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Abstract. Companies are continuously under pressure to innovate their products and processes. In 

Portugal, there are already several examples of enterprises that have chosen research groups, 

associated to universities, to straighten collaboration seeking the development of new materials and 

advanced technological processes, to produce components with complex shapes, high surface 

quality, and others, at low cost, for continuously more demanding applications. Unfortunately, these 

cases are still a very small number, and many efforts have to be done to enlarge the collaboration 

university-companies. Ti and other reactive alloys are important groups of metals that are under 

intense and continuous research and development. For example, the high mechanical properties, low 

density, osteointegration behavior, corrosion resistance to fluids and tissues of the human body, the 

ability to be sterilized, and the possibility to obtain complex shapes, makes Ti a very attractive 

material for medical applications. The investment casting process, using lost wax or lost rapid 

prototyping models, allows designers a great amount of freedom and capacity to quickly produce 

castings of high dimensional accuracy and excellent surface quality suitable for different 

applications. Many of the castings obtained by this process are immediately ready for use, avoiding 

costly machining operations and joining processes, making the process very attractive to produce 

precision parts in Ti and other reactive alloys. However, the high reactivity of the Ti raises several 

compatibility problems with the traditional materials employed on the ceramic shells for casting 

steels and non ferrous alloys. The fragile surface layer obtained on the interface Ti-ceramic shell, 

result of the Ti reaction with oxygen and nitrogen of the shell, significantly reduces the mechanical 

properties of the cast parts, making them useless. The aim of the present work is the study of the 

interface properties of the Ti-ceramic shell, in order to be able to manufacture ceramic shells of low 

chemical reactivity for the investment casting process of reactive alloys, namely; titanium alloys, 

inconel, aluminotitanates, and others. Ceramic shells manufactured with calcium and yttria 

stabilized zirconia and other non reactive ceramics were employed and the metallic interface 

characterized in terms of microscopic and microhardness properties. 

Introduction 

Investment casting of titanium alloys is increasingly used in aeronautical and aerospatial 

construction and medical applications. For components that are under mechanical, fatigue, creep 

and thermal stresses, these alloys, such as TiAl6V4, and more recently, titanium aluminates, 

represent significant savings in weight, while providing the necessary static and dynamic strength 

and biocompatibility [1, 2]. However, a broader application of these alloys is strongly limited by its 

higher cost, relative to competing materials, such as Al, Ni, Co and Fe alloys, and also by the high 

reactivity of these alloys with almost all ceramic materials currently applied in precision foundry. 

Cast these alloys requires special equipment and conditions, and special knowledge and techniques 

that are not published, since titanium is very reactive in the molten state. Coating the pattern with 

the usual ceramic slurries (based on silica and aluminosilicates) generates a reaction with the Ti 

alloys, with a formation of a 0,3 - 0,6 mm very hard, fissured and weak reaction layer, called alpha-
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case [3]. This surface layer, result of the Ti reaction with the metallic oxides of the ceramic shells, is 

composed by fragile, intermetallics compounds that significantly reduce the mechanical properties 

of the casted parts [4]. To overcome this problem, titanium alloys should be poured into special 

ceramic shells that avoid or significantly reduces this reaction. To select the most suitable ceramics 

it is necessary to take into account the standard free energy change of oxides formation. Ceramics, 

such as CaO, ZrO2, Y2O3 and ThO2 have been adopted for mold materials, due to the standard free 

energy changes of oxides formation that are more negative than TiO2 as one can see in Fig. 1 [3, 5]. 

The only oxide that is placed above the TiO2 line is SiO2, indicating that this oxide is not suitable to 

be incorporated in the shells to cast Ti. Fig. 2 presents an example of one Ti part obtained by 

investment casting. 

 
Fig. 1 Standard free energy variation of oxides formation with the temperature [5]. 

 

 
Fig. 2 From the top to down: Wax pattern with the pouring system, ceramic shell and Ti casted part 

placed over the composite mould used to inject the wax model. 

Experimental work 

Shells Production: In order to test the reactivity of different ceramic materials with Ti and its 

alloys, ceramic shells were manufactured over wax models (cylinders of 10 mm diameter and 15 

mm height), using a process developed at INEGI (Institute of Mechanical Engineering and Industrial 

Management, Portugal). Table 1 indicates the ceramics and binder employed. The selection of these 

ceramic raw materials was done considering the data of Fig. 1 and the availability of the respective 

commercial products. After manufacturing the entire shell layers the ceramic moulds were sintered 

for 2 h at 1100 ºC. 

Melting and Casting: Melting and casting at IFIMUP - Instituto de Física dos Materiais da 

Universidade do Porto, of the selected alloy, Ti10V2Fe3Al, was performed in a vacuum levitation 

cold crucible, inside a high frequency induction furnace. The pressure was 5x10
-4
mbar, 
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subsequently filled with high purity argon (99,9999%) at 800-900 mbar. After melting, pouring, and 

cooling for 10 minutes the mold was removed from the furnace. 

Metal-Mold Reaction: The reaction layer of the castings was characterized by microstructural 

analysis of the metal-mold interface, using an optical microscope (Olympus PMG3) and a scanning 

electron microscope (Jeol JSM-6301F). The microhardness (HV) profile (Shimadzu HVM-2000) of 

this region was also obtained. The samples were polished using Struers consumables and 

equipment, accordingly to the suggestions indicated in ref. [7], and followed by etching with Kroll’s 

reagent: 1-3ml HF, 2-6 ml HNO3, H2O to 1000 ml. 
 

Table 1 – Composition of the ceramic shells first layer slurry. 

Ceramic flours (all particles under 45 µm) Binder [6] 

Yttria stabilized Zirconia (ZrO2 – 6% wt Y2O3) Silica based 

Calcia stabilized Zirconia (ZrO2 – 3% wt CaO) Silica based 

Yttria (Y2O3) Silica based 

Results and discussion 

The microstructures obtained are shown in Fig. 3. As one can see the samples surface (right side) 

characteristics are very different from the inner microstructure, however the microstructure of the 

nucleus is similar for all the three cases. Fig. 4 presents the microhardness profile of this region. 
 

 
Fig. 3 Microstructure of the Ti10V2Fe3Al alloy casted in: a) ZrO2-Y2O3 ceramic mould, b) ZrO2-

CaO ceramic mould and c) Y2O3 ceramic mould. 
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Fig. 4 Microhardness profiles as a function of the distance from the surface for mold materials. 

 

The microhardness profiles of the samples casted in ZrO2-Y2O3 and ZrO2-CaO mould are 

similar. The depth of the alpha-case is around 0,55 mm for ZrO2-CaO ceramic mould and 0,45 mm 

for ZrO2-Y2O3. Y2O3 shell almost does not produce alpha-case because microhardness values 

(around 350HV) are kept constant independently of the surface distance. To explain these different 

behaviors, the samples were observed by SEM and EDS (Figs. 5 and 6). The chemical composition 

(Fig. 6) was analyzed in the areas marked on the photomicrographs of Fig. 5 (Z). Although the 

a) b) c) 
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differences detected on the microstructure, the chemical composition was kept the same and 

corresponds to the main elements present in the alloy: Ti, V, Al and Fe (Fig. 6). The presence of O, 

N, Si, Zr, Ca and Y was not detected by the used facilities. 
 

 
Fig. 5 Microstructure of Ti10V2Fe3Al alloy casted in ceramic moulds of: a) ZrO2-Y2O3, b) ZrO2-

CaO and c) Y2O3. 

 
Fig. 6 EDS analysis of Ti10V2Fe3Al samples. 

 

In order to identify the causes to the microhardness values obtained, the microstructures were 

examined at a higher magnification (Figs. 7 - 9). 
 

 
Fig. 7 Microstructure of Ti10V2Fe3Al alloy casted in a ZrO2-Y2O3 mold: a) inner region, b) 

transition zone and c) surface. 

 

 
Fig. 8 Microstructure of Ti10V2Fe3Al alloy casted in a ZrO2-CaO mold: a) inner region, b) 

transition zone and c) surface. 

a) b) c) 

a) b) c) 

a) b) c) 
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Fig. 9 Microstructure of Ti10V2Fe3Al alloy casted in a Y2O3 mold: a) inner region, b) transition 

zone and c) surface. 

 

In Ti10V2Fe3Al samples casted in yttria or calcia stabilized zirconia there is a clear transition 

between the two areas (Figs 7 and 8 b)).This transition region does not appear in the sample casted 

in the yttria ceramic mold (Fig. 9). 

Conclusions 

Investment casting of reactive alloys, such as Ti, is a challenging process due to the high reactivity 

of these materials with the atmosphere and ceramic molds. To develop a process capable to produce 

sound parts without alpha-case, the authors produced and tested different ceramic compositions that 

conducted to the following conclusions: 

- It is possible to obtain ceramic shells using ZrO2-Y2O3, ZrO2-CaO and also Y2O3 aggregated 

with a silica based binder. 

- CaO stabilized ZrO2 or Y2O3 stabilized ZrO2 employed in the first layer of the ceramic 

shells, produces similar alpha case depths, around 0,45 to 0,55 mm. 

- The alpha-case layer does not seem to be caused by chemical composition changes at the 

surface analyzed by EDS. In the future other techniques must be used. 

- Y2O3 ceramic mold almost does not promote the formation of alpha-case and can be 

regarded as a promising ceramic mold material for the investment casting of Ti alloys. 

- Maximum alpha-case microhardness is about 730HV at both samples surface (casted in 

ZrO2-Y2O3 and ZrO2-CaO moulds). 
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