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BIRATIONALITY OF MODULI SPACES OF TWISTED U(p, q)-HIGGS

BUNDLES

PETER B. GOTHEN AND AZIZEH NOZAD

Abstract. A U(p, q)-Higgs bundle on a Riemann surface (twisted by a line bundle)
consists of a pair of holomorphic vector bundles, together with a pair of (twisted) maps
between them. Their moduli spaces depend on a real parameter α. In this paper we
study wall crossing for the moduli spaces of α-polystable twisted U(p, q)-Higgs bundles.
Our main result is that the moduli spaces are birational for a certain range of the
parameter and we deduce irreducibility results using known results on Higgs bundles.
Quiver bundles and the Hitchin–Kobayashi correspondence play an essential role.

1. Introduction

Holomorphic vector bundles with extra structure on a Riemann surface X have been
intensively studied over the last decades. Higgs bundles constitute an important exam-
ple, not least due to the non-abelian Hodge Theorem [12, 13, 21, 31, 32], which iden-
tifies the moduli space of Higgs bundles with the character variety for representations
of the fundamental group. Another important example is that of quiver bundles. A
quiver Q is a directed graph and a Q-bundle on X is a collection of vector bundles,
indexed by the vertices of Q, and morphisms, indexed by the arrows of Q. The natu-
ral stability condition for quiver bundles depends on real parameters and hence so do
the corresponding moduli spaces. The stability condition stays the same in chambers
but wall-crossing phenomena arise and can be used in the study of the moduli spaces.
An early spectacular success for this approach is Thaddeus’ proof of the rank two Ver-
linde formula [33], using Bradlow pairs [6], which are examples of triples. Triples are
Q-bundles for a quiver with two vertices and a single arrow connecting them. Moduli
spaces of triples have been studied extensively, using wall-crossing techniques. With-
out being exhaustive, we mention [9], where connectedness and irreducibility results for
triples were studied, and the work of Muñoz [23, 24, 25] and Muñoz–Ortega–Vázquez-
Gallo [26, 27] on finer topological invariants, such as Hodge numbers. More generally,

chains (introduced by Álvarez-Cónsul–Garćıa-Prada in [1]) are Q-bundles for a quiver of
type An. Chains have also been studied using wall crossing techniques; we mention here
the work of Alvaréz-Consul–Garćıa-Prada–Schmitt [3], Garćıa-Prada–Heinloth–Schmitt
[15] and Garćıa-Prada–Heinloth [14].

A natural question to ask is to what extent wall crossing techniques can be extended to
moduli of Q-bundles for more general quivers. Our aim in this paper is to investigate the
situation when Q has oriented cycles, as opposed to the case of chains. Since the number
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2 PETER B. GOTHEN AND AZIZEH NOZAD

of effective stability parameters is one less than the number of vertices of the quiver,
in order to encounter wall crossing phenomena, we are led to considering the following
quiver as the simplest non-trivial case:

(1.1) •
]]

•��

For such quivers it becomes relevant to consider twisted Q-bundles, meaning that to each
arrow one associates a fixed line bundle twisting the corresponding morphism.

Quiver bundles for the quiver (1.1) are closely related to Higgs bundles through the
notion of G-Higgs bundles. These are the appropriate objects for extending the non-
abelian Hodge Theorem to representations of the fundamental group in a real reductive
Lie group G (see, e.g., [18, 19]). The relevant case here is that of G = U(p, q). Indeed, a
U(p, q)-Higgs bundle is a twisted Q-bundle for the quiver (1.1), twisted by the canonical
bundle K of X . Allowing for twisting by an arbitrary line bundle L on X , an L-twisted
U(p, q)-Higgs bundle is a quadruple E = (V,W, β, γ), where V and W are vector bundles
of rank p and q, respectively, and the morphisms are β : W → V ⊗L and γ : V → W ⊗L.
The stability notion for Q-bundles for the quiver (1.1) depends on a real parameter α
and the value which is relevant for the non-abelian Hodge Theorem is α = 0.

We denote by Mα(t) the moduli space of α-semistable L-twisted U(p, q)-Higgs bundles
of type t = (p, q, a, b) = (rk(V ), rk(W ), deg(V ), deg(W )) and by Ms

α(t) ⊂ Mα(t) the
subspace of α-stable L-twisted U(p, q)-Higgs bundles. We show that the parameter α is
constrained to lie in an interval αm 6 α 6 αM (with αm = −∞ and αM = ∞ if p = q)
and the stability condition changes at a discrete set of critical values αc for α.

Our main result is the following theorem (see Theorem 5.3 below).

Theorem A. Fix a type t = (p, q, a, b). Let αc be a critical value. If either one of the
following conditions holds:

(1) a/p−b/q > − deg(L), q 6 p and 0 6 α±
c <

2pq
pq−q2+p+q

(
b/q−a/p−deg(L)

)
+deg(L),

(2) a/p− b/q < deg(L), p 6 q and 2pq
pq−p2+p+q

(b/q−a/p+deg(L))−deg(L) < α±
c 6 0.

Then the moduli spaces Ms

α−
c

(t) and Ms

α+
c

(t) are birationally equivalent.

Under suitable co-primality conditions on the topological invariants (p, q, a, b) we also
have results for the full moduli spaces Mα(t); we refer to Theorem 5.3 below for the
precise result.

A systematic study of U(p, q)-Higgs bundles was carried out in [8], based on results
for holomorphic triples from [7, 9]. In particular, it was shown that the moduli space of
U(p, q)-Higgs bundles is irreducible (again under suitable co-primality conditions). Using
these results, we deduce the following corollary to our main theorem (see Theorem 5.5
below).

Theorem B. Let L = K and fix a type t = (p, q, a, b). Suppose that (p + q, a + b) = 1
and that τ = 2pq

p+q
(a/p− b/q) satisfies |τ | 6 min{p, q}(2g− 2). Suppose that either one of

the following conditions holds:

(1) a/p−b/q > −(2g−2), q 6 p and 0 6 α < 2pq
pq−q2+p+q

(
b/q−a/p−(2g−2)

)
+2g−2,

(2) a/p− b/q < 2g − 2, p 6 q and 2pq
pq−p2+p+q

(b/q − a/p+ 2g − 2)− (2g − 2) < α 6 0.

Then the moduli space Mα(t) is irreducible.

A related work is the recent preprint by Biquard–Garćıa-Prada–Rúbio [5], which studies
G-Higgs bundles for any non-compact G of hermitian type. Their focus is different from
ours, in that they adopt a general Lie theoretic approach and study special properties
such as rigidity for maximal G-Higgs bundles, whereas wall crossing phenomena are not
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studied. On the other hand it is similar in spirit in allowing for arbitrary values of the
stability parameter and, indeed, our Proposition 3.3 for twisted U(p, q)-Higgs bundles
is a special case of the Milnor–Wood inequality for general G proved by these authors
(when L = K). A different generalization, namely to parabolic U(p, q)-Higgs bundles,
has appeared in the work of Garćıa-Prada–Logares–Muñoz [16].

This paper is organized as follows. In Section 2 we give some definitions and basic
results on quiver bundles. In Section 3 we analyze how the α-stability condition constrains
the parameter range for fixed type t = (p, q, a, b), prove the Milnor–Wood type inequality
for α-semistable twisted U(p, q)-Higgs bundles mentioned above, and study vanishing of
the second hypercohomology group of the deformation complex and deduce smoothness
results for the moduli space. These results provide essential input for the analysis in
Section 4 of the loci where the moduli space changes when crossing a critical value.
Finally, in Section 5, we put our results together and prove our main theorems.

This paper is, in part, based on the second author’s Ph.D. thesis [29].

2. Definitions and basic results

In this section we recall definitions and relevant facts on quiver bundles, from [20]
and [2], that will be needed in the sequel. We give the results for general Q-bundles.
This generality is needed since more general Q-bundles naturally appear in the study of
twisted U(p, q)-Higgs bundles (see Section 4.2).

2.1. Quivers. A quiver Q is a directed graph specified by a set of vertices Q0, a set of
arrows Q1 and head and tail maps h, t : Q1 → Q0. We shall assume that Q is finite.

2.2. Twisted quiver sheaves and bundles. Let X be a compact Riemann surface, let
Q be a quiver and let M = {Ma}a∈Q1

be a collection of finite rank locally free sheaves of
OX -modules.

Definition 2.1. AnM-twisted Q-sheaf on X is a pair E = (V, ϕ), where V is a collection
of coherent sheaves Vi on X , for each i ∈ Q0, and ϕ is a collection of morphisms ϕa :
Vta ⊗Ma → Vha, for each a ∈ Q1, such that Vi = 0 for all but finitely many i ∈ Q0, and
ϕa = 0 for all but finitely many a ∈ Q1.

A holomorphic M-twisted Q-bundle is an M-twisted Q-sheaf E = (V, ϕ) such that the
sheaf Vi is a holomorphic vector bundle, for each i ∈ Q0.

We shall not distinguish vector bundles and locally free finite rank sheaves.

A morphism between twisted Q-sheaves (V, ϕ) and (W,ψ) on X is given by a collection
of morphisms fi : Vi →Wi, for each i ∈ Q0, such that the diagrams

Vta ⊗Ma

ϕa
//

fta⊗1
��

Vha

fha
��

Wta ⊗Ma

ψa
// Wha

commute for every a ∈ Q1.
In this wayM-twisted Q-sheaves form an abelian category. The notions ofQ-subbundles

and quotient Q-bundles, as well as simple Q-bundles are defined in the obvious way. The
subobjects (0, 0) and E itself are called the trivial subobjects. The type of a Q-bundle
E = (V, ϕ) is given by

t(E) = (rk(Vi); deg(Vi))i∈Q0
,

where rk(Vi) and deg(Vi)) are the rank and degree of Vi, respectively. We sometimes
write rk(E) = rk(

⊕
Vi) and call it the rank of E. Note that the type is independent of

ϕ.
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2.3. Stability. Fix a tuple α = (αi) ∈ R|Q0| of real numbers. For a non-zero Q-bundle
E = (V, ϕ), the associated α-slope is defined as

µα(E) =

∑
i∈Q0

(
αi rk(Vi) + deg(Vi)

)

∑
i∈Q0

rk(Vi)
.

Definition 2.2. A Q-bundle E = (V, ϕ) is said to be α-(semi)stable if, for all non-trivial
subobjects F of E, µα(F ) < (6)µα(E). An α-polystable Q-bundle is a finite direct sum
of α-stable Q-bundles, all of them with the same α-slope.

A Q-bundle E is strictly α-semistable if and only if there is a non-trivial subobject
F ⊂ E such that µα(F ) = µα(E).

Remark 2.3. If we translate the parameter vector α = (αi)i∈Q0
by a global constant

c ∈ R, obtaining α
′ = (α′

i)i∈Q0
, with α′

i = αi + c, then µα
′(E) = µα(E) − c. Hence the

stability condition does not change under global translations. So we may assume that
α0 = 0.

The following is a well-known fact (see, e.g., [30, Exercise 2.5.6.6]). Consider a strictly
α-semistable Q-bundle E = (V, ϕ). As it is not α-stable, E admits a subobject F ⊂ E
of the same α-slope. If F is a non-zero subobject of E of minimal rank and the same
α-slope, it follows that F is α-stable. Then, by induction, one obtains a flag of subobjects

F0 = 0 ⊂ F1 ⊂ · · · ⊂ Fm = E

where µα(Fi/Fi−1) = µα(E) for 1 6 i 6 m, and where the subquotients Fi/Fi−1 are α-
stable Q-bundles. This is the Jordan-Hölder filtration of E , and it is not unique. However,
the associated graded object

Gr(E) := ⊕m
i=1Fi/Fi−1

is unique up to isomorphism.

Definition 2.4. Two semi-stable Q-bundles E and E ′ are said to be S-equivalent if
Gr(E) ∼= Gr(E ′).

Remark 2.5. It is a standard fact that each S-equivalence class contains a unique polystable
representative. Moreover, if a Q-bundle E is stable, then the induced Jordan-Hölder fil-
tration is trivial, and so the S-equivalence class of E coincides with its isomorphism
class.

2.4. The gauge theory equations. Throughout this paper, given a smooth bundle M
on X , Ωk(M) (resp. Ωi,j(M)) is the space of smoothM-valued k-forms (resp. (i, j)-forms)
on X , ω is a fixed Kähler form on X , and Λ : Ωi,j(M) → Ωi−1,j−1(M) is contraction with
ω. The gauge equations will also depend on a fixed collection q of Hermitian metrics qa
on Ma, for each a ∈ Q1, which we fix once and for all. Let E = (V, ϕ) be a M-twisted
Q-bundle on X . A Hermitian metric on E is a collection H of Hermitian metrics Hi

on Vi, for each i ∈ Q0 with Vi 6= 0. To define the gauge equations on E , we note that
ϕa : Vta ⊗Ma → Vha has a smooth adjoint morphism ϕ∗

a : Vha → Vta ⊗Ma with respect
to the Hermitian metrics Hta ⊗ qa on Vta ⊗Ma and Hha on Vha, for each a ∈ Q1, so it
makes sense to consider the compositions ϕa ◦ ϕ∗

a and ϕ∗
a ◦ ϕa. The following definitions

are found in [2]. Let α be the stability parameter.
Define τ to be collections of real numbers τi, for which

(2.1) τi = µα(E)− αi, i ∈ Q0.

Then, by using Remark 2.3, α can be recovered from τ as follows

αi = τ0 − τi, i ∈ Q0.
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Definition 2.6. A Hermitian metric H satisfies the quiver τ -vortex equations if

(2.2)
√
−1ΛF (Vi) +

∑

i=ha

ϕaϕ
∗
a −

∑

i=ta

ϕ∗
aϕa = τiIdVi

for each i ∈ Q0 such that Vi 6= 0, where F (Vi) is the curvature of the Chern connection
associated to the metric Hi on the holomorphic vector bundle Vi.

The following is the Hitchin-Kobayashi correspondence between the twisted quiver vor-
tex equations and the stability condition for holomorphic twisted quiver bundles, given
in [2, Theorem 3.1]:

Theorem 2.7. A holomorphic Q-bundle E is α-polystable if and only if it admits a
Hermitian metric H satisfying the quiver τ -vortex equations (2.2), where α and τ are
related by (2.1).

2.5. Twisted U(p, q)-Higgs bundles. An important example of twisted Q-bundles,
which is our main object study in this paper, is that of twisted U(p, q)-Higgs bundles
on X given in the following. It is to be noted that twisted U(p, q)-Higgs bundles in our
study is twisted with the same line bundle for each arrow.

Definition 2.8. Let L be a line bundle on X . A L-twisted U(p, q)-Higgs bundle is a
twisted Q-bundle for the quiver

V
__

W
!!

where each arrow is twisted by L, and such that rk(V ) = p and rk(W ) = q. Thus a
L-twisted U(p, q)-Higgs bundle is a quadruple E = (V,W, β, γ), where V and W are
holomorphic vector bundles on X of ranks p and q respectively, and

β : W −→ V ⊗ L,

γ : V −→W ⊗ L,

are holomorphic maps. The type of a twisted U(p, q)-Higgs bundle E = (V,W, β, γ) is
defined by a tuple of integers t(E) := (p, q, a, b) determined by ranks and degrees of V
and W , respectively.

Note that K-twisted U(p, q)-Higgs bundles can be seen as a special case of G-Higgs
bundles ([22], see also [8, 10, 18, 19]), where G is a real form of a complex reductive Lie
group and K is the canonical bundle of the Riemann surface X .

2.6. Gauge equations. For this L-twisted quiver bundle one can consider the general
quiver equations as defined in (2.2).

Let τ = (τ1, τ2) be a pair of real numbers. A Hermitian metric H satisfies the L-twisted
quiver τ -vortex equations on twisted U(p, q)-Higgs bundle E if

(2.3)

√
−1ΛFHV

+ ββ∗ − γ∗γ = τ1 IdV ,√
−1ΛFHW

+ γγ∗ − β∗β = τ2 IdW .

where FHV
and FHW

are the curvatures of the Chern connections associated to the metrics
HV and HW , respectively.

Remark 2.9. (i) If a holomorphic twisted U(p, q)-bundle E admits a Hermitian metric
satisfying the τ -vortex equations, then taking traces in (2.3), summing for V and
W , and integrating over X , we see that the parameters τ1 and τ2 are constrained
by pτ1 + qτ2 = deg(V ) + deg(W ).
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(ii) If L = K the equations are conformally invariant and so depend only on the
Riemann surface structure on X . In this case they are the Hitchin equations for
the U(p, q)-Higgs bundle.

2.7. Stability. Let E = (V,W, β, γ) be a twisted U(p, q)-Higgs bundle, and α be a
real number; α is called the stability parameter. The definitions of the previous section
specialize as follows. The α-slope of E is defined to be

µα(E) = µ(E) + α
p

p+ q
,

where µ(E) := µ(V ⊕W ). A twisted U(p, q)-bundle E is α-semistable if, for every proper
(non-trivial) subobject F ⊂ E,

µα(F ) 6 µα(E).

Further, E is α-stable if this inequality is always strict. A twisted U(p, q)-bundle is called
α-polystable if it is the direct sum of α-stable twisted U(p, q)-Higgs bundles of the same
α-slope.

Remark 2.10. The stability can be defined using quotients as for vector bundles. Note
that for any subobject E ′ = (V ′,W ′) we obtain an induced quotient bundle E/E ′ =
(V/V ′,W/W ′, β, γ) and E is α-(semi)stable if µα(E/E

′)(>) > µα(E).

The following is a special case of the Hitchin-Kobayashi correspondence between the
twisted quiver vortex equations and the stability condition for holomorphic twisted quiver
bundles, stated in Proposition 2.7.

Theorem 2.11. A solution to (2.3) exists if and only if E is α-polystable for α = τ2−τ1.
2.7.1. Critical values. A twisted U(p, q)-Higgs bundle E is strictly α-semistable if and
only if there is a proper subobject F = (V ′,W ′) such that µα(F ) = µα(E), i.e.,

µ(V ′ ⊕W ′) + α
p′

p′ + q′
= µ(V ⊕W ) + α

p

p+ q
.

The case in which the terms containing α drop from the above equality and E is strictly
α-semistable for all values of α, i.e.,

p

p+ q
=

p′

p′ + q′
, and

µ(V ⊕W ) = µ(V ′ ⊕W ′)

is called α-independent strict semistability.

Definition 2.12. For a fixed type (p, q, a, b) a value of α is called a critical value if there

exist integers p′, q′, a′ and b′ such that p′

p′+q′
6= p

p+q
and a′+b′

p′+q′
+ α p′

p′+q′
= a+b

p+q
+ α p

p+q
, with

0 6 p′ 6 p, 0 6 q′ 6 q and (p′, q′) 6= (0, 0). We say that α is generic if it is not critical.

Lemma 2.13. In the following situations α-independent semistability cannot occur:

(i) [9, Lemma 2.7] There is an integer m such that GCD(p+ q, d1 + d2 −mp) = 1.
(ii) If GCD(p, q) = 1, for p 6= q.

Proof. To prove (ii), on the contrary assume that E = (V,W, β, γ) is a α-semistable
twisted U(p, q)-Higgs bundle with a proper subobject E ′ = (V ′,W ′, β ′, γ′) such that

µ(V ′ ⊕W ′) + α
p′

p′ + q′
= µ(V ⊕W ) + α

p

p+ q

and
p′

p′ + q′
=

p

p+ q
,
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where p′ and q′ are the ranks of V ′ and W ′ respectively. Since E ′ is proper, either p′ < p

or q′ < q and then the equality
p′

p′ + q′
=

p

p+ q
contradicts that p and q are co-prime. �

Fix a type t = (p, q, a, b). We denote the moduli space of α-polystable twisted U(p, q)-
Higgs bundles E = (V,W, β, γ) which have the type t(E) = (p, q, a, b), where a = deg(V )
and b = deg(W ), by

Mα(t) = Mα(p, q, a, b),

and the moduli space of α-stable twisted U(p, q)-Higgs bundles by Ms
α(t). A Geometric

Invariant Theory construction of the moduli space follows from the general constructions
of Schmitt [30, Theorem 2.5.6.13], thinking of twisted U(p, q)-Higgs bundles in terms of
quivers.

2.8. Deformation theory of twisted U(p, q)-Higgs bundles.

Definition 2.14. Let E = (V,W, β, γ) be a L-twisted U(p, q)-Higgs bundle and E ′ =
(V ′,W ′, β ′, γ′) a L-twisted U(p′, q′)-Higgs bundle. We introduce the following notation:

Hom
0=Hom(V ′, V )⊕Hom(W ′,W ),

Hom
1=Hom(V ′,W ⊗ L)⊕Hom(W ′, V ⊗ L).

With this notation we consider the complex of sheaves

(2.4) Hom
•(E ′, E) : Hom

0 a0−→ Hom
1

defined by

a0(f1, f2) =
(
φa(f1, f2), φb(f1, f2)

)
, for (f1, f2) ∈ Hom

0

where

φa : Hom
0 → Hom(V ′,W ⊗ L) →֒ Hom

1 and φb : Hom
0 → Hom(W ′, V ⊗ L) →֒ Hom

1

are given by

φa(f1, f2) = (f2 ⊗ IdL) ◦ γ′ − γ ◦ f1),
φb(f1, f2) = (f1 ⊗ IdL) ◦ β ′ − β ◦ f2).

The complex Hom
•(E ′, E) is called the Hom-complex. This is a special case of the Hom-

complex for Q-bundles defined in [20], and also for G-Higgs bundles (see, e.g., [4]). We
shall write End

•(E) for Hom
•(E,E).

The following proposition follows from [20, Theorem 4.1 and Theorem 5.1].

Proposition 2.15. Let E be a L-twisted U(p, q)-Higgs bundle and E ′ a L-twisted U(p′, q′)-
Higgs bundle. Then there are natural isomorphisms

Hom(E ′, E) ∼= H0(Hom
•(E ′, E))

Ext1(E ′, E) ∼= H1(Hom
•(E ′, E))

and a long exact sequence associated to the complex Hom
•(E ′, E):

(2.5) 0 −→ H0(Hom
•(E ′, E)) −→ H0(Hom

0) −→ H0(Hom
1) −→ H1(Hom

•(E ′, E))

−→ H1(Hom
0) −→ H1(Hom

1) −→ H2(Hom
•(E ′, E)) −→ 0.

When E = E ′, we have End(E) = Hom(E,E) ∼= H0(Hom
•(E,E)).

Definition 2.16. We denote by χ(E ′, E) the hypercohomology Euler characteristic for
the complex Hom

•(E ′, E), i.e.

χ(E ′, E) = dimH0(Hom
•(E ′, E))− dimH1(Hom

•(E ′, E)) + dimH2(Hom
•(E ′, E)).
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As an immediate consequence of the long exact sequence (2.5) and the Riemann-Roch
formula we can obtain the following.

Proposition 2.17. For any twisted U(p, q)-Higgs bundle E and twisted U(p′, q′)-Higgs
bundle E ′ we have

χ(E ′, E) = χ(Hom
0)− χ(Hom

1)

= (1− g)(rk(Hom
0)− rk(Hom

1)) + deg(Hom
0)− deg(Hom

1)

= (1− g)
(
p′p+ q′q − p′q − q′p

)
+ (q′ − p′)(deg(W )− deg(V ))+

(q − p)(deg(V ′)− deg(W ′))− (pq′ + p′q) deg(L)

Recall that the type of a U(p, q)-Higgs bundle E = (V,W, β, γ) is t(E) = (p, q, a, b),
where a = deg(V ), b = deg(W ). The previous proposition shows that χ(E ′, E) only
depends on the types t′ = t(E ′) and t = t(E) of E ′ and E, respectively, so we may use
the notation

χ(t′, t) := χ(E ′, E).

Remark 2.18. Suppose that E = E ′ ⊕ E ′′. Then it is clear that the Hom-complexes
satisfy:

Hom
•(E,E) = Hom

•(E ′, E ′)⊕ Hom
•(E ′′, E ′′)⊕ Hom

•(E ′′, E ′)⊕ Hom
•(E ′, E ′′),

and so the hypercohomology groups have an analogous direct sum decomposition.

Lemma 2.19. For any extension 0 → E ′ → E → E ′′ → 0 of twisted U(p, q)-Higgs
bundles,

χ(E,E) = χ(E ′, E ′) + χ(E ′′, E ′′) + χ(E ′′, E ′) + χ(E ′, E ′′).

Proof. Since the Euler characteristic is topological, we may assume that E = E ′ ⊕ E ′′.
Now the result is immediate in view of Remark 2.18. �

Given the identification of H0(Hom
•(E ′, E)) with Hom(E ′, E), by Proposition 2.15, the

following is the direct analogue of the corresponding result for semistable vector bundles.

Proposition 2.20. Let E = (V,W, β, γ) be a L-twisted U(p, q)-Higgs bundle and E ′ =
(V ′,W ′, β ′, γ′) a L-twisted U(p′, q′)-Higgs bundle. If E and E ′ are both α-semistable, then
the following holds:

(1) If µα(E) < µα(E
′), then H0(Hom

•(E ′, E)) = 0.
(2) If µα(E

′) = µα(E), and E
′ is α-stable, then

H0(Hom
•(E ′, E)) ∼=

{
0 if E ≇ E ′

C if E ∼= E ′.

Definition 2.21. A twisted U(p, q)-Higgs bundle E = (V,W, ϕ = β+γ) is infinitesimally
simple if End(E) ∼= C and it is simple if Aut(E) ∼= C∗, where Aut(E) denotes the
automorphism group of E.

Since L-twisted U(p, q)-Higgs bundles form an abelian category, any automorphism is
also an endomorphism. Hence, if (V,W, β, γ) is infinitesimally simple then it is simple.
Thus Proposition 2.20 implies the following lemma.

Lemma 2.22. Let (V,W, β, γ) be a twisted U(p, q)-Higgs bundle. If (V,W, β, γ) is α-stable
then it is simple.

Proposition 2.23. Let E = (V,W, β, γ) be an α-stable twisted U(p, q)-Higgs bundle of
type t = (p, q, a, b).
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(1) The space of infinitesimal deformations of E is isomorphic to the first hypercoho-
mology group H1(End

•(E)).

(2) If H2(End
•(E)) = 0, then the moduli space Ms

α(t) is smooth in a neighborhood of
the point defined by E and

dimMs
α(t) = dimH1(End

•(E))

= 1− χ(E,E) = (g − 1)(q − p)2 + 2pq deg(L) + 1.

Proof. Statement (1) follows from [4, Theorem 2.3]. Statement (2) is analogous to Propo-
sition 2.14 of [11]. �

3. Consequences of stability and properties of the moduli space

3.1. Bounds on the topological invariants and Milnor–Wood inequality. In this
section we explore the constraints imposed by stability on the topological invariants of
U(p, q)-Higgs bundles and on the stability parameter α.

Proposition 3.1. Let E = (V,W, β, γ) be an α-semistable twisted U(p, q)-Higgs bundle.
Then the following inequalities hold.

2pq

p + q

(
µ(V )− µ(W )

)
6 rk(γ) deg(L) + α

(
rk(γ)− 2pq

p+ q

)
,(3.1)

2pq

p + q

(
µ(W )− µ(V )

)
6 rk(β) deg(L) + α

( 2pq

p + q
− rk(β)

)
.(3.2)

Moreover, if deg(L)+α > 0 and equality holds in (3.1) then either E is strictly semistable

or p = q and γ is an isomorphism γ : V
∼=−→ W ⊗ L. Similarly, if deg(L) − α > 0

and equality holds in (3.2) then either E is strictly semistable or p = q and β is an

isomorphism β : W
∼=−→ V ⊗ L.

Proof. An argument similar to that given in [8, Lemma 3.24] shows that

2p
(
µ(V )− µα(E)

)
6 rk(γ) deg(L) + α(rk(γ)− 2p);

Similarly,
2q
(
µ(W )− µα(E)

)
6 rk(β) deg(L)− rk(β)α,

Using this, the result follows immediately using the following identities:

µ(V )− µα(E) =
q

p+ q

(
µ(V )− µ(W )

)
− α

p

p+ q
,

µ(W )− µα(E) =
p

p+ q

(
µ(W )− µ(V )

)
− α

p

p+ q
.

The statement about equality for deg(L)− α > 0 also follows as in loc. cit. �

By analogy with the case of U(p, q)-Higgs bundles (cf. [8]) we make the following
definition.

Definition 3.2. The Toledo invariant of a twisted U(p, q)-Higgs bundle E = (V,W, β, γ)
is

τ(E) = 2
q deg(V )− p deg(W )

p+ q
=

2pq

p+ q

(
µ(V )− µ(W )

)
.

The following is the analogue of the Milnor–Wood inequality for U(p, q)-Higgs bun-
dles ([8, Corollary 3.27]). When L = K, it is a special case of a general result of
Biquard–Garćıa-Prada–Rubio [5, Theorem 4.5], which is valid for G-Higgs bundles for
any semisimple G of Hermitian type.
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Proposition 3.3. Let E = (V,W, β, γ) be an α-semistable twisted U(p, q)-Higgs bundle.
Then the following inequality holds:

− rk(β) deg(L) + α
(
rk(β)− 2pq

p+ q

)
6 τ(E) 6 rk(γ) deg(L) + α

(
rk(γ)− 2pq

p+ q

)
.

Proof. In view of the definition of τ(E), we can write (3.1) and (3.2) as

τ(E) 6 rk(γ) deg(L) + α
(
rk(γ)− 2pq

p+ q

)
,(3.3)

−τ(E) 6 rk(β) deg(L) + α
( 2pq

p+ q
− rk(β)

)
(3.4)

from which the result is immediate. �

When equality holds in the Milnor–Wood inequality, more information on the maps β
and γ can be obtained from Proposition 3.1. In this respect we have the following result.

Proposition 3.4. Let E = (V,W, β, γ) be an α-semistable twisted U(p, q)-Higgs bundle.

(1) Assume that α > − deg(L). Then

τ(E) 6 min{p, q}
(
deg(L)− α

|p− q|
p+ q

)
.

and if equality holds then p 6 q and γ is an isomorphism onto its image.
(2) Assume that α 6 − deg(L). Then

τ(E) 6 −α 2pq

p + q

and if equality holds and α < − deg(L) then γ = 0.
(3) Assume that α < deg(L). Then

τ(E) > min{p, q}
(
−α |p− q|

p+ q
− deg(L)

)

and if equality holds then q 6 p and β is an isomorphism onto its image.
(4) Assume that α > deg(L). Then

τ(E) > −α 2pq

p + q

and if equality holds and α > deg(L) then β = 0.

Proof. We rewrite (3.3) as τ(E) 6 rk(γ)(deg(L) + α) − α 2pq
p+q

. Then (1) and (2) are

immediate from Proposition 3.1. Similarly, (3) and (4) follow rewriting (3.4) as τ(E) >
rk(β)(α− deg(L))− α 2pq

p+q
. �

In the case when |α| < deg(L) we can write the inequality of the preceding proposition
in a more suggestive manner as follows.

Corollary 3.5. Assume that |α| < deg(L) and let E be an α-semistable twisted U(p, q)-
Higgs bundle. Then

|τ(E)| 6 min{p, q}
(
deg(L)− α

|p− q|
p+ q

)
.

Remark 3.6. In the cases of Proposition 3.4 when one of the Higgs fields β and γ is
an isomorphism onto its image, it is natural to explore rigidity phenomena for twisted
U(p, q)-Hitchin pairs, along the lines of [8] (for U(p, q)-Higgs bundles) and Biquard–
Garćıa-Prada–Rubio [5] (for parameter dependent G-Higgs bundles when G is Hermitian
of tube type). This line of inquiry will be pursued elsewhere.
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3.2. Range for the stability parameter. In the following we determine a range for
the stability parameter whenever p 6= q. We denote the minimum and the maximum
value for α by αm and αM , respectively.

Proposition 3.7. Assume that p 6= q and let E be a α-semistable twisted U(p, q)-Higgs
bundle. Then αm 6 α 6 αM , where

αm =




−2max{p, q}

|q − p|
(
µ(V )− µ(W )

)
− p+ q

|q − p| deg(L) if µ(V )− µ(W ) > − deg(L),

−
(
µ(V )− µ(W )

)
if µ(V )− µ(W ) 6 − deg(L),

and

αM =




−2max{p, q}

|q − p|
(
µ(V )− µ(W )

)
+

p+ q

|q − p| deg(L) if µ(V )− µ(W ) < deg(L),

−
(
µ(V )− µ(W )

)
if µ(V )− µ(W ) > deg(L).

Proof. First we determine αM . Using (3.3) we get

α(
2pq

p+ q
− rk(γ)) 6 rk(γ) deg(L)− τ(E)

since p 6= q therefore
2pq

p+ q
− rk(γ) > 0. Hence the above inequality yields

α 6
p+ q

2pq − (p+ q) rk(γ)
(rk(γ) deg(L)− τ(E)).

In order to find an upper bound for α we maximize the right hand side of this inequality

as a function of rk(γ). Thus we study monotonicity of the function f(r) =
rd− τ

c− r
, where

c =
2pq

p+ q
, d = deg(L) and r ∈ [0,min{p, q}]. We obtain the following:

(a) If deg(L) = µ(V )− µ(W ) then f is constant and

α 6 µ(W )− µ(V ).

(b) If deg(L) > µ(V )− µ(W ) then f is increasing so

α 6
p+ q

|q − p|
(
deg(L)− τ(E)

min{p, q}
)
=

p + q

|q − p| deg(L)−
2max{p, q}
|q − p| (µ(V )− µ(W ))

and, if equality holds then rk(γ) = min{p, q}.
(c) If deg(L) < µ(V )− µ(W ) then f is decreasing so

α 6 µ(W )− µ(V )

and, if equality holds then γ = 0.

Now we determine the lower bound αm. The inequality (3.4) yields

α >
rk(β) deg(L) + τ(E)

rk(β)− 2pq

p+ q

.

Similarly to the above, by studying the monotonicity of g(r) =
rd+ τ

r − c
, we obtain the

following:

(a)′ If µ(V )− µ(W ) = − deg(L) then g is constant and

α > µ(W )− µ(V ).
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(b)′ If µ(V )− µ(W ) < − deg(L) then g is increasing, so

α > µ(W )− µ(V ),

and, if equality holds then β = 0.
(c)′ If µ(V )− µ(W ) > − deg(L) then g is decreasing, so

α > − p + q

|q − p|(deg(L) +
τ(E)

min{p, q}) = − p+ q

|q − p| deg(L)−
2max{p, q}
|q − p| (µ(V )− µ(W )),

and, if equality holds then rk(β) = min{p, q}.
Note that if µ(V )− µ(W ) > 0 then µ(V )− µ(W ) > − deg(L), and if µ(V )− µ(W ) 6 0
then µ(V )− µ(W ) < deg(L). Hence the result follows. �

Remark 3.8. The preceding proof gives the following additional information when α equals
one of the extreme values αm and αM :

• if µ(V )− µ(W ) < deg(L) and α = αM then rk(γ) = min{p, q};
• if µ(V )− µ(W ) > deg(L) and α = αM then γ = 0;
• if µ(V )− µ(W ) > − deg(L) and α = αm then rk(β) = min{p, q}, and
• if µ(V )− µ(W ) < − deg(L) and α = αm then β = 0.

The following corollary is relevant because α = 0 is the value of stability parameter for
which the Non-abelian Hodge Theorem gives the correspondence between U(p, q)-Higgs
bundles and representations of the fundamental group of X .

Corollary 3.9. With the notation of Proposition 3.7, the inequality αM > 0 holds if
and only if τ(E) 6 min{p, q} deg(L) and the inequality αm 6 0 holds if and only if
τ(E) > −min{p, q} deg(L). Thus 0 ∈ [αm, αM ] if and only if |τ(E)| 6 min{p, q} deg(L).

Proof. Immediate from Proposition 3.7. �

Remark 3.10. Note that the condition |τ(E)| 6 min{p, q} deg(L) is stronger than the
condition |µ(V )− µ(W )| 6 deg(L).

3.3. Parameters forcing special properties of the Higgs fields. In this section we
use a variation on the preceding arguments to find a parameter range where β and γ have
special properties. Assume that the twisted U(p, q)-Higgs bundle E = (V,W, β, γ) has
type (p, q, a, b).

For the following proposition it is convenient to introduce the following notation. For
0 6 i < q 6 p, let

αi =
2pq

q(p− q) + (i+ 1)(p+ q)

(
µ(W )− µ(V )− deg(L)

)
+ deg(L),

and for 0 6 j < p 6 q, let

α′
j =

2pq

p(q − p) + (j + 1)(p+ q)

(
µ(W )− µ(V ) + deg(L)

)
− deg(L).

Proposition 3.11. Let E = (V,W, β, γ) be an α-semistable twisted U(p, q)-Higgs bundle.
Then we have the following:

(i) Assume that p > q and µ(V )−µ(W ) > − deg(L). If α < αi−1 then rk(ker(β)) < i.
In particular β is injective whenever

α < α0 =
2pq

pq − q2 + p+ q

(
µ(W )− µ(V )− deg(L)

)
+ deg(L).
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(ii) Assume that p > q and µ(V )−µ(W ) < − deg(L). If α < αi−1 then rk(ker(β)) > i.
In particular β is zero whenever

α < αq−2 =
2pq

2pq − p− q

(
µ(W )− µ(V )− deg(L)

)
+ deg(L).

(iii) Assume that p 6 q and µ(V ) − µ(W ) < deg(L). If α > α′
j then rk(ker(γ)) < j.

In particular γ is injective whenever

α > α′
0 =

2pq

pq − p2 + p+ q

(
µ(W )− µ(V ) + deg(L)

)
− deg(L).

(iv) Assume that p 6 q and µ(V ) − µ(W ) > deg(L). If α > α′
j then rk(ker(γ)) > j.

In particular γ is zero whenever

α > α′
p−2 =

2pq

2pq − p− q

(
µ(W )− µ(V ) + deg(L)

)
− deg(L).

Proof. We shall only prove parts (i) and (ii). One can deduce the other parts in a similar
way. Suppose that rk(ker(β)) = n > 0. The inequality (3.2) yields

α >
2pq

n(p+ q) + q(p− q)

(
µ(W )− µ(V )− deg(L)

)
+ deg(L) = αn−1.

Now suppose µ(W )−µ(V )−deg(L) < 0, then αi increases with i and so, if n > i then
α > αi−1. Hence, if α < i − 1 then n < i. In particular, if α < α0 then β is injective,
which gives part (i).

On the other hand, if µ(W )− µ(V ) − deg(L) > 0, then αi decreases with i and so, if
n 6 i then α > αi−1. Hence, if α < αi−1 then n > i. In particular, if α < αq−2 then β is
zero, proving part (ii). �

Remark 3.12. Note that the signs of α0 and α′
0 given in the preceding proposition are

related to the Toledo invariant as follows:

• α0 > 0 if and only if τ(E) < −(q − 1) deg(L).
• α′

0 < 0 if and only if τ(E) > (p− 1) deg(L).

Remark 3.13. Associated to E = (V,W, β, γ) there is a dual L-twisted U(p, q)-Higgs
bundle E∗ = (V ∗,W ∗, γ∗, β∗). Clearly there is a one-to-one correspondence between
subobjects of E and quotients of E∗, and µ−α(E) = −µα(E∗). Therefore α-stability of
E∗ is equivalent to −α-stability of E.

Corollary 3.14. Let E = (V,W, β, γ) be an α-semistable twisted U(p, q)-Higgs bundle.
Then we have the following:

(i) If p > q and µ(W )− µ(V ) > − deg(L) then γ is surjective whenever

α > αt :=
2pq

pq − q2 + p+ q
(µ(W )− µ(V ) + deg(L))− deg(L).

(ii) If p 6 q and µ(W )− µ(V ) < deg(L) then β is surjective whenever

α < α′
t :=

2pq

pq − p2 + p + q
(µ(W )− µ(V )− deg(L)) + deg(L).

Proof. Using Proposition 3.11 we can find a range for the stability parameter of E∗

where β∗ and γ∗ are injective. Hence the result follows by using Remark 3.13 to relate
the stability parameters of E and E∗. �

The following results shows that the bounds in Proposition 3.11 are meaningful in view
of the bounds for α of Proposition 3.7.

Proposition 3.15. Let α0 and α
′
0 be given in Proposition 3.11. Then the following holds.
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(i) Assume that p > q. If µ(V ) − µ(W ) > − deg(L) then α0 > αm, and if µ(V ) −
µ(W ) < − deg(L) then αq−2 > αm.

(ii) Assume that p < q. If µ(V ) − µ(W ) < deg(L) then α′
0 < αM , and if µ(V ) −

µ(W ) > deg(L) then α′
p−2 < αM .

Proof. For (i), using µ(V )− µ(W ) > − deg(L) we get

α0 − αm =
(
µ(V )− µ(W )

)( −2pq

q(p− q) + p + q
+

2p

p− q

)

+ deg(L)
( −2pq

q(p− q) + p+ q
+ 1 +

p + q

p− q

)

> deg(L)
(
− 2p

p− q
+ 1 +

p + q

p− q

)
= 0,

where we have used that p > q makes the term which multiplies µ(V )− µ(W ) positive.
Thus α0 > αm. Moreover, when µ(V ) − µ(W ) < − deg(L) and p > q, we have αm =
αq−1 < αq−2 (cf. the proof of Proposition 3.11). This finishes the proof of (i).

For (ii), using µ(V )− µ(W ) < deg(L) we obtain the following

αM − α′
0 =

(
µ(V )− µ(W )

)( −2q

q − p
+

2pq

p(q − p) + p+ q

)

+ deg(L)
(p+ q

q − p
− 2pq

p(q − p) + p+ q
+ 1

)

> deg(L)
(
− 2q

q − p
+ 1 +

p+ q

q − p

)
= 0,

where we have used that p < q makes the term which multiplies µ(V )− µ(W ) negative.
Hence α′

0 < αM . Moreover, when µ(V ) − µ(W ) > deg(L) and p < q, we have αM =
α′
p−1 > α′

p−2 (again, cf. the proof of Proposition 3.11). This finishes the proof of (ii). �

3.4. The comparison between U(p, q)-Higgs bundles and GL(p+q,C)-Higgs bun-

dles. Any U(p, q)-Higgs bundle gives rise to a GL(p+ q,C)-Higgs bundle. In this section
we compare the respective stability conditions. We shall not need these results in the
remainder of the paper but for completeness we have chosen to include them, since the
question is a natural one to consider.

We recall the following about GL(n,C)-Higgs bundles. A GL(n,C)-Higgs bundle on
X is a pair (E, φ), where E is a rank n holomorphic vector bundle over X and φ ∈
H0(End(E)⊗K) is a holomorphic endomorphism of E twisted by the canonical bundle
K of X . More generally, replacing K by an arbitrary line bundle on X , we obtain the
notion of a L-twisted GL(n,C)-Higgs bundle on X . The GL(n,C)-Higgs bundle (E, φ)
is stable if the slope stability condition

µ(E ′) < µ(E)

holds for all non-zero proper φ-invariant subbundles E ′ of E. Semistability is defined by
replacing the strict inequality with a weak inequality. A twisted Higgs bundle is called
polystable if it is the direct sum of stable twisted Higgs bundles with the same slope.

Remark 3.16. Nitsure [28] was the first to study twisted Higgs bundles in a systematic way.
For some of his results he needs to make the assumption deg(L) > 2g − 2 (similarly, for
example, to our Proposition 3.22 below). However, the comparison of stability conditions
which we carry out here is valid for any L.
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For any twisted U(p, q)-Higgs bundle E = (V,W, β, γ) we can associate a twisted

GL(p + q,C)-Higgs bundle defined by taking Ẽ = V ⊕W and φ =

(
0 β
γ 0

)
.

The following result is reminiscent of Theorem 3.26 of [17], which is a result for
Sp(2n,R)-Higgs bundles. The corresponding result for 0-semistable U(p, q)-Higgs bun-
dles can be found in the appendix to the first preprint version of [11] and the proof given
there easily adapts to the present situation. We include it here for the convenience of the
reader.

Recall from Proposition 3.11 that for p = q,

α0 = p
(
µ(W )− µ(V )− deg(L)

)
+ deg(L),(3.5)

α′
0 = p

(
µ(W )− µ(V ) + deg(L)

)
− deg(L).(3.6)

Proposition 3.17. Let E = (V,W, β, γ) be an α-semistable twisted U(p, q)-Higgs bundle
such that p = q and let α0 and let α′

0 be given by (3.5) and (3.6), respectively. Suppose
that one of the following conditions holds:

(1) µ(V )− µ(W ) > − deg(L) and 0 6 α < α0.
(2) µ(V )− µ(W ) < deg(L) and α′

0 < α 6 0.

Then the associated GL(2p,C)-Higgs bundle Ẽ is semistable. Moreover α-stability of E

implies stability of Ẽ unless there is an isomorphism f : V → W such that βf = f−1γ.

In this case (Ẽ, φ) is polystable and decomposes as

(Ẽ, φ) = (Ẽ1, φ1)⊕ (Ẽ2, φ2)

where each summand is a stable GL(p,C)-Higgs bundle isomorphic to (V, βf).

Proof. Let Ẽ ′ be an invariant subbundle of Ẽ. By projecting onto V and W and taking
the kernels and images, we get the following short exact sequences:

0 →W ′′ → Ẽ ′ → V ′ → 0,

0 → V ′′ → Ẽ ′ →W ′ → 0.(3.7)

We can then deduce that

degW ′′ + deg V ′ = deg Ẽ ′ = deg V ′′ + degW ′

q′′ + p′ = rk Ẽ ′ = p′′ + q′(3.8)

where q′′, q′, p′′ and p′ denote the rank of W ′′, W ′, V ′′ and V ′, respectively. Note that
(V ′,W ′) and (V ′′,W ′′) define subobjects of E. The α-semistability conditions applied to
these subobjects imply

deg V ′ + degW ′ 6 µ(E)(p′ + q′) +
q′ − p′

2
α(3.9)

deg V ′′ + degW ′′ 6 µ(E)(p′′ + q′′) +
q′′ − p′′

2
α(3.10)

Adding these two inequalities and using (3.8), we get

(3.11) µ(Ẽ ′) 6 µ(Ẽ) +
q′ − p′ + q′′ − p′′

2(p′ + p′′ + q′ + q′′)
α = µ(Ẽ) +

q′ − p′

p′ + p′′ + q′ + q′′
α

From Proposition 3.11 we obtain the injectivity of β and γ by using the hypotheses (1)
and (2), respectively. Injectivity of β and γ yield q′ 6 p′ and q′ > p′, respectively. Hence,

in either case (q′ − p′)α is negative. Therefore (3.11) proves that Ẽ is semistable.
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Suppose now that E is α-stable. Then, by the above argument, Ẽ is semistable and it

is stable if (3.11) is strict for all non-trivial subbundles Ẽ ′ ⊂ Ẽ. The equality holds in
(3.11) if it holds in both (3.9) and (3.10). Since E is α-stable the only way in which a

non-trivial subbundle Ẽ ′ ⊂ Ẽ can yield equality in (3.11) is that

V ′ ⊕W ′ = V ⊕W and V ′′ ⊕W ′′.

In this case from (3.7) we obtain isomorphisms E ′ → V and E ′ → W . Therefore,
combining these, we get an isomorphism f : V → W such that βf = f−1γ. Hence, if

there is no such isomorphism between V and W then (Ẽ, φ) is α-stable.
Now suppose that there exists such an isomorphism f : V →W , define

(Ẽ1, φ1) = ({(v, f(v)) ∈ Ẽ|v ∈ V }, φ|Ẽ1
),

(Ẽ2, φ2) = ({(v,−f(v)) ∈ Ẽ|v ∈ V }, φ|Ẽ2
).

The fact that βf = f−1γ implies that (Ei, φi), i = 1, 2, define GL(n,C)-Higgs bundles
isomorphic to (V, βf). We have

(Ẽ, φ) = (Ẽ1, φ1)⊕ (Ẽ2, φ2),

with

µ(Ẽ1) = µ(Ẽ) = µ(Ẽ2).

To show that each summand is a stable GL(n,C)-Higgs bundle, note that any non-trivial

subbundle Ẽ ′ of Ẽi is a subbundle of Ẽ and hence µ(Ẽ ′) < µ(Ẽ) = µ(Ẽi). �

Remark 3.18. We can also conclude from the proof of the above proposition that a
twisted U(p, q)-Higgs bundle is α-semistable for α = 0 if and only if the associated
GL(p+ q,C)-Higgs bundle is semistable. Equivalence also holds for stability, unless there
is an isomorphism f : V →W such that βf = f−1γ.

3.5. Vanishing of hypercohomology in degree two. In order to study smoothness
of the moduli space we investigate vanishing of the second hypercohomology group of the
deformation complex (cf. Proposition 2.23). This vanishing will also play an important
role in the analysis of the flip loci in Section 4. We note that vanishing is not guaranteed
by α-stability for α 6= 0, in contrast to the case of triples (and chains), where vanishing
is guaranteed for α > 0.

By using the obvious symmetry of the quiver interchanging the vertices we can associate
to a U(p, q)-Higgs bundle a U(q, p)-Higgs bundle. The following proposition is immediate.

Proposition 3.19. Let E = (V,W, β, γ) be a U(p, q)-Higgs bundle and let σ(E) =
(W,V, γ, β) be the associated U(q, p)-Higgs bundle. Then E is α-stable if and only if
σ(E) is −α-stable, and similarly for poly- and semi-stability. �

The next result uses this construction and Serre duality to identify the second hyper-
cohomology of the Hom-complex with the dual of a zeroth hypercohomology group.

Lemma 3.20. Let E = (V,W, β, γ) be a L-twisted U(p, q)-Higgs bundle and E ′ =
(V ′,W ′, β ′, γ′) a L-twisted U(p′, q′)-Higgs bundle. Let E ′′ = σ(E ′) ⊗ L−1K = (W ′ ⊗
L−1K, V ′ ⊗ L−1K, γ ⊗ 1, β ⊗ 1). Then

H2(Hom
•(E ′, E)) ∼= H0(Hom

•(E,E ′′))∗.

Proof. By Serre duality for hypercohomology

H2(Hom
•(E ′, E)) ∼= H0(Hom

•∨(E ′, E)⊗K)∗
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where the dual complex twisted by K is

Hom
•∨(E ′, E)⊗K :

(
Hom(V,W ′ ⊗ L−1)⊕ Hom(W,V ′ ⊗ L−1)

)
⊗K

→
(
Hom(V, V ′)⊕Hom(W,W ′)

)
⊗K.

One easily checks that the differentials correspond, so that

Hom
•∨(E ′, E)⊗K ∼= Hom

•(E,E ′′).

This completes the proof. �

Lemma 3.21. Let E = (V,W, β, γ) be a L-twisted U(p, q)-Higgs bundle and E ′ =
(V ′,W ′, β ′, γ′) a L-twisted U(p′, q′)-Higgs bundle. As above let E ′′ = σ(E ′) ⊗ L−1K =
(W ′ ⊗ L−1K, V ′ ⊗ L−1K, γ′ ⊗ 1, β ′ ⊗ 1). Let f ∈ H0(Hom

•(E,E ′′)) viewed as morphism

f : E → E ′′ and write λ(f) = rk(f(V ))
rk(f(V ))+rk(f(W ))

. Then, if f 6= 0, the inequality

(3.12) α(2λ(f)− 1) + 2g − 2− deg(L) > 0

holds. Moreover, if E and E ′′ are α-stable, then strict inequality holds unless f : E
∼=−→ E ′′

is an isomorphism.

Proof. Write N = ker(f) ⊂ E and I = im(f) ⊂ E ′′. Then α-semistability of E implies
that µα(N) 6 µα(E), which is equivalent to

(3.13) µα(I) > µα(E);

note that this also holds if N = 0, since then I ∼= E. Moreover, by Proposition 3.19, E ′′

is −α-semistable and so µ−α(I) 6 µ−α(E
′′). This, using that µ−α(I) = µα(I) − 2αλ(f)

and µ−α(E
′′) = µα(E)− α + (2g − 2− deg(L)), is equivalent to

(3.14) µα(I) 6 µα(E) + 2αλ(f)− α + 2g − 2− deg(L).

Combining (3.13) and (3.14) gives the result. The statement about strict inequality is
easy. �

The following is our first main result on vanishing of H2. It should be compared with
[9, Proposition 3.6]. The reason why extra conditions are required for the vanishing is
essentially that the “total Higgs field” β + γ ∈ H0(End(V ⊕W ) ⊗ L) is not nilpotent,
contrary to the case of triples.

Proposition 3.22. Let E = (V,W, β, γ) be a L-twisted U(p, q)-Higgs bundle and E ′ =
(V ′,W ′, β ′, γ′) a L-twisted U(p′, q′)-Higgs bundle. Assume that E and E ′ are α-semistable
with µα(E) = µα(E

′). Let E ′′ = σ(E ′) ⊗ L−1K. Assume that one of the following
hypotheses hold:

(A) deg(L) > 2g − 2;

(B) deg(L) = 2g−2, both E and E ′ are α-stable and there is no isomorphism f : E
∼=−→

E ′′.

Then H2(Hom
•(E ′, E)) = 0 if one of the following additional conditions holds:

(1) α = 0;
(2) α > 0 and either β ′ is injective or β is surjective;
(3) α < 0 and either γ′ is injective or γ is surjective.

Proof. Suppose first that α = 0. Then either of the conditions (A) and (B) guarantee
that strict inequality holds in (3.12). Hence Lemmas 3.20 and 3.21 imply the stated
vanishing of H2.

Now suppose that β ′ : W ′ → V ′ ⊗ L is injective. If f : E → E ′′ is non-zero then,
since f is a morphism of twisted U(p, q)-Higgs bundles, we have rk(f(W )) > rk(f(V )).
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Hence λ(f) = rk(f(V ))
rk(f(V ))+rk(f(W ))

satisfies λ(f) 6 1/2. If additionally α > 0, it follows that

α(2λ(f)− 1) 6 0 which contradicts Lemma 3.21 under either of the conditions (A) and
(B). Therefore there are no non-zero morphisms f : E → E ′′ and so Lemma 3.20 implies
vanishing of H2(Hom

•(E ′, E)).
We have deduced vanishing of H2 under the conditions α > 0 and β ′ injective. The

remaining conditions in (2) and (3) for vanishing of H2 can now be deduced by using
symmetry arguments as follows.

Suppose first that α < 0 and γ′ is injective. Then, using Proposition 3.19, σ(E) is an
−α-semistable U(p, q)-Higgs bundle and similarly for σ(E ′). Moreover, the β-map (which
is σ(γ′)) of σ(E ′) is injective. Observe that

Hom
•(σ(E ′), σ(E)) ∼= Hom

•(E ′, E).

Hence, noting that −α > 0, the conclusion follows from the previous case applied to the
pair (σ(E ′), σ(E)).

Next suppose that α < 0 and γ is surjective. Then the dual U(p, q)-Higgs bundle
E∗ is −α-semistable, and similarly for E ′∗. Moreover, the β-map (which is γ∗) of E∗ is
injective. Observe that

Hom
•(E∗, E ′∗) ∼= Hom

•(E ′, E).

Hence again the conclusion follows from the previous case, applied to the pair (E∗, E ′∗).
The final case, α > 0 and β surjective, follows in a similar way, combining the two

previous constructions. �

In the case when q = 1 we can improve on Proposition 3.22, as follows.

Proposition 3.23. Let E be an α-semistable L-twisted U(p, 1)-Higgs bundle with p > 2.
Assume that deg(L) > 2g − 2. Then H2(End

•(E)) = 0 for all α in the range

p(µ(V )−µ(W ))−(p+1)(deg(L)−2g+2) < α < p(µ(V )−µ(W ))+(p+1)(deg(L)−2g+2).

Proof. Assume first that α > 0. Note that an isomorphism as in (B) of the hypothesis
of Proposition 3.22 cannot exist when p 6= q. Hence the proposition immediate gives the
result if α = 0. Moreover, if β 6= 0, then it is injective, and hence H2(Hom

•(E ′, E)) = 0
by (2) of the proposition. We may thus assume that β = 0 and consider the L-twisted
triple ET : γ : V → W ⊗ L. We have that

H2(End
•(E)) = H2(End

•(ET ))⊕H1(Hom(W,V )⊗ L),

where End
•(ET ) is the deformation complex of the triple. The vanishing of H2(End

•(ET ))
for an α-semistable triple when α > 0 is well known1 (cf. [9]). Hence it remains to show
that H1(Hom(W,V )⊗ L) = 0 which, by Serre duality, is equivalent to the vanishing

H0(Hom(V,W )⊗ L−1K) = 0.

So assume we have a non-zero f : V → W ⊗ L−1K. Then f induces as non-zero map of
line bundles f : V/ ker(f) →W ⊗ L−1K and hence

(3.15) deg(W )− deg(L) + 2g − 2 > deg(V )− deg(ker(f)).

On the other hand, since β = 0 we can consider the subobject (ker(f),W, 0, γ) of E and
hence, by α-semistability,

µα(ker(f)⊕W ) 6 µα(V ⊕W )

⇐⇒ (p+ 1) deg(ker(f)) + deg(W ) 6 p deg(V ) + α,(3.16)

1Note that the stability parameter for the corresponding untwisted triple as considered in [9] is α +
deg(L).
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where we have used that rk(ker(f)) = p− 1 and rk(W ) = 1. Now combining (3.15) and
(3.16) we obtain

α > p(µ(V )− µ(W )) + (p+ 1)(deg(L)− 2g + 2).

This establishes the vanishing of H2 for α in the range

0 6 α < p(µ(V )− µ(W )) + (p+ 1)(deg(L)− 2g + 2).

On the other hand, if α 6 0, applying the preceding result to the dual twisted U(p, q)-
Higgs bundle (V ∗,W ∗, γ∗, β∗) gives vanishing of H2 for α in the range

0 > α > p(µ(V )− µ(W ))− (p+ 1)(deg(L)− 2g + 2).

This finishes the proof. �

In general the preceding proposition does not guarantee vanishing of H2 for all values
of the parameter α. But for some values of the topological invariants, the upper bound
of the preceding proposition is actually larger than the maximal value for the parameter
α. More precisely, we have the following result.

Proposition 3.24. Let E be an α-semistable L-twisted U(p, 1)-Higgs bundle with p > 2.
Assume that deg(L) > 2g − 2. We have the following:

(1) If p
(
µ(V )− µ(W )

)
> 2g − 2− (p− 2)

(
deg(L)− (2g − 2)

)
then H2(End

•(E)) = 0
for all α > 0

(2) If p
(
µ(V )−µ(W )

)
< −2g+2+(p−2)

(
deg(L)− (2g−2)

)
then H2(End

•(E)) = 0
for all α 6 0

Proof. The upper and lower bound for α given in Proposition 3.7 is, in this case

αM = − 2p

p− 1

(
µ(V )− µ(W )

)
+
p + 1

p− 1
deg(L),

αm = − 2p

p− 1

(
µ(V )− µ(W )

)
− p+ 1

p− 1
deg(L).

It is simple to check that the inequalities of the statements are equivalent to αM being less
than the upper bound and αm being bigger than the lower bound for α of Proposition 3.23.

�

The following trivial observation is sometimes useful.

Proposition 3.25. Let E and E ′ be L-twisted U(p, q)-Higgs bundles such that H2(End
•(E⊕

E ′)) = 0. Then
H2(Hom

•(E ′, E)) = H2(Hom
•(E,E ′)) = 0.

Proof. Immediate in view of Remark 2.18. �

We can summarize our main results on vanishing of H2 as follows.

Lemma 3.26. Fix a type t = (p, q, a, b) and let E be an α-semistable L-twisted U(p, q)-
Higgs bundle of type t with deg(L) > 2g − 2. If deg(L) = 2g − 2 assume moreover that
E is α-stable. If either one of the following conditions holds:

(1) q = 1, p > 2 and p(a/p−b/q)−deg(L)(p+1) < α < p(a/p−b/q)+deg(L)(p+1),
(2) a/p− b/q > − deg(L) and 0 6 α < 2pq

min{p,q}|p−q|+p+q

(
b/q−a/p−deg(L)

)
+deg(L),

(3) a/p− b/q < deg(L) and 2pq
min{p,q}|p−q|+p+q

(b/q − a/p+ deg(L))− deg(L) < α 6 0.

Then H2(End
•(E)) vanishes.

Proof. For part (1), use Proposition 3.23. The other parts follow from Proposition 3.11,
Corollary 3.14, and Proposition 3.22. �
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3.6. Moduli space of twisted U(p, q)-Higgs bundles. Finally, we are in a position
to make statements about smoothness of the moduli space. Recall that we denote the
moduli space of α-polystable twisted U(p, q)-Higgs bundles with type t = (p, q, a, b) by

Mα(t) = Mα(p, q, a, b),

and the moduli space of α-stable twisted U(p, q)-Higgs bundle by Ms
α(t) ⊂ Mα(t).

Proposition 3.27. Fix a type t = (p, q, a, b). If either one of the following conditions
holds:

(1) q = 1, p > 2 and p(a/p−b/q)−deg(L)(p+1) < α < p(a/p−b/q)+deg(L)(p+1),
(2) a/p− b/q > − deg(L) and 0 6 α < 2pq

min{p,q}|p−q|+p+q

(
b/q−a/p−deg(L)

)
+deg(L),

(3) a/p− b/q < deg(L) and 2pq
min{p,q}|p−q|+p+q

(b/q − a/p+ deg(L))− deg(L) < α 6 0.

Then the moduli space Ms
α(t) is smooth.

Proof. Combine Lemma 3.26 and Proposition 2.23. �

4. Crossing critical values

4.1. Flip loci. In this section we study the variation with α of the moduli spaces Ms
α(t)

for fixed type t = (p, q, a, b). We are using a method similar to the one for chains given
in [3], which in turn is based on [9].

Let αc be a critical value. We adopt the following notation:

α+
c = αc + ǫ, α−

c = αc − ǫ,

where ǫ > 0 is small enough so that αc is the only critical value in the interval (α−
c , α

+
c ).

We begin with a set theoretic description of the differences between two spaces Mα+
c
and

Mα−
c
.

Definition 4.1. We define flip loci Sα±
c

⊂ Ms

α±
c

by the condition that the points in

Sα+
c
represent twisted U(p, q)-Higgs bundles which are α+

c -stable but α−
c -unstable, and

analogously for Sα−
c
.

A twisted U(p, q)-Higgs bundle E ∈ Sα±
c
is strictly αc-semistable and so we can use the

Jordan-Hölder filtrations of E in order to estimate the codimension of Sα±
c
in Mα±

c
.

The following is an analogue for twisted U(p, q)-Higgs bundles of [3, Proposition 4.3],
which is a result for chains.

Proposition 4.2. Fix a type t = (p, q, a, b). Let αc be a critical value and let S be
a family of αc-semistable twisted U(p, q)-Higgs bundles E of type t, all of them pairwise
non-isomorphic, and whose Jordan-Hölder filtrations has an associated graded of the form
Gr(E) =

⊕m

i=1Qi, with Qi twisted U(p, q)-Higgs bundle of type ti. If either one of the
following conditions holds:

(1) q = 1, p > 2 and p(a/p−b/q)−deg(L)(p+1) < αc < p(a/p−b/q)+deg(L)(p+1),
(2) a/p−b/q > − deg(L) and 0 6 αc <

2pq
min{p,q}|p−q|+p+q

(
b/q−a/p−deg(L)

)
+deg(L),

(3) a/p− b/q < deg(L) and 2pq
min{p,q}|p−q|+p+q

(b/q − a/p+ deg(L))− deg(L) < αc 6 0.

Then

(4.1) dimS 6 −
∑

i6j

χ(tj , ti)−
m(m− 3)

2
.
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Proof. Once appropriate vanishing of H2 is ensured, the proof is similar to the proof of
[3, Proposition 4.3]; we indicate the idea for m = 2. In view of the definition of S, there
exists an injective canonical map

i : S → Ms
αc
(t1)×Ms

αc
(t2)

with i−1(Q1, Q2) ∼= P(Ext1(Q2, Q1)), where P(Ext1(Q2, Q1)) parametrizes equivalence
classes of extensions

0 → Q1 → E → Q2 → 0.

Notice that Q1 and Q2 satisfy the hypothesis of Proposition 3.22 (or, in case q = 1, Propo-
sition 3.23; cf. Proposition 3.25) and therefore, cf. Proposition 2.17, dim(PExt1(Q2, Q1))
is constant as Q1 and Q2 vary in their corresponding moduli spaces. Hence, we obtain

dimS 6 dimMs
αc
(t1) + dimMs

αc
(t2) + dimP(Ext1(Q2, Q1)).

The general case follows by induction on m as in loc. cit. �

In order to show that the flip loci Sα±
c
has positive codimension we need to bound the

values of χ(ti, tj) in (4.1). This is what we do next.

4.2. Bound for χ. Here we consider a Q-bundle associated to the complex Hom
•(E ′, E)

and construct a solution to the vortex equations on this Q-bundle from solutions on E ′

and E. The quiver Q is the following:

•
aa

•  
==
•~~

The construction generalizes the one of [9] Lemma 4.2.

4.2.1. The Q-bundle associated to Hom
•(E ′, E). Let E = (V,W, β, γ) be a L-twisted

U(p, q)-Higgs bundle and E ′ = (V ′,W ′, β ′, γ′) a L-twisted U(p′, q′)-Higgs bundle. Let

us consider the following twisted Q-bundle Ẽ (the morphisms are twisted by L for each
arrow):

(4.2) Hom(W ′, V )
ff

φb

Hom(V ′, V )⊕ Hom(W ′,W )
&&

φd

φa

88
Hom(V ′,W )

φc

xx

where

φa(f1, f2) = (f2 ⊗ 1L) ◦ γ′ − γ ◦ f1 ,
φb(f1, f2) = (f1 ⊗ 1L) ◦ β ′ − β ◦ f2 ,

φc(g) = (β ◦ g, (g ⊗ 1L) ◦ β ′) ,

φd(h) = ((h⊗ 1L) ◦ γ′, γ ◦ h).

We will write briefly as Ẽ

Hom
12
ff φb

L

Hom
0

))
φd

L

φa

L

88
Hom

11

φc

L
uu

.

Note that Hom
1 = Hom

11 ⊕ Hom
12 and a0 = (φa, φb), where a0 : Hom

0 → Hom
1 is the

Hom-complex (2.4).
In this section, by using Proposition 2.11, we prove that if E ′ and E are α-polystable

then Ẽ is α-polystable for a suitable choice of α.
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Lemma 4.3. Let E = (V,W, β, γ) be a L-twisted U(p, q)-Higgs bundle and E ′ = (V ′,W ′, β ′, γ′)
a L-twisted U(p′, q′)-Higgs bundle. Suppose, moreover, we have solutions to the (τ1, τ2)-
vortex equations on E and the (τ ′1, τ

′
2)-vortex equations on E ′ such that τ1 − τ ′1 = τ2 − τ ′2.

Then the induced Hermitian metric on the Q-bundle Ẽ satisfies the vortex equations
√
−1ΛF (Hom

12) + φbφ
∗
b − φ∗

dφd = τ̃2IdHom
12 ,√

−1ΛF (Hom
0) + φcφ

∗
c + φdφ

∗
d − φ∗

aφa − φ∗
bφb = τ̃1IdHom

0 ,√
−1ΛF (Hom

11) + φaφ
∗
a − φ∗

cφc = τ̃0IdHom
11 .

For τ =
(
τ̃0, τ̃1, τ̃2

)
given by

τ̃0 = τ2 − τ ′1,

τ̃1 = τ1 − τ ′1 = τ2 − τ ′2,

τ̃2 = τ1 − τ ′2.

Proof. The vortex equations for E and E ′ are
√
−1ΛF (V ) + ββ∗ − γ∗γ = τ1IdV ,√
−1ΛF (W ) + γγ∗ − β∗β = τ2IdW ,√

−1ΛF (V ′) + β ′β ′∗ − γ′∗γ′ = τ ′1IdV ′ ,
√
−1ΛF (W ′) + γ′γ′∗ − β ′∗β ′ = τ ′2IdW ′.

We have

F (Hom
0)(ψ, η) = (F (V ) ◦ ψ − ψ ◦ F (V ′), F (W ) ◦ η − η ◦ F (W ′)).

Now we calculate φ∗
a and φ∗

b : for (f1, f2) ∈ Hom
0, g ∈ Hom

11 and h ∈ Hom
12 we have,

〈φ∗
a(g), (f1, f2)〉Hom

0

=
〈
g, φa

(
(f1, f2)

)〉
Hom

11

= 〈g, (f2 ⊗ 1L) ◦ γ′ − γ ◦ f1〉Hom
11

= 〈g, (f2 ⊗ 1L) ◦ γ′〉C11
− 〈g, γ ◦ f1〉Hom

11

= 〈(g ◦ γ′∗)⊗ 1L∗ , f2〉Hom(W ′,W ) + 〈−γ∗ ◦ g, f1〉Hom(V ′,V )

=
〈(

− γ∗ ◦ g, (g ◦ γ′∗)⊗ 1L∗

)
, (f1, f2)

〉
Hom

0

and

〈φ∗
b(h), (f1, f2)〉Hom

0 =
〈
h, φb

(
(f1, f2)

)〉
Hom

12

= 〈h, (f1 ⊗ 1L) ◦ β ′ − β ◦ f2〉Hom
12

= 〈(h ◦ β ′∗)⊗ 1L∗ , f1〉Hom(V ′,V ) − 〈β∗ ◦ h, f2〉Hom(W ′,W )

=
〈(
(h ◦ β ′∗)⊗ 1L∗ ,−β∗ ◦ h

)
,
(
f1, f2

)〉
Hom

0

Hence,

φ∗
a(g) = (−γ∗ ◦ g, (g ◦ γ′∗)⊗ 1L∗),

φ∗
b(h) = ((h ◦ β ′∗)⊗ 1L∗ ,−β∗ ◦ h).

By a similar calculation as above, we have

φ∗
c(f1, f2) = (f2 ◦ β ′∗)⊗ 1L∗ − β∗ ◦ f1,
φ∗
d(f1, f2) = (f1 ◦ γ′∗)⊗ 1L∗ − γ∗ ◦ f2.
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Let g ∈ Hom
11 and h ∈ Hom

12, then we have:

φ∗
cφc(g) = φ∗

c(β ◦ g, (g ⊗ 1L) ◦ β ′)

= β∗β ◦ g + g ◦ β ′β ′∗.

φ∗
dφd(h) = φ∗

d

(
(h⊗ 1L) ◦ γ′, γ ◦ h

)

= h ◦ γ′γ′∗ − γ∗γ ◦ h.
and

φbφ
∗
b(h) = φb(h ◦ β ′∗ ⊗ 1L∗ , β∗ ◦ h)

= h ◦ β ′∗β ′ − ββ∗.

φaφ
∗
a(g) = φa(g ◦ γ′∗ ⊗ 1L∗ ,−γ∗ ◦ g)

= g ◦ γ′∗γ′ + γγ∗ ◦ g.
Thus,

φbφ
∗
b − φ∗

dφd(h) = h ◦ β ′∗β ′ − ββ∗ ◦ h− h ◦ γ′γ′∗ + γ∗γ ◦ h
φaφ

∗
a − φ∗

cφc(g) = g ◦ γ′∗γ′ + γγ∗ ◦ g − β∗β ◦ g − g ◦ β ′β ′∗

Hence for g ∈ Hom
11 and h ∈ Hom

12 we have,

(
√
−1ΛF (Hom

11) + φaφ
∗
a − φ∗

cφc)(g)

=
√
−1Λ

(
F (W ) ◦ g − g ◦ F (V ′)

)
+ φaφ

∗
a − φ∗

cφc(g)

=
(√

−1ΛF (W ) + γγ∗ − β∗β
)
◦ g + g ◦

(
−

√
−1ΛF (V ′) + γ′∗γ′ − β ′β ′∗

)

= τ2IdW ◦ g − g ◦ τ ′1IdV ′

= (τ2 − τ ′1)g

(
√
−1ΛF (Hom

12) + φbφ
∗
b − φ∗

dφd)(h)

=
√
−1Λ

(
⊗ F (V ) ◦ h− h ◦ F (W ′)

)
+ φbφ

∗
b − φ∗

dφd(h)

=
(√

−1ΛF (V ) + γ∗γ − ββ∗
)
◦ h+ h ◦

(
−

√
−1ΛF (W ′) + β ′∗β ′ − γ′γ′∗

)

= τ1IdV ◦ h− h ◦ τ ′2IdW ′

= (τ1 − τ ′2)h.

Similarly for (f1, f2) ∈ Hom
0 we have,

φcφ
∗
c(f1, f2) = φc((f2 ◦ β ′∗)⊗ 1L∗ − β∗ ◦ f1)

=
(
ββ∗ ◦ f1 − β ◦ (f2 ◦ β ′∗ ⊗ 1L∗), f2 ◦ β ′∗β ′ − (β∗ ◦ f1 ⊗ 1L)⊗ β ′

)

φdφ
∗
d(f1, f2) = φd

(
(f1 ◦ γ′∗)⊗ 1L∗ − γ∗ ◦ f2

)

= (f1 ◦ γ′∗γ′ − γ∗ ◦ f2 ⊗ 1L ◦ γ′, γ ◦ (f1 ◦ γ′∗ ⊗ 1L∗)− γγ∗ ◦ f2)
and

φ∗
aφa(f1, f2) = φ∗

a

(
f2 ⊗ 1L ◦ γ′ − γ ◦ f1

)

= (−γ∗ ◦ f2 ⊗ 1L ◦ γ′ + γ∗γ ◦ f1, (f2 ◦ γ′γ′∗ − γ ◦ f1 ◦ γ′∗ ⊗ 1L∗)

φ∗
bφb(f1, f2) = φ∗

b

(
f1 ⊗ 1L ◦ β ′ − β ◦ f2

)

= (f1 ◦ β ′β ′∗ − β ◦ f2 ◦ β ′∗ ⊗ 1L∗, β∗ ◦ f1 ⊗ 1L ◦ β ′ − β∗β ◦ f2)



24 PETER B. GOTHEN AND AZIZEH NOZAD

So,

(φcφ
∗
c + φdφ

∗
d − φ∗

aφa − φ∗
bφb)(f1, f2)

= (ββ∗ ◦ f1 + f1 ◦ γ′∗γ′ − γ∗γ ◦ f1 − f1 ◦ β ′β ′∗, f2 ◦ β ′∗β ′ − γγ∗ ◦ f2 − f2 ◦ γ′γ′∗ + β∗β ◦ f2)
Hence we have,

(
√
−1ΛF (Hom

0) + φcφ
∗
c + φdφ

∗
d − φ∗

aφa − φ∗
bφb)(f1, f2)

=
(√

−1Λ(F (V ) ◦ f1 − f1 ◦ F (V ′)),
√
−1Λ(F (W ) ◦ f2 − f2 ◦ F (W ′))

)
+

(
ββ∗ ◦ f1 + f1 ◦ γ′∗γ′ − γ∗γ ◦ f1 − f1 ◦ β ′β ′∗, f2 ◦ β ′∗β ′ − γγ∗ ◦ f2 − f2 ◦ γ′γ′∗ + β∗β ◦ f2

)

=
(
(
√
−1ΛF (V ) + ββ∗ − γ∗γ) ◦ f1 + f1 ◦ (−

√
−1ΛF (V ′) + γ′∗γ′ − β ′β ′∗),

(
√
−1ΛF (W ) + γγ∗ − β∗β) ◦ f2 + f2 ◦ (−

√
−1ΛF (W ′) + β ′∗β ′ − γ′γ′∗)

)

=
(
(τ1 − τ ′1)f1, (τ2 − τ ′2)f2

)
.

The proof is completed, since by assumption τ1 − τ ′1 = τ2 − τ ′2. �

Theorem 4.4. Let E = (V,W, β, γ) be a L-twisted U(p, q)-Higgs bundle and E ′ =

(V ′,W ′, β ′, γ′) a L-twisted U(p′, q′)-Higgs bundle. Then the Q-bundle Ẽ is α-polystable
for α = (α, 2α) .

Proof. Since E and E ′ are α-polystable, from Theorem 2.11 follows that they support
solutions to the (τ1, τ2)- and (τ ′1, τ

′
2)-vortex equations where α = τ2 − τ1 = τ ′2 − τ ′1. Using

Lemma 4.3 it follows that the Q-bundle Ẽ admits a Hermitian metric such that vortex
equations are satisfied for τ = (τ2 − τ ′1, τ2 − τ ′2, τ1 − τ ′2). Now from Theorem 2.7 we get

that Ẽ is α-polystable for

α1 = τ2 − τ ′1 − τ2 + τ ′2 = α,

α2 = τ2 − τ ′1 − τ1 + τ ′2 = 2α.

�

4.2.2. Bound for χ(E ′, E). We are using the method in [9] and we start with some lemmas
needed to estimate χ(E ′, E).

Lemma 4.5. Let E = (V,W, β, γ) be a L-twisted U(p, q)-Higgs bundle and E ′ = (V ′,W ′, β ′, γ′)
a L-twisted U(p′, q′)-Higgs bundle. Let Hom

•(E ′, E) be the deformation complex of E and
E ′, as in (2.14). Then the following inequalities hold.

deg(ker(a0) 6 rk(ker(a0))
(
µα(E

′)− µα(E)
)

(4.3)

deg(im(a0) 6
(
rk(Hom

1)− rk(im(a0))
)(
µα(E)− µα(E

′)− deg(L)
)
−(4.4)

α
(
rk(Hom

1)− rk(im(a0))− 2 rk(coker(φb))
)
+ deg(Hom

1).

Proof. Assume that rk(ker(a0)) > 0 as if it is zero then (4.3) is obvious. It follows from

Proposition 4.4 that the Q-bundle Ẽ is α = (α, 2α)-polystable. We can define a subob-

ject of Ẽ by

K : 0
[[

ker(a0)
��

EE
0.

��
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It follows from the α-polystability that

µα(K) = µ(ker(a0)) + α 6 µα(Ẽ) = µα(E
′)− µα(E) + α.

Thus we have

µ(ker(a0)) 6 µα(E
′)− µα(E),

which is equivalent to (4.3). The second inequality is obvious when rk(im(a0)) = rk(Hom
1).

We thus assume rk(im(a0)) < rk(Hom
1). We define a quotient of the bundle Ẽ by

Q : coker(φb)⊗ L−1

kk
0
''

44
coker(φa)⊗ L−1xx

(we take the saturation if cokernels are not torsion free). By the α-polystability of Ẽ we
have

(4.5) µα(Q) = µ(Q)+2α
rk(coker(φb))

rk(coker(φa)) + rk(coker(φb))
> µα(Ẽ) = µα(E

′)−µα(E)+α.

Note that µ(Q) = µ(coker(a0))− deg(L). This and (4.5), together with the fact that

µ(coker(a0)) 6
deg(Hom

1)− deg(im(a0))

rk(Hom
1)− rk(im(a0))

,

lead us to (4.4). �

Lemma 4.6. Let E = (V,W, β, γ) be a L-twisted U(p, q)-Higgs bundle and E ′ = (V ′,W ′, β ′, γ′)
a L-twisted U(p′, q′)-Higgs bundle. Assume that p− q and p′− q′ have the same sign, and
suppose that the following conditions hold:

• − deg(L) 6 α 6 deg(L) and deg(L) > 2g − 2,
• E and E ′ are α-polystable with µα(E) = µα(E

′),
• the map a0 is not an isomorphism.

Then

χ(E ′, E) 6 1− g,

if the map a0 is not generically an isomorphism, otherwise χ(E ′, E) < 0.

Proof. By the estimates (4.3) and (4.4), we obtain

deg(ker(a0)) + deg(im(a0)) 6
(
µα(E

′)− µα(E)
)(

rk(ker(a0)) + rk(im(a0))− rk(Hom
1)
)

− α
(
rk(coker(φa))− rk(coker(φa))

)

− deg(L)
(
rk(Hom

1)− rk(im(a0))
)
+ deg(Hom

1).

As µα(E) = µα(E
′) we deduce

deg(Hom
0)− deg(Hom

1)

6 −α
(
rk(coker(φa))− rk(coker(φa))

)
− deg(L)

(
rk coker(φa) + rk coker(φa)

)

and so

(4.6) deg(Hom
0)− deg(Hom

1) 6

{
− deg(L) rk coker(φb) if − deg(L) 6 α 6 0

− deg(L) rk coker(φa) if 0 6 α 6 deg(L).

On the other hand we have

χ(E ′, E) = (1− g)
(
rk(Hom

0)− rk(Hom
1)
)
+ deg(Hom

0)− deg(Hom
1).
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Combining (4.6) with the above equality, we get

χ(E ′, E) 6

{
(1− g)

(
rk(Hom

0)− rk(Hom
1) + 2 rk coker(φb)

)
if − deg(L) 6 α 6 0

(1− g)
(
rk(Hom

0)− rk(Hom
1) + 2 rk coker(φa)

)
if 0 6 α 6 deg(L).

From hypothesis we have rk(Hom
0) > rk(Hom

1). If a0 is not generically an isomorphism
then either cases of the above inequality implies χ(E ′, E) 6 (1− g). Otherwise,

χ(E ′, E) = deg(Hom
0)− deg(Hom

1) < 0

since equality happens only if a0 is an isomorphism. �

5. Birationality of moduli spaces

Let αc, α
+
c and α−

c be defined as in Section 4.1,where ǫ > 0 is small enough so that αc
is the only critical value in the interval (α−

c , α
+
c ). Fix a type t = (p, q, a, b).

Proposition 5.1. Let αc be a critical value for twisted U(p, q)-Higgs bundles of type
t = (a, b, p, q). If either one of the following conditions holds:

(1) a/p−b/q > − deg(L), q 6 p and 0 6 α±
c <

2pq
pq−q2+p+q

(
b/q−a/p−deg(L)

)
+deg(L),

(2) a/p− b/q < deg(L), p 6 q and 2pq
pq−p2+p+q

(b/q−a/p+deg(L))−deg(L) < α±
c 6 0.

Then the codimension of the flip loci Sα±
c
⊂ Ms

α±
c

(t) is strictly positive.

Proof. From Propositions 3.27 and 2.23, Ms

α±
c

is smooth of dimension 1−χ(t, t). Hence,

using that by Lemma 2.19 χ(t, t) =
∑

16i,j6m

χ(ti, ti), we have

codimSαc
+ = dimMs

αc
+ (t)− dimSαc

+

= 1− χ(t, t)− dimSαc
+

= 1−
∑

i,j

χ(ti, tj)− dimSαc
+ ,

where ti, ti and m occur in Gr(E) =
⊕m

i=1Qi coming from a αc-Jordan-Hölder filtration
of E. Now using the inequality (4.1) we get that the codimension of the strictly semistable
locus is at least

min{1−
∑

i,j

χ(ti, tj) +
∑

i6j

χ(tj , ti) +
m(m− 3)

2
}

=min{−
∑

j<i

χ(tj , ti) +
m(m− 3) + 2

2
},

where the minimum is taken over all ti and m. Now we show that Qi and Qj satisfy
the hypotheses of Lemma 4.6. Using Proposition 3.11, the hypotheses (1) and (2) imply
that β and γ are injective, respectively. Therefore in both cases pj − qj and pi − qi have
the same sign, for all i, j. Note that there are some i and j such that the map a0 of the
Hom-complex Hom

•(Qj , Qi) is not an isomorphism, since otherwise End
•(E) will be an

isomorphism which is not possible. This is because for p 6= q we have rk(End
0) > rk(End

1)
which implies that the map a0 can not be an isomorphism, and for p = q it can be an
isomorphism only if β and γ both are isomorphisms but this is not possible since these
maps are twisted with a degree positive line bundle.

Hence we have that −χ(tj , ti) > 0 and therefore

codimSαc
+ > min{m(m− 3) + 2

2
}.
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Clearly, the minimum is attained when m = 2 giving the result. �

Remark 5.2. For q = 1, one might have hoped to obtain a stronger result in Proposi-
tion 5.1, based on (1) of Proposition 4.2. The problem is that we also need to satisfy the
hypotheses of Lemma 4.6 and this requires injectivity of β or γ.

From Proposition 5.1 we immediately obtain the following.

Theorem 5.3. Fix a type t = (p, q, a, b). Let αc be a critical value. Suppose that either
one of the following conditions holds:

(1) a/p−b/q > − deg(L), q 6 p and 0 6 α±
c <

2pq
pq−q2+p+q

(
b/q−a/p−deg(L)

)
+deg(L),

(2) a/p− b/q < deg(L), p 6 q and 2pq
pq−p2+p+q

(b/q−a/p+deg(L))−deg(L) < α±
c 6 0.

Then the moduli spaces Ms

α−
c

(t) and Ms

α+
c

(t) are birationally equivalent. In particular, if

either of the conditions of Lemma 2.13 holds then the moduli spaces Mα−
c
(t) and Mα+

c
(t)

are birationally equivalent.

Remark 5.4. In view of Remark 3.12, non-emptiness of the intervals for α±
c in the pre-

ceding theorem bounds the Toledo invariant. Thus the ranges for the Toledo invariant
τ = 2pq

p+q
(a/p− b/q) for which the statement of the theorem is meaningful are:

(1) − 2pq
p+q

deg(L) < τ < −(q − 1) deg(L));

(2) (p− 1) deg(L) < τ < 2pq
p+q

deg(L).

Note that in case (1) we have q 6 p and hence − 2pq
p+q

deg(L) 6 −q deg(L), while in case

(2) we have p 6 q and hence p deg(L) 6 2pq
p+q

deg(L).

Finally we have the following corollary.

Theorem 5.5. Let L = K and fix a type t = (p, q, a, b). Suppose that (p + q, a + b) = 1
and that τ = 2pq

p+q
(a/p− b/q) satisfies |τ | 6 min{p, q}(2g− 2). Suppose that either one of

the following conditions holds:

(1) a/p−b/q > −(2g−2), q 6 p and 0 6 α < 2pq
pq−q2+p+q

(
b/q−a/p−(2g−2)

)
+2g−2,

(2) a/p− b/q < 2g − 2, p 6 q and 2pq
pq−p2+p+q

(b/q − a/p+ 2g − 2)− (2g − 2) < α 6 0.

Then the moduli space Mα(t) is irreducible.

Proof. Recall that the value of the parameter for which the non-abelian Hodge Theorem
applies is α = 0. Thus, using [8, Theorem 6.5], the moduli space M0(t) is irreducible
and non-empty (both the co-primality condition and the bound on the Toledo invariant
are needed for this). Hence the result follows from Theorem 5.3. �

Remark 5.6. Note that unless p = q, the conditions on a/b−b/q in the preceding theorem
are guaranteed by the hypothesis |τ | 6 min{p, q}(2g − 2) (cf. Remark 5.4).

Remark 5.7. In the non-coprime case it is known from [8] that the closure of the stable
locus in M0(t) is connected (however, irreducibility is still an open question). Thus, in
the non-coprime case, the closure of the stable locus of Mα(t) is connected under the
remaining hypotheses of the preceding theorem.
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[3] L. Álvarez Cónsul, O. Garćıa-Prada and A. H. W. Schmitt, On the geometry of moduli spaces of
holomorphic chains over compact Riemann surfaces, Internat. Math. Res. Papers, Art ID 73597
(2006) 1–82.

[4] I. Biswas and S. Ramanan, An infinitesimal study of the moduli of Hitchin pairs, J. London Math.
Soc. (2)49 (1994), 219–231.

[5] O. Biquard, O. Garcia-Prada, and R. Rubio, Higgs bundles, Toledo invariant and the Cayley corre-
spondence, arXiv:1511.07751v2 [math.DG] (2015), http://arxiv.org/abs/1511.07751.

[6] S. B. Bradlow, Special metrics and stability for holomorphic bundles with global sections, J. Differ-
ential Geom. 33 (1991), 169–213.
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