can still
be extremely useful for the reasons below:

– Inherent uncertainties in the domain may make categoric classification diffi-
cult. For example, data may be laboratory measurements obtained from an
imprecise assay;

– Applications involving decision-making often require probability estimates
for use in cost/benefit calculations. For example, a synthesis of a particular
molecule may proceed only if there was a very high probability of it being
biologically active;

– It may be important to rank alternatives with a given class value. For ex-
ample, laboratory constraints may require synthesis of molecules to proceed
in small batches. An ordering on molecules predicted to be active is then
needed.

1 These classificatory rules have been used to construct boolean features, which have
then be used by regression techniques to build quantitative models for activity [21,
37]. We are concerned here with constructing quantitative models solely with the
use of ILP.



In this paper, both the geometric constraints and the “numeric” constraint in
the rules above (that is, computing P or A given X1, X2 and X3) are to be
obtained during hypothesis construction by an ILP program. It is our intention
to investigate the use of statistical procedures as background knowledge for
obtaining the numeric constraint. The following questions—novel for both ILP

and statistical methods—arise for rules above:

Model Identification. Molecule M may have several hydrogen donors and ac-
ceptors, at different positions, resulting in different sets of values for X1, X2
and X32. The novelty for ILP is that the domain dictates only one of these
sets is relevant for identifying the the appropriate numeric constraint. Which
one?

Prediction. Each set of values for X1, X2 and X3 results in a prediction for
P or A. Which of these values should be returned3? This question has not
arisen previously in either ILP or statistical methods.

These two tasks are unlike those confronted by a statistician during normal
discourse. There it is common, due to random variation, to obtain different

affinity values for repeated measurements of the same values for X1, X2 and X3.
Machine learning researchers will recognise the questions here as consequences
of a multiple-instance representation [6]. Novel here, however, is the real-valued
prediction task in a multiple-instance setting. While this combination has been
addressed before, in two papers [32, 1], as discussed in the next paragraph an
adequate solution to model identification and prediction in this setting has not
been found. And the combination of real-valued prediction in a multiple-instance
setting has not been addressed explicitly before in ILP, although the paper by
Ray and Page [32] pointed to its importance.

The approaches proposed in the two papers already mentioned performed
well on model identification from synthetic data. Note that model identification
is easy to assess on synthetic data, where the data generator can record the
model it used to generate the real-valued response for each data point. Model
identification is difficult or impossible to assess on real-world data, where one
sees only the response value and not the correct model, or set of bindings for
variables. Hence one must rely on prediction to assess performance on most real-
world tasks. The approaches in the two papers have not been demonstrated to
perform well on real-world tasks, such as predicting quantitative drug activity
values.

The present paper presents procedures to address both model identification
and prediction, and it tests these procedures on real-world data for quantitative
drug activity prediction. For illustrative purposes, we will use linear regression as

2 The logic programmer will recognise this as different substitution-sets arising from
a non-determinate definition for the donor and acceptor predicates.

3 We could consider using some representative set of values for distances (for example,
the average) for both model identification and prediction. However, what this rep-
resentative should be may not be apparent and in any case, will require a different
rule to the ones shown.



a background predicate to perform quantitative prediction, although the proce-
dures proposed are not restricted to that particular modelling technique (as will
be demonstrated in Section 6.1). The paper is organised as follows. In Section
2 we present a simple example to illustrate the principal issues. Section 3 in-
troduces relevant terminology from the literature on multiple-instance learning.
“Solutions” to the problems that arise during model identification and prediction
are in Sections 4 and 5 respectively. Application of the procedures developed to
quantitative structure-activity relations is in Section 6. Section 7 concludes the
paper. The paper is accompanied by two appendices. Appendix A describes the
statistical procedures used in the empirical study. Appendix B relates the work
in Section 6.1 to other, more general, work on incorporating probabilities in ILP
and relational learning generally.

2 An Example

Consider learning the following simple 1-point quantitative pharmacophore model
using an ILP system:

The affinity of molecule M is Y if:
M has a hydrogen donor at position X and
Y = m X + c.

Here “Y = m X + c” is a statistical model in which m and c are parameters
to be estimated and Suppose data available are as follows: (1) affinity values
of 5 different molecules; and (2) records of hydrogen donor locations on each
molecule (a molecule can have more than one donor). The data are tabulated in
Fig. 3. Logically speaking, the rule above states that the affinity of the molecule
is a linear function of one of the hydrogen donor positions (without specifying
which one: the logician will recognise this as a consequence of the variable X
being existentially quantified within the rule body).

Since for each N, it is not apparent which of the X values are to be paired with
the corresponding Y, a combinatorial problem arises4. For this simple problem,
the combinatorics are manageable: there are only 3×1×2×1×2 = 12 different
tables containing exactly 1 entry for each of the 5 values of X. Two such tables
are shown in Fig 4.

Parameter estimates can now be obtained using each such table. The esti-
mates returned are those that result in the best fitting model. For the data in
Fig 4, the best fitting model Y = 2.572 X - 33.155 is obtained with the table in
Fig 5. The resulting rule is therefore:

The affinity of molecule M is Y if:
M has a hydrogen donor at position X and
Y = 2.572 X - 33.155.

4 Some theoretical results known for multiple-instance learning can be found in [7].



Mol (M) Aff. (Y) Donor (X)

25
1 50 33

29

2 100 50

3 150 73
75

4 200 90

5 250 120
110

Fig. 3. “Training” data for the problem of predicting affinity Y using hydrogen donor
location X. For a given value of N, it is known that the value of Y depends on one of
X values—but it is not known which one.

Mol (N) Aff. (Y) Donor (X) Mol (N) Aff. (Y) Donor (X)
1 50 25 1 50 33
2 100 50 2 100 50
3 150 73 3 150 75
4 200 90 4 200 90
5 250 120 5 250 110

Fig. 4. Example tables obtained by combinatorial enumeration of the data in Fig. 3.
The table on the left yields the model Y = 2.161 X - 4.739, with sample correlation coef-
ficient 0.997. The one on the right yields Y = 2.565 X - 33.677, with sample correlation
coefficient 0.998.

Section 4 describes procedures that equips an ILP system to reach such a model
(or at least, an approximation to it) given the data in Fig 3.

Now consider using this rule on the data shown in Fig. 6. It is evident that
simply executing the rule above will yield two predictions: Y = 188.037 (using
X = 86) and Y = 203.469 (using X = 92). Which of these predictions should be
returned is the problem posed by (Q2). In Section 5, we examine some solutions
to this problem.

3 Terminology

It is convenient at this point to introduce some terminology from the machine
learning literature on multiple instance learning. The following statement of the
multi-instance learning task is largely from [32]. Data consists of a set of n bags
(1 ≤ n < ∞). The ith bag consists of mi instances (1 ≤ mi < ∞) and a label
yi (which may be nominal or real-valued). Instance j of bag i is described by a
d-dimensional vector of values (1 ≤ d < ∞). The task is to construct a model



Mol (N) Aff. (Y) Donor (X)

1 50 33
2 100 50
3 150 73
4 200 90
5 250 110

Fig. 5. Table that results in the best fitting linear model relating Y and X values. The
best fitting model is Y = 2.572 X - 33.155, with sample correlation coefficient 0.999.

Mol (N) Aff. (Y) Donor (X)

6 ? 86
92

Fig. 6. “Test” data. The task is to predict the affinity of molecule 6 given its hydrogen
donor locations.

predicting the y values. For each bag i, it can be assumed that one of the mi

instances is sufficient for predicting yi.
It should be evident that the standard statistical task of predicting a de-

pendent variable, given values for independent variables is a special case of the
multi-instance task as presented here (with one instance per bag). The formula-
tion here is slightly different to the original description of multi-instance mod-
elling in [6], which only deals with binary classification problems (that is, the
yi take one of two values: “positive” or “negative”). There, bags are treated
asymetrically. If i is a positive bag, it is assumed that at least one of the mi

instances is positive (that is, a single instance is sufficient for predicting yi). If i

is a negative bag, it is assumed that all the mi instances are negative (that is,
all instances are necessary for predicting yi). We have found this distinction to
be unnecessary as the same effect is achieved by using mi different “negative”
bags, each with a single instance.

In Fig. 3 therefore, there are 5 bags (one for each molecule). Bag 1, with y

value 50, has 3 instances; Bag 2, with y value 100, has 1 instance and so on.

4 Model Identification

Model identification requires the following:

1. All values of relevant variables required by the statistical procedure are to
be collected (in the example introduced earlier, this corresponds to all the
values of N, Y and X in Fig. 3).

2. A search for the best statistical model is then to be conducted using subsets
of values collected in Step 1 (each such subset results in a table of the type
in Fig. 4).



An ILP system capable of “lazy evaluation” (as described in [36]) is sufficiently
powerful to allow this form of model identification. For a predicate specified as
being lazily evaluated, certain arguments are annotated as being functionally
dependent on others. We can loosely term the former “output” and the latter
“input” arguments. The actual values of the output arguments to be used during
normal execution of the literal are computed as follows:

(a) The ILP system collects all possible values of the input arguments.
(b) The ILP system assumes that the background knowledge contains a defini-

tion specifying the computation of the output arguments as a function of the
values collected above. This definition is then used to compute the values of
output arguments.

Without entering into implementation details, it suffices to state here that (a)
is sufficient to achieve the requirement of Step 1 above; and the definition in (b)
can be an implementation of the search procedure required in Step 2.

This still leaves open the actual search procedure to be used. An exhaustive
strategy—as was used in the simple example in Section 2—although optimal,
may not be tractable. An efficient, but approximate, procedure modelled on the
Expectation-Maximization (EM) algorithm was proposed by Ray and Page [32]
specifically for use in multi-instance linear regression. The same procedure can, in
fact, be adapted for use with any modelling procedure that returns some estimate
of the error in fitting a model to (a table of) data. The modified procedure is
shown in Fig. 7; and a single execution of the outer loop (Step 4) for the example
in Section 2 is in Fig. 8.

Provided model construction in Step 14 terminates, it is easy to show that the
entire procedure terminates (the procedure contains two loops, bound by finite
constants R and T ). The run-time complexity of the procedure primarily depends
on the complexity of the model construction in Step 14 and the computation of
“closest” instances in Step 11 (the error calculation in Step 12 can in fact be
done in conjunction with Step 11). Statistical model construction procedures are
usually O(n) algorithms (and rarely worse than quadratic). For many reasonable
error measures, Steps 11–18 are usually O(d ·m ·n) where m = maxi(mi). There
is no guarantee that the model returned will be optimal.

In summary, we propose that an ILP system capable of lazy evaluation,
using the procedure in Fig. 7 can address the two basic requirements of model
identification presented at the outset of this section. The reader will note that the
procedure returns the model and the instances used to obtain these estimates:
the reason for this will become apparent in the following section. Thus, in our
example, rules returned will be of the form:

The affinity of molecule M is Y if:
M has a hydrogen donor at position X and
Y = m X + c using instances I with error E.

In the sections that follow, we may, on occassions omit references to I, or E, or
both.



Input: integers R and T (1 ≤ R, T <∞), and n bags (1 ≤ n <∞) where bag i contains
a set of d-dimensional vectors (1 ≤ d <∞).

Output: A model M , the instances I used to construct the model, and its error E

01. mbest ← a randomly constructed model
02. ibest ← ∅

03. ebest ←∞

04. for r = 1 . . . R

05. m0 ← a randomly constructed model
06. i0 ← ∅

07. e0 ←∞

08. t← 1
09. done← false

10. while (not done and t ≤ T )
11. it ← the “closest” instances in the n bags, given mt−1

12. et ← the error of mt−1 on it
13. if (et < et−1)
14. mt ← the model constructed with instances it
15. t← t + 1
16. else

17. done← true

18. endif

19. endwhile

20. if (et−1 < ebest)
21. mbest ← mt−1

22. ibest ← it−1

23. ebest ← the error of mbest on ibest

24. endif

25. endfor

26. return mbest, ibest, ebest

Fig. 7. An EM-like procedure for model identification with multi-instance data. The
actual model construction procedure (Step 14) is deliberately left unspecified, as is
the meaning of “closest” in Step 11. It is normally acceptable for numerical prediction
to adopt some quadratic loss function (for example, squared difference between pre-
dicted and actual value) to measure error. The same measure is then used to determine
closeness.
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Fig. 8. A single iteration of the outer loop of the procedure in Fig. 7 with the data
in Fig. 3. Points are labelled by the molecule number (given by the “Mol” column
in Fig. 3) which constitute the bags. Thus, the three points “1 1 1” in the Graph
A correspond to the 3 donor-affinity pairs constituting molecule 1. Initially a random
model is constructed (here Y = 99X + 2 in Graph A) and conventionally assigned an
infinite prediction error. The “closest” instance from each bag is selected—these are
shown highlighted—and the prediction error using these instances determined. If this
has a a lower prediction error, then a new model is constructed using the instances
selected (Graph B). The process is repeated until there is no change in the errors of
models constructed (Graphs C and D). The model returned in the iteration shown is
Y = 2.47X − 23.88. A better fitting model exists (Y = 2.57X − 33.15) and may be
found on a different iteration.



5 Prediction

In Section 1, it was illustrated how multiple data instances can result in several
predictions. The reason for this is that the example rules shown there all act
as “instance-level” predictors. However, what is usually needed is a “bag-level”
predictor (we want a single prediction for the molecule’s affinity, for example).
Two solutions suggest themselves:

1. Domain-independent prediction. For example, arbitrarily select a single in-
stance and return the prediction based on that instance; or

2. Domain-dependent prediction. For example, compute the bag-level prediction
using some meaningful function of the set of instance-level predictions (this
could be, for example, some representative value like the median).

We will consider each of the solutions in turn. For clarity, we will assume in each
case that the procedure in Fig. 7 has returned the following rule (this is the one
with lowest mean-squared error):

The (instance-level) affinity of molecule M is Y if:
M has a hydrogen donor at position X and
Y = 2.572 X - 33.155 using instances I.

5.1 Domain-independent prediction

Implementing the domain-independent solution simply requires an additional
constraint be included in the rule(s) obtained after the model identification step
to convert it to a bag-level predictor. For example:

The (bag-level) affinity of molecule M is Y if:
M has a hydrogen donor at position X and
Y = 2.572 X - 33.155 using instances I and
X is the best instance given I.

where the condition “X is the best instance given I” is true for just one of
the different possible values of X. But how is this selection to be achieved?
First-order regression implemented in [18] and [36] both pick the first value of
X (which is tantamount to random selection). This solution, which is easy to
implement, can lead to counter-intuitive results. Consider, for example, using
the rule above to predict Y-values for the training data in Fig. 3. Recall that
the sample correlation of the model was 0.999. The bag-level predictions using
the “choose first instance” option are shown in Fig. 9. The correlation coefficient
now is 0.997, and we are in the unusual position of being unable to reproduce
our performance on data that was used to construct the model in the first place.

The difference arises, clearly, because we cannot guarantee that the “choose
first instance” rule will select the same instances as were used to estimate the



Mol (N) Actual Predicted Instance
Affinity Affinity Used (X)

1 50 31.145 25
2 100 95.445 50
3 150 154.601 73
4 200 198.325 90
5 250 249.765 110

Fig. 9. Actual and predicted values of affinity using the first instance in each bag in
Fig. 3. Predictions are done using the equation Y = 2.572 X - 33.155.

parameters. A more informed choice is possible with the actual instances I used
for parameter estimation. The “best” instance could then be selected as the first
one that is within some pre-specified distance (tolerance) to an instance in I (in a
manner reminiscent of “lazy” or instance-based learners [23]). With a sufficiently
small tolerance (0, for example) we can ensure performance on the training data
at least will be reproducible. With a sufficiently large tolerance (∞, for example),
the constraint’s behaviour degenerates to that of choosing the first instance.
Superficially, using such a constraint appears related to the approach in [22]
where the probability of a class label for new data point depends on the proximity
of that data point to training instances. For new data, instances selected will be
those that within some tolerance of the instances used for parameter estimation.
It remains an open question as to what should be done if none, or several, of the
new instances satisfy this constraint.

5.2 Domain-dependent prediction

Implementing this solution requires some domain-specific knowledge. Suppose
the domain dictated that of all instance-level predictions, the highest one was
most appropriate. One way to obtain this is to use something along the lines of
the following:

The (bag-level) affinity of molecule M is Y if:
The (instance-level) affinities of molecule M is the set Ys and
Y is the highest value in Ys.

The (instance-level) affinities of molecule M is the set Ys if:
Ys is the set of values Yi s.t.

the (instance-level) affinity of molecule M is Yi.

where, as before:
The (instance-level) affinity of molecule M is Y if:

M has a hydrogen donor at positions X and
Y = 2.572 X - 33.155.

In the experimental work described in the next section, we will be using this
form of domain-dependent prediction.



6 Quantitative Pharmacophore Models for Thermolysin

Inhibition

Our test-bed for the construction of quantitative pharmacophore is the inhibi-
tion of Thermolysin. Thermolysin is a zinc-containing protease that consists of
two spherical domains separated by a deep cleft that constitutes the active site.
Zinc-containing proteases like Thermolysin play an important role in physiolog-
ical processes like digestion and blood pressure regulation. Data on a number
of inhibitors of Thermolysin are readily available in the literature: we use the
molecules studied by [21]. The data consist of crystal structures and correspond-
ing activity values (pKi = -logKi) of 31 inhibitors.

All experiments use the ILP system Aleph [35] (specifically, Aleph Version
4). The experiments were performed on machine equipped with two 512 Mhz
Pentium III processors with 128 megabytes of random access memory. We follow
the work of [8] in providing the ILP system with background knowledge of the
following:

– Compound-specific knowledge. This is in the form of the atom and bond
structure of each compound, as well as its 3-dimensional conformation (for
each of the three lowest energy conformers identified by [21]). This informa-
tion is represented by first-order atomic formulae: we refer the reader to [8]
for examples of this encoding.

– General chemical and geometric knowledge. Generic chemical knowledge pro-
vided is in the form of a library of elementary chemical concepts (for example
definitions of hydrogen donors, hydrogen acceptors, hydrophobic groups, es-
ters, ethers, etc.). We have provided the same concepts as those in [21] (the
authors there have used 39 such concepts). The only geometric knowledge
needed for this task is a procedure for calculating the Euclidean distance
between two points.

Additional background knowledge required for the construction of class-probability
and regression models will be described below.

6.1 Class-probability models

It is our goal in this section to demonstrate that an ILP system capable of using
the procedure in Fig. 7 and statistical procedures for conditional probability es-
timation can construct class-probability models for structure-activity prediction.
Recall that these models were of the form:

The probability of molecule M being active is P if:
M has a hydrogen donor at position P1 and
M has a hydrogen acceptor at position P2 and
M has a hydrogen acceptor at position P3 and
the distance between P1 and P2 is X1 and
the distance between P1 and P3 is X2 and



the distance between P2 and P3 is X3 and
P is the probability of being active given X1, X2, X3

Candidate statistical procedures for computing P considered are logistic regres-
sion and “naive” Bayes (see Section A.1). The reasons for selecting these tech-
niques are:

– They are simple;
– There is abundant support for their use in class probability estimation, both

in the statistical and machine learning literature (see for example, [29]).
In addition, it can be shown that the logistic function is the appropriate
Bayesian choice under some fairly general conditions (see [17]); and

– They can be seen as special cases of more general work on combining Bayesian
networks and ILP (see Appendix B).

Data Of the 31 Thermolysin inhibitors available, we have designated the top
15 inhibitors to be be “active” and the remaining 16 inhibitors to be “inac-
tive”. In order to build class-probability models, the actual examples are of the
form “probability of molecule m being active is p”, where p is one of 1.0 or 0.0
(depending on whether m is active or inactive).

Additional background knowledge In addition to the background informa-
tion described earlier we also include the following:

– Constraints on legitimate models. Legitimate models are required to con-
tain functional groups, pairwise distances between the groups and a numeric
constraint that predicts the probability of being active.

– Model identification. This definition implements the procedure described in
Fig. 7. The actual model construction within this procedure is done by one
of logistic regression or naive Bayes.

Method Our method is straightforward. Using background definitions of logis-
tic regression or naive Bayes:

1. Construct the “best” class-probability model for the largest pharmacophore
possible for the inhibitors.

2. Estimate the performance of the model obtained in the previous step.

The following details are relevant:

(a) Looking for the largest pharmacophore model for a set of active molecules
is a characteristic of this kind of domain (see [8] for more details). Models
can be seen as containing two sorts of constraints: first, those in the “pre-
fix”, consisting of the functional groups and their pairwise distances (the
pharmacophore per se); and second, the numeric constraint that predicts
probabilities using the distances between these functional groups. In Step



(1) we restrict models to be a single clauses. This is similar to [8] and offers
the most comprehensible models for activity). Further, the search for this
model is done in 2 steps:(i) the largest prefixes common to all inhibitors are
found; and (ii) each prefix is extended to include the numeric constraint. For
the Thermolysin data, the largest pharmacophore models contain 4-point
pharmacophores (that is, there is no single clause 5-point pharmacophore
model that can be used to explain the activity of all of the 31 inhibitors).
The search procedure in Fig. 7 searches for the “best” numeric constraint by
minimising a loss-function. Here we will use a standard quadratic loss func-
tion (sum of squared differences between actual and predicted probabilities)
summed over all training instances.

(b) In Step (2) performance estimates will be estimated using a leave-one-out
procedure. That is, each inhibitor is, in turn, categorised as a “test” instance.
A class-probability model is constructed using the remaining instances and
then used to predict the probability of the test instance being active. The
non-determinate nature of the domain will result in a set of predictions
for the probability. We have elected to select the highest of these as the
final prediction (as described in Section 5.2). This is a reasonable choice
for the domain considered, as we are interested in the best chance of a
molecule being able to inhibit Thermolysin (if the set of predictions is empty,
then the test instance is not included in estimating the performance). The
performance is summarised by an ROC curve, obtained by changing the
threshold probability above which the test instance is to be classified as
being active (for example, if this threshold is 0.3, and the model predicts
the probability of the test instance being active as being 0.2, then the test
instance is classified as being inactive).

Results Figure 10 shows ROC curves generated by changing threshold prob-
abilities in the manner described above. The curves are, in fact, the convex
hull of the points denoting classificatory models obtained from the correspond-
ing class-probability models (it has been shown elsewhere [31] that the convex
hull contains the optimal classifiers under some very general decision-theoretic
conditions).

The curves clearly show how we can obtain higher positive prediction rates
at the expense of an increased false-positive rate: obtaining a set of models with
such properties is straightforward once we have class-probability models. For
false-positive rates above 0.2, the ROC curve obtained with naive Bayes dom-
inates that with the logistic regression. That is, as long as a false alarm rate
of at least 20% is tolerable, the use of naive Bayes as a background predicate
results in better predictive performance. Otherwise, the use of logistic regression
yields a better model. The position is more clear-cut on the comprehensibility
front: the use of logistic regression results in a simple equation for predicting
probability. In contrast, the when using the naive Bayes procedure, probabilities
are kernel-density estimates obtained from the training instances. This makes
the corresponding rule returned by the ILP program significantly harder to un-
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Fig. 10. ROC curves for Thermolysin Inhibition. “NBayes” is the curve obtained using
a naive Bayesian procedure for probability estimation. “Logistic” is the corresponding
curve using logistic regression as background knowledge. “Random” is the performance
of a classifier that assigns class-values using a coin toss.

derstand. Example rules obtained with logistic regression and naive Bayes are
shown in Figures 11 and 12.

6.2 Regression models

The structure-activity relations constructed so far do not include predictions of
actual binding affinities. This is usually harder and in this section we demon-
strate that an ILP system capable of using the procedure in Fig. 7 and ap-
propriate statistical procedures for conditional mean estimation can construct
a regression model that predicts binding affinities. Recall that an example is a
rule of the form:

The affinity of molecule M is A if:
M has a hydrogen donor at position P1 and
M has a hydrogen acceptor at position P2 and



The probability of molecule M being “active” is P if:
M has a hydrogen donor at position P1 and
M has a hydrogen donor at position P2 and
M has a hydrogen donor at position P3 and
M has a hydrogen donor at position P4 and
the distance between P1 and P2 is X1 and
the distance between P1 and P3 is X2 and
the distance between P1 and P4 is X3 and
the distance between P2 and P3 is X4 and
the distance between P2 and P4 is X5 and
the distance between P3 and P4 is X6 and
P = 1

1+e−87.5+16.1X1−6.4X2+0.1X3−36.3X4+43.8X5−80.1X6

Fig. 11. An example of a class-probability model obtained with the use of logistic
regression. The regression procedure computes the numbers in the equation for P.

M has a hydrogen acceptor at position P3 and
the distance between P1 and P2 is X1 and
the distance between P1 and P3 is X2 and
the distance between P2 and P3 is X3 and
A is the expected affinity given X1, X2, X3

Once again our choice of statistical procedures—linear and kernel regression (see
Section A.2)—is primarly based on simplicity and prevalance of use.

Data Data consists of the 31 Thermolysin inhibitors along with their activity
(pKi) values. Examples are thus of the form “the affinity of molecule m is y”
where y is some floating-point number.

Additional background knowledge In addition to the background informa-
tion described earlier we also include the following:

– Constraints on legitimate models. Legitimate models are required to con-
tain functional groups, pairwise distances between the groups and a numeric
constraint that predicts the affinity.

– Model identification. This definition implements the procedure described in
Fig. 7. The actual model construction within this procedure is done by one
of linear or kernel regression.

Method Our method is similar to that used for the construction of class-
probability models. That is, using background definitions of linear or kernel
regression:

1. Construct the “best” regression model for the largest pharmacophore possi-
ble for the inhibitors.



The probability of molecule M being “active” is P if:
M has a hydrogen donor at position P1 and
M has a hydrogen donor at position P2 and
M has a negatively charged atom at position P3 and
M has a negatively charged atom at position P4 and
the distance between P1 and P2 is X1 and
the distance between P1 and P3 is X2 and
the distance between P1 and P4 is X3 and
the distance between P2 and P3 is X4 and
the distance between P2 and P4 is X5 and
the distance between P3 and P4 is X6 and
P is the kernel density estimate using instances I

Where I is:

P X1 X2 X3 X4 X5 X6

0.0 5.6 2.2 4.3 4.5 2.2 4.1
0.0 5.3 2.2 4.8 5.7 2.2 5.3
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .

Fig. 12. An example of a class-probability model obtained with the use of naive Bayes.
The entries in the tabulation are the training instances returned by the search procedure
in Fig. 7.

2. Estimate the performance of the model obtained in the previous step.

The following details are relevant:

(a) Models will again contain two sorts of constraints: first, those in the “pre-
fix”, consisting of the functional groups and their pairwise distances (the
pharmacophore per se); and second, the numeric constraint that predicts
affinity using the distances between these functional groups. As before, we
restrict models to be a single clause and the search is done in 2 steps:(i) the
largest prefixes common to all inhibitors are found; and (ii) each prefix is ex-
tended to include the numeric constraint. We use the standard quadratic loss
function (sum of squared differences between actual and predicted affinities)
summed over all training instances.

(b) For kernel regression, we use the Epanechnikov quadratic kernel [14] whose
window size is determined by the kth-nearest neighbour (with k = 3). These
choices are arbitrary, although the Epanechnikov kernel has some optimality
properties that are described in [13].

(c) In Step (2) performance estimates will be estimated using a leave-one-out
procedure. That is, each inhibitor is, in turn, categorised as a “test” instance.
A regression model is constructed using the remaining instances and then
used to predict the affinity of the test instance. The non-determinate nature
of the domain will result in a set of predictions for the affinity. As with
class-probability models, we have elected to select the highest of these as



the final prediction (and as before, if the set of predictions is empty, then
the test instance is not included in estimating the performance). Spearman’s
rank correlation coefficient (rCV ) between actual and predicted values will
be taken to be representative of the performance of the model.

Results Figure 13 shows the correlation coefficients obtained by the leave-one-
out procedure described. Also tabulated are the best results obtained with the
standard QSAR 3-D technique CoMFA (comparative molecular field analysis)
and a two-stage approach by King and colleagues ([21]).

Method rCV

Linear 0.34
Kernel 0.68

CoMFA 0.78
King 0.86

Fig. 13. Leave-one-out estimates of the rank correlation between actual and predicted
values of affinity. “Linear” and “Kernel” stand for linear and kernel regression respec-
tively. “CoMFA” represents the best QSAR model obtained with comparative molec-
ular field analysis. “King” represents the approach described in [21].

The models obtained with linear and kernel regression are not as good as
those with CoMFA or King. This is not surprising, given the models constructed
here—single clauses with a regression constraint—are very simple (in contrast,
King uses a kind of voting with multiple pharmacophore models). Nevertheless,
the performance using linear regression is particularly poor, suggesting that the
assumption of a linear model may be inappropriate. There are also good bio-
logical reasons to believe that this may be the case: assuming an ideal binding
geometry, affinity values should decrease as distances deviate (on either side)
from the ideal distances between functional groups. Quadratic regression should
yield a better model under these circumstances: this is confirmed by an improved
rCV value of 0.55. This is, of course, still well short of the mark achieved by King:
some portion of the blame appears to lie in the selection rule used to obtain a
final prediction (that is, the highest value of all predictions obtained). Better
correlation values are obtainable, but the selection rule is not evident a priori .

Example rules obtained with linear and kernel regression are shown in Figures
14 and 15.

7 Concluding Remarks

The process of developing a new drug is long, laborious and expensive. A large
part of the time and effort goes into the testing and assesment of compounds that



The affinity of molecule M is A if:
M has a hydrogen donor at position P1 and
M has a hydrogen acceptor at position P2 and
M has a hydrogen donor at position P3 and
M has a negatively charged atom at position P4 and
the distance between P1 and P2 is X1 and
the distance between P1 and P3 is X2 and
the distance between P1 and P4 is X3 and
the distance between P2 and P3 is X4 and
the distance between P2 and P4 is X5 and
the distance between P3 and P4 is X6 and
A = 1.06 + 0.55 X1 - 0.63 X2 + 0.29 X3 - 0.26 X4 + 0.06 X5 + 0.91 X6.

Fig. 14. An example of a regression model obtained with the use of linear regression.
The regression procedure computes the numbers in the equation for A.

ultimately prove unsuitable as medications. Given a biological target to modu-
late, the role of chemistry is to identify the initial set of chemical compounds that
can be taken forward for development. In this, structure-activity relationships
(SARs) can play an important role in ensuring that a large proportion of the
compounds proposed are also effective. In the past, the relational representation
used by ILP has been repeatedly shown to be particularly well-suited to the
task of constructing good SARs, with one caveat: the representation of activity
has been a simple categorisation (usually “active” or “inactive”). In this paper,
we have sought to extend ILP-constructed SARs to true quantitative models
by utilising some standard statistical procedures as background knowledge. In
doing so, we have had to confront some specific issues that arise during model
construction and prediction when using statistical procedures within a first-order
logic setting. To address these, we have proposed an ILP system that: (a) iden-
tifies statistical models in the SAR by employing the procedure in Section 4;
and (b) uses the resulting SAR within domain-independent or domain-specific
procedures to ensure deterministic prediction (as described in Section 5).

The obvious limitation of the procedures proposed here is the lack of provable
properties, in particular, about the optimality of models constructed. In the ab-
sence of such properties, we have attempted to demonstrate the practical utility
of the procedures using using data on the inhibition of Thermolysin. To the best
of our knowledge, the results represent the first examples of a constructing truly
quantitative 3-dimensional SARs with ILP.

The literature on attempting to incorporate statistical models within ILP
hypotheses is relatively sparse. Both [18] and [36] are concerned with the use
of linear regression by an ILP program (as a built-in definition in [18] and as
a background predicate in [36]). In the former, the multiple instance problem
is avoided by restricting background predicates that introduce the independent
variables to be strictly deterministic (that is, functional). The latter simply ig-



The affinity of molecule M is A if:
M has a hydrogen donor at position P1 and
M has a hydrogen donor at position P2 and
M has a negatively charged atom at position P3 and
M has a negatively charged atom at position P4 and
the distance between P1 and P2 is X1 and
the distance between P1 and P3 is X2 and
the distance between P1 and P4 is X3 and
the distance between P2 and P3 is X4 and
the distance between P2 and P4 is X5 and
the distance between P3 and P4 is X6 and
A is the kernel regression estimate using instances I

Where I is:

A X1 X2 X3 X4 X5 X6

3.3 3.7 2.2 5.5 2.9 2.3 4.2
7.5 6.6 6.8 4.7 12.0 10.0 4.6
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .

Fig. 15. An example of a regression model obtained with the use of kernel regression.
The entries in the tabulation are the training instances returned by the search procedure
in Fig. 7.

nores the multi-instance problem and treats all instances as independent data
points. Adopting the same approach, Slattery and Craven [4] examine the use
of a built-in naive Bayesian classifier. To this extent, the work here appears to
the first to confront squarely the problems of using statistical procedures with
non-determinate background knowledge. More generally, there is an increasing
awareness within machine learning of the importance of learning statistical mod-
els from relational data. In Appendix B, we place this work within the context
of broader efforts in the emerging field of statistical relational learning.

The techniques presented are not confined to the particular statistical pro-
cedures used, a particular ILP system, or to the construction of SARs. This
suggests three interesting ways in which the work here could be extended. First,
the use of other conditional estimation procedures may yield better SAR models
than those obtained here. Second, the same techniques could be used to extend
the capabilities of other quantitative ILP approaches like those that construct
first-order regression trees. Third, and most interestingly, the same procedures
should provide any ILP system with the tools necessary to construct complex
theories that combine first-order and ‘propositional’ aspects. An example of this
are the theories described in [34]. A.D. Shapiro’s work on structured induction

requires expert assistance to decompose hierarchically a complex induction task
into sub-problems that can solved inductively (in Shapiro’s case, using a tree
learner). While the approach was shown on difficult chess endgames to yield
novel and comprehensible theories, the need to provide a complete decomposi-



tion of the task has remained a principal difficulty with the technique. It is of
interest to see the extent to which an ILP system can construct such theories au-
tomatically (equipped, for example, with a tree learner as background knowledge
and appropriate domain-specific constraints).
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A Statistical Procedures for Conditional Estimation

A.1 Procedures for estimating conditional probabilities

We are concerned here with the binary classification problem in which each of
n training data points are labelled by a random variable ω which takes val-
ues from a discrete set {+,−} (in the structure-activity case, denoting “active”
and “inactive”). Assume the data are in the form of a d-dimensional random

vector X = [X1, X2, . . . , Xd]
T

where the Xi ∈ <. Given a particular vector

x = [x1, x2, . . . , xd]
T

we wish to obtain an estimate of the conditional probabil-
ities of ω = + (the corresponding probability for ω = − follows automatically).
From Bayes rule, the relevant posterior is given as:

P (ω = +|x) =
P (x|ω = +)P (ω = +)

P (x)

Two well-known simple cases follow from specific assumptions about the data:

1. The assumption that the class-conditional densities P (x|·) are from the ex-
ponential class (of which the Gaussian is a member) results in (see [17]):

P (ω = +|x) =
1

1 + e−ξ

where ξ is a linear equation of the Xi. The logistic regression procedure uses
sample data to estimate probabilities under this assumption.

2. The assumption that the Xi are conditionally independent of each other
given the value of ω, results in:

P (ω = +|x) ∝

d∏

1

P (xi|ω = +)P (ω = +)

The naive Bayesian procedure uses sample data to estimate probabilities
under this assumption. The individual class-conditional densities can be es-
timated using one-dimensional kernel density estimates ([16]).



A.2 Procedures for estimating conditional means

We are concerned here with the regression problem in which each of n training
data points are labelled by a random variable Y ∈ <. Assume the data are in
the form of a d-dimensional random vector X = [X1, X2, . . . , Xd]

T where the
Xi ∈ <. We seek a regression function f(X) for predicting Y given a particular

vector x = [x1, x2, . . . , xd]
T
. It can be shown [14] that for a quadratic error loss

function (Y −f(X))2 the function f that minimises the expected prediction error
is:

f(x) = E(Y |x)

Two well-known simple cases follow from specific assumptions about f :

1. The assumption that f is a linear function of its arguments results in:

E(Y |x) = α +

d∑

1

βixi

The linear regression procedure uses sample data to estimate α and the βi

under this assumption.
2. The assumption that f can be approximated by a weighted average of train-

ing instances in the neighbourhood of x results in:

E(Y |x) =

∑n

1
K(x,xi)yi∑n

1
K(x,xi)

where K is a kernel density function. The kernel regression procedure uses
sample data to obtain this weighted average, given a particular choice of K.

B Relationship to Statistical Relational Learning

Statistical relational learning (SRL) is an active area of research within machine
learning. While the acronym appears to have been first used by Jensen and
Getoor in 2000 for a AAAI workshop that greatly fostered the growth of this
research area, work on the topic goes back at least to 1994. The class-probability
SAR models constructed here is one example of the construction of explicit
probabilistic modes from relational data. SRL attempts to investigate relational
and probabilistic learning in a unified manner. This appendix briefly reviews the
history of SRL and shows how the present work fits within it.5

The earliest work in the SRL setting that we are aware of is by Buntine,
who introduced the idea of plates into graphical models [2]. Plates provide a
means of extending graphical models to relational data. Nevertheless, the learn-
ing component of that work learned only the parameters, not the structure of a

5 A more comprehensive collection of papers can be found at
www.cs.wisc.edu/ page/838.html, though it is by no means exhaustive.



model. Friedman, Getoor, Koller and Pfeffer were the first to learn the structure
of plate-like models, by learning the structure of probabilistic relational models,
or PRMs [10]. Recently Heckerman, Meek and Koller have shown how PRMs
and other related models can be expressed using plates, and they have provided
extensions to Buntine’s original plates [15].

Muggleton’s stochastic logic programs [24] or SLPs approached statistical re-
lational learning from a different direction. Whereas Buntine scaled probabilistic
(graphical) models to handle relational data, SLPs extended relational learning
techniques to include explicit probabilities. This differed from earlier work by
Poole [30], Ng and Subrahmanian [27], Sato [33], Ngo and Haddawy [28] and
others on probabilistic logic programs because it emphasized the importance of
learning. Learning algorithms for stochastic logic programs were further devel-
oped and significantly extended by Cussens and Muggleton [5, 25, 26].

Many of these ideas can be seen as special cases of more recent, general
approaches to include Bayesian networks in logic programs [3, 19]. The remainder
of this appendix shows in more detail how the use of logistic regression or naive
Bayes as background predicates are special cases of the CLP(BN) proposal in
[3]. CLP(BN) refers to an extension of the language of logic programs to allow
the inclusion of Bayesian constraints on variables in a clause. Programs written
in CLP(BN) are thus constraint logic programs (CLPs) and require a specialised
solver for answering queries. The answer can now include marginal probability
distributions on variables. Conceptually, a clause in CLP(BN) can be thought
of as being composed of a logical portion, augmented by a Bayesian network
(see Fig. 16). As with ordinary logic programs, answering a query may call on
several clauses, resulting in increasingly larger Bayesian networks as variables
from different clauses are unified during the course of a proof (we refer the
reader to [3] for the precise syntax and semantics of CLP(BN) programs).

Head :−

...

...

       Body

          +

Logical portion of the clause

Nodes representing random variables in logical portion Probabilistic portion of the clause

Fig. 16. A pictorial representation of a CLP(BN) clause. The logical portion of the
clause is a normal logic program (with the :- to be read as “if’; Head being a literal
and Body being a conjunction of literals. The probabilistic portion is a Bayesian net-
work that encodes the conditional probability distribution amongst terms in the logical
portion.



A comparison of the rule in Fig. 11 and that in Fig. 16 readily shows the rep-
resentation adopted in this paper to be closely related to the CLP(BN) language.
In fact, the naive Bayes and logistic regression procedures simply encode specific
Bayesian network topologies that reflect the underlying assumptions described
in Section A.1 (see Fig. 17). When using the logistic function to compute class
probability, the rule in Fig. 11 is thus conceptually identical to the CLP(BN)
clause in Fig. 18.

X 1 ...X 2 X n

Class of E

X 1 ...

Class of E

X 2 X n

Naive Bayes Logistic regression

Fig. 17. Conditional dependencies assumed by the naive Bayes and logistic regression
procedures. Here X1, X2, . . . Xn are existentially quantified variables. For simplicity, we
have omitted showing details of the (conditional) probability distributions associated
with each node.

Given this correspondence, an immediate question that arises is this: why
not simply use CLP(BN) as the representation language? For the construction
of general probabilistic models in ILP, the approach here is clearly inadequate.
However, it still has some merits when constructing class-probability rules:

1. No extensions are required to the language of logic programs;
2. The problem of parameter estimation with non-deterministic background

predicates is addressed directly. This is side-stepped in CLP(BN) by the use
of aggregation functions (an approach it inherits from its intellectual prede-
cessor, probabilistic relational models [11]). Essentially, this means replacing
sets of values by some single representative (for example, the average). For
many problem domains (including the applications to drug design in Section
6), it may not be sensible to use such functions;

3. Statistical procedures for parameter estimation are usually extremely effi-
cient and, under some circumstances, return optimal estimates; and

4. Any procedure for probability estimation can be used relatively easily by
encoding it as a background predicate.



class(E,class(E)) :−

+

...

class(E)

X 2 X 6X 1

literals introducing variables X  , X  , ... X
1 2 6

Fig. 18. CLP(BN) representation of the rule in Fig. 11, using the logistic function to
compute the class probability distribution for class(E).


