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Abstract. In this communication, we discuss necessary conditions of optimality for impul-
sive control problems. That is, problems whose control space includes measures besides the
conventional class of measurable functions. More precisely, we present second-order necessary
conditions of optimality for control problems with equality and inequality endpoint state con-
straints and control constraints. These enable the selection of informative multipliers provided
by the local maximum principle even when the optimal control process is abnormal.
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1 Introduction

In this article, we present non degenerate first-order and second-order necessary conditions of
optimality for measure driven dynamic control systems with control constraints, and equality
and inequality endpoint state constraints. This resuit is essentially contained in [4], and is part
of the effort of migrating the results in (3, 1} for the impulsive control context. In this respect, it
can be regarded as an extension of the conditions obtained in [2, 4] since besides the dependence
of the singular dynamics on the state variable, we also have control constraints. One key feature
of these necessary conditions of optimality is the fact that they do not degenerate, i.e., they
remain informative even for abnormal control processes, in spite of being derived in the absence
of a priori normality assumptions.

In order to clarify the nature of these conditions, let us first introduce the basic issue of nonde-
generacy in the context of a simple static nonlinear optimization problem. Given z € B*, and
the G2 functions f : R* — R and g : R* — R™, consider the problem

Minimize f(z) s.t. g{z) = 0.
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Let z* be a solution and denote by L, the Lagrangian, defined by Aqf{x) + X g(z) for some
Ag € R and A € R™.

Clearly, if the operator g.(z*) fails to be onto, then, besides the nonuniquess of the multipliers
associated with a given reference control process, it is possible to find a nontrivial noninformative
multiplier, i.e., (Ao, A} # 0 with Ao = 0, such that L {z* lo,A) = 0.

However, if we consider a subset of multipliers for which the dimension of the subspace of
maximum dimension in Ker g.(z*} where the quadratic form v'L..(x*, Ag, A\)v is negative def-
inite is not greater than codim Im g;(z*), then, for some (\p, }) € A, we may guarantee that
V' Lor(z*, Ao, A)v = 0 on Ker g,{2*).

In the next section, we present the optimal impulsive control problem to which this idea will be
used to derive nondegenerate second order conditions and discuss the assumptions on its data.
Refer to [4] for a detailed proof for the case without constraints on the conventional control
variable. Then, in the third section, the optimality conditions are stated and, finally, a small
example is presented.

2 Problem Statement

In order to state the optimal control problem, let ¢y, and #;, with ty < ¢;, be given and consider
the functions f : [to,t1] X R* x R™ — R", G : [to,t1] x B® — R™X9, f, : R* x R* — R,
g:R*"x R" — RY9) h: R"x R" — RUM™ and M : Rx R™ — RYUM) Here, d(f) the
dimension of the range space of the function f. Then, our problem is:

(P) Minimize  fo(z(to), z(t1))
subject to
dn(t) = £(t,2(t), u(t))dt + G(t, 5(t))du(t), ¢ € fto, 1)
glz(to),z(t1)) <0,  A{z(to),2(t1)) =0,
uel:={ue Lt t1] : M(t,u) =0 L ae},
dp € C*([to, t1); K), K C RY.

The definition of trajectory, z associated with a control pair (zg,u, s} has been presented in
[4]. It is a function of bounded variation satisfying, V¢ € (¢, 1}:

x(t) = x0+/¢ [f(s,w(S),u(S))+G(&512(8))wac(8)]ﬂls+[t Gls, a(s))dpse(s) + Y Azlsi)

si<t

where Az(s;) = &(1) - &(0), &(0) = a(s]), &i(s) = Glsi,&i(s))ptsal{5:}), [0,1}-ae., and wq,
Aptsc, and dpga 1= 37, ., i{{5:})d5,(t), are, respectively, the absolutely continuous, the singular
continuous, and the atomic components of the control measure.

We say that the admissible process (zfj,u*,p*) is a local minimizer of the problem (P) if
there exists € > 0 and, for any finite-dimensional subspace R C L% ftp,t1], er > 0 such that
the process (x§, u*, 1*) yields a minimum to the problem (P) with the additional constraints
e —a*|| <e, |dp— du*lic(ty,01);r7) < & u € Ue(u*) defined as the set of controls u satisfying
lle = w* | L ftg,12) < €R, v € R, and u(t) € U(2).

As can be seen in (4], our result requires the following assumptions on the data:

e The cone K C R is convex, closed, and pointed.

e Smoothness - fg, g, h, and G are C?, and f is C2 w.r.t. (z,u) for all ¢ € [to, 1]



e Functions f and G and their first and second order derivatives are bounded on any
bounded subset and measurable w.r.t. t.

¢ The matrix-valued function G satisfies the Frobenius condition.

e The function M is regular, i.e.,, V¥V C R™, 3¢ > 0 such that, for a.a. &t € [to,11],
det(M, (¢, u)MT(t,u)) > e € V st |M(t,u)] < e

3 Local Maximum Principle

Let ¢ € R", A = (Ag, Ag, An) € R! x RHU9) x RHM) and denote by z¢ and ; the initial and final
endpoints of the state trajectory. The Pontryagin function H, and the endpoint Lagrangian {*
are, respectively, given by:

H = H;+ Hg where Hy(t, z. 40, u) = (. f(t,z.u)), Hel(t,z, ¢, v) = {¢, G(t, z)v),
*a) Aofola) + (Ag. gla)) + (An, (z0, 21)), @ = (wo, 21).

A control process (zj, u*, u*} satisfies the local maximum principle if there exists A # 0, such
that Ag > 0, Ay 2 0, (A, g{e*)) = 0, a vector function 1 € BV™"[ty, 1], solution to the adjoint
system
{ —dip(t) = Hyo(t)dt + H,, (t)dp*(t), (1)
—(t1) =13, (a*),

and a vector function m € Ldo.EM)[tg, t1] which satisfy the following conditions:

Plto) = I,(a*), (2)

H.(t)— M, (t)ym(t) = 0 L-ae, (3)

(Hu(t),v} < 0 V(t,v} € [to,t1] x K, (4)

(Hw ) = 0 dut-ae., (5)
(Hy(s:,2°(1), g% (7)) pa({s:})} = 0 Vrel0,1] Vs;€5" (6)

where 5* is the support of the atomic component of du* and w*(f) = E%f% is the Radon
Nicodym derivative of its singular continuous component with respect to its total variation
measure. The jump in the adjoint variable, sclution to equation (1), at time s; is given by
g*(1) — ¥(s;) with

dg*(T)
dr

= Hmu(si:z‘gi (T), q* (T))ﬂ(t({si})? g* (0} = t,f)(Sz_) (7)

being, as before 2°:(7) the corresponding solution to the singular dynamics with z{s]) = x*(s;).

We will denote by A the set of all normalized Lagrange multipliers A satisfying the local max-
imum principle (i.e., [JA|| = 1}. If the reference control process is not normal then it may
happen that these conditions hold for multipliers with A = 0. In the next section, we present
a second-order condition which ensures that that will not be the case if the reference control
process is a local minimum.

Given the complexity of the various formulae to be presented in the next section, we adopt
the following short notation. When some arguments of a given function are missing, i.e.,
H(t), H(t,u), or Hy(t}, this means that the function is considered being evaluated along the
considered reference process. The dot over the function label means the total derivative with



respect to time. An argument variable appearing in sub index means that a partial derivative
is being considered, e.g., H. (t) = gjt‘;‘; ().

Furthermore, we will use the total derivative w.r.t. time along the solution to the following
ordinary differential system

& = Flt,z,u,v)
_lq;) = Hx(t7$1¢:u1v) (8)
W o= ve K

where F(t,z,u,v} = f(t,z,u)+G(t, x)v, and w (w*) is the right continuous function of bounded
variation associated with p (u*)!. We also let § = col(fy, g), da = (8z(ty), 6z(t1)), and dw, =
dw(ty).

4 Second-order Necessary Conditions of Optimality

The second order conditions are cast in terms of the positive semidefiniteness of a certain
quadratic form for each variation in a certain cone, the cone of critical variations. Furthermore,
in order to simplify the statement of the result, we consider only control measures without the
singular continuous component.

Ker is the cone of all critical variations, i.e., the triples (8z¢, du, dw) € R*x L% [to, 1] x BV I(S*)?
whose state trajectory variation, dz € BV"*(S*), satisfies the following conditions:

(§u(a”),da) + (G, (a*), G(ts)dw1) < 0,

(ha{a”),0a) + (hx, ("), G(t1)0wn) = 0,

8z = Fo(t)0z + Fu(t)du — (H,)L(t)0w, t¢ §*

du(t)M,(t)=0 L—ae

d{éw) € K + Lin{du*}, dw(ty) =0
where Vs; € S*, 6z(s;) = dq(1:s;, p*({s:})) being dq(7;s;, u*({5;})) := dg°(7) the solution to
the system

d{8q* (1))
dr

and the function 2% (7) is the solution to the system defining the singular dynamics.

= Hgyo(si, 2%(7), 0" ({8:}))8¢% (7), 8¢'°(0) = bz, 3¢°(0) = §z(s]), s >t

For any A € A define the quadratic form Q*(dzg, du, dw) by

5aT1) (a*)ba + Q) (da, Sw) — § QMébz, bu, Sw)(t)dt + tlduT(t)(M'(t),m(t))uuéu(t)dt

tg to
where Q*(6x,du, dw) = &ul H), du+ 26z HD,0u — 26wt (H))udu — sw” (H)) 6w
—20wT (H) )0z + ST H), 6

and Q7 (6x(),6w) 252(t0) 712 . (a*)G(t1)0wy — 28z(t1) T HD, (t1)0un

+513TGT(t1)(l;2m(a*)G(tl) — Hy, (t1))6w
=Y 5T ()T (5)b2(s) — 27T (7 )T (s7)ox(s7)).
sES"

1Remark that, under the Frobenius condition, this derivative does not depend on v
?Denote by BV?(5*) the set of n-dimensional vector functions of bounded variation whose singular variations
are supported on the zero Lebesgue measure set S5*.



Here, U*(t) = —Z7(1;1) fol ZT (1 ) Hepe (T ) Z7 (13 8)dT Z(1;8) € BV**"(5*) where
Heeo(T:t) = Hore(t, 24(7), ¢'(7),w* (£)) and the n X n matrix Z(7;t) satisfies the linear differ-

ential equation
dz

= ZHgys(t.2' (1), w*(t)),  Z(0;8) =1,
with z'(7), and ¢*(7) being the solutions to the respective singular limiting systems.
Now, let 7 is the matrix of the orthogonal projection from R* onto the linear subspace N =
K M (- and consider the following modified variational equation for t ¢ S*:

5z = Fo(t)8z + F,(t)ou — (Hy)y(t)mow, (9)

with 6z(0) = dxzp € R, éw € L., du € L', together with the considered jump conditions and
linearized constraints.

Let L = (g,h) and denote by K, the linear subspace of R" x L™ x Lk x R* of all tuples
(620, 0u,dw,c) € R" x L™ x L x RF satisfying the corresponding linearized constraints and
A(5z(0), du, bw, c} = 0 where the linear operator A is defined by

A(6z(0), du, dw, ¢} = Ly, (@")dxp + Ly, (0*)d2) + Ly, (a™)G(t )me. (10)

Here, éz is the corresponding solution to (9), linearized constraints, and jump dynamics.

Let d = codim (ImmA), and define the quadratic form ) on R"® x L™ x L% x R* obtained from
Q> by formally replacing dw; by c. Let Ag{z*,u™,w*) be the subset of Az, u*, w*) for which
the index of the form Q2 on the subspace K, is not greater then d.

Theorem. (Necessary conditions of optimality.)

If the control process (z*,u*,w*) is a local optimum to problem (P). Then, A, # ® and, for
any {8zg, du, dw) € K., we have

max Q* 8z, Su, dw) > 0.
AEA,

Most of the proof of this result appears in [4]. It consists in applying a certain a nonlinear
transformation, [5], to the initial problem, so that the new one is such that the impulsive
dynamics do not depend on z, in applying a variety of the first and second order necessary
conditions of optimality derived in [1], and, then, in expressing these in terms of the data of
the original problem.

5 Example
Let us consider the following example from [4]):
Minimize (€, (x1(1), ...,z (1))
s.t. dz; = fi(z,t)dt + dw;, i=1k, w=col(wi,...,ws)

dy, = folz, £)dt + {Qcol(zy, . ..,z ), dw),
te(0,1), x(0)=0, =z,(1)=0, K =R"

where n 2 5, k =n— 1, z = col(z1,...,z,) € R, Q is a symmetric k£ x k& matrix such that
the index of each of the matrices @ and {(—Q) is not less than 2, ¢ € RF is a given nonzero
vector, and, fori = 1,...,n, the f;’s are arbitrary given smooth functions such that f:(0,¢) = 0,

fiz(0,t) =0, and f,2(0,¢) = 0. Because of the symmetry of @, it can be easily shown that the



Frobenius condition holds. We consider the reference admissible control process (0,0,0) and
show that it is not locally optimal.

Fix any A € A. From (4), we obtain, for ¢(-) = $*(.) = (1) (D)) :(t) =0, =1,.. .k,
and from (1), we have 4, (t) = 1.0 = const. Hence, by using (1), (2), and ¢ # 0, we obtain
A={X: do=0,A;=0,i=1,n—1, Az;n = —A2.a+1} and, consequently, A consists of only

two vectors A = —X and X = %(0, 30,1, —-1) and ¢, ¢ = :t-\}—ﬁ.

1
It can be easily shown that d = 1 and Q}(§w) = ?,Dn,of {Qcol(dxy, ..., 6z ). dw)dt. Hence,
0

QM ow) = 3% 0{Qcol(dx (1), -5 8z (1)}, col(8z1(1), ..., 624(1))). This implies that, for any
P = %1 the index of the function Q2 is not less than 2. So A, = ¥ and consequently the
process (0, 0,0) is not optimal. Also notice that this process is abnormal and maxye 0 (Sw) >
0, ¥ 6w (because of A, X € A) and the last inequality is not useful.
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