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Abstract

In this article, we present and discuss the infi-
nite horizon problem of optimal stabilization. Be-
sides, the optimality conditions in the form of an
Hamilton-Jacobi-Bellman equation, we present also
a method to define a feedback control strategy.

1 INTRODUCTION

In this article, we present and discuss the infi-
nite horizon problem of optimal stabilization. Be-
sides, the optimality conditions in the form of an
Hamilton-Jacobi-Bellman equation, we also present
a method to synthesize a feedback control strategy.

In many references, by optimal stabilization it is
meant time-optimal stabilization, i.e. finding a con-
trol that steers a system to the origin in minimum
time. However, here, our goal is substantially dif-
ferent.

Given a dynamic control system and a set in
the state space containing at least one equilibrium
point, we are interested in finding a feedback con-
trol strategy which stabilizes the system in the sense
that the corresponding trajectory converges asymp-
totically to an equilibrium point and, simultane-
ously, minimizes a given cost functional.

Notice that the value of the optimal cost de-
pends not only on the equilibrium point, but also
on the particular trajectory driving the system to
this point.

The literature reveals a vast demand for the type
of result that we consider in this article. A small
sample of practical optimal stabilization problems
include micro-electro-mechanical (MEMS) control
systems [4], economic systems under a variety of
constraints and assumptions, [3, 10, 16], rigid body
mechanical systems [8], biological, medical, health
care systems [9], and general chaotic systems [1], to
name just a few.

This contrasts strikingly with the what seems to
be the small body of results in the general non-
linear dynamic optimization framework addressing
the pertinent issues. See for example [17] for results
on the stabilization and minimax optimal control in

the context of stochastic control systems, and [11]
for a very specific problem and approach.

The problem of stabilizing general nonlinear dy-
namic control systems has been receiving a consid-
erable attention in the control literature, [13, 14, 6,
15] and references cited therein. It has also emerged
the important role of dynamic optimization results
and techniques and methods of nonsmooth analysis
to derive stability results, see [6, 5].

However, to the best of our knowledge no re-
sults have been derived for optimal control prob-
lems where control strategies are restricted to the
subset of stabilizing ones.

This article is organized as follows. In the next
section, we introduce a precise and detailed state-
ment of our problem. Then, in section three,
the Hamilton-Jacobi-Bellman equation correspond-
ing to this problem is presented followed in the en-
suing section by the definition and pertinent results
concerning the verification function. In section five,
a mechanism of feedback synthesis based on a dy-
namic programming approach is presented and a
result on the convergence of a sequence of sampled
feedback control processes is discussed and proved.
Finally, some brief conclusions are presented.

2 PROBLEM STATEMENT

Let us consider the following dynamic control sys-
tem {

ẋ(t) = f(x(t), u(t)), t ∈ [τ,+∞) a.e.,
x(τ) = z,

(1)

where

u ∈ U := {u(·)∈L∞[τ,∞) : u(t)∈Ω⊂Rm a.e.}, (2)

with Ω being a closed convex set. Assume that the
closed set S ⊂ Rn, called target set, contains at
least an asymptotic equilibrium of the former, i.e.,
∃ ξ∈S and ū(·)∈U such that xū(·), the response of
the system to the control ū with xū(τ) = z, satisfies

xū(t) → ξ as t →∞.



We consider the following optimal control prob-
lem:

P∞(τ, z) Minimize g(ξ)+
∫ ∞

τ

e−δtf0(x(t), u(t))dt(3)

subject to (1), (2), and
x(t) → ξ as t →∞, (4)
ξ ∈ S ⊂ Rn (5)

Here, the constant δ > 0 is the discount rate,
f0 : Rn×Rm → R and f : Rn×Rm → Rn are given
functions, and S ⊂ Rn is a closed set.

This is an infinite time horizon problem in which
the optimization is taken over arcs x such that x(t)
converges asymptotically to an equilibrium point ξ
of (1), and the ξ is also a choice variable. The pair
(x, ξ) satisfying the constraints (1), (2), (4), and
(5) is called an admissible process of P∞(τ, z). We
sometimes refer to an admissible arc x leaving im-
plicit the existence of ξ∈S such that the pair (x, ξ)
is an admissible process of P∞(τ, z).

We now clarify the sense of the convergence
x(t)→ ξ as t goes to ∞. We remind the reader
that the optimal trajectory must reach or approach
S, but may not stop in the first point in S. It can
happen that to minimize g over points in S which
are limits of admissible trajectories, the optimal tra-
jectory must reach S and stays there for a long time
before approaching the optimal ξ ∈ S.

To replace the convergence restriction with a
more tractable condition we found convenient to in-
troduce the following.

We say that x(t)→ξ∈S, as t→∞, for some x̄∈Rn,
if for some γ>0,

∫ t

τ
eγs‖x(s) − ξ‖ds is finite for all

t ∈ [τ,∞).
We point out that the choice of γ is dependent

on the specific application being considered.
Observe that we have here the problem of mini-

mizing some cost function restricted to admissible
arcs which are convergent to a critical point of f .
This fact can be regarded as restriction defined as
above. Standard theories for optimal control are
not capable of dealing with this type of constraint
directly.

We propose to include this restriction as a penal-
ized cost added to the cost function in the origi-
nal problem. The reason is that we only need that
the integral be finite. So, we substitute problem
(P∞(τ, z)) by a l-parameterized problem posed as
follows:

Minimize

g(ξ)+
∫ ∞

τ

e−δtf0(x(t), u(t))dt+
∫ ∞

τ+l

eγs‖x(s)− ξ‖ds (6)

subject to (1), (2), and
ξ ∈ S ⊂ Rn. (7)

Note that when l →∞ we expect that∫ ∞

τ+l

eγs‖x(s)− ξ‖ds

will go to zero, thus recovering the original opti-
mization problem without the explicit restriction.

Having done that, we show how to construct
an (almost) optimal feedback control for problem
P∞(τ, ξ). The proposed framework allows us to con-
struct feedback controls which stabilizes the system
of problem P∞(τ, ξ) while optimizing it.

Let us now set up our basic assumptions.
Let F : [0,∞)×Rn××Rm → R×Rn+1 be defined

by

F (t, x, u) = col{e−δtf0(x, u), f(x, u)}.

We will require the data of our problem to satisfy
the following assumptions:

H1) F is a continuous and F (t, ·, u) is locally Lips-
chitz;

H2) There exists c > 0 such that

F (t, x, u) ∈ c(1+‖x‖)B ∀(t, x) ∈ [0,∞)×Rn;

H3) ∀(t, x) ∈ [0,∞)×Rn the set F (t, x, Ω) is convex
valued;

H4) The set Ω is compact; and

H5) g is lower semicontinuous.

3 Hamilton-Jacobi-Bellman
Equation

In this work we will propose to construct an optimal
solution of optimal stabilization problem by using
the concept of verification function. It happens that
verification functions, which will be defined in the
next section, can be shown to be solutions of the
so called Hamilton-Jacobi-Belmman (HJB) partial
differential equation related to the control problem.

Let H : [0,∞)×Rn×Rn → R denote the Hamil-
tonian function defined, for this problem by

H(t, x, η) := sup
v∈Ω

{〈η, f(x, v)〉+ e−δtf0(x, v)}. (8)

Then, the continuous function φ : [τ,∞)×Rn → R
is said to be the well known viscosity solution to
the HJB equation if

φt(t, x)−H(t, x,−φx)) = 0 ∀(t, x) ∈ [τ,∞)× Rn,

if

∇tw(t, x)−H(t, x,−∇xw(t, x))
{
≤ 0
≥ 0 (9)

∀(t, x) ∈ [0,∞) × Rn where, for any C1 function
w : R × Rn → R, the function (φ− w)(·, ·) has, re-
spectively, a local minimum and a local maximum.



This solution concept satisfies the uniqueness and
nonsmoothness requirements of the generalized so-
lution to the HJB equation, but, when endpoint
state constraints are present, a characterization of
an extended valued, lower semicontinuous solution
is needed. So, we need the concept of general-
ized gradient, more specifically the proximal sub-
gradient, which is used here.

The proximal sub-gradient of a function Φ at
(t, x), denoted by ∂P Φ(t, x), is the set of all vec-
tors (α, ξ) ∈ R1+n such that there exists σ > 0 and
a neighborhood U of (t, x) with

Φ(τ, y) ≥ Φ(t, x) + α(τ − t) + 〈ξ, y − x〉
−σ(‖τ − t‖2 + ‖y − x‖2), (10)

for all (τ, y)∈U . Analogously, the proximal super-
gradient of a function Φ at (t, x), denoted by
∂P Φ(t, x), is the set of all vectors (α, ξ) ∈ R1+n,
such that there exists σ > 0 and a neighborhood U
of (t, x) with

Φ(τ, y) ≤ Φ(t, x) + α(τ − t) + 〈ξ, y − x〉
−σ(‖τ − t‖2 + ‖y − x‖2), (11)

for all (τ, y) ∈ U . Alternatively, the proximal
super-gradient can be defined by ∂P Φ(t, x) =
−∂P (−Φ)(t, x).

Now, we are equipped to present the concept of
proximal solution to the HJB equation.

Definition 1 A lower semicontinuous function v :
[τ,∞)×Rn → R ∪ {+∞} is a proximal solution to
the HJB equation if ∀(t, x) ∈ [τ,∞)×Rn, such that
∂P v(t, x) 6= ∅,

η0 −H(t, x,−η) = 0, ∀(η0, η) ∈ ∂P v(t, x). (12)

There are well known results in the literature
providing a characterization of the value function,
V : R×Rn → R, for an optimal control problem (for
our problem in this article V (τ, z) := Inf{P∞(τ, z)})
as a generalized lower semicontinuous solution to
the HJB equation (see for example Theorem 12.3.7
in [18]). For the infinite time horizon, such a result
was derived in [2].

Clearly, invariance type results provide more
detailed information on optimal control processes
than this characterization of the value function and
thus we proceed with the definition and properties
of verification functions in the next section.

4 Local Verification Functions

Next we provide a result, which is standard in Dy-
namic Programming, for the conventional optimal
control problem. In fact, we extend the concept of
local verification function for this new problem for-
mulation and provide weak conditions under which

the existence of a verification function for a refer-
ence process (x̄, ξ̄, ū) is a necessary and sufficient
condition for it to be optimal.

Let x̄ be an admissible arc of problem P∞(τ, z).
Introduce the tube T (x̄, ε) about x̄:

T (x̄, ε) := {(t, x) ∈ [τ,∞)× Rn : ‖x− x̄(t)‖ ≤ ε}
(13)

Definition 2 A function φ : T (x̄, ε) → R ∪ +∞ is
a lower semicontinuous local verification function
for (x̄, ξ̄, ū) if φ is lower semicontinuous and the
following conditions are satisfied.

1. ∀(t, x) ∈ int T (x̄, ε) such that ∂P φ(t, x) 6= ∅,

η0 + min
u∈Ω

{η · f(x, u) + e−δtf0(x, u)} ≥ 0,

∀ (η0, η) ∈ ∂P φ(t, x).

2. lim inf
t→∞

φ(t, ξ) ≤ g(ξ)+
∫ ∞

τ

e−δtf0(x(t), u(t))dt,

∀ξ∈S for any admissible control process (x, u).

3. lim inf
t↑∞,ξ′→ξ

φ(t, ξ
′
) = lim inf

t↑∞
φ(t, ξ) for all ξ ∈ S ∩

[ξ̄ + εB].

4. φ(τ, z) = g(ξ̄) +
∫ ∞

τ

e−δtf0(x̄(t), ū(t))dt.

We have the following necessary and sufficient
conditions of optimality.

Theorem 1 Let (x̄, ξ̄, ū) be an admissible process
of problem P∞(τ, z). Assume that the basic hy-
potheses (H1)− (H5) hold. We have the following.

1. If there exists a lower semicontinuous local ver-
ification function for (x̄, ξ̄, ū), then this control
process is a strong local minimizer for P∞(τ, z).

2. Conversely, if (x̄, ξ̄, ū) is a strong lo-
cal minimizer of P∞(τ, z) and |g(ξ)| +
|
∫∞

τ
f0(x(t), u(t))dt| is bounded for all admis-

sible processes (x, ξ, ū), then there exists a a
lower semicontinuous local verification func-
tion for (x̄, ξ̄, ū).

The proof is a slight modification of a similar re-
sult for finite time interval problems in [18].

Take T > 0 large with T > τ + 1 and consider
the approximate problem of PT (τ, z) of (P∞(τ, z)).

Min J(x, u) (14)
subject to (1), (2), and

x(T ) ∈ S. (15)

Here B is the unit ball of Rn and J(x, u) is given
by



g(x(T )) +
∫ T

τ

e−δtf0(x(t), u(t))dt

+
∫ T

T−1

eγs‖x(s)− x(T )‖ds.

The logic behind this approximating problem is
that when T →∞ the last term in the cost function
is hopefully forced to go to zero and we can show
that there is subsequence x(Tk) that converges to
some point ξ ∈ S.

Let us now define verification function for a pro-
cess (x̄, ū) of problem PT (τ, z).

Definition 3 φ : T (x̄, δ) → R ∪ {∞} is a lower
semicontinuous local verification function for x̄ with
parameter δ > 0 if φ is lower semicontinuous and
satisfies:

a) ∀(t, x) ∈ intT (x̄, δ) such that ∂P φ(t, x) 6= ∅,

η0 + min
u∈Ω

{〈η, f(x, u)〉+ f0(x, u)} ≥ 0 (16)

∀(η0, η) ∈∂Pφ(t, x).

b) φ(T, ζ) ≤ g(z), ∀ζ ∈ S.

c) lim
t′↑T,x′→ζ

inf φ(t′, x′) = φ(T, ζ), ∀ζ∈S∩[x̄(T )+δB].

d)

φ(τ, z) = g(x̄(T ))+
∫ T

τ

e−δtf0(x̄(t), ū(t))dt

+
∫ T

T−1

eγs‖x̄(s)− x̄(T )‖ds.

We have the following result which can be found in
[18].

Theorem 2 Let (x̄, ū) be an admissible process of
problem PT (τ, z). Assume that the basic hypotheses
(H1)− (H5) hold. We have the following:

1. If there exists a lower semicontinuous local ver-
ification function for (x̄, ū), then this control
process is a strong local minimizer for PT (τ, z).

2. Conversely, if (x̄, ū) is a strong local
minimizer of PT (τ, z) and |g(x̄(T ))| +

|
∫ T

τ

f0(x̄(t), ū(t))dt +
∫ T

T−1

eγs‖x(s) − x(T )‖ds|

is bounded for all admissible processes (x̄, ū),
then there exists a a lower semicontinuous
local verification function for (x̄, ū).

5 FEEDBACK SYNTHESIS

The algorithm for feedback control synthesis for
problem P∞(τ, z) is presented and discussed in this
section.

We draw the attention for the fact that the algo-
rithm constructed here yields an approximation to
the minimum, i.e., the true optimal solution.

In this construction we use a standard procedure
[18] modified in order to force the state to reach the
target set S. Moreover, once S is attained, the state
is forced to remain there until the optimal point
ξ ∈ S is reached in finite time or asymptotically
approached.

A partition π = {tk} of [τ,∞) is a countably,
strictly increasing sequence tk such that ti > tj ,
whenever i > j, tk → ∞ as k → ∞. The diameter
of π, denoted by hπ, is defined by sup

k≥0
{∆k}, where

∆k = tk+1 − tk. Let us assume that τ = 0.
Let φ be a given local verification function as de-

fined in the previous section computed according to
the definition.

Let x ∈ Rn be a given state. Define

U(x) := {u ∈ Ω, 〈NP
S (pS(x)), f(x, u)〉 ≤ 0}

where pS(x) is the proximal point of x at S.
Let us start with x(0) = x0. Then, an approx-

imating optimal control process is constructed re-
cursively by computing a piecewise constant control
function given, for each k = 0, 1, . . . by

ūπ
k ∈arg max

u∈U(xπ(tπ
k ))

{
φ
(
tπk , xπ(tπk ) + ∆kf(xπ(tπk ), u)

)
+∆kf0(xπ(tπk ), u)

}
and the corresponding trajectory is obtained by in-
tegrating the dynamics differential equation with
the obtained control and the boundary condition
given by the last value of the state variable in the
previous time subinterval of the partition. Namely,
xπ(t) is defined on [tπk , tπk+1) as the solution of

ẋ(t) = f(t, x(t), ūπ
k ) a.e.t ∈ (tπk , tπk+1],

with initial value x(tπk ) given by the value of the
state variable in the previous interval.

We have the following main result of this work.

Theorem 3 Assume that hypotheses (H1)-(H5)
hold true. Let φ be a lower semicontinuous solution
to the Hamilton-Jacobi-Bellman equation. Take
(xπ, uπ), the control process obtained by the recur-
sive procedure described above. Then, xπ has a clus-
ter point with respect to the topology of uniform con-
vergence on compact intervals, and, associated with
such a point x(·), there is a pair, control u(·) and
limit point ξ, such that (x(·), ξ, u(·)) is an optimal
process of P∞(0, x0).



We just outline the proof here. Given N ∈ N ,
there exist a partition π(N), and a corresponding
process (xπ, uπ) constructed by the procedure de-
scribed above, such that (xπ, uπ) restricted to the
time interval [0, TN ] is admissible for the slightly
perturbed problem PTN

(0, x0), defined by:

Min J(x, u) (17)
subject to (1), (2), and

x(TN ) ∈ S +
1
N

B. (18)

Let us denote this problem by PN . Our aim is to
extract the limit as N → ∞ to recover the origi-
nal problem. So, we assume that the sequence TN

satisfies TN →∞ as N →∞.
Under assumptions (H1) − (H5), it is easy to

show that {xπ}(·) has a cluster point, x̄N (·), on
[0, TN ]. Here, we are using the topology of uni-
form convergence on [0, TN ]. It is also possible to
show that, by using Filippov’s selection theorem
(see [18], for example) that there exists ūN such
that (x̄N (·), ūN (·)) is an optimal process for PN .

Since x̄N (TN ) ∈ S + (1/N)B and S is compact,
there exists a subsequence of x̄N (TN ) converging
to some point ξ ∈ S. We denote it by {x̄N

k } and
consider the corresponding processes (x̄N

k (·), ūN
k (·))

on the respective intervals [0, Tk], k = 1, 2, . . .. Tk

is a subsequence of TN .
Now, we show how to obtain the optimal con-

trol process for the original problem. Restrict
(x̄N

k (·), ūN
k (·)) to [0, T1]. Again it is possible to show

that x̄N
k (·) has a cluster point, x1(·), in the uniform

convergence topology on [0, Tk] and there exists a
corresponding control function u1(·). Now, by con-
sidering this subsequence (x̄N

k (·), ūN
k (·)) restricted

to [0, T2] for k = 2, 3, . . . and repeating the same ar-
gument as before, we can find a process (x2(·), u2(·))
satisfying (1) and (2) restricted to [0, T2], in which
(x2(·) is a cluster point of (x̄N

k (·).
Continuing this process, for all k ∈ N , we can

show (xk(·), uk(·)) satisfying (1) and (2) restricted
to [0, Tk], in which (xk(·) is a cluster point of (x̄N

k (·)
For each T > 0, there exists k ∈ N such that

T ∈ [Tk−1, Tk].
Define (x̄(t), ū(t)) : [0,∞) → Rn × Rm by

(x̄(t), ū(t)) ≡ (xk(t), uk(t)) t ∈ [0, T ]. (19)

Lemma 4 We have the following.

1. The function given by (19) is well defined.

2. ((x̄(t), ξ̄, ū(t))) is an optimal process for
P∞(0, x0).

(x̄(t), ū(t)) is well defined by construction. The sec-
ond assertion follows from the existence of φ and
from Theorem 1.

6 CONCLUSIONS

We propose and study an infinite time horizon con-
trol optimization problem in which a given objective
functional is optimized by choosing control strate-
gies which ensure the stabilization of the dynamic
control systems within a given target set for the case
in which the system is set invariant. Therefore, the
trajectory associated the optimal control process
converges asymptotically to an optimal equilibrium
within a given target set. We provided a dynamic
programming based algorithm which yields an con-
trol process defined in a feedback form that approx-
imates the optimal process whose state trajectory
state approximates exponentially the optimal equi-
librium point.

The method proposed here is modification of pre-
vious construct in [12] for a simpler problem. In this
article, the model is finite time interval and there
are no target set or set constraints.
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