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Abstract—This paper presents an algorithm, Total Mass Target
Controlled Infusion (TCI) system, including n on line parameter
estimation scheem along with a a mass control for compartmental
systems. The system comprises an On line tuned Algorithm
for Recovery Detection (OLARD) applied after an initial bolus
administration and a Bayesian identification method based on
sparse measurements on the accessible signal which aims to
minimize a Bayesian cost function. To design the drug dosage
profile, two algorithms are here proposed. During the transient
phase, an Input Variance Control (IVC) algorithm is used. It is
based on the concept of TCI and aims to take the drug effect
to a predefined target within an apriori defined interval of time.
Afterward the drug dose regimen is controlled by a Total Mass
Control (TMC) algorithm. The mass control for compartmental
systems is robust even in the presence of parameter uncertainties
. The whole system feasibility have been evaluated for the case
of Neuromuscular Blockade (NMB) level and was tested both in
simulation and in real cases.

I. INTRODUCTION

Automation in biomedicine undoubtly plays an important
role in the improvement of health care, which claims for robust
and secure technologies. This is particularly true when we
want to determine and apply the adequate drug dosage regimen
to each patient. In general anaesthesia environment, the major
difficulty concerning the drug dose administration is the high
level of uncertainty in the model relating the manipulated
variable (amount of drug) and the choice of the adequate sen-
sor our even process variable (for instance the neuromuscular
blockade level, NMB, or the depth of anaesthesia evaluated
by brain bispectral index of unconsciousness, BIS).

Although  the  structure of  the  pharmacoki-
netic/pharmacodynamic  (PK/PD) models is relatively
well known, there is a high parameter variability from
patient to patient that suggests the use of adaptive methods
both for identification and control purposes. Trying to solve
the patient identification problem and the control of drug
dose administration, several approaches have recently being
developed [1], [2]. Actually, Target Controlled Infusion
(TCI) strategies are commonly accepted and used due to
its specific features. TCI allows for a controlled infusion in

such a manner as to attempt to achieve a user-defined drug
concentration in a body compartment or tissue of interest [3].
In order to reach that PD concentration, the dose profile is
predicted by validated population models. Therefore, these
open-loop control devices do not compensate for a mismatch
between the models and the patient dynamics and they are
not completely adequate for drug administration [4].

This study presents the development of an integrated control
algorithm that deal with the need for adaptation in TCI. The
proposed control strategy computes the adequate drug dosage
regimen that drives the drug effect to a desired target in a
prespecified period of time and determines the loading dose
that should be administered to control the system around that
working point.

The global algorithm architecture also incorporates a iden-
tification method based on a Bayesian optimization for pa-
rameter identification and a online tuned algorithm for recov-
ery detection [5]. The implementation of the whole system
controller is here illustrated with an example of closed-loop
control of Neuromuscular Blockade (NMB) with the muscle
relaxant atracurium.

The remainder of the paper is structured as follows: the
NMB model structure together with the identification algo-
rithm are defined in Sections II-A and II-B. The online tuned
algorithm for recovery detection is summarized in Section
II-C. The input variance control algorithm and total-mass
control algorithm are explained in detail in Sections II-D and
II-E. Some simulation results for the NMB case-study are
given and discussed in Section III, also with one real case
where the system has been tested. A brief summary of the
main proposed advances concludes the paper (Section IV).

II. ADAPTIVE TCI STRATEGY
A. Neuro Muscular Blockade Model

The dynamic response of NMB for several muscle relaxants
may be modeled by a Wiener structure: a linear part followed
by a non-linear static dynamic one. For the muscle relaxant
atracurium the resulting equations are the following.



The linear PK part relates the drug infusion rate

u(t) [ug kg~ min~'] with the plasma concentration c,(t)
(g ml="1 (1),
cp(t) = uo Z aie it (1)
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A single bolus of ug, given at ¢ = 0 min (in the induction
phase) may be described by u(t) = wugd(t)ugkg=t. For
atracurium, the typical bolus is of 500 ugkg~*.

The PD has two linear parts relating c,(t) and the effect
concentration c,(t)[ugmi~!] (2), and a non-linear static Hill
relationship between c,(t) and the blockade level r(¢) [%] (3).
The vactor © incorporates the patient dependent parameters:
© = {a1[kgmi=], A [min™1], ag [kg mi=1], Ag [min~1],
A [min=1], 7 [min=1], Cso [ug mi~1], v (dimensionless)}.
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Remark that in practice the intermediate signal ¢, (t) is not
measured and its theoretical value is used.

The NMB level of a patient is typically quantified between
0% (full paralysis) and 100% (full muscular activity). For
control purposes, during the period where the bolus is acting,
the value of the reference is fixed at a low level, being
gradually raised to the set-point r* (tipically 10%) in order to
avoid sudden changes, stabilizing on this value after minute
75 (steady-state) [6].

Taking into account this parameterization and in order to
cover a wide range of behaviours, a bank of nonlinear dynamic
models M={M; (0%, 0% )i—1. 100} Was generated using
the probabilistic model discussed in [7].

Since the average parameters do not convey information
regarding the spread of the individual values, it is reasonable
that the use of additional information on the interindividual
variability of the PK/PD parameters may lead to techniques
achieving improved results.

B. PK/PD Bayesian Identification

When a measurement of the response signal r(t) is avail-
able, the estimates of the patient PK/PD parameters are ac-
tualized by minimizing the following Bayesian objective cost
function, which assumes an underlying log-normal distribution
for © [8],

Hw = Y (ln(ej);—zmww + @)
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where the vectors ©=[61,02, -, 0] and
é=[é1,é2,"' ,ém] (with m = 7, since for Cyy was
assumed the mean population value (??)), represent the
PK/PD for some population model and for the individual
patient, respectively; w(t) is the dosage regimen; T'(¢;) is a
function of the NMB measured signal at time t5; T'(t; u, é))
is the predicted at time ¢; induced by w(t) on the patient
model with parameter vector é); ajz is the variance of the
logarithmic distribution assumed for the population PK/PD
parameter 6;; and o} describes the variance of the error on
the measurement of the individual NMB signal at ¢ = ty,.

C. The On line tuned Algorithm for Recovery Detection -
OLARD

Considering an automated drug dose administration, it
should be noted that the time evolution of the measured
response 7 (t) is highly dependent on the time instant ¢, that is
chosen to start the continuous drug infusion w(t). Therefore,
an on-line detection for the assumed initial recovery ¢y is of
outstanding importance and it may be used as a decision flag,
alarm or advisory component in an automatic drug delivery
setup.

During the induction phase, the proposed On line tuned Al-
gorithm for Recovery Detection (OLARD) initially computes
a detection baseline in order to overcome a variety of sensor
drawbacks. Thereafter, the detection of the NMB recovery
from the initial bolus administration is computed through an
empirical algorithm developed taking into account the baseline
and the characteristics of the signal under study. The algorithm
parameters had been tuned using both in simulation, using the
model bank M and in a collection of real cases previously
obtained during monitor or control procedures in patients
under surgery. Moreover, in order to achieve a robust and
reliable performance, the default algorithm parameters can be
adjusted on line, taking into account the predicted degree of
patient variability and the level of sensor noise, as well as the
clinical experience about the system environment.

D. Input Variance Control algorithm - IVC

The Input Variance Control algorithm (IVC) was designed
to control the system in the transient phase [to,¢1], where tg
is the previously identified time for recovery and t; is the
instant time where steady-state is supposed to be reached, i.e.,
r(t1) = r*. The IVC algorithm approach designs an optimal
dose regimen profile for taking the NMB level from its value
r(to) at to to a prespecified value r(¢1) = r* at ¢;.

Assuming linear time-invariant dynamics, the PK/PD sys-
tem drug response may be modeled by the following discrete-
time state-space system:

{m(tJr 1)
y(t+1)
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where u(t) € R is the input (piecewise constant drug dose
infusion), z(t) € R™*! the state-vector, y(¢) € R is the output
(effect concentration of the drug), C' € RIx7 @ € R™*" and
I' € R*™*! (with n equal to the system order). It should be



stressed that ® and I' are dependent on the values of ©. This
dependence on the parameters is omitted only for the sake of
simplicity in representation.

Given an initial time t¢, an initial state (tp) = Xo, and an
input signal u(t) defined for all ¢, a solution of (6) for ¢ > tg
is given by [10]:

t—1
y(t) = Co(t,to)Xo + Y Co(k, 7+ 1)Tu(r) @
T=tg
where ¢(i,7) = ®=7 for i > j + 1.

The evolution of the system from ¢; (the beginning of drug
infusion) to t; = ty + p (the time when the steady-state is
supposed to be reached) can then be represented by

Y = ¥Xo +SU ®)
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The reference profile in the effect concentration is obtained
from the pre-fixed ci(t1) = fy.(©,7) and ci(ty) =
Fai(©:7(to)):

= (cz(to)

c(t1)) )

Making Y = ¢} in (8), and in order to avoid too large

control signals and syringe pump saturation, a variance con-
strained input strategy was developed based on [11].

Having already calculated one initial guess of the steady-

state drug dose as being a non linear function on the system

parameters and target value in NMB (10),

((100/r*) — 1)*/7
(a1/X1) + (a2/A2)
instead of aiming to determine the total amount of drug to
give to the patient, we may want to determine which amount
of drug must have to be added or decreased to that value for
the effect concentration c.(t) to follow the imposed reference
profile c;. The PK/PD system description can then be seen as
incremental, and u(t) may be decomposed in U = Uy, + AU.
Hence, (8) is modified into

ci(to+1)

10)

uss = gnr(0,77) = Cso

Y =3XXo +SUss + SAU 11)

where
Ul (tss  Uss - Uss)
AUT = (Au(to) Au(to+1) Au(to+p—1))

The adaptive control problem can then be formulated as
follows.

Problem 1. Given ¢ > 0, find an AU solving the Lagrangean

function
L(f,p) = SAU = D|* + p{||AU|* - ¢*} (12)

where p is as a Lagrange multiplier
p(JAU|? = c?)=0and D =Y — XX, — SUs,s.

satisfying

Note that, in each time instant the patient response 7 (t)
is measured by the adequate sensor after applying u(tg) =
uss + Au(ty) corresponding to the first value of the obtained
optimal drug regimen (U = Uz + AU). Thereafter, inverting
the Hill equation (3), the corresponding effect concentration
is calculated and a new target profile ¢ = Y is considered.
This procedure is then repeated, until the end of the transient
period is reached, assuming in each iteration [ a new transient
interval [to + l,tl], l=1,---, (tl —to+ 1).

E. Total-mass control algorithm - TMC

For practical purposes and without loss of generality, the
identification procedure is stopped as soon as the parameters
are assumed to be reasonably identified and the reference
signal attains the predefined value r* = 10%. It turns out
that in order to avoid computational bender, from this time
instant the individual patient parameterization is assumed to
be obtained. Neverthless, it is possible to on-line require
suplementary identification procedure in order to obtain a
more accurate parameter estimation. From this point on, the
control strategy is changed to a mass control scheme which has
proved to have good robustness properties under the presence
of uncertainties [12]. For this purpose the patient is modelled
as a three-compartmental system.

The drug infusion dose u(¢) is administered in the central
compartment, according to the law,

u(m)
u(m)

= max (0, %(m))

=% qimi+ A(M* — M(m)) (13)

where M(m) = >, 5 3mi and m = (m1,mg, m3)" . m;
is the amount of drug in compartment ¢ and ¢; > 0 is a rate
constant such that ¢;m; is the flow rate from compartment ¢ to
the environment. The values of g; as well as the initial values
of m;, ¢ = 1,2, 3, are obtained from the previously estimated
parameters. M *is a suitable value for the total amount of drug
in the three compartments, computed in such a way that the
corresponding effect concentration yields the target value of
r* for neuromuscular blockade [12].

Since the parameters g;’s are affected by an estimation error,
a steady state error will occur. Indeed, denoting the error of
q; by Ag;, the previous control law becomes

= max (0, u(m))
=220 (@ + Agi) mi + X (M* — M(m))

and it is shown in [12] that, when the drug infusion dose w(t)
is administered in the central compartment according to this

u(m)

a(m) a4



law, the amount of drug in each compartment will converge
to a value that depends on Ag;’s. According to the robustness
analysis that was made in [12], the decreasing of the values
Ag;, i = 1,2,3, would correspond to the decreasing of the
steady state error. However, Aq, Ags and Ags are fixed, after
the beginning of this control scheme. Therefore, in order to
reduce the steady state error, we redesign the mass control
law, by replacing the original value of M™ by another one,
computed based on information about the obtained steady state
error. A more complete description of this strategy will be
given elsewhere.
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Fig. 1. NMB response (upper plot) and drug dose profile (lower plot) for

patient number 60 (© = Ogp) in M that result from the control with the
Total Mass TCI. The ’dot’ in the xx-axis indicates time instant o computed by
OLARD. Note that NMB signal is the filtered NMB simulated superimposing
noise (o = 0.3; 0).
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Fig. 2. NMB response (upper plot) and drug dose profile (lower plot) for

patient number 60 (© identified with the Bayesian algorithm from ¢g until £7)
in M that result from the control with the Total Target Control Algorithm. The
’dot’ in the xx-axis indicates time instant to computed by OLARD. Note that
NMB signal is the filtered NMB simulated superimposing noise (o = 0.3; 0).

III. RESULTS

For the global approach developed, comprising the ded-
icated identification and control algorithms previously de-
scribed, simulation studies have been carried out using the
model bank M. Notice that to achieve a high level of NMB
(neuromuscular blockade) in a short period of time, in order
to fulfill clinical requirements, a typical 500 g kg~' bolus
of atracurium is administered in the beginning of surgery
(to the bank of simulated models and real patients). After
the administration of the bolus, the label of NMB increases
very quickly (the variable r that measures muscular activity
decreases), and full paralysis is induced in a few minutes.
Following the initial period, the control objective is to follow
a specific reference profile with a target value.

Fig. 1 and 2 illustrate the filtered response, the target value
and the administered drug dose profile for patient Mgy € M
after application of the developed Total Mass TCI strategy. In
Fig. 1 and in order to highlight the algorithm performance, the
exact parameterization of the simulated patient (© = ©yy,,)
was assumed to be known. The NMB response is represented
just to a maximum value of 30% for the sake of illustrate the
reference tracking in detail. The dot indicates the beginning
of recovery estimated according to OLARD specifications,
and the instant time tqy is thereafter used as the decision
flag to enable the beginning of the continuous infusion of
atracurium administration. After the ¢y identification, the value
of NMB is driven, by IVC strategy, from r(¢o) in order to
achieve the target value r(t;y = 7bmin) = r* = 10%.
Afterwards, the TCM is applied to control the system by
designing the adequate drug dose profile to attain the total
mass M*, corresponding to 7*(t) = 10%. Following the TMC
strategy the NMB level is driven to a value bellow 10%,
exhibiting a negleted constant steady state error, since it was
assumed the existence of parameters uncertainties (Ag; # 0).
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Fig. 3. Evolution of parameter values, from minute 10 until t; = 75 min,

corresponding to the simulation represented in Fig. 2. Refinements of the
parameterization were carried out from tg = 30 mén until ¢1. The values are
normalized by the respective true parameter values of patient 60 in M.

For the case illustrated in Fig. 2, during the transient
period [to,t1], the patient parameters were identified every
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Fig. 4. Total mass evolution for the simulation control essay with model 60
(©). In solid line is represented the target level in total mass (M™* (O finai));
in dotted line is represented the theoretical value of M*(Ogp) for this
simulated patient; in dashed line is represented the time evolution of the
system total mass (M (m)); in dots is represented the different values of
M*(©y,) in the transient phase

3 minutes by the identification Bayesian algorithm. Time
parameter values evolution is shown in Fig. 3 being the values
normalized by the true value of each one (é) / @%0). Notice that
the last two parameter refinement procedures do not introduce
relevant additional information about the system dynamics,
indicating that the samples obtained from the system do
not provide new information about it. Moreover, apart from
parameters A\; and )5 that have been accurately identified, the
other parameters present an identification error less that 10%.
Remark that, in this case, during the identification procedure
the majority of the parameters present a smooth trajectory
from the initial guess to their final estimates, whereas the
parameter a; presents a significant variation (following the
typical scenario observed in the model bank M).

The NMB level 7(t) presents an overshoot after the begin-
ning of continuous infusion, since the drug profile initially
calculated through IVC algorithm relies on initial ’rough’
parameter estimates. However, it can be clearly observed that,
with the improvement of the parameter estimates during the
transient period, the drug dose rate profile is being updated
accordingly, driving the NMB value to the desired target. After,
TMC strategy sustains the continuous infusion and brings the
NMB level to a value near 8%. This negleted constant steady
state error, is due to the use of parameter estimates, as referred
before. Fig. 4 represents M * (é) final), the desired value for the
total mass of the system (solid line) and the time evolution of
(M (m)), the current total mass (in dashed line). At the time
instant indicated by the arrow the control law was changed
from (13) to the referred redesigned mass control law, by
replacing the original value of M* by another one, computed

based on information about the obtained steady state error. The
total mass convergence is then modified and the total mass then
goes into the target value of M™*.

The Total Mass TCI strategy was recently integrated in the
software Hippocrates [[13]] and is actually under evaluation
on patients submitted to general anaesthesia. Fig. 5 illustrates
the first case so far obtained on a patient undergoing elective
surgery. The clinical performance was considered satisfactory
in spite of the steady-state error observed during the applica-
tion of TMC phase that was higher than the observed during
simulation. The filtered NMB signal indicates the presence of
sensor noise superimposed on the measured signal and a quite
high baseline. The recovery estimated according to OLARD
specifications and denoted by the ’dot’ was considered correct.
Time parameter values evolution is shown in Fig. 6 being
the values normalized by the initial guess corresponding to
the population parametrization true value of each one © /©).
Notice that, as in the reported simulated cases, the last two
parameter refinement procedures do not introduce relevant
additional information about the system dynamics. In the real
case some of the parameters present significant variations
from the population parameters. In Fig. 7 is represented
M* (é tinal), the desired value for the total mass of the system
(solid line) and the time evolution of (M (m)), the current total
mass (in dashed line). The total mass convergence presents a
similar behaviour to the reported simulated cases.
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Fig. 5. Real NMB response (upper plot) and drug dose profile (lower plot)
administered to the real patient (© identified with the Bayesian algorithm
from ¢ until ¢1) that result from the control with the Total Target Control
Algorithm. The ’dot’ in the xx-axis indicates time instant ¢{9 computed by
OLARD. Note that NMB signal is corrupted with sensor noise.

IV. CONCLUSIONS

This paper presents an integrated algorithm for automatic
drug dose administration referred as Total Mass Target Con-
trolled Infusion (TCI) driven by parametric estimation and a
robust mass control of compartmental systems with parameters
uncertainties.

The performance of the developed strategy was evaluated
for the NMB (neuromuscular ) control. This particular appli-
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cation enables the true evaluation of the control system since
it has a reliable effect sensor and is widely accepted in clinical
environment. The proposed Total Mass TCI strategy comprises
three different stages.

After the administration of the initial bolus the dose to be
administrated is zero until the recovery of the signal is de-
tected. First, this identification was carried out by a developed
empirical algorithm, OLARD (On Line tuned Algorithm for
Recovery Detection). Secondly, during the transient phase, i.e.,
until the steady state of the reference attains the target value, an
identification method together with an Input Variance Control
(IVC) iterative implemented algorithm is used to determine the
optimal dose profile. The identification method is a Bayesian
algorithm based in sparse measurements of the signal and

proved to obtain reliable estimation for the model parameters.
Finally, driven by the parameter estimation a Total Mass
Control (TMC) scheme for compartmental systems which
proved to have robustness properties under the presence of
uncertainties is applied to maintain the level in a constant
target value. The whole strategy was applied to a bank of
models, and demonstrated to be adequate to the design of
individualized dose regimen both on open and closed loop
systems, even in the presence of noise and uncertainties.

The main contributions of this paper, namely the developed
identification and control algorithms and the results obtained
encourage a stake on dedicated improvements in order to
obtain an enhanced and robust version of a Target Control
Infusion prototype.
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