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Computational modeling of radiobiological effects in bone metastases for 

different radionuclides 

 

ABSTRACT 

Purpose: Computational simulation is a simple and practical way to study and to compare a variety of 

radioisotopes for different medical applications, including the palliative treatment of bone metastases. This 

study aimed to evaluate and compare cellular effects modelled for different radioisotopes currently in use or 

under research for treatment of bone metastases using computational methods. 

Methods: Computational models were used to estimate the radiation-induced cellular effects (Virtual 

Cell Radiobiology algorithm) post-irradiation with selected particles emitted by Strontium-89 (89Sr), 

Samarium-153 (153Sm), Lutetium-177 (177Lu), and Radium-223 (223Ra). 

Results: Cellular kinetics post-irradiation using 89Sr β- particles, 153Sm β− particles, 177Lu β− particles and 223Ra 

α particles showed that the cell response was dose- and radio- nuclide-dependent. 177Lu beta minus particles 

and, in particular, 223Ra alpha particles, yielded the lowest survival fraction of all investigated particles.  

Conclusions: 223Ra alpha particles induced the highest cell death of all investigated particles on metastatic 

prostate cells in comparison to irradiation with β− radionuclides, two of the most frequently used radionuclides 

in the palliative treatment of bone metastases in clinical routine practice. Moreover, the data obtained suggest 

that the used computational methods might provide some perception about cellular effects following irradiation 

with different radionuclides.   

 

Keywords: Computational simulation; Radiation-induced effects; Radium-223; Lutetium-177; Bone 

metastases. 
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I. INTRODUCTION 

Cancer is a major public health concern, and it is associated with significant morbidity and mortality. 

In 2012, approximately 14 million new cases were diagnosed, and 8 million cancer-related deaths occurred 

(Stewart & Wild 2014). Prostate cancer is the second most common cancer in men worldwide (Stewart & 

Wild 2014). A large percentage of patients with prostate cancer (65-75%) develop bone metastasis 

(Chakraborty et al. 2008; Maini et al. 2003; Bedi et al. 2014), which often leads to severe pain, hypercalcemia, 

lack of mobility and depression that adversely affect these patients’ life quality (Lewington 2005).  

Bone metastasis occurs as a result of a complex pathophysiologic process between host and tumour 

cells leading to cellular invasion, migration adhesion, and stimulation of osteoclastic or osteoblastic activity. 

The process is mediated by parathyroid hormones, cytokines and tumour-derived factors (Tantivejkul et al. 

2004; Roodman 2004; Roato 2013). 

There are several therapeutic approaches targeting bone metastases and associated effects, including 

the use of analgesics, external beam radiotherapy and radionuclide systemic therapy. The latter, systemic 

palliative targeted-therapy with suitable radiopharmaceuticals, has emerged as a particularly appealing and 

efficient treatment modality for patients with multiple skeletal metastases (Maini et al. 2003; Pandit-Taskar et 

al. 2014; Silberstein 1996; Pillai et al. 2003). 

Radionuclide therapy is characterized by reasonably selective delivery of therapeutic doses of radiation 

to systemically dispersed target tissues, with generally limited toxicity and few long-term side-effects (Unak 

2002). Bone-seeking radiopharmaceuticals have considerable advantages, including convenience, ability to 

treat multiple metastatic lesions simultaneously, and the possibility of combination with chemotherapeutic 

agents for enhanced efficacy. The basis of successful radionuclide therapy relies on a high concentration and a 

prolonged retention of the radiopharmaceutical at the tumour site. 

A major challenge associated with the palliative treatment of bone pain using selective 

radiopharmaceuticals is to deliver an adequate dose of ionizing radiation to the bone lesion, while minimizing 

the dose to healthy bone sites and adjacent tissues. In order or maximize the therapeutic effect and minimize 

normal-tissue irradiation, the radiation emitted by the targeted radionuclide should have an energy and tissue 

penetration range compatible with the volume of the lesion to be irradiated (Chakraborty et al. 2008; Wang et 

al. 2011). Therefore, studying the effects of particulate radiation at the cellular level is of interest to determine 

the suitability of a given radionuclide for target-tumor radiotherapy. There are essentially three main types of 

radioactive particles that are of interest for target-tumor radiotherapy: beta minus (β-) particles, alpha (α) 
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particles and Auger electrons. β- particles typically have a range of up to several millimeters in tissue, which 

may result in crossfire irradiation of cells adjacent to the targeted tumor. By contrast, α particles have a typical 

penetration range of less than 100 µm (Harrison et al. 2013). Auger electrons are low-energy electrons (typical 

energies around 20-100 keV) and have short penetration ranges only several nanometers to micrometers 

(Tavares & Tavares 2010). In addition to the physical properties of different radionuclides for target-tumor 

therapy, other characteristics should be taken into account while searching for the ideal radiopharmaceuticals 

for palliative treatment of bone metastases. For example, the radionuclide production costs and feasibility 

should be determined, and consideration should be given on whether its properties are amenable for 

radiochemistry procedures (Pillai et al. 2003). It is also important that the radionuclide to be used for palliative 

treatment of bone metastases allows for in vivo imaging, in order to assist with the determination of the suitable 

therapeutic dose to be used and to facilitate treatment monitoring (Henriksen et al. 2003; Pandit-Taskar et al. 

2014). 

In recent years, several reports have been published describing the use of Lutetium-177 (177Lu) in the 

context of palliative treatment of bone metastases (Chakraborty et al. 2008; Abbasi 2012; Bryan et al. 2009; 

Yuan et al. 2013; Máthé et al. 2010; Abbasi 2011; Liberal et al. 2014; Pillai & Knapp 2015). Moreover, 

Strontium-89 (89Sr), Samarium-153 (153Sm) and Radium-223 (223Ra) have already been approved by the Food 

and Drug Administration (FDA). The main physical characteristics of these radionuclides are indicted in Table 

I. 

 

< Table 1 should be inserted around here > 

 

32P was the first radioisotope to be evaluated for palliative treatment of bone metastases and its first 

clinical use dates back to 1941 (Bouchet et al. 2000). Presently, one of the most commonly used 

radionuclides for palliative treatment of bone metastases in routine clinical practice is 153Sm, which was 

approved by the FDA for clinical use in 1997 (Sartor 2004). 89Sr is also currently used in the clinical setting 

for alleviation of bone pain and it was approved by the FDA for clinical use in 1993 (Das et al. 2009). 

Recently, a significant amount of work has been carried out using 223Ra, a promising therapeutic agent for 

palliative treatment of bone metastases, in order to take advantage of the short tissue penetration range 

associated with its emitted α particles. In clinical studies, 223Ra has demonstrated a highly significant 

improvement on patient overall survival, with mild side effects owing to its localized tissue penetration (2-10 
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cells). Its clinical use was approved by the FDA in 2013 (Harrison et al. 2013). Another promising 

radionuclide recently proposed for palliative treatment of bone metastasis was 177Lu due to its appealing 

physical characteristics, in particular its half-life of 6.73 days, gamma ray emission of 113keV (6.4%) and 

208 keV (10.4%) and tissue penetration of 1.8 mm (Pillai et al. 2003; Dash et al. 2015).  

There is now sufficient evidence of the importance of bystander effect that can modify the biology of 

the un-irradiated cells, and have a strong impact on therapeutic efficacy (Boyd et al. 2006). Bystander effect 

will be in addition to the direct effects of radiation exposure; therefore, its contribution must also be taken 

into account. Incorporation of a bystander effect model could have profound implications on the design of 

radionuclide protocols (Prise & O’Sullivan 2009). However, in vivo experiments to investigate the bystander 

response in radionuclide therapy are far more challenging than in vitro or in silico experiments. 

Consequently, computational simulation may be used to study and to compare a variety of radioisotopes for 

different medical applications, including the palliative treatment of bone metastases, under the same 

investigation conditions and might provide some insight into the bystander effect. However, radiation-

induced effects are not yet fully understood, and regularly, new knowledge is added, consequently modelling 

cellular responses to irradiation is complex and challenging.  

The Virtual Cell (VC) algorithm is an ongoing effort that aims to understand tumor pathogenesis and 

treatment. Results from in silico testing using the VC simulator, relies on multiscale modelling that have been 

tested against a total of 23 in vitro datasets obtained using different cell types and exposure conditions. 

Results from that in silico versus in vitro comparison demonstrated that the simulated data obtained using the 

VC algorithm compared favorably with real-life measured data, so it is widely used by scientific community 

in few research articles (Liberal et al. 2014;. Tavares & Tavares 2010). 

This study aimed to use computational methods to evaluate and compare cellular effects modelled for 

different radioisotopes currently in use or under development for the palliative treatment of bone metastases, 

with regard to better understand the mechanisms that contribute to cell killing in each radionuclide at a wide 

range of absorbed doses and exposure time. Additionally, to infer how different outcomes, as mutagenic and 

genetic instability, neoplastic transformation and average number of direct lethal damage, relate to cell killing 

mechanism and no-direct effects, with special concern of bystander effect. In particular, the data reported 

here are focused on the bone metastases from the prostate carcinoma, given this is one of the most common 

types of cancer in men worldwide and the majority of these patients develop bone metastases. 
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II. METHODS 

The VC radiobiology simulator, was developed by Stewart and co-workers (Semenenko & Stewart 

2004), to evaluate the following cellular endpoints: cell death, neoplastic transformation, chromosome 

aberration yields, induction of genomic instability, cell cycle kinetics and the probability of tumour 

eradication following radiation therapy.  

Previous studies have shown that the 223Ra and 177Lu radiations induce the greatest number of 

deoxyribonucleic acid (DNA) lesions among all those investigated, with the lowest probability of correct 

repair of such lesions and the highest of induction of double-strand breaks (DSB) (Liberal et al. 2014). 

The Monte Carlo damage simulation (MCDS) algorithm was used to obtain the number DSB and the 

fraction of complex DSB (FCB) (Semenenko & Stewart 2004; Semenenko et al. 2005) for 89Sr, 153Sm, 177Lu, 

223Ra. The MCDS simulator is a fast Monte Carlo algorithm that models the damages to DNA by different 

particles and captures the major trends in the DNA damage spectrum predicted using detailed track structure 

simulations (Semenenko & Stewart 2004). The results obtained from the MCDS simulator (DSB and FCB) 

that yield the number of lesions caused by the radioactive particle to the DNA per Gy per cell were then 

applied as input parameters for the two-lesion kinetics (TLK) model used on the VC simulator. The 

approximate values of DSB and FCB obtained from the MCDS simulator for the evaluated particles 

were as follow: 89Sr β- particles, DSB = 50.055 and FCB = 0.1303; 153Sm β- particles, DSB = 49.631 and 

FCB = 0.1314; 177Lu β- particles, DSB = 50.430 and FCB = 0.1338; 223Ra α particles, DSB = 130.338 

and FCB = 0.4565. By inserting these parameters, required by the TLK model into the VC input file, the 

cellular exposure scenario modeled would mimic the isotope in close proximity to the cell nucleus. The TLK 

model was preferred over other radiation exposure models, such as the repair-misrepair model (RMR) and 

lethal-potentially lethal model (LPL), as it applies an improved correlation between the biochemical 

processes of DSB and cell death, by subdividing DSB into simple or complex DSBs (Sach et al. 1997; 

Guerrero et al. 2002; Semenenko & Stewart 2004). 

A comprehensive list with the input parameters used on the VC simulations is presented in the next 

section.  

 

II.A. Virtual Cell Simulator – Input Parameters 

In this section, only the key VC input parameters used for the present study are discussed in detail, 

since an online platform, including a comprehensive VC user guide, is freely available 
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(http://faculty.washington.edu/trawets/vc).  

The cell kinetics model (CKM) used was the quasi-exponential cell kinetics model (QECK), as that is 

the only available option for the current version of the VC simulator. Nonetheless, by using a high peak cell 

density (KAP) value (such as the one used in the present study, i.e. 1.0E+38 cells/cm3) and by selecting a 

small initial cell population (initial number of cells – N0 = 1000 cells) compared to KAP×VOL (where VOL 

= tissue volume = 1 cm3), the cell growth kinetics model becomes exponential. Furthermore, as the size of the 

cell population increases, the net cell birth rate decreases so that the cell population size approaches the 

asymptotic value KAP×VOL.  

A cell type was evaluated: human metastatic prostate cells (TPOT – cell doubling time = 54 days; TC 

– cell cycle time = 48 hours) (Berges et al. 1995). The evaluated populations were set to be quiescent (GF – 

growth fraction = 0) and all cells are cycling (GF = 1) in order to understand the radiobiological effects from 

the nuclides.  

The expected number of DSBs endogenously formed per cell-hour was defined as 4.3349E-03 Gy-1 

cell-1. The values of the biophysical parameters: repair half-time (RHT), pairwise damage interaction rate 

(ETA) and probability of correct repair (A0), were set according to the requisites of the selected damage 

repair model. For example, the used TLK model sets the RHT, ETA and A0 values at certain intervals, 

including those described in Table 1. The probability of misrejoined DSB being lethal (PHI) and the fraction 

of residual damage at the end of the simulation that is treated as lethal (FRDL) are adjustable parameters. The 

absolute residual damage cutoff (ACUT) value is also an adjustable parameter, and it terminates the 

simulation when the amount of unrepaired residual damage is less than the specified value. Residual damages 

include radiation-induced DNA damages that remain unrepaired due to (1) DNA damage that was too severe, 

(2) presence of damages in inaccessible parts of the genome, (3) induction of damages during critical points 

in the cell cycle or (4) DNA damages converted into large DNA deletions (McMillan 1992). It is reasonable 

to accept that after a certain level of residual damages, any further cellular killing can be neglected as non-

radiation related. The ACUT value of 1.0×10-9 expected number of DNA damages per cell was chosen based 

on the fact that it should be smaller than the spontaneous endogenous damages (established to be in the order 

of 10-3) and a value of zero would not terminate the simulation, since ACUT was the only simulation control 

parameter adopted in the present study. The fraction of binary-misrepaired damages that are lethal (GAM) 

was set at 0.25, because according to Sach and co-workers, around 1/4 of the chromosome aberrations formed 

through the pairwise interaction process are lethal (i.e., GAM = 0.25) (Sach et al. 1997). 
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The selected radiation exposure scenario was the exponentially decreasing dose rate (DECAY), since 

the present work aimed at modeling the cellular responses to different absorbed doses delivered by internal 

targeted radiotherapy using 4 radioisotopes: 89Sr, 153Sm, 177Lu and 223Ra. For each radioisotope investigated, 

a radioactive constant (LAM) and a radionuclide half-life (RHL) was set according to the well-known decay 

scheme of these radioisotopes. The average background absorbed dose rate on planet Earth (BGDR) has been 

quantified as 2.73748×10-7 Gy/h by the United Nations Scientific Committee on the Effects of Atomic 

Radiation (UNSCEAR) 2007 report (United Nations 2007). Irradiation periods of 2, 24, 48, 120 and 240 

hours (TCUT – time allowed for repair after exposure) with total absorbed doses delivered to the cell 

population over all time (TAD) of 0 .1, 0.5, 1, 2, 5 and 8 Gy were modeled using the VC simulator. The 

effective dose delivered to the cell system in a finite time interval (SAD) (0, TCUT), that is the SAD 

parameter is related to the TAD parameter by: SAD = (1-DCUT)×TAD, where DCUT = the dose cutoff used 

to truncate dose rate function after fraction 1-DCUT of total dose has been delivered. The DCUT is an 

adjustable parameter of the VC simulator and in this study it was set at 0.01, which means that the dose rate is 

truncated only after 99% of the set effective dose (SAD) has been delivered. This meant that SAD ≈ TAD. 

The use of the DCUT parameter is justifiable since at a given point, the activity of the radiation source 

becomes so small that any further radiation killing of the cell population can be neglected. The time to 

execute a DECAY simulation tends to increase as the number of steps increases. It is possible to control that 

by using the step-size tolerance (STOL) parameter, which typically ranges from about 0.05 to 1.0×10-3 Gy/h. 

As the STOL value decreases, the time requested to perform the simulation increases and thus a compromise 

between time and accuracy must be made. In the present study, a STOL value of 0.01 Gy/h was used.  

 

II.B. Data analysis 

The VC data were expressed as the number of direct lethal damages per surviving cell, estimated 

number of surviving cells, probability of mutagenesis and enhanced genetic instability per surviving cell, 

neoplastic transformation frequency per irradiated cell and neoplastic transformation frequency per surviving 

cell. Data differences among the investigated radioisotopes were analyzed using the analysis of variance 

(ANOVA) statistical test, where p < 0.01 was considered statically significant.  

 

III. RESULTS 

The cell survival fraction results obtained after irradiation with different radionuclides and particles are shown 
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in Fig. 1. The estimated survival fraction rank order of all investigated particles was as follows: 89Sr β− particles 

> 153Sm β− particles > 177Lu β− particles >> 223Ra α particles. Additionally, statistically significant differences 

were observed among the different irradiating agents (p < 0.0001, ANOVA) Moreover, statistical analysis 

revealed no differences among the results obtained for β− particles, when the 223Ra α particles data was 

excluded (p = 0.0252, ANOVA).  

 

< Figure 1 should be inserted around here > 

 

The estimated number of metastatic prostate cells that survived irradiation when all cells were 

quiescent and when all cells were actively dividing is presented in Figs. 2a and 2b, respectively. When all 

cells were quiescent, the estimated number of surviving cells is lower than the estimated number, for actively 

dividing cellular populations, for the same exposer conditions (Figs. 2a and 2b). Statistically significant 

differences were observed among these four different irradiating agents when metastatic prostate cells were 

quiescent and all cells were actively dividing (p < 0.0001, ANOVA).  

 

 < Figure 2 should be inserted around here > 

 

Figure 3 shows the mutagenesis and enhanced genetic instability probability per surviving cell for 

different irradiating sources. The analysis of these data reveals that the probability of mutagenesis and 

enhanced genetic instability of the cell population following irradiation with β− particles (89Sr, 153Sm, 177Lu) 

increased with the increase in absorbed doses, with exception for high absorbed doses (8.0 Gy) for short 

periods of time (≤ 24 h). On the other hand, the probability of mutagenesis and enhanced genetic instability of 

the cell population following irradiation with 223Ra α particles increased with the increase in exposure time 

and absorbed dose for values from 0.1 to 2 Gy; for absorbed doses higher than 2 Gy, the probability of 

mutagenic and enhanced genetic instability is negligible. Statistical analysis of the whole irradiation range 

reveals no differences among the results obtained with the different investigated particles (p = 0.534, 

ANOVA).  

 

< Figure 3 should be inserted around here > 
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The neoplastic transformation frequency per irradiated cell and per surviving cell for each evaluated 

particle are shown in Figs. 4a and 4b, respectively. The probability of neoplastic transformation per irradiated 

cell was highest for lower doses, regardless of the radioactive particle used, and reduced as the dose increased 

(Fig. 4a). Conversely, the probability of neoplastic transformation frequency per surviving cell was lowest for 

low absorbed doses and increased as the absorbed dose increased for 223Ra α particles and constant whole 

irradiation range for β− particles (89Sr, 153Sm, 177Lu) (Fig. 4b). The reduction rates of neoplastic 

transformation frequency per irradiated cell varied for low- and high-LET (linear energy transfer) particles, 

where the steepest reduction was observed for high-LET particles, and a slower reduction was found for low-

LET particles. Statistically significant differences were observed among distinct radioactive particle 

neoplastic transformation frequencies per irradiated cell (p < 0.0001, ANOVA).  

 

< Figure 4 should be inserted around here > 

 

Finally, Fig. 5 shows the number of direct lethal damages per surviving cell as a function of absorbed 

dose. The results showed a rapid increase in cellular lethal damages as the absorbed dose increased for all the 

exposed periods tested, and statistically significant differences were observed among the results using distinct 

particles (p = 0.002, ANOVA). 

 

< Figure 5 should be inserted around here > 

 

IV. DISCUSSION AND CONCLUSION 

The results showed that the cell survival fraction decreased as a function of absorbed dose and 

increases as function of exposure time. The 223Ra α particles had the lowest survival fraction of all 

investigated irradiating agents in all irradiation scenarios, suggesting that these irradiating agents would be 

more promising in the killing of metastatic cells than the other investigated irradiating agents (Fig. 1). 

Moreover, that the cell response appears to behave in a LET and dose dependent manner  

To further clarify the nature of the cell response following irradiation with different particles, three 

cellular endpoints were assessed by computational simulation mutagenesis and enhanced genetic instability 

per surviving cell (Fig. 3), neoplastic transformation per irradiated or surviving cell (Fig. 4) and number of 

direct lethal damages per surviving cell (Fig. 5). Cellular endpoints are usually associated with the bystander 
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effect (Lyng et al. 2002; Mothersill & Seymour 2003; Nagasawa et al. 2003; Prise & O’Sullivan 2009). 

Our findings, obtained by means of computational simulators, indicated that the most promising agent 

for palliative treatment of bone metastases from prostate cancer is the 223Ra α particles that offer a therapeutic 

advantage over the β− radionuclides due to the higher capacity of inducing lethal damage and greater 

bystander effect at low-to-moderate doses. Other commonly used radioisotopes for palliative treatment of 

bone metastases, such as 89Sr, were found to be inferior in inducing lethal damages than 177Lu or 223Ra.  

Detailed analysis of the cellular kinetics post-irradiation using 89Sr β- particles, 153Sm β− particles, 

177Lu β− particles and 223Ra α particles showed that the cell response was dose- and radio- nuclide-dependent. 

For short TCUTs (≤ 48 h), virtually no differences were found between all β- particles. Conversely, for long 

TCUTs (≥ 120 h) on metastatic populations at low absorbed doses (0.1 and 0.5 Gy) all radiation sources 

tested were equivalently able to induce cell death. And at high-absorbed doses (≥1 Gy), irradiation with 223Ra 

α particles resulted in a lower number of surviving cells followed by 153Sm β− particles, 177Lu β− particles and 

89Sn β− particles. 

Our findings also showed that a larger number of actively dividing cells survived irradiation when 

compared with quiescent cells. This observation highlights the influence of cell kinetics on cell response to 

irradiation. We hypothesize that due the shorter doubling time (54 days) of metastatic prostate cells the 

unaffected cells were able to compensate radiation-induced damage by rapid cell duplication when all 

population were actively dividing. 

Mutagenesis and enhanced genetic instability results showed that there is a non-linear relationship 

between genomic instability and absorbed dose (Fig. 3). Sokolov and co-workers in 2005, using primary 

human fibroblasts, found that for doses of alpha particles and gamma rays between 0.2 and 0.6 Gy, the 

number of DSB sites in bystander cells was higher than for doses of 2.0 Gy (Sokolov et al. 2005). DNA 

DSBs have been associated with genetic instability, which is one of the mechanisms underlying the bystander 

effect. Moreover, Boyd and co-workers in 2006, showed dose-response relationship for the indirect effects 

produced by cellular exposure with low-LET β− radionuclides, using human glioma cells and human bladder 

carcinoma cells (Boyd et al. 2006). The results from the VC simulator showed that the probability of 

mutagenesis and genetic instability for 223Ra α particles was higher for doses ranging between 0.1 and 1 Gy 

than for doses equal to or above 2 Gy (Fig. 3). These findings seem to be in line with in vitro observations 

reported by Sokolov and co-workers in 2005 (Sokolov et al. 2005) and Boyd and co-workers in 2006 (Boyd 

et al. 2006).  
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The data also showed that the probability of cell transformation per irradiated cell was higher for 

lower absorbed doses (Fig. 4a), while the probability of cell transformation per surviving cell (Fig. 4b), and 

the number of direct lethal damages per surviving cell (Fig. 5) was higher for high absorbed doses. Redpath 

and co-workers studies have also reported that the cell transformation frequency per surviving cell increased 

with increasing absorbed doses (Redpath & Elmore 2007; Redpath 2006). Results from the VC simulator are 

in line with these prior observations. The increasing probability of cell transformation per surviving cell with 

increasing absorbed doses means that the normal cells surrounding the tumor have to be protected when 

performing target tumor radiotherapy, particularly for high doses of radiation.  

Taken all together, the data show that, at the lower absorbed doses, the transformation frequency per 

irradiated cell when exposure with an β- emitter radionuclide and genetic instability of surviving cells when 

exposure to an α emitter radionuclide are major contributors for the low number of estimated surviving cells, 

since the values of direct lethal damages and transformation frequency per surviving cell for lower doses are 

small compared with higher absorbed doses. Conversely, at higher absorbed doses, cell death is mainly 

related to the number of direct lethal damages, the transformation frequency per surviving cell and the 

radiation quality. This does not mean that genetic instability of surviving cells and transformation frequency 

per irradiated cell effects have no relevance at higher doses, but that their relative importance as a portion of 

the total effect tends to decrease as the dose increases. 

The data obtained from the VC simulator should be interpreted with caution due to the parameter 

estimation issues associated with mechanism-based radiation response models. Although flexibility in 

changing input parameters will have obvious advantages by allowing the modeling of multiple irradiation 

scenarios, it also represents an issue due to the uncertainty associated with the somewhat arbitrary choice of a 

certain value for a give parameter. Together with in vitro or in vivo studies data, simulators such as the one 

adopted in this work, would allow better experimental design and could be used to study different processes 

associated with cell response to ionizing radiation.  

Computational simulation is widely recognized as an essential method to study the physics of 

radiobiology. Nevertheless, some limitations have been pointed out, including modeling and evaluation based 

on current knowledge, which works as a mechanistic process. Furthermore, the computational algorithms 

used in this study only model simple repair processes and exclude DSBs repair processes. Moreover, the used 

algorithms assume an optimal scenario of ionizing energy deposition directly into the DNA, scenario that 

often is challenging to achieve in vitro and in vivo due to inefficient radiopharmaceutical biodistribution 
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processes, and assume that the radioactivity was distributed uniformly throughout the target. However, there 

have been dramatic improvements in dosimetry models and simulators that reflect the substructure of target 

and elements within them (Vaziri et al. 2014). Consequently, future in vitro and in vivo studies are crucial to 

establish a definite role of the simulator used here and careful interpretation of the results is therefore 

recommended. Nevertheless, the comparative analysis of the VC generated data with prior studies support the 

use of the VC simulator as a useful tool in the field of radiobiology, with particular utility in the context of 

radiotherapy. 

The radioisotopes studied included β emitters and α emitters, covering the most commonly used 

particles in current targeted tumor radiotherapy in bone metastases. Doses ranging between 0.1 and 8.0 Gy 

were tested on quiescent and actively dividing cell populations and the number of surviving cells following 

irradiation was estimated. The VC simulator is a user-friendly platform that provides output data consistent 

with experimental terminology used by cellular radiobiologists. This might foster the future use of the VC 

simulator by non-computer scientists, by using a similar approach as the one described here.  

In conclusion, the data obtained using the VC simulator indicate that for doses below 0.1Gy all tested 

particles (89Sr β− particles, 153Sm β− particles, 177Lu β− particles, 223Ra α particles) seem to be equally able to 

induce cell death independently of their LET. At low doses, cell death was found to be due to high genetic 

instability and cell transformation that are cellular end-points measured when investigating the bystander 

effect. On the contrary, at high-absorbed doses, cellular response to radiation seems to be dose and LET 

dependent.  

223Ra α particle emission is an appealing strategy for the treatment of bone micrometastases, owing to 

the short tissue range penetration associated with these radioactive particles that can allow for a more 

circumscribed irradiation surface. Furthermore, typically α emitters induce less hematologic toxicity for a 

given bone surface dose than β− emitters (Pandit-Taskar et al. 2014; Harrison et al. 2013; Nilsson et al. 2013). 

The high linear energy transfer of α particles has been associated with greater biological effectiveness than 

that of β− particles (Pandit-Taskar et al. 2014; Harrison et al. 2013; Nilsson et al. 2013). 223Ra-dichloride has 

been shown to not only have a palliative effect but also a survival prolonging effect (Harrison et al. 2013; 

Nilsson et al. 2013).  

Among the β− particle emitters, the 177Lu has the lowest tissue penetration range (1.8 mm). A common 

concern associated with the use of β− particle is related to their relatively long range in tissue, which can 

result in energy deposition in neighboring, nontargeted cells, a phenomenon known as “cross-fire” that may 
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lead to excessive bystander effects. With α particle emitters, due to their short tissue penetration range, the 

cross fire effect is not such a concern, but may require targeting virtually every cell within large size tumors 

and does not take advantage of the positive bystander effects (Jackson et al. 2013). The relatively short range 

of 177Lu β− particles in tissues is at the lower end of the β− particle generally, thereby minimizing the potential 

adverse effects cross-fire often associated with β− particle emitters. Also, it is higher than typical α particles 

allowing us to take advantage of the positive bystander effects that are not attainable with conventional α 

particles emitters.  

Notwithstanding, previously published data have shown that the 223Ra α particles have an increased 

antitumor effect when compared with β− particles (Nilsson et al. 2005; Pandit-Taskar et al. 2014; Nilsson et 

al. 2013). This might explain recent data demonstrating that 223Ra was the first agent in its class to show an 

overall survival advantage in patients with bone metastases from prostate carcinomas (Goyal & Antonarakis 

2012). In line with these observations, our analysis showed a superiority of the 223Ra α particles compared 

with the modeled β− particles. In particular, the clinical outcome of a given therapeutic depends not only on 

the cellular response but also on, for example, the individual patient differences in clinical conditions, patient 

preparation, life-expectancy, age, and the existence of secondary tumors. Furthermore, radiopharmaceuticals 

biodistribution, elimination, and concentration in the biological target tissue in vivo would also impact 

therapeutic response.  

In conclusion, this study compared different irradiating agents using the same exposure conditions and 

controllable cell populations to clarify the radiobiological effects of these radioisotopes for palliative 

treatment of bone metastases, specifically in the context of prostate cancer. The top agent able to induce the 

highest cellular damage and cell death was found to be the 223Ra α particles. 223Ra-dichloride is a particularly 

appealing approach for the treatment of bone metastases based on the data reported here, radionuclide 

physical properties, suitable production methods and feasible logistics of distribution. Within the β− particle 

emitters investigated, 177Lu was the preferred one due its adequate half-life and physical properties for image 

acquisition. There is much still to understand with regard to the differences biological processes that underpin 

the differences in behavior of high- and low-LET radionuclides. However, the data obtained suggest that the 

computational methods used might provide some insight into cellular effects following irradiation. Although, 

in vitro and in vivo data are necessary to support our findings and clarifies how much the contribution of the 

in lethality is owing to a direct effect and what component of it is owing to bystander effect for each 

radionuclide and scenario, the VC simulator can be useful as a first screening tool for predicting and 
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modelling cellular effects and the bystander effect due to the close association found between genetic 

instability, cell transformation and the bystander effect. 
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TABLE AND FIGURES  

Table I: Summary of main physical properties of different radionuclides in clinical use or under research for 

palliative treatment of bone metastases. 

Radionuclide 
Emission 

Type 
Emean (MeV) (%) 

Eγ (keV) 

(%) 

T1/2 

(days) 

Tissue 

penetration 

range (mm) 

Auger Transition 

– Average Energy 

(keV) (%) 

References  

89Sr β- 
0.5846    

(99.99) 

909 

(0.1) 
50.5 6.7 ------- 

(Bé et al. 2008; 

Lewington 2005; 

Volkert & Hoffman 

1999) 

153Sm β- 
0.2253    

(48.2) 

103 

(28) 
1.93 3.4 34 (4.6) 

(Bé et al. 2008; 

Lewington 2005; 

Volkert & Hoffman 

1999) 

177Lu β- 
0.1494    

(79.3) 

211 

(11) 
6.2 1.8 6 (9) 

(Bé et al. 2008; Volkert 

& Hoffman 1999) 

223Ra α 
5.71581  

(45.6) 

154 

(5.6) 
11.4 0.1 62 (1.7) 

(Bé et al. 2008; 

Lewington 2005; 

Henriksen et al. 2003) 

Legend: T1/2 (days) – radioisotope half-life in days; E (MeV) (%) – particle energy and respective decay abundance 

shown in parentheses; Eγ (KeV) (%) – gamma ray energy and respective abundance in total energy emission shown in 

parentheses; Tissue penetration range (mm) – maximum tissue penetration in soft tissue shown in millimeters; Auger 

Transition – Average Energy (keV) (%) – average Auger transition energy and respective abundance shown in 

parentheses. 

 



	 20	

	

Figure	1:	Cell survival fraction estimated for 89Sr, 153Sm, 177Lu and 223Ra. 
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Figure	2:	Number	of	metastatic	prostate	cells	that	survive	irradiation	with	different	irradiating	agents	in	a	quiescent	
cell	population	 (a),	 and	 in	 cells	 actively	dividing	 (b).	 (Simulated	doses	of	0.1,	0.5,	1,	 2,	 5,	 and	8	Gy	and	 irradiation	
periods	of	2,	24,	48,	120,	and	240	h.)	
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Figure	 3:	 Mutagenesis and enhanced genetic instability probability per surviving cell for different irradiating 
sources: whole irradiation range. 
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Figure	4:	Neoplastic	transformation	frequency	per	irradiated	cell	(a)	and	per	surviving	cell	(b),	following	exposure	to	
different	radiation	sources	and	distinct	absorbed	doses.		
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Figure	5:	Average number of direct lethal damages per surviving cell after irradiation with distinct particles and different 
irradiation scenarios in a logarithmic scale. 	

 


