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Ma l’impresa eccezionale,
dammi retta,

è essere normale

(L. Dalla, 1977)
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1
Introduction

1.1
A Transdisciplinary Research Area

The study of extreme events has long been a very relevant field of investigation at the
intersection of di�erent fields, most notably mathematics, geosciences, engineering
and finance [1, 2, 3, 4, 5, 6, 7]. While extreme events in a given physical system obey
the same laws as typical events, extreme events are rather special both from a math-
ematical point of view and in terms of their impacts. Often, procedures like mode
reduction techniques, which are able to reliably reproduce the typical behaviour of
a system, do not perform well in representing accurately extreme events and under-
estimate their variety. It is extremely challenging to predict extremes in the sense
of defining precursors for specific events and, on longer time scales, to assess how
modulations in the external factors (e.g. climate change in the case of geophysical
extremes) impact on their properties.

Clearly, understanding the properties of the tail of the probability distribution of a
stochastic variable attracts a lot of interest in many sectors of science and technology
because extremes sometimes relate to situations of high stress or serious hazard, so
that in many fields it is crucial to be able to predict their return times in order to
cushion and gauge risks, such in the case of the construction industry, of the energy
sector, of agriculture, of territorial planning, of logistics, and of financial markets,
just to name a few examples. Intuitively, we associate the idea of an extreme event
to either something which is very large, or something which is very rare, or, in more
practical terms, to something with a rather abnormal impact with respect to an in-
dicator (e.g. economic or environmental welfare) that we deem important. While
overlaps definitely exist between such definitions, they are not equivalent.

An element of subjectivity is unavoidable when treating finite data - observational
or synthetic - and when having a specific problem in mind: we might be interested in
studying yearly or decadal temperature maxima in a given location, or the return peri-
od of river discharge larger than a prescribed value. Practical needs have indeed been
crucial in stimulating the investigation of extremes, and most notably in the fields of
hydrology [5] and of finance [2], which provided the first examples of empirical yet
extremely powerful approaches.
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Let’s briefly consider, to take a relevant and instructive example, the case of geo-
physical extremes, which do not only cost many human lives each year, but also
cause significant economic damages [4, 8, 9, 10]; see also the discussion and histor-
ical perspective given in [11]. For instance, freak ocean waves are extremely hard to
predict and can have devastating impacts on vessels and coastal areas [12, 13, 14].
Windstorms are well-known to dominate the list of the costliest natural disasters,
with many occurrences of individual events causing insured losses topping 1 Billion
$ [15, 16]. Temperature extremes, like heat waves and cold spells, have severe im-
pacts on society and ecosystems [17, 18, 19]. Notable temperature-related extreme
events are the 2010 Russian heat wave, which caused 500 wild fires around Moscow,
reduced grain harvest by 30% and was the hottest summer in at least 500 years [20],
and the 2003 heat wave in Europe, which constituted the second hottest summer in
this period [21]. The 2003 heat wave had significant societal consequences; e.g. it
caused additional deaths exceeding 70000 [17]. On the other hand, recent European
winters were very cold, with widespread cold spell hitting Europe during January
2008, December 2009 and January 2010. The increasing number of weather and cli-
mate extremes over the last few decades [22, 23, 24] has led to intense debates, not
only amongst scientists but also policy makers and the general public, whether this
increase is triggered by global warming.

Additionally, is some cases, we might be interested in exploring the spatial corre-
lation of extreme events. See extensive discussion in [25, 26]. Intense precipitation
events occurring at the same time within a river basin, which acts as spatial integra-
tor of precipitations, can cause extremely dangerous floods. Large scale long-lasting
droughts can require huge infrastructural investments to guarantee the welfare of en-
tire populations and the production of agricultural goods. Extended wind storms can
halt the production of wind energy in vast territories, changing dramatically the input
of energy into the electric grid, with the ensuing potential risk of brown- or black-
outs, or can seriously impact the air, land, and sea transportation networks. In gen-
eral, weather and climate models need to resort to parametrizations for representing
the e�ect of small-scale processes on the large scale dynamics. Such parametriza-
tions are usually constructed and tuned in order to capture as accurately as possible
the first moments (mean, variability) of the large scale climatic features. But it is
indeed much less clear how spatially extended extremes could be a�ected. Going
back to a more conceptual problem, one can consider the case where we have two
or more versions of the same numerical model of a fluid, di�ering for the adopted
spatial resolution. How can we compare the extremes of a local physical observable
provided by the various versions of the model? Is there a coarse-graining procedure
suited for upscaling to a common resolution the outputs of the models, such that we
find a coherent representation of the extremes? At this regard, see in [27] a related
analysis of extremes of precipitation in climate models.

When we talk about the impacts of geophysical extremes, a complex portfolio of
aspects needs to be considered, so the study of extremes leads naturally to com-
prehensive transdisciplinary areas of research. The impacts of geohazards depend
strongly not only on the magnitude of the extreme event, but also on the vulnerabil-
ity of the a�ected communities. Some areas, e.g. coasts, are especially at risk of
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high-impact geophysical hazards, such as extreme floods caused by tsunami, storm
surges and freak waves. Delta regions of rivers face additional risks due to flood-
ing resulting from intense and extensive precipitation events happening upstream the
river basin, maybe at thousands of Kms of distance. Sometimes, storm surges and
excess precipitation act in synergy and create exceptional coastal flooding. Mountain
areas are in turn, extremely sensitive to flash floods, landslides, and extreme solid and
liquid precipitation events.

When considering the impacts of extreme events on the societal fabric, a prima-
ry role is played by the level of resilience and preparedness of the a�ected local
communities. Such levels can vary enormously, depending on many factors includ-
ing availability of technology, social structure, level of education, quality of public
services, presence of social and political tensions, including conflicts, gender rela-
tions, and many others [28, 29, 30]. Geophysical extremes can wipe out or damage
substantially the livelihood of entire communities, leading in some cases to soci-
etal breakdown and mass migration, as, e.g., in the case of intense and persistent
droughts. Prolonged and extreme climate fluctuations are nowadays deemed respon-
sible for causing or accelerating the decline of civilisations - e.g. the rapid collapse of
the Mayan empire in the XI century, apparently fostered by an extreme multidecadal
drought event [31]. Cold spells can also have severe consequences. An important
yet not so well known example is given by the dramatic impacts of the recurrent ul-
tra cold winter Dzud events in the Mongolian plains, which can lead to the death of
livestock due to starvation, and are deemed responsible for causing in the past the re-
current waves of migration of nomadic Mongolian populations and their clash with
China, Central Asia, and Europe [32, 33]. The meteorological conditions and drivers
of Dzud events are basically uninvestigated.

Nowadays public and private decision makers need support under great uncertain-
ty from science and technology to optimally address how to deal with forecasts of
extreme events in order to address questions such as: how to evacuate a coastal region
forecasted to be flooded as a result of a storm surge; and how to plan for successive
severe winter conditions a�ecting Europe’s transportation networks? How to mini-
mize the risk of drought-induced collapse in the availability of staple food in Africa?
How to adapt to climate change? Along these lines, today, a crucial part of advising
local and national governments is not only the prediction of natural hazards, but also
the communication of risk for a variety of public and private stakeholders, as, e.g.,
in the health, energy, food, transport, and logistics sectors [23].

Other sectors of public and private interest where extremes play an important role
are finance and (re-)insurance. Understanding and predicting events like the crash of
the New York Stocks Exchange of October 1987 and the Asian crisis have become
extremely important for investors and institutions. The ability to assess the very high
quantiles of a probability distribution, and so delve into low-probability events is
of great interest, because it translates into the ability to deal e�ciently with extreme
financial risks, as in the case of currency crises, stock market crashes, and large bond
defaults, and, in the case of insurance, of low probability/high risk events [2].

The standard way to implement risk-management strategies has been, until recent-
ly, based on the value-at-risk (VaR) approach [34]. The VaR approach typically aims
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at estimating the worst anticipated loss over a given period with given probability
assuming regular market conditions. The basic idea is to extract information from
the typical events to predict the properties of the tails of the probability distribu-
tion. The VaR method has been recently criticised because of various limitations.
In many applications, simple normal statistical models are used, resulting into an
underestimation of the risk associated to the high quantiles in the common (in the
financial sector) case where fat-tailed distributions are present. More sophisticated
statistical models partially address this problem, but, since they are based on fitting
distributions like the Student-t or mixtures of normals, the properties of the non-
typical events are poorly constrained. Non-parametric methods, instead, cannot be
used beyond the range of observed values, so that it is virtually impossible to have
any predictive power for assessing the probability of occurrence of out-of-sample
events [35].

Intuitively, it seems impossible to be able to predict the probability of occurrence
of events larger than what has already been observed, and, in general, of events which
are extremely untypical. The key idea is to focus on the tail of the distribution, by
constructing a statistical model aimed at describing only the extreme data, so that
the fitting procedure is tailored to what one is interested in [36, 37]. In other terms,
this requires separating clearly typical events from non-typical - extreme - events,
disregarding entirely the former, and attributing to the latter special features. One
needs to note that, by the very nature of the procedure, introducing spurious events
in the group of selected extremes (the so-called soft extremes) may lead to substantial
biases in the procedure of statistical fitting.

The goal of this introduction is to motivate the reader to delve into the mathematics
of extremes by presenting some of the most interesting challenges in various areas
of scientific research where extremes play a major role. In this sense, we stick to
the history of the field, where mathematical findings and relevant applications have
gone hand in hand since several decades. In the following sections we introduce
the main themes of this book, we try to clarify the main ideas we will develop, and
we underline the most problematic aspects related to the development of a rigorous
theory of extremes for dynamical systems, and to its possible use for studying specific
mathematical and more applied problems.

1.2
Some Mathematical Ideas

One can safely say that in the case of extremes, as in many other sectors of knowl-
edge, the stimuli leading to the mathematical theory have come from the need to
systematize and understand current technological applications at a deeper level. A
more complete and rigorous mathematical framework is also instrumental in defining
more powerful and more robust algorithms and approaches to studying time series
and to improve our ability to describe, study, and predict extremes, and, eventually,
cushion their impacts. This book aims at providing a mathematical point of view
on extremes able to relate their features to the dynamics of the underlying system.
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Obviously, in order to develop a mathematical theory of extremes, it is necessary to
carefully define the rules of the game, i.e. lay out criteria separating clearly extremes
from regular events. Moreover, it is crucial to construct a conceptual framework
which can be easily adapted to many di�erent applications while, at the same time,
is able to deliver as many results as possible which are universal in some suitable
limits.

The quest for some level of universality, apart from being of obvious mathematical
interest, is very relevant when using exact mathematical results for interpreting data
coming from observations or from numerical simulations. In fact, the presence of
universal mathematical properties gives more robustness to the procedures of statis-
tical inference. It is clear that the tantalizing goal of constructive credible estimates
for very high quantiles and for the probability of occurrence of yet unobserved events
requires one to provide arguments to define the properties for the tails of distribution
under very general conditions, and, possibly, of an explicit universal functional form
describing them.

The classical construction of the mathematical theory of extremes and the defi-
nition of extreme value laws (EVLs) result from the generalization of the intuitive
points of view - extreme as large and extreme as rare - introduced before. Following
[38], one considers a random variable (r.v.) X and investigates the conditions under
which one can construct the properties of the r.v. MN given by the maximum of a se-
quence of N independent and identically distributed (i.i.d.) r.v. Xj , j = 1, . . . , N ,
in the limit N ! 1. This is an extremely powerful and fruitful approach to the
problem, which we will later discuss in detail. One can find that, under rather gener-
al conditions and using a suitable procedure of rescaling, it is possible to construct
such a limit law for MN . In practice, one finds a general three-parameter statisti-
cal model (Generalized Extreme Value or GEV distribution) for fitting the empirical
probability distribution of the block maxima (BM), which are constructed from a
time series of length M = NK by chopping into K (long) blocks of length N , and
taking the maximum of each block.

The GEV distribution provides a generalization of the Frechét, Gumbel, and
Weibull distributions, which have long been used for studying extremes events in
many fields of science and technology. Nowadays, GEV -fitting is one of the most
common methods for dealing with extremes in many applications. Giving a meaning
to the statistics of e.g the annual maxima of surface temperature in a given location
requires taking implicitly or explicitly the block maxima point of view [39]. The
sign of the shape parameter determines the qualitative properties of the extremes,
If the shape parameter is positive (Frechét distribution), the extremes are unlimited,
if the sign is positive (Weibull distribution) the extremes are upper limited, with the
Gumbel distribution (vanishing shape parameter) being the limiting case lying in-
between. The location parameter, instead, describes how large, typically, extremes
are, while the scale parameter indicates the variability of the extremes.

A crucial aspect is that under the same mathematical conditions allowing for the
definition of the limit laws for the variables MN , it is possible to look at the problem
from a complementary point of view. One finds a one-to-one correspondence be-
tween the statistical properties of the block maxima in the limit of very large N , and
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those of the above-threshold events, described by the conditional probability of X
given that X itself exceeds a certain threshold value T , for very large T , approaching
infinity if the distribution of X is not bounded from above, or approaching the max-
imum of the support of the probability distribution of X in the opposite case. One
can prove that these maxima are distributed according to the two-parameter Gener-
alized Pareto Distribution (GPD) [40, 41, 1]. This point of view leads to looking
at extremes using the Peak-Over-Threshold (POT) method. When one looks at the
risk of occurrence of negative anomalies of input of wind energy into the electric
grid larger than a given alert level T , the POT point of view is taken [42]. When
performing POT statistical inference, one derives the values of the two parameters of
the corresponding GPD, the shape and scale parameters, with a similar meaning as
for the GEV case. See [43] for an elegant and comprehensive discussion of advanced
use of the POT methods for the relevant case of rainfall data.

It is remarkable that while for a given series of i.i.d. r.v. Xj the probability dis-
tributions of POT events and of the BM are di�erent, also in the limit, because the
procedure of selection of extremes is fundamentally di�erent, the two points of view
are in some sense equivalent. In other terms we have universal properties, which
do not depend on the procedure of selection of the extremes. More specifically, if
one learns the properties of extremes defined as (large) block maxima, the properties
of extremes as events above a (high) threshold can be automatically deduced, and
the other way around. In fact, the shape parameters of the GEV and GPD are the
same, while one can write explicit relationships between linking the GEV’s scale
and location parameters on one side, with the GPD scale parameter and threshold T
(which acts as a hidden parameter) on the other side, so that a one-to-one correspon-
dence between the two distributions can be found [44]. There has long been a very
lively debate on whether the BM or POT method is better suited for treating finite
time series coming from social, engineering, or natural systems. Most importantly,
the existence of the corresponding well-defined and universal parametric probability
distributions implies that if we are able to obtain a robust fit for the extremes of an
observable given a set of observations, we are able to predict the probability of occur-
rence (or the return time) of events larger than anything observed, with an accuracy
that depends on the quality of the fit. This clarifies why the existence of universality
fosters predictive power.

1.3
Some Di�culties and Challenges in Studying Extremes

1.3.1
Finiteness of Data

It is important to note that, despite the powerful mathematics behind the EVLs, not
all problems related to extreme events can be tackled following the approaches men-
tioned above. Di�culties emerge, e.g., when considering finite data samples and
attempting to derive via statistical inference the statistical models of the underlying
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EVLs.
While the relationship between very large and very rare events is far from obvi-

ous, it seems hard to conceive - or provide any useful definition - of an extreme as
a fairly common event, so that, by construction, the statistical inference of extremes
always su�ers from a relative (or serious) lack of data for fitting purposes [3]. The
problem is more easily seen taking the BM point of view and the classical case of
a time series Xj , 1  j  NK � 1. Assuming that each entry of the time
series is the realization of i.i.d. stochastic variables, we need to divide the NK en-
tries into K blocks each of size N , and perform our statistical inference over the
Mk, 1  k  K . Since we are targeting extremes, we clearly have to consider
the case N � 1. Moreover, since we need to perform statistical inference using
the GEV model, we definitely need K � 1 in order to have su�cient robustness.
In particular, fitting an n�parameter probability distribution requires O(10

n
) in-

dependent data [45]; hence, considering the GEV method, we need K = O(10

3

)

candidates as true extremes. Assuming that yearly maxima are reasonable candi-
dates for extremes of temperature at a given location, what said implies that we need
time series covering O(10

3

) years to perform a reasonable GEV-based analysis of
extremes. It is immediately apparent that available observational data - which cover
at most three centuries for some meteorological stations (and neglecting all problems
of homogenization)- are not appropriate, while one immediately sees the potential of
using ultra-long numerical simulations with climate models.

If data are abundant, one can think at many possible options for dividing a time
series of length NK into K blocks each of length N . One can proceed as follows:
larger and larger values of N are considered, until for N > Ncrit the estimates of
the GEV parameters (and in particular of the shape parameter) are stable (and the
goodness of fit is high). This allows us to say that we have reached - for all practi-
cal purposes - the asymptotic limit of the theory. Further increasing the value of N
makes our fitting procedure worse, because we reduce the value of K , thus increas-
ing the uncertainty in the parameters’ estimate [46]. The basic problem with the BM
method is that many excellent candidates for extremes are removed from the analy-
sis because only the maximum of each block is retained in the subsequent statistical
inference procedure. Interestingly, in many applications, the POT approach is pre-
ferred to the BM approach for fitting time series because it provides more e�cient
use of data and has better properties of convergence when finite datasets are consid-
ered [3]. A comprehensive treatment of optimal threshold selection procedures for
the POT method is presented in [43].

If data are relatively scarce, one is bound to relax the criteria for defining extremes
(thus considering soft extremes (e.g. taking N not too large, or choosing a moderate
threshold T ). As discussed in [46, 47], softening the criteria for choosing extremes
leads to biases in the estimates of the EVL distribution parameters, the basic reason
being that we quickly pollute the statistics with many bogus entries. Therefore, in
some cases one needs to take a more heuristic point of view and construct empirical
measures of extremes, defined, e.g., as events above a given percentile - say 95th
- of the underlying probability distribution. This is, in fact, the standard point of
view taken in most climate -related investigations [23]. Unfortunately, as soon as
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these - pragmatic and useful - points of view are taken, we lose universality and,
consequently, predictive power. This demonstrates that it is important to understand
not only what the limiting EVLs of given stochastic processes are, but also evaluate
how fast the convergence of finite-data estimates is [46]. The reader is encouraged
to look into [48] for an in-depth analysis of extremes in simple atmospheric models,
with a detailed discussion of how fast the statistics of block maxima converges to the
GEV distribution family depending on the choice of observable.

1.3.2
Correlation and Clustering

Apart from the elements of subjectivity and data requirements in defining how large
or rare an event has to be in order to be called a true extreme, many additional as-
pects need to be dealt with when looking at many situations of practical interest. In
particular, the property of recurrence of extremes, defining whether they come as sta-
tistically independent events, or whether they form clusters, i.e. groups of extreme
events concentrated in time, is extremely important. The two scenarios relate to two
di�erent underlying dynamical processes, where the occurrence of extremes is relat-
ed or not to the presence of persistent patterns of dynamics, and to memory e�ects,
and, in terms of risk, imply entirely di�erent strategies of adaptation, mitigation, and
response.

The classical EVT is basically unaltered if the stochastic variables Xj’s are, in-
stead of independent, weakly correlated, meaning that the correlation between the
variables Xj and Xk decreases rapidly enough with |j�k|. In the presence of short
range (i.e. small |j�k|) strong correlations between Xj and Xk, the GEV and GPD
based approaches are not equivalent, the basic reason being that the POT method is
bound to select clusters of extremes, which are instead automatically neglected in
the BM procedure [3]. As a result, one can prove that when estimating the shape
parameter with the POT and BM method using the same time series, one expects to
obtain di�erent estimates, with the POT method giving biased results. At practical
level, this may result is errors in the estimate of the return times of extreme events.
The extremal index (EI), the inverse of the average cluster size [49], is the most im-
portant indicator of how important is clustering is a given time series, and various
statistical methods have been devised to optimally estimate its value [50]. In order
to use the POT approach, we need to post process the data by performing declus-
tering. Commonly used declustering procedures are based on the idea of discarding
all the elements of a cluster except the largest one. After this treatment of data, the
POT method typically delivers the same estimates of the shape parameter as the BM
method [3].

Taking a concrete example where these issues play a key role, one may want to ac-
commodate situations where the occurrence of an extreme is not exclusively related
to the occurrence of a large event, but to the persistence of the considered observable
above a certain threshold for an extended period of time, so that clustering of individ-
ual events is crucial. This is exactly how heat stress indices are defined by the World
Health Organization (WHO) in relation to the persistence of high temperature, be-
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cause the human body is well suited to resisting to short spells of high temperatures,
but has instead great problems in dealing with extended period of physical stress
due to heat. See also the definition of heat wave in [51]. Similarly, food security
is strongly a�ected by prolonged heat and drought stress in some key regions in the
world and contingency plans - based on risk reduction and insurance-based methods
- are continuously updated to take into account the time scale of the persistence of
extreme conditions [9, 52].

Some explicit results have been presented in the physical literature regarding ex-
tremes of time series resulting from stochastic variables Xj featuring long-term cor-
relations. In particular, one obtains that the recurrence times of occurrence of above-
threshold events are not Poisson distributed (which, roughly speaking, implies that
occurrence of one extreme does not influence the occurrence of another extreme),
but rather follows a stretched exponential statistics, with ensuing implications on the
possibility of predicting extremes [53, 54]. A detailed discussion of the performance
and limitations of the POT and BM methods in the context of time series featuring
substantial long-term correlations is given in [7].

1.3.3
Time Modulations and Noise

Often, the parameters of a system, or of a model, or the boundary conditions of
an actual system, change with time: what is the best way to analyze extremes in a
context like this? The usual setting of EVT is based upon assuming stationarity in
the stochastic variables. When performing statistical inference from data, is it more
e�cient to remove trends in the time series of the considered observables and then
study the extremes of the obtained detrended time series? Or should we analyze
the original time series, and use time as a covariate? How do we remove periodic
components in the time-series of a process (e.g. energy consumption) influenced by
e.g. the daily and seasonal cycle?

Some of these aspects are dealt with in [3, 55]: it is proposed to treat time as covari-
ate and construct in this way a time-dependent description of extremes. See also [56],
where this method is compared with what is obtained by dividing the time series to
be studied in smaller blocks, and then performing standard EVT parameter inference
in each block separately assuming stationarity, as proposed in [57]. Recently, [58]
have proposed new statistical methods for constructing e�cient time-dependent EVT
models from non-stationary time series, while [59] have underlined the limitations
of this approach when forcing terms have di�erent time scales.

This issue is of extremely relevance and urgency, e.g. with regard to the very active
field of investigation of the meteo-climatic extremes in the context of the changes in
the properties of the climate system due to anthropogenic influence. In most cases,
for the reasons outlined above, the investigation of changes in extremes is performed
by looking at heuristic indicators, such as changes in the probability of occurrence
of empirically defined above-thresholds events [60] or in value of very low and high
quantiles [61]. Though, it is becoming more common in the geophysical literature to
make explicit - e.g. [62] - or implicit -e.g. [63] - use of EVT. See also [5, 4, 64] for
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comprehensive reviews.
Another aspect to be mentioned is the role of noise or finite precision in observa-

tions. When taking into account real measuring devices, we also face the problem of
errors - uncertainties and biases - in recording data. Therefore, observational noise
needs to be addressed in order to connect mathematical results to inferences from
data [65]. On a related note, [66, 67, 68] concluded that there is a substantial im-
pact of finite precision (typically, 1 mm) on the rain gauge readings on the fitting
procedures for reconstructing the statistical properties of rainfall data.

1.4
Extremes, Observables, and Dynamics

The open issues and practical problems mentioned above clarify that it is necessary
to develop a comprehensive mathematical view of extremes in order to achieve flex-
ibility and predictive power in many real-life problems.

Traditionally, the theory of extremes events has been developed in the context of
probability theory and stochastic processes, as suggested by the definitions provided
above. Nonetheless, many of the examples we have hinted at suggest that one needs to
move in the direction of extending and adapting the classical results of extreme value
theory for investigating the extremes of observables of suitably defined dynamical
systems. The reader is encouraged to look into [69] for a comprehensive presentation
of the theory of dynamical systems, and into [70, 71] for a point of view specifically
tailored for linking dynamical systems and (non-equilibrium) statistical mechanics.

Roughly speaking, the conceptual bridge relies on considering a given (continuous
or discrete time) dynamical system as the generator of infinitely many stochastic vari-
ables, each defined by the time series of a given observable, i.e. a su�ciently regular
function mapping the trajectory of the point representing the evolution of the system
in the phase space into the real numbers, and then studying the extremes of such
observables. Such point of view, first proposed in [72], has the crucial advantage
of giving the possibility of relating the properties of the extremes to the underly-
ing dynamics of the system generating them, thus providing a natural link between
probability theory and dynamical systems theory and connecting, in practical terms,
forward numerical simulations of - possibly complex - systems with the statistical
inference of the properties of extremes from time series.

Moreover, it provides the perfect setting for studying the properties of extremes
generated by numerical models, which are finite-precision (and thus noisy) imple-
mentations of systems ranging from simple low dimensional maps up to discretized
(in time and space) representations of the evolution of continuum systems, such as
fluids. It is clear that by considering dynamical systems with di�erent properties of
decay of correlations, one mirrors precisely the conditions of weak vs. strong corre-
lations of stochastic variables described above. This substantiates the idea of clusters
of extreme events, and can define cases where the one-to-one equivalence between
BM and POT approaches is broken, so additional mathematical subtlety is required
[73, 74, 49].
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A key ingredient of a theory of extremes incorporating dynamics and recurrences
is the choice of the observable. This provides a new dimension of the problem, and
requires the scientist to define what a good, meaningful, useful, well-behaved observ-
able is. Moreover, given a numerical model, one can practically explore many of the
aspects related to temporal or spatial coarse graining just by constructing in rather
simple ways the observable of interest. This issue naturally provides a more statistical
mechanical, physical setting to the problem of extremes, paving the way for interest-
ing applications where extremes can be used as indicators of the structural properties
of a system, defining new, powerful methods to study its tipping points [75].

We shall see that, by looking at extremes, one can learn about qualitative properties
of the dynamical system generating them, e.g. learning whether it features regular
or chaotic motions [76], and, under suitable circumstances, understand basic infor-
mation on the geometry of the attractor and on the Lyapunov exponents determining
the growth or decay or errors in given directions. Therefore, extremes act as a probe
of a dynamical system, and, when suitable observables are considered, they define
a natural microscope to look at the details of the invariant measure, to the point of
providing alternative ways to compute Hausdor� dimension of the attractor.

An especially important role is played by observables whose extremes correspond
to close returns of the orbit near a reference point [73, 49, 77, 78]. Interestingly,
perturbing systems with noise allows the establishment of EVLs for such observ-
ables also in the case of deterministic quasi-periodic motion and removes clusters of
extreme events when strong correlations are otherwise present [79].

Recurrence-based techniques have also been shown to be directly usable for study-
ing the properties of extremes in climatic time series [80]. Nonetheless, in many
practical applications, one is interested in studying a di�erent sort of observables,
the so-called physical observables [81, 44], which a priori have nothing to do with
the recurrence of an orbit near a given reference point, but rather describe macro-
scopic or anyway physically relevant properties of the system. As a simple example,
one may consider the extremes of the energy [82] or of temperature [48] in a mod-
el of geophysical fluid . The extremes of physical observables permits the study of
rather sophisticated aspects of the geometry of the attractor of the underlying system,
providing a formidable tool for analyzing at the properties of the unstable and stable
components of the tangent space.

One can formulate the problem of studying, at least heuristically, extremes for
non stationary systems by taking the point of view of some recent results of non-
equilibrium statistical mechanics and dynamical systems theory. This can involve
the construction of a response theory for Axiom A dynamical systems to predict
the change in the expectation value of suitably defined observables resulting from
weak perturbations which are also time dependent, e.g. such as small changes in a
parameter [83, 84].

In order to apply these results to the problem of assessing the time-dependent prop-
erties of extremes - see Sec. 1.3.3 - one needs to construct observables which can
represent the extreme events of interest, and then apply response theory to compute
their change as a result of the perturbation. Finally, the computed response can be
reformulated in terms of time dependent correction to the value of the EVL param-
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eters [44]. An interesting aspect is that, since extremes are in this case described by
the universal parametric family of EVLs, one could draw the rather counter-intuitive
conclusions that, in some sense, the response of extremes to perturbations could be
a better-posed problem than studying the response of the statistics of the bulk of the
events [82, 56]. In practical terms, this gives a framework for rigorous questions
mentioned before in this introduction, such as determining how extremes change
when time-dependent perturbations are added to the system [56], as in the case of
changes in climatic extremes in an overall changing climate [85, 86, 87]. Apart from
the relevance in terms of applications, the mathematical interest in this regard is con-
siderable.

A di�erent yet related dynamical point of view on extremes of non-stationary sys-
tems is based upon considering the mathematical construction of the so-called pull-
back attractor [88, 89, 90], sometimes referred to as snapshot attractor [91], which is
basically the time-dependent generalisation of the usual attractor appearing in many
dissipative chaotic system [70, 71], and enjoys a lot of the useful properties of the lat-
ter, except time invariance. The time-dependent measure supported on the pullback
attractor at time t is constructed by evolving from an infinitely distant past a Lebesgue
measure with compact support. This procedure, in practical numerical applications,
corresponds to starting to run in the distant past a large number of simulations with
di�erent initial conditions, and observing the resulting ensemble at time t [89]. The
time-dependent properties of extremes can then be assessed studying the properties
of such an ensemble [92, 93, 59, 94].

This setting suggests the possibility of achieving predictability of extremes in a
statistical sense, i.e., developing tools for understanding how their properties change
as a result of changing parameters of the system that generates them, which is clearly
a major scientific challenge in e.g. climate science [4, 23], where big data are being
advocated [10]. Our ability to predict e�ciently the occurrence of individual extreme
events is still modest, see some examples in [4]. A crucial aspect is that it is not easy
to anticipate (we are not talking about ex-post analysis) the dynamical causes lead-
ing to an extreme event. As clarified in [95, 96], (finite-time) Lyapunov exponents
and related dynamical objects have an important role in assessing the potential pre-
dictability of a chaotic system for typical conditions [97], in terms of allowing for
e�ectively extremes with a certain lead time. Some authors have proposed ingenious
methods for detecting precursors [98, 99], but still a comprehensive understanding
of this problem is missing.

1.5
This Book

The scope for the lines of investigation described above is immense, and what we are
proposing in this book is a limited perspective resulting from the collective e�ort of
a group of authors coming together and joining forces from a rather diverse spectrum
of scientific expertise, ranging from probability theory, to dynamical systems; from
statistical mechanics, to geophysical fluid dynamics; from theoretical physics, to time



Lucarini, Faranda, Freitas, Freitas, Holland, Kuna, Nicol, Todd, Vaienti: Extremes and Recurrence in Dynamical
Systems — Chap. 1 — 2016/5/16 — 19:35 — page 15

15

series analysis. Without the hope nor the goal of being comprehensive or conclusive,
this book aims at providing a new perspective on extreme events, a transdisciplinary
field of research of interest for mathematicians, natural scientists, statisticians, engi-
neers, and social scientists.

One can safely say that the main di�erence between this book and many other
excellent monographs in the literature, ranging from rather abstract mathematical
formulations of the theory of extremes [1, 100], to sophisticated presentation of al-
gorithms for defining, detecting, and performing statistical inference of extremes
[3, 50], to specific applications [2], is the focus on dynamics. In other terms, we
do not take extremes as results of a black box - a stochastic process whose origin we
might not necessarily be interested in per se - but rather explore the link between
the (typically chaotic) system under investigation and the generating process leading
to the extreme and the extreme event itself. The freedom of looking at di�erent ex-
tremes is guaranteed by the possibility of choosing di�erent observables, which may
be tailored for looking at local, global, or recurrence properties of the system and
for focusing on specific regions of its attractor. This perspective leads to considering
extremes as a revealing source of information on the microscopic or macroscopic
properties of the system, and so naturally suited for improving our understanding of
its statistical mechanics. As opposed to many contributions in the scientific litera-
ture, our emphasis will not be on presenting ideas for optimizing statistical inference
procedures, even if we will present examples and ideas in this direction. Though, we
hope to contribute to providing useful guidance for statistical inference procedures
by clarifying what they should find for given systems.

The main motivation for the approach we propose here comes - mostly but not ex-
clusively - from a more general interest by the authors in exploring the fruitful and
emerging nexus between mathematics and geophysical fluid dynamics, which has
recently received global accolade with the Mathematics for Planet Earth internation-
al initiative (http://www.mpe2013.org), and in particular of the programme
Mathematics for the Fluid Earth (http://www.newton.ac.uk/event/MFE)
[101] held at the Newton Institute for Mathematical Science in Cambridge (UK); see
also the recent review [102]. Moreover, the authors hope to contribute to stimulat-
ing the development of new e�ective and robust methods for studying extremes in
a meteo-climatic context, thus contributing to the global e�ort for adapting to cli-
mate change and climate -related risk. This book tries to provide stimulations, hints,
and new results having in mind a readership of (applied) mathematicians, statisti-
cians, theoretical physicists, experts in probability, stochastic processes, statistical
mechanics, time series analysis, and in (geophysical) fluid dynamics.

The structure of the book can be described as follows:

• In Chapter 2 we present an overview of general laws and concepts used for describ-
ing rare events and introduce some terminology.

• In Chapter 3 the basics of classical extreme value theory are introduced, concen-
trating on results that are useful for developing a dynamical systems perspective.
In this part of the book, there is no reference to dynamics, whereas everything is
formulated exclusively in terms of stochastic processes.
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• Chapter 4 and Chapter 5 constitute the core of the book. In the former we introduce
dynamical systems as generators of random processrandom processes and present
a description of a variety of methods and approaches to derive EVLs for the so-
called distance observables. In the latter, we construct the correspondence between
EVLs and hitting/return time statistics in uniformly hyperbolic, non-uniformly hy-
perbolic, and quasi-periodic systems.

• In Chapter 6 we focus on specific dynamical systems of special interest, and study
in detail the role of the decay of correlations for establishing extreme value laws
and relate it to the chaotic nature of the dynamics, and investigate the rate of con-
vergence of the statistics of extremes to the asymptotic EVLs. We also introduce
and discuss the properties of the extremes of the so-called physical observables.

• In Chapter 7 we tackle the important problem of the impact of noise on the statistics
of extremes in dynamical systems, treating the case of random perturbations to the
dynamics and of observational noise.

• In Chapter 8 we take the point of view of statistical mechanics and, using Axiom A
systems as mathematical framework, we discuss extremes in the context of high-
dimensional dynamical systems, introducing the so-called physical observables,
relating the properties of the extremes to the dynamical properties of the underlying
system, and proposing a framework for a response theory of extremes.

• In Chapter 9 we move our focus to studying the procedures for statistical inference
and present instructive applications of the theory in numerical simulations, inves-
tigating the role of finite size e�ects in the inference. We also present examples
of how EVT can be used to derive relevant information on the geometrical and
dynamical properties of the underlying system, and investigate how the presence
of noise impacts the statistics of extremes.

• Chapter 10 focuses on physically-oriented applications of EVT, showing how it
can be used for detecting tipping points in multistable systems and, additionally,
for providing a rigorous characterisation of the properties of temperature fields in
present and changing climate conditions.

• Chapter 11 contains the concluding remarks of the book and provides indications
for future research activities in the field.

• Appendix A includes a few MATLAB© numerical codes used for producing some
of the numerical results contained in the book, which are distributed for the benefit
of the readers.
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2
A Framework for Rare Events in Stochastic Processes
and Dynamical Systems

2.1
Introducing Rare Events

The first step of the study of rare events is to establish a mathematical framework
where the meaning of rare event becomes precise. The wording already suggests
us that we should have a notion of how to measure the frequency with which an
event occurs. Hence a probabilistic framework is natural. Therefore, as a setup, we
should start with a probability space X equipped with a �-algebra B of events and
a probability measure P designed to quantify the probability of the occurrence of
any event A 2 B. We assume the reader has prior knowledge of probability theory
but refer to [103, 104] as two examples of textbooks where every possibly missing
definition and concept can be easily found and recalled. Any other standard textbook
on probability theory should be equally suitable.

We can characterise rare events as those events A 2 B such that P(A) is small. Of
course what is meant by small needs to be quantified at some point. As mentioned
in Chapter 1, one of the main reasons why we are interested in studying rare events
is because they are usually associated with unwanted incidents of high potential en-
vironmental, social, financial, infrastructural or technological impacts. Therefore,
while sometimes it is impossible to avoid such high risk scenarios, we would like at
least to gauge the risk by assessing their probability of occurrence. Hence, another
major ingredient in our consideration should be the time dimension of the process
leading to the occurrence of the extremes. The classical statistical approach to this
matter is to consider thatX is just the space of realisations of a time series or stochas-
tic process of random variables (r.v.) of interest, say X

0

, X
1

, . . ., which stands as a
theoretical model for treating time series of quantities of relevance for the phenomena
under investigation

In most cases, along the book X
0

, X
1

, . . . is a stationary sequence of r.v. Station-
ary means that the joint distribution function (d.f.) of any finite collection of r.v. in
the process is equal to the joint d.f. of that collection of r.v. displaced by the same
time period, i.e., for any k, t 2 N and i

1

< i
2

< . . . < ik 2 N the joint d.f. of
Xi

1

, Xi
2

, . . . , Xik is equal to the joint d.f. of Xi
1

+t, Xi
2

+t, . . . , Xik+t. We also
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denote by F the common (cumulative) d.f. of the r.v. in the process, i.e.,

F (x) = P(X
0

 x),

for every x 2 R.
If a r.v. is absolutely continuous, so that the Lebesgue-Stieltjes measure associated

toF , µF , is absolutely continuous with respect to the Lebesgue measureLeb, we can
define the Radon-Nikodym derivative function, f =

dµF

dLeb , which is usually called
a probability density function. If f is Riemann integrable and continuous at x, then
f(x) = dF (x)

dx . See [103, 104] for further details.
In this case, when provided with a finite sample X

0

, . . . , Xn�1

, rare events are
almost always tied with abnormal values of the observations in the sample, which
means that we are interested in the extremal observations (either very large or very
small) typically above (or below) some high (low) thresholds. For historical reasons,
we will refer only to exceedances of high thresholds, although the study could be
reframed in terms of analysis of extremely small observations, as well. We note that
it is su�cient to change the sign of the variable of interest to go from one problem to
the other. Hence, in this context, a rare event or extreme event (since it corresponds to
an extreme value of the observations) corresponds to the occurrence of an exceedance
of the threshold u,

U(u) := {X
0

> u}, (2.1.1)

where u is close to the right endpoint of the d.f. of F , i.e.,

uF = sup{x : F (x) < 1}. (2.1.2)

which can be finite or infinite. Since we are interested in large values of the r.v.,
the behaviour of tail of its d.f. is of crucial importance. Hence, we introduce the
following notation: let

¯F = 1� F.

the complementary distribution function. The speed at which ¯F (u) approaches 0 as
u ! uF establishes the type of tail we have. In particular, informally, we say that F
has heavy tails if uF = 1 and ¯F (u) vanishes polynomially fast in u, and we have
light tails if uF < 1 or ¯F (u) vanishes exponentially fast in u. We will see later in
Chapter 3 how Extreme Value Theory (EVT) allows one to construct a very general
framework for studying the tails of the distributions.

When considering time series produced by instruments or numerical models, one
should keep in mind that our knowledge of the properties of the tail can depend
critically on our observation window in time.

2.2
Extremal Order Statistics

The study of the tails of the d.f. is connected to the behaviour of the extremal order
statistics of the sample. Let X

1,n  X
2,n  . . .  Xn,n denote the order statis-
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tics of the sample X
0

, X
1

, . . . , Xn�1

, so that X
1,n is the minimum and Xn,n the

maximum of such sample. We introduce the following notation:

Mn := max{X
0

, . . . , Xn�1

}, (2.2.1)

so that Xn,n = Mn. Again, for historical reasons we will consider the maximum
but note that X

1,n = �max{�X
0

, . . . ,�Xn�1

}.
In classical statistical analysis, one is mostly concerned with the average behaviour

of the sample, which is tied with its mean, 1/n
Pn�1

i=0

Xi, or its central order statis-
tics, such as the median Xbn/2c,n, and the respective Gaussian type asymptotic na-
ture. Here, since we are interested in the abnormal behaviour, described by the tail of
F , we are concerned with the extreme order statistics such as Mn. In fact, observe
that the knowledge of Mn allows to conclude if an exceedance has or not occurred
among the first n observations since, if {Mn  u} occurs, than there are no ex-
ceedances of u up to time n� 1.

In the case of independent events, i.e., , when the stochastic process X
0

, X
1

, . . . is
a sequence of independent and identically distributed (i.i.d.) r.v., the first statement
regardingMn is thatMn converges almost surely (a.s.) to uF . Then, the next natural
question is whether we can find a distributional limit for Mn, when it is conveniently
normalised. Hence, given a stochastic processX

0

, X
1

, . . .we define a new sequence
of random variables M

1

,M
2

, . . . given by (2.2.1) and propose the following:

Definition 2.2.1. We say that we have an Extreme Value Law (EVL) for Mn if there
is a non-degenerate d.f. H : R ! [0, 1] with H(0) = 0 and, for every ⌧ > 0, there
exists a sequence of levels un = un(⌧), n = 1, 2, . . ., such that

nP(X
0

> un) ! ⌧, as n ! 1, (2.2.2)

and for which the following holds:

P(Mn  un) ! ¯H(⌧), as n ! 1. (2.2.3)

where the convergence is meant to hold at the continuity points of H(⌧).

The motivation for using a normalising sequence (un)n2N satisfying (2.2.2) comes
from the case when X

0

, X
1

, . . . are independent and identically distributed (i.i.d.).
In this setting, it is clear that P(Mn  u) = (F (u))n, where F is the d.f. of X

0

.
Hence, condition (2.2.2) implies that

P(Mn  un) = (1� P(X
0

> un))
n ⇠

⇣

1� ⌧

n

⌘n
! e

�⌧ , (2.2.4)

as n ! 1. Moreover, the reciprocal is also true (see [1, Theorem 1.5.1] for more
details). Note that in this case H(⌧) = 1� e

�⌧ is the standard exponential d.f.
The study of EVLs is the starting point for a deeper analysis of the properties of

rare events. But the main novelty we present here is the study of rare events for
dynamical systems. We mentioned before that it is natural to use EVT to study the
properties of time series reflecting the evolution in time of a random variable. But,
in fact, one can bring together randomness and time evolution by considering purely
determistic systems featuring a so-called chaotic dynamics.
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2.3
Extremes and Dynamics

In many situations, the evolution of natural, engineering, and social phenomena can
be represented by mathematical models able to incorporate how the properties of the
system change in time. The research field focussing the study of how systems evolve
with time is usually referred to as dynamical systems [70, 69]. In the last century, the
discovery of the ubiquity of chaotic systems and the investigation of their erratic yet
extremely structured behaviour has shed new light on the interpretation of stochastic
processes.

A dynamical system is build up out of a phase space, where each point describes a
given state of the system, a model for the passage of time, which can be continuous or
discrete, and an evolution law that rules the unfolding of the system. In the continuous
case, the evolution laws are usually given in terms of di�erential equations, while in
the discrete case a map describe the transitions from one state to another. One of
the most famous examples of a dynamical system is the celebrated Lorenz ’63 model
[105]. It consists of a system of three di�erential equations designed to provide a
minimal representation of convection via a minimal representation of its dynamics.
This system provides the prototype of chaotic behaviour and has been extensively
studied in a variety of disciplines including mathematics, physics, geophysics, and
time series analysis.

The erratic behaviour of this system makes its outputs hardly distinguishable from
purely randomly generated numbers, at least on the long run. This led to the coining
of the expression butterfly e�ect, or, in more precise terms, the sensitivity to initial
conditions and the presence of impassable and intrinsic limits to deterministic pre-
diction for chaotic system. See [97] for a detailed exposition of the whole conceptual
and technological chain stretching from the Lorenz ’63 model to the modern techno-
logical infrastructure and methods for weather forecast. Hence, chaotic dynamical
systems provide another area to study rare events, the di�erence being that random
behaviour is generated by a deterministic model, whose characteristics are shown
later in the book to have a crucial impact on the properties of the extremes.

We briefly introduce some terminology for dynamical systems, taking the example
of discrete time evolution. In this setting,X denotes the phase space which we endow
some topological, or di�erentiable, or measure-theoretical structure, depending on
the problem under consideration. We are particularly interested in the latter, and
denote by B the associated �-algebra of subsets of X , which gives the measurable
structure. The system itself is represented by a measurable map (with a structure
compatible with that of X ) that we denote by T (or sometimes f ) such that T :

X ! X describes the time evolution of the system, i.e. determines the rule defining
the transition from an initial state x 2 X to the state T (x), after one unit of time.
Moreover, we require the existence of a probability measure P defined on B that is
coherent with T , in the sense that, P(T�1

(A)) = P(A), 8A 2 B, which we express
by saying that P is T -invariant.

For an initial state x 2 X we define its orbit to be the sequence of states through
which the system will go if it is started at that particular state x, i.e., the sequence



Lucarini, Faranda, Freitas, Freitas, Holland, Kuna, Nicol, Todd, Vaienti: Extremes and Recurrence in Dynamical
Systems — Chap. 2 — 2016/5/16 — 19:35 — page 23

23

x, T (x), T 2

(x), . . ., where

Tn
(x) = T � T � . . . � T

| {z }

n times

(x)

is the nth iterate of T . The main goal of dynamical systems theory is to study the
long-term behaviour of the orbits of the system.

A rare event is given by some subsetA ⇢ X of the phase space belonging toB and
such thatP(A) is small. The occurrence of a rare event is obtained whenever the orbit
of some point hits the target set A. Poincaré’s Recurrence Theorem guarantees that
almost every point of A will return to A infinitely often (i.o.) (see [106]). Moreover,
if a system is ergodic with respect to P and P(A) > 0, then almost every (a.e.) orbit
will hit A at some point in time. A system is said to be ergodic with respect to P if
for every B 2 B such that T�1

(B) = B then either P(B) = 0 or P(B) = 1. In
other words, a system is ergodic if it is not decomposable into two parts (detected by
the measure P) that do not interact with each other, see [106].

We define the first hitting time rA : X ! N [ {1} by

rA(x) := inf{n 2 N : Tn
(x) 2 A}. (2.3.1)

If x never enters A under iteration by f then rA(x) = 1. When the point x 2 A
then we say that rA(x) is the first return of x to A. Kac’s theorem gives that the
mean return time to A is equal to the reciprocal of P(A). Hence, at least in average,
rA(x) should go to 1 as P(A) goes to zero. A natural question then is if we can
find a limit distribution for rA, when conveniently normalised. By Kac’s theorem the
natural candidate to normalise rA would be P(A). The study of such distributional
limits are known as Hitting Times Statistics (HTS) and, when we start inA, as Return
Times Statistics, see Chap. 5 for precise definitions.

But the same formalism used in the classical study of extreme values can be brought
into consideration simply by using the system to generate a time series by evaluating
a certain observable along its orbits. Let ' : X ! R [ {±1} be a measurable
observable function and define the stochastic process X

0

, X
1

, . . . given by X
0

= '
and

Xn = ' � Tn, for each n 2 N.

A realisation of such process corresponds to picking an initial state x 2 X at random,
according to P, and then evaluating the function ' along all points of the orbit x,
T (x), T 2

(x), . . . .
Having an exceedance of a certain threshold u means that the orbit hits a region of

the phase space described by U(u) = {X
0

> u}. Moreover, note that

T�1

({Mn  u}) = {rU(u) > n},

which means that there should be a connection between the existence of an EVL and
the existence of HTS. This link will be fully described in Section 5.3.

The study can be deepened by considering for example point processes that keep
track of the number of exceedances or hits to certain regions of the phase space and
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allow to paint a global picture of the extremal type behaviour of the systems. A
main goal of this book is then performing such statistical study of chaotic systems
and understanding how the structure (geometric, topological) and the properties of
the system emerge and influence its extremal behaviour. Moreover, we will see that
the study of the extremes for dynamical systems can be used to study and uncover
geometric properties and other features of the system itself.
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3
Classical Extreme Value Theory

In this chapter we review some of the more emblematic results of classical EVT. It is
not intended as a comprehensive exposition but the main motivation is to give a brief
introduction to the techniques and notation, with the purpose of making the book as
self contained as possible and to motivate the further developments in the following
chapters.

The choice of subjects and issues addressed in this chapter does not indicate judge-
ment of their importance from our side. Instead, we have the intent of providing the
reader some background and perspective for a better understanding of the problems
and advances described in the rest of the book.

Several excellent books on classical EVT are available and they should be seen
both as complement and as reference for the material in this chapter. We mention
some of them: [107, 1, 108, 3, 109, 110].

In this chapter we will start by recalling some by now classical results in EVT,
first in the context of i.i.d. sequences of r.v. Then we recall some conditions intro-
duced by Leadbetter to obtain EVL in the dependent case for stationary stochastic
processes. Afterwards we introduce the concept of clustering and further develop-
ments concerning the dependence conditions needed to recover the existence of EVL
in the presence of clustering.These mixing conditions are reviewed in detail in order
to compare them with the new ones proposed in Chapter 4. One of the best ways
to understand clusters is by studying point processes of exceedances or rare events.
For that reason, we make a small detour to define such point processes and establish
both notation and definitions (such as weak convergence) in order to make clearer the
statements of some of the results appearing in the following chapters. Understand-
ing clustering, the Extremal Index and how it a�ects statistical inference is further
discussed in a brief description of the some well-known declustering procedures.
Finally, a brief discussion of statistical inference based on EVT is presented.
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3.1
The i.i.d. Setting and the Classical Results

3.1.1
Block Maxima and the Generalized Extreme Value Distribution

In the classical theory, the sequences of real numbers un = un(⌧), n = 1, 2, . . .,
are usually taken to be one parameter linear families like

un = y/an + bn, (3.1.1)

where y 2 R and an > 0, for alln 2 N. In fact, in the classical theory, one considers
the convergence of probabilities of the form

P(an(Mn � bn)  y). (3.1.2)

The main classical result of EVT is the so called Extremal Types Theorem usually
credited to Gnedenko [38] although some previous version was already stated in the
work of Fisher and Tippett [111].

Theorem 3.1.1 ([111, 38]). If X
0

, X
1

, . . . is a sequence of i.i.d. r.v. and there exist
linear normalising sequences (an)n2N and (bn)n2N, with an > 0 for all n, such
that

P(an(Mn � bn)  y) ! G(y), (3.1.3)

where the convergence occurs at continuity points of G, and G is non-degenerate 1),
then G(y) = e

�⌧(y), where ⌧(y) is of one of the following three types (for some
�, � > 0):

1) ⌧
1

(y) = e

�y for y 2 R;
2) ⌧

2

(y) = y�� for y > 0;
3) ⌧

3

(y) = (�y)� for y  0.

These types are usually called Gumbel (type 1), Fréchet (type 2) and Weibull (type
3) (cumulative) distributions.

Definition 3.1.2. The three types may be combined in a unified model called the
Generalised Extreme Value (GEV) distribution:

G(y) = GEV⇠(y) =

(

e

�(1+⇠y)�1/⇠

, 1 + ⇠y > 0, if ⇠ 6= 0

e

�e

�y

, y 2 R, if ⇠ = 0

. (3.1.4)

When ⇠ = 0, the distribution corresponds to the Gumbel type; when the index is
positive, it corresponds to a Fréchet; when the index is negative, it corresponds to a
Weibull.

1) A d.f. is non-degenerate if there is no y

0

2 R such that G(y

0

) = 1 and G(y) = 0, for all y < y

0
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Informally, one can sat that exponential tail corresponds to ⇠ = 0 or Gumbel type,
heavy tail corresponds to ⇠ > 0 or Fréchet type, and upper bounded corresponds to
⇠ < 0 or Weilbull type.

We emphasise that as observed in [38], for i.i.d. sequences of r.v., the limiting
distribution type of the partial maxima is completely determined by the tail of the
d.f. F . We recall the definition of the right endpoint uF given in Eq. 2.1.2. As
can also be found in [1, Theorem 1.6.2], in order to define the respective domain of
attraction for EVT, we have the following su�cient and necessary conditions on the
tail of the d.f. F :

Type 1 G(y) = e

�⌧
1

(y) (Gumbel) if and only if (i�) i� uF = 1 and there exists some
strictly positive function h : R ! R such that for all y 2 R

lim

s!uF

¯F (s+ yh(s))
¯F (s)

= e

�y
; (3.1.5)

Type 2 G(y) = e

�⌧
2

(y) (Fréchet) i� uF = 1 and there exists � > 0 such that for all
y > 0

lim

s!uf

¯F (sy)
¯F (s)

= y�� ; (3.1.6)

Type 3 G(y) = e

�⌧
3

(y) (Weibull) i� uF < 1 and there exists � > 0 such that for all
y > 0

lim

s!0

¯F (uF � sy)
¯F (uF � s)

= y� . (3.1.7)

Remark 3.1.3. It may be shown that
R1
0

1 � F (u) du < 1 when a Type 1 limit
holds, and one appropriate choice of h is given by

h(s) =

R uF

s 1� F (u) du

1� F (s)
,

for s < uF .
Remark 3.1.4.

As we can see in [1, Corollary 1.6.3], the normalising constants an and bn may be
taken as follows:

Type 1:

an = [h(�n)]
�1, bn = �n;

Type 2:

an = ��1

n , bn = 0;

Type 3:

an = (uF � �n)
�1, bn = uF ,
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with �n = F�1

(1� 1/n) = inf{y : F (y) � 1� 1/n}.
Remark 3.1.5. An important aspect related to the study of the statistics of extremes
is to provide inference methodologies appropriate to the tail of the d.f. F , in order
to fit the data to the correct model and to estimate parameters connected with rare
events, like high quantiles or the mean waiting time between the occurrence of ex-
treme events. As mentioned in Chapter 1, the detailed exploration of the methods
for performing accurate and e�cient statistical inference of extremes is outside the
scope of this book. While we discuss below and in subsequent chapters some aspects
of this line of investigation, the reader is encouraged to look into, e.g., [2, 3, 109, 50]
for further reading and references on these topics.

In order to gather a more practical view on the problem, we can reformulate the
main result of Theorem 3.1.1 as the fact that when the sample size n ! 1,

P(Mn  y) = Fn
(y) ⇡ GEV⇠

✓

y � µ

�

◆

,

for some µ 2 R and � > 0., where ⇠ 2 R is the shape parameter, µ 2 R is the
location parameter and � > 0 the scale parameter. For n large, the normalising
constant an ! ��1 and bn ! µ. This motivates the parametric method suggested
by Gumbel for studying the tail of a times series resulting from a stochastic process.
It is the block maxima (BM) approach, whereby one basically divides the series of
recorded data into k � 1 bins or blocks of length n � 1. Then the maximum of
each block is retrieved and the empirical distribution of the k maxima is then fitted by
the best matching GEV type of d.f. This implies, in particular, estimating the shape
⇠, location µ, and scale � parameters. The obtained best estimate of µ and of � give
the nth element of normalising sequence bn and the inverse of the nth element of
normalising sequence an given in Eq. 3.1.2, respectively. Note that, when n is large
enough, the estimate of ⇠, as opposed to the case of � and of µ, does not depend on
n [46]; see also Sect. 9.1.1.

The fitting procedure is often done using maximum likelihood estimation (MLE)[3].
Other approaches to the problem of fitting have been proposed in the literature, most
notably the weighted moments method [112, 113] and the L-moments method [114].
2) In Chapter 9 we describe in some detail some strengths and weaknesses of MLE
and L-moments methods.

Of course, time series almost invariably feature non-trivial correlations, so that
the whole mathematical construction provided above might seem irrelevant for time
series analysis, as the stochastic variables X

1

, X
2

, . . . are assumed to be indepen-
dent. In fact, we see shortly below in Section 3.2 how one can (partially) circumvent
such an issue. The problem of serial dependence of data is also dealt with later in
Section 4.1 when addressing observables of dynamical systems. Instead, in Chapter
9 we present various examples clarifying how to practically implement time series
analysis.

2) The literature in this field is very large and rapidly evolving. We have made here reference only to a
very limited set of relevant contributions.
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3.1.2
Examples

In this subsection, we present one example for each of the three di�erent types of
limit laws for Mn and compute, in each case, normalising sequences an > 0 and bn
for which (3.1.3) holds.

Example 3.1.1. - Exponential distribution
For the exponential distribution with parameter 1, we have F (x) = 1 � e

�x,
x > 0. For ⌧ > 0, we may consider un such that n(1� F (un)) = ⌧ , i.e.

un = log n� log ⌧.

Thus,
P(Mn � log n  � log ⌧) ! e

�⌧ .

Putting ⌧ = e

�y , we obtain

P(Mn � log n  y) ! e

�e

�y

.

So, in this case, Mn has an EVL of Type 1, with

an = 1 and bn = log n.

Example 3.1.2. - Pareto distribution
For the Pareto distribution, we have that F (x) = 1 � kx�↵, for ↵ > 0, k > 0,

x > k1/↵. For ⌧ > 0, we may choose un such that n(1� F (un)) = ⌧ , i.e.

un =

✓

kn

⌧

◆

1/↵

.

Thus,
P((kn)�1/↵Mn  ⌧�1/↵

) ! e

�⌧ .

By writing ⌧ = y�↵ for y � 0, we obtain

P((kn)�1/↵Mn  y) ! e

�y�↵

.

So, Mn has an EVL of Type 2 with

an = (kn)�1/↵ and bn = 0.

Example 3.1.3. - Uniform distribution
For the uniform distribution on (0, 1), we have that F (x) = x, 0  x  1. Let

⌧ > 0 and un be such that n(1� F (un)) = ⌧ , i.e.

un = 1� ⌧

n
.
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Consequently, we have that

P(n(Mn � 1)  �⌧) ! e

�⌧ .

By writing ⌧ = �y for y < 0, we obtain

P(n(Mn � 1)  y) ! e

y.

So, Mn has an EVL of Type 3 with

an = n and bn = 1.

3.1.3
Peaks Over Threshold and the Generalised Pareto Distribution

One of the problems of the Gumbel’s BM method is the fact that by looking only at
the maxima in each bin, some high values (corresponding to actual extreme events)
may be discarded.

The BM method is clearly very data hungry, so that one, in many practical situation,
might want to be able to take into account any large value in a block not only the
maximal one. Another approach to the analysis of extremes, called the Peaks Over
Threshold (POT) method, relies on establishing a high threshold T and retrieving all
the data that exceed T , which is used as a tuning variable. This approach is based on
the following theoretical result:

Theorem 3.1.6 ([41, 40]). Assume that X
0

, X
1

, . . . is a sequence of i.i.d. r.v.. Then,
there exist linear normalising sequences (an)n2N and (bn)n2N, with an > 0 for all
n, such that

P(an(Mn � bn)  y) ! GEV ⇠(y)

if and only if

lim

T!uF

sup

0y<uF�T
|FT (y)� GPD⇠,�(y)| = 0,

where, for 0  y < uF � T ,

FT (y) = P(X
0

� T  y|X
0

> T ) =
F (y + T )� F (T )

1� F (T )
,

and, for � = �(T ) > 0, GPD⇠,�(y) = GPD⇠(y/�), where

GPD⇠(y) =

(

1� (1 + ⇠y)�1/⇠, y � 0, 1 + ⇠y > 0, if ⇠ 6= 0

1� e

�y, y � 0, if ⇠ = 0

(3.1.8)

is the so-called univariate Generalised Pareto Distribution (GPD). The parameters
⇠ and � are referred to as shape and scale parameters, respectively.
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It is crucial to note that the shape parameter ⇠ is the same for the corresponding
GEV and GPD distributions. Furthermore, a simple functional relation connects the
two distributions:

1 + log(GEV⇠(y)) = GPD⇠(y).

Given a long time series, the POT approach to extremes boils down to fitting the
selected data having value larger than the threshold T data to the distributions
GPD⇠(y/�), and estimating the values of ⇠ and �.

As seen above, when analyzing extremes using the BM method, we need to find a
good compromise between choosing very long bins and having many maxima to use
for the statistical inference procedure. In the case of the the POT method, we have to
find a good compromise between setting a very high threshold T , so that only true
extremes are selected, and making sure that such selection is such that a su�cient
number of data is retained for the purpose of data fitting. It is crucial to make sure that
our estimates for ⇠ and � are robust when T is varied within the asymptotic regime of
large values of T . In such a regime, the estimates of ⇠ do not depend on T . Instead,
as indicated above, � does depend on T also in the asymptotic regime T ! uF ,
while the quantity � � ⇠T (modified scale parameter) does not. A successful fit is
obtained when we can define a (high) threshold ¯T such that 8T > ¯T , the estimates
of ⇠ and � � ⇠T are compatible within statistical uncertaininties [3, 115].

The estimation of the GPD tail index parameter ⇠ is of great importance in several
applications [3, 109, 50]. Plenty of estimators for the tail index have been proposed.
We mention the popular Hill’s estimator [116] and its enhanced version, where spe-
cial weights are designed for the log di�erences in order to reduce the bias [117].
Many other estimators have been proposed in the literature; see, e.g., [118, 119, 120].
In Chapter 9 we present examples of statistical inference of POT performed using
standard GPD-based methods.

3.2
Stationary Sequences and Dependence Conditions

After the success of the classical Extremal Types Theorem of Fisher-Tippet and Gne-
denko in the i.i.d. setting, there has been a great deal of interest in studying the exis-
tence of EVL for dependent stationary stochastic processes. Building up on the work
of Loynes and Watson, Leadbetter proposed in [121] two conditions on the depen-
dence structure of the stochastic processes, which he called D(un) and D0

(un), that
guaranteed the existence of the same EVLs of the i.i.d. applied to the partial maxima
of sequences of r.v. satisfying those conditions.

Let X
0

, X
1

, X
2

, . . . be a stationary sequence of r.v..
Condition D(un) is a sort of uniform mixing condition adapted to this setting

of extreme values where the main events of interest are exceedances of the thresh-
old un. Let Fi

1

,...,indenote the joint d.f. of Xi
1

, . . . , Xin , and set Fi
1

,...,in(u) =
Fi

1

,...,in(u, . . . , u).

Condition (D(un)). We say that D(un) holds for the sequence X
0

, X
1

, . . . if for
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any integers i
1

< . . . < ip and j
1

< . . . < jk for which j
1

� ip > t, and any large
n 2 N,
�

�Fi
1

,...,ip,j1,...,jk(un)� Fi
1

,...,ip(un)Fj
1

,...,jk(un)
�

�  ↵(n, t),

uniformly for every p, k 2 N, where ↵(n, tn) ����!
n!1 0, for some sequence tn =

o(n).

Condition D0
(un) precludes the existence of clusters of exceedances of un. Let

(kn)n2N be a sequence of integers such that

kn ! 1, lim

n!1 kn↵(n, tn) = 0, and kntn = o(n). (3.2.1)

Condition (D0
(un)). We say that D0

(un) holds for the sequence X
0

, X
1

, X
2

, . . .
if there exists a sequence {kn}n2N satisfying (3.2.1) and such that

lim

n!1 n
bn/knc
X

j=1

P(X
0

> un, Xj > un) = 0.

Theorem 3.2.1 ([122, Theorem 1.2]). Let X
0

, X
1

, . . . be a stationary stochastic
process and (un)n2N a sequence satisfying (2.2.2), for some ⌧ > 0. If D(un) and
D0

(un) hold, then ¯H(⌧) = e

�⌧ .

Remark 3.2.2. Note that, as a consequence of the previous theorem, under the as-
sumptionsD(un) andD0

(un) the statement of Theorem 3.1.6 remains valid. There-
fore, in a variety of applications where one needs to study extremes of time series
featuring a su�ciently fast decay of correlations, GEV- and GPD-based statistical
inference methods are used almost interchangeably, under the overall consensus that
following the POT approach is more e�cient when the time series are not exception-
ally long [3, 5, 43, 85, 4, 44]. Di�erences between the two methods emerge when
extremes come in clusters; this is discussed below in Sections 3.2.2-3.4.

3.2.1
The Blocking Argument

The core of the argument of the previous result is a blocking argument similar to the
one introduced by Markov and used to prove a Central Limit Theorem for stationary
stochastic processes. The idea is to break the n observations into kn blocks (where
kn is as in (3.2.1)) of size bn/knc and then separate them by adding time gaps of
size tn between each block. These time gaps introduce some sort of independence
between the blocks on account of condition D(un), which motivates coupling with
i.i.d. r.v. with the same d.f. as that of X

0

. Finally, condition D0
(un) is used to

decorrelate the information contained in each block.
To be more precise, instead of n r.v. of the process X

0

, X
1

, . . . we introduce the
time gaps by considering kn(bn/knc+tn), instead. We also introduce the following
notation. For a subset A ⇢ N

0

we let MA := maxk2A Xk. The blocks are defined,
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for each m = 1, . . . , kn, by Bm := {(m�1)(bn/knc+ tn), . . . ,mbn/knc�1+

(m � 1)tn)}. There are kn disjoint blocks of length bn/knc, which are separated
by gaps defined, for each m = 1, . . . , kn, by Gm := {mbn/knc � 1 + (m �
1)tn),m(bn/knc+ tn)� 1}.

Then we proceed with the following sequence of approximations.

•
�

�P(Mn  un)� P(Mkn(bn/knc+tn)  un)
�

�  kntnP(X0

> un). In this
first step we notice that adding the r.v. that will be used to create the gaps
does not change the asymptotic distributional limit. By choice of the sequences
(un)n2N, (tn)n2N and (kn)n2N, satisfying (2.2.2) and (3.2.1), it follows easily
that limn!1 kntnP(X0

> un) = 0

•
�

�

�

P(Mkn(bn/knc+tn)  un)� P(MSkn
m=1

Bm
 un)

�

�

�

 kntnP(X0

> un). In
this step we see that disregarding the r.v. in the gaps leads to an error term equal
to kntnP(X0

> un), which corresponds to the possibility of having at least one
exceedance among the r.v. of the kn gaps of size tn. The corresponding error term
converges to zero due to the same argument as in the previous point.

•
�

�

�

P(MSkn
m=1

Bm
 un)� (P(MB

1

 un))
kn

�

�

�

 kn↵(n, tn). In this step, we
use condition D(un) to obtain an approximate independence between the blocks
of r.v. separated by a time gap from each other. In fact, kn↵(n, tn) goes to 0 by
D(un) and choice of kn.

•
�

�

�

Pkn
(Mb n

kn
c  un)� (1� b n

kn
cP(X

0

> un))
kn

�

�

�

. This final approximation is
shown to be controlled by the anti-clustering condition D0

(un), which precludes
the appearance of more than one exceedance in each block. The main error term in
this approximation is bounded by a constant times n

Pbn/knc
j=1

P(X
0

> un, Xj >
un), which vanishes, on account of D0

(un).

In order to apply the theory to dynamical systems, condition D(un) has to be
revised because it can hardly be verified in that context, except in some trivial sit-
uations. This means that the blocking argument needs to be refined in order to ac-
commodate a weakening of the original D(un) condition. This refinement is mostly
concentrated on the third approximation and is accomplished by a more intensive use
of condition D0

(un) to compensate the weakening of D(un). This generalisation of
the blocking argument is carried out in Section 4.1, where new conditions that, on
one hand, allows us to weaken D(un) and, on the other hand, allows us to treat both
the presence and absence of clusters, are introduced and shown to be useful to prove
the existence of EVL.

In Chapter 6, the blocking argument is revisited in a more dynamical setting and
is used to devise, in particular, convergence rates for specific examples of dynamical
systems, as in Section 4.1.

3.2.2
The Appearance of clusters of Exceedances

In the previous result, condition D0
(un) plays a double role: together with D(un),

it guarantees the existence of a limit distribution for Mn and also makes sure that
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the limit law was such that ¯H(⌧) = e

�⌧ , which is exactly what appears in the i.i.d.
setting. When D0

(un) does not hold but D(un) does, although we cannot assert the
existence of a limit distribution, in case this limit exists, we can still say something
about the type of law one should expect for the limit. This is the content of the
following theorem.

Theorem 3.2.3 ([122, Theorem 2.2]). Let X
0

, X
1

, . . . be a stationary stochastic
process and (un)n2N a sequence satisfying (2.2.2). Suppose D(un) holds for each
choice of ⌧ . If the limit (2.2.3) exists then there exists 0  ✓  1 such that ¯H(⌧) =
e

�✓⌧ for all ⌧ > 0.

In certain circumstances, observed data clearly exhibit the existence of clusters of
exceedances [123]. By clusters, we mean consecutive occurrences of an exceedance
of a given threshold, which thus causes D0

(un) to fail. The presence of clusters is
clearly related to the memory properties of the underlying process. This motivates
the study of the e�ect of clustering on EVLs [122]. In fact, one can observe that
clustering of exceedances essentially produces the same type of EVL but with a pa-
rameter 0  ✓  1, the Extremal Index (EI), so that ¯H(⌧) = e

�✓⌧ : here ✓ quantifies
the intensity of clustering [1].

Definition 3.2.4. We say that X
0

, X
1

, . . . has an Extremal Index (EI) 0  ✓  1 if
we have an EVL for Mn with ¯H(⌧) = e

�✓⌧ for all ⌧ > 0.

The notion of the EI was latent in the work of Loynes [124] but was established
formally by Leadbetter in [122]. The parameter ✓ quantifies the strength of the de-
pendence of X

0

, X
1

, . . ., so that ✓ = 1 indicates that the process has practically no
memory while very low values of ✓ > 0, conversely, reveals extremely long memory.
In particular, when ✓ > 0, one can interpret the inverse of the EI ✓�1 as the mean
number of exceedances of a high level in a cluster of large observations, i.e., is the
mean size of the clusters.

In order to show the existence of EVLs with a certain EI ✓  1, new conditions
(replacing D0

(un)) were devised. We refer to condition D00
(un) of [125] and par-

ticularly the more general condition D(k)
(un) of [126], which also includes the case

of absence of clustering.

Condition (D(k)
(un)). We say that conditionD(k)

(un) holds for the sequenceX
0

,
X

1

, X
2

, . . . if there exist sequences {kn}n2N and {tn}n2N satisfying (3.2.1) and
such that

lim

n!1 nP(X
0

> un � M
1,k�1

,Mk,bn/knc�1

> un) = 0, (3.2.2)

where Mi,j := �1 for i > j, Mi,j := max{Xi, . . . , Xj} for i  j.

Clearly (3.2.2) is implied by the condition

lim

n!1 n
bn/knc
X

j=k+1

P(X
0

> un � M
1,k�1

, Xj�1

> un) = 0 (3.2.3)
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(see [126, Equation (1.2)]).
This last condition is equal to D0

(un), when k = 1 and to the aforementioned
D00

(un) when k = 2.
Together with condition D(un), the condition D(k)

(un) gave an EVL, where
¯H(⌧) = e

�✓⌧ , with an EI ✓ given by O’Brien’s formula, whenever the following
limit exists:

✓ = lim

n!1 ✓n = lim

n!1
P (X

0

> un, X1

 un, . . . , Xk�1

 un)

P(X
0

> un)
. (3.2.4)

Theorem 3.2.5 ([126]). Let X
0

, X
1

, . . . be a stationary stochastic process and
(un)n2N a sequence satisfying (2.2.2). SupposeD(un) holds and lim infn!1 P(Mn 
un) > 0. If for each positive k, D(k)

(un) holds, then

lim

n!1(P(Mn  un)� e

�✓n⌧
) = 0.

Moreover, if the limit (3.2.4) exists then,

lim

n!1P(Mn  un) = e

�✓⌧ .

3.3
Convergence of Point Processes of Rare Events

A more sophisticated way of studying rare events consists in studying Rare Events
Point Processes (REPP). These point processes keep record of the exceedances of the
high thresholds un by counting the number of such exceedances on a rescaled time
interval. For every A ⇢ R we define

Nun
(A) :=

X

i2A\N
0

1Xi>un
.

Observe that Nun([0, n)) counts the number of exceedances amongst the first n
observations of the process X

0

, X
1

, . . . , Xn. Hence, clearly, in the i.i.d. case
Nun([0, n)) is binomial with parameters (n,P(X

0

> un)), since it counts the
number of successes (exceedances) among n Bernoulli trials being the probability
of each success equal to P(X

0

> un). The choice of the normalising sequences
(un)n2N satisfying (2.2.2) means that the average number of successes is nearly
constant (converging to ⌧ � 0, as n ! 1), which implies that Nun([0, n)) is
asymptotically Poisson. Hence, it is natural to ask whether the exceedance instants
form a Poisson Process, in the limit. Since the exceedances occur at integer time
values we need to rescale time to obtain such sort of convergence. The REPP intro-
duced describe the record of the times when an exceedance event was observed. The
distance between consecutive events in the point processes is the waiting time for
the next exceedance.
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3.3.1
Definitions and Notation

In order to provide a proper framework of the problem we introduce next the neces-
sary formalism to state the results regarding the convergence of point processes. We
recommend the books of Kallenberg [127] and Resnick ( [108, Section 3]) for further
reading.

Consider the interval [0,1) and its Borel �-algebra B
[0,1)

. Let x
1

, x
2

, . . . 2
[0,1) and define

⌫ =

1
X

i=1

�xi ,

where �xi
is the Dirac measure at xi, i.e., for every A 2 B

[0,1)

, we have that
�xi

(A) = 1 if xi 2 A or �xi
(A) = 0, otherwise. The measure ⌫ is said to be a

counting measure on [0,1). Let Mp([0,1)) be the space of counting measures
on ([0,1),B

[0,1)

). We equip this space with the vague topology, i.e., ⌫n ! ⌫ in
Mp([0,1)) whenever ⌫n( ) ! ⌫( ) for any continuous function  : [0,1) !
R with compact support. A point process N on [0,1) is a random element of
Mp([0,1)), i.e., let (X,BX , µ) be a probability space, then any measurable map
N : X ! Mp([0,1)) is a point process on [0,1).

To give a concrete example of a point process, which in particular will appear as
the limit of the REPP, we consider:

Definition 3.3.1. Let T
1

, T
2

, . . . be an i.i.d. sequence of r.v. with common ex-
ponential distribution of mean 1/✓. Let D

1

, D
2

, . . . be another i.i.d. sequence of
r.v., independent of the previous one, and with d.f. ⇡. Given these sequences, for
J 2 B

[0,1)

, set

N(J) =
Z

1J d

 1
X

i=1

Di�T
1

+...+Ti

!

=

1
X

i=1

Di�T
1

+...+Ti
(J) =

1
X

i=1: T
1

+...+Ti2J

Di,

where �t denotes the Dirac measure at t > 0. Let for example X denote the space
of all possible realisations of T

1

, T
2

, . . . and D
1

, D
2

, . . ., equipped with a product
�-algebra and measure, then N : X ! Mp([0,1)) is a point process which we
call a compound Poisson process of intensity ✓ and multiplicity d.f. ⇡.

Remark 3.3.2. Throughout the book, the multiplicity will always be integer valued
which means that ⇡ is completely defined by the values ⇡k = P(D

1

= k), for every
k 2 N

0

. Note that, if ⇡
1

= 1 and ✓ = 1, then N is the standard Poisson process and,
for every t > 0, the random variable N([0, t)) has a Poisson distribution of mean t.

As mentioned above, in order to define the REPP we need to rescale time. This
rescaling is done so that the average number of exceedances is kept stabilised (con-
verging to 1 on the unit interval [0, 1]), which means that, in the independent case,
we are counting the number of successes of a Bernoulli trial with nearly constant ex-
pected number of successes, which in turn leads to a Poisson behaviour. Hence, we
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rescale time using the factor vn := 1/P(X
0

> un), following what Kac’s theorem
would suggest, see Section 2.3 and detailed discussion in Chapter 4. However, before
we give the definition, we need some more formalism. Let S denote the semi-ring
of subsets of R+

0

whose elements are intervals of the type [a, b), for a, b 2 R+

0

. Let
R denote the ring generated by S . Recall that for every J 2 R there are k 2 N
and k intervals I

1

, . . . , Ik 2 S such that J = [k
i=1

Ij . In order to fix notation, let
aj , bj 2 R+

0

be such that Ij = [aj , bj) 2 S . For I = [a, b) 2 S and ↵ 2 R, we
denote ↵I := [↵a,↵b) and I + ↵ := [a+ ↵, b+ ↵). Similarly, for J 2 R define
↵J := ↵I

1

[ · · · [ ↵Ik and J + ↵ := (I
1

+ ↵) [ · · · [ (Ik + ↵).

Definition 3.3.3. We define the rare event point process (REPP) by counting the
number of exceedances during the (rescaled) time period vnJ 2 R, where J 2 R.
To be more precise, for every J 2 R, set

Nn(J) := Nun(vnJ) =
X

j2vnJ\N
0

1Xj>un . (3.3.1)

We will see that both in the classical theory and in the one developed in this book,
the REPP converges either to a standard Poisson process or to a compound Poisson
process. For completeness, we define here what we mean by convergence of point
processes (see [127] for more details).

Definition 3.3.4. Let (Nn)n2N : X ! Mp([0,1)) be a sequence of point pro-
cesses defined on a probability space (X,BX , µ) and let N : Y ! Mp([0,1))

be another point process defined on a possibly distinct probability space (Y,BY , ⌫).
We say that Nn converges in distribution to N if µ � N�1

n converges weakly to
⌫ � N�1, i.e., for every continuous function ' defined on Mp([0,1)), we have
limn!1

R

'dµ �N�1

n =

R

'd⌫ �N�1. We write Nn
µ

=) N .

Remark 3.3.5. It can be shown that (Nn)n2N converges in distribution to N
if the sequence of vector r.v. (Nn(J1), . . . , Nn(Jk)) converges in distribution
to (N(J

1

), . . . , N(Jk)), for every k 2 N and all J
1

, . . . , Jk 2 S such that
N(@Ji) = 0 a.s., for i = 1, . . . , k.

Note that

{Nun
([0, n)) = 0} = {Mn  un}, (3.3.2)

hence the limit distribution of Mn can be easily recovered from the convergence of
the REPP.

3.3.2
Absence of Clusters

In the independent case, the exceedances appear scattered on the time line and the
waiting times between them are (asymptotically) exponentially distributed. Conse-
quently, it is fairly easy to prove that in this case the REPP Nn defined in (3.3.1)
converges in distribution to a standard Poisson process N of intensity 1.
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Let’s consider general stationary stochastic processes, where conditions D(un)

and D0
(un) hold. This implies that there is no clustering of exceedances. In this

case, the waiting times between exceedances assume exactly the same exponential
pattern as in the independent case. Therefore, not surprisingly, we obtain that the
REPP Nn defined in (3.3.1) converges in distribution to a standard Poisson process
N of intensity 1. This is the content of [1, Theorem 5.2.1]. The proof relies on a
criterion, proposed by Kallenberg [127, Theorem 4.7], which reduces the study of
the convergence of the REPP Nn to the distributional properties of the maxima on
disjoint multiple time intervals.

3.3.3
Presence of Clusters

on many occasions, the exceedances appear concentrated in the time line in groups
or clusters, and such a phenomenon is related to the presence of memory.

As an example, floods persist for days (so that a river gauge reading would give
extremely high values for several days in a row); furthermore, having a flood creates
a higher propensity for flood in the immediate future because the soil is saturated
with water, so that even relatively weak rainfall events can cause inundations.

The time rescaling used to study the convergence of REPP is then responsible for
collapsing all the exceedances in a cluster into a single point of mass in the time line,
with the weight of the point mass encoding the size of the cluster. Hence, unsurpris-
ingly, the limit of the REPP is a compound Poisson process, which can be thought of
as having two components: one is the underlying asymptotic Poisson process gov-
erning the positions of the clusters of exceedances; and the other is the multiplicity
distribution associated to each such Poisson event, which corresponds to the distri-
bution of the cluster sizes.

Under the presence of clustering the convergence of the REPP is more complicated
and it is usually obtained using Laplace transforms and a strengthening of the mix-
ing conditions above is required. We will recall below [128, Theorem 4.2], which
assumes the following strengthening of D(un):

Condition (�(un)). For 0  i  j  n, let Fj
i (un) be the �-field generated

by the events {X`  un}, for i  `  j, where (un)n2N is a sequence of levels
satisfying (2.2.2). Let

↵n,t = max{|P(A\B)�P(A)P(B)| : A 2 Fp
1

(un), B 2 Fk
p+t(un), 0  p  n�1�t}.

We say that �(un) holds for the sequence X
0

, X
1

, . . . if ↵(n, tn) ����!
n!1 0, for

some sequence tn = o(n).

Let (kn)n2N be a sequence satisfying (3.2.1). We define the cluster size distribu-
tion, for each j 2 N

⇡n(j) = P (N([0, n/kn)) = j|N([0, n/kn)) > 0) =

P(N([0, n/kn)) = j)

P(Mbn/knc  un)
.
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The next theorem gives the convergence of the REPP to a compound Poisson pro-
cess under the assumptions�(un), the existence of a distributional limit for Mn and
the existence of limit of the cluster size distribution ⇡n defined above. The statement
is an adjustment of the content of [128, Theorem 4.2], having in mind that the REPP
Nn defined in (3.3.1) has a slightly di�erent time rescaling when compared to the
one used in [128].

Theorem 3.3.6. Assume that X
0

, X
1

, . . . is a stationary stochastic process satisfy-
ing condition �(un) and limn!1 P(Mn  un) = e

�⌘ for some ⌘ > 0 and a
sequence (un)n2n as in (2.2.2). Suppose that there exists a probability distribution
⇡ defined on N such that ⇡(j) = limn!1 ⇡n(j) for every j 2 N. Then the REPP
Nn defined in (3.3.1) converges in distribution to a compound Poisson process N ,
with intensity ✓ = ⌘/⌧ and multiplicity distribution ⇡.

We note that by Theorem 3.2.3, the existence of ⌘ > 0 such that P(Mn  un) =

e

�⌘ implies the existence of an EI ✓ = ⌘/⌧ , where ⌧ comes from the normalising
sequence (un)n2n satisfying (2.2.2). Moreover - excluding pathological cases of
little interest here - it can be shown that the EI is equal to the inverse of the average
cluster size or, in other words,

✓�1

= lim

n!1

1
X

j=1

j⇡n(j). (3.3.3)

When clustering is present, the REPP Nn converges to a compound Poisson pro-
cess with intensity ✓ < 1, which means that the cluster positions, which account for
the Poisson events of the compound Poisson process, appear less frequently than in
the absence of clustering, where the exceedances (which corresponded to the Poisson
events) appeared at a frequency equal to 1. However, each cluster corresponding to a
Poisson event has a multiplicity equal to the cluster size, whose average equals ✓�1

so that, in the end, counting with the multiplicities, we still have an average frequency
of exceedances equal to 1.
Remark 3.3.7. In the applications we will make to dynamical systems, the periodicity
will impose some sort of Markovian property on the stochastic processes, which will
translate in the fact that clustering ⇡ is actually a geometric distribution of parameter
✓ 2 (0, 1], i.e., ⇡k = ✓(1� ✓)k�1, for every k 2 N

0

. This means that, as in [129]
the random variable N([0, t)) follows a Pólya-Aeppli distribution, i.e.:

P(N([0, t)) = k) = e

�✓t
k
X

j=1

✓j(1� ✓)k�j (✓t)
j

j!

 

k � 1

j � 1

!

,

for all k 2 N and P(N([0, t)) = 0) = e

�✓t.
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3.4
Elements of Declustering

It is often recognised that the BM method presents some disadvantages when com-
pared to the POT method to estimate the tail of the distribution, since, in the latter,
there seems to a better use of the information available on the tail. On the other hand,
when clustering is present, BM appears to be more robust because clustering does
not change the type of limiting distribution for the maxima. Instead, the estimates of
the GPD parameters, an in particular, of the shape parameter ⇠, obtained using the
POT approach can be seriously biased [3]. However, if the clusters are identified and
suitable post-processing of the data is performed - the so-called declustering - the
POT method can again become an e�cient statistical inference tool.

Declustering methods are associated with corresponding estimators for the EI. The
two main classical procedures to identify clusters are the so-called blocks decluster-
ing and runs declustering [50]:

• the blocks declustering consists of splitting data as described in Section 3.2.1 into
kn blocks of size bn/knc and considering that the exceedances within each block
belong to the same cluster;

• the runs declustering method consists of choosing a run length qn and stipulating
that any two exceedances separated from each other by a time gap smaller than qn
belong to the same cluster.

After the declustering procedure, one retains only one peak (typically the largest
one, but other choices are in principle possible) per cluster and performs the POT
statistical inference procedure on such reduced dataset. As a result, the estimates
of the GPD parameters are more uncertain than before the post-processing, but they
are asymptotically unbiased. Additionally, these two declustering procedures can be
used to estimate the EI as in [130]. The idea is to use (3.3.3), which says that the EI
is the reciprocal of the average number of exceedances in a cluster. Hence, a natural
estimation consists in taking the ratio of the number of clusters detected through
the declustering procedure to the total number of exceedances. We recall first the
so-called blocks estimator:

ˆ✓Bn :=

Pkn

i=1

1N([(i�1)bn/knc,ibn/knc)>0

Pn
i=1

1Xi>un

.

The runs estimator is given by

ˆ✓Rn :=

Pn
i=1

1{Xi>un,N([i+1,i+qn))=0}
Pn

i=1

1Xi>un

.

A problem of these two estimators is the sensitivity to the choices of kn and qn,
respectively. More recently, more robust declustering methods and more sophisticat-
ed estimation of the EI have been pursued, e.g., in [131, 132, 133]. Some practical
methodologies can be found in e..g. [3, 50].
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4
Emergence of Extreme Value Laws for Dynamical
Systems

One of the main purposes of this book is the establishment of a theory of extreme
values for dynamical systems. Chaotic dynamical systems exhibit erratic behaviour
di�cult to anticipate, which can be better understood from a probabilistic point of
view. In many practical situations, such as in the now classical case of weather and
climate dynamics, time series of observables can be modelled as resulting from a
chaotic dynamical system, which describes its time evolution. For this reason, the
development of a theory of extreme values for such systems opens up a huge pool of
potential applications as well as embodying a new ground for the further development
of the already existing theory.

The starting point of our analysis are stationary stochastic processes arising from a
chaotic dynamical systems. One way to go in this direction is to evaluate an observ-
able function along the orbit of the system. We focus on two qualitatively distinct
kinds of functions, the distance and the physical observables. Then the extremal
behaviour is analysed by studying the distributional limit of the partial maximum of
such stochastic processes or by investigating the limit of point processes counting the
number of exceedances of high thresholds during some time interval.

In the context of dynamical systems, the study of EVLs is a quite recent topic. It
first appeared in the pioneering paper of Collet, [72], which has been an inspiration
for plenty of the research on this issue. Then the subject has been further addressed
and developed in many subsequent contributions including [134, 73, 135, 74, 136,
137, 138, 139, 49, 140, 81, 46, 76, 77, 78, 141, 142, 79, 44].

The classical theory for general stationary stochastic processes described in the
previous chapter is based on the mixing condition D(un) (or very similar ones),
which can hardly be verified for processes arising from dynamical systems (other
than trivial examples), because the most natural way to analyse the mixing proper-
ties is usually through the study of the rates of decay of correlations. Based on ideas
introduced by Collet, a strengthening of the classical theory has been achieved first
by introducing some weaker assumptions to replace the Leadbetter’s D(un) in order
to obtain EVLs. We emphasise that these results apply to general stationary stochas-
tic processes, although these e�orts were motivated by application to the study of
statistical properties of dynamical systems.

The structure of this chapter is as follows. In Section 4.1, we start by enhancing the
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EVT for general stationary stochastic processes under weaker mixing conditions that
we will denote with a Cyrillic D: Д. These conditions are weaker than the original
D(un) condition of Leadbetter and and that will be essential in order to apply the
condition to dynamical systems. Moreover, the asymptotic results are obtained with
an indication of the respective convergence rates. In Section 4.2, we finally apply
the theory developed in Section 4.1 to stationary processes arising from dynamical
systems. In particular, we show that if a system has a su�ciently fast decay of corre-
lations then there exists a dichotomy regarding the extremal behaviour, which estab-
lishes a connection between presence of clusters and periodicity. This is illustrated
with a toy model of a uniformly expanding system: the special case of the Bernoulli
shift maps known as doubling map. In Section 4.3, we enhance the study by consid-
ering the convergence of Rare Events Point Processes, which is much stronger than
obtaining EVL. We also obtain a dichotomy in this case and apply this to the example
mentioned before. We defer the more detailed discussion of the rate of convergence
to the asymptotic EVL to Chap. 6 and specifically to Sect. 6.8.

4.1
Extremes for General Stationary Processes – an Upgrade Motivated by
Dynamics

The theory developed by Leadbetter and later by several other authors for station-
ary stochastic processes is not adequate for the study of the extremal behaviour of
stochastic processes arising from dynamical systems. The reason is that the condi-
tion D(un) requires a uniform mixing property on the dependence structure of the
processes, which can hardly be met within a dynamical systems setting. Therefore,
a substantial revision of the existing theory for stationary processes is needed in or-
der to be able to prove the existence of EVL considering milder conditions on the
dependence structure of the processes. This has been achieved first in the absence of
clustering in [72, 134, 73, 139]. The presence of clustering brings some extra di�-
culty in pursuing the weakening of conditionD(un) of Leadbetter, eventually solved
in [49]. In this series of papers, several mixing conditions have been devised in order
to weaken D(un) and still be able to obtain EVL for stochastic processes arising
from dynamical systems. We present below the latest refinement of these conditions,
which has been obtained in [143] and which, in particular, allows for addressing both
the absence and presence of clusters at once.

4.1.1
Notation

Let X
0

, X
1

, . . . be a stationary stochastic process, where each r.v. Xi : Y ! R is
defined on the measure space (Y,B,P). We assume that Y is a sequence space with
a natural product structure so that each possible realisation of the stochastic process
corresponds to a unique element ofY and there exists a measurable mapT : Y ! Y ,
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the time evolution map, which can be seen as the passage of one unit of time, so that

Xi�1

� T = Xi, for all i 2 N.
Note. There is an obvious relation betweenT and the shift map, but we do not want to
stress this relation here, because the description considered here is definitely not the
usual shift dynamics. The normal shift map acts on sequences from a finite or count-
able alphabet, while here T acts on spaces like RN, in the sense that the sequences
can be thought as being obtained from an alphabet like R. In fact, our applications
include non uniformly hyperbolic systems and ball target sets. T can also be thought
as a discretisation of a continuous time system. Note that our framework is so gen-
eral that any discrete time dynamical systems is automatically of this form, with the
alphabet being the state space of the dynamical system.

Stationarity means that P is T -invariant. Note that Xi = X
0

� T i, for all i 2 N
0

,
where T i denotes the i-fold composition of T , with the convention that T 0 denotes
the identity map on Y .

Following Sect. 2.1, we denote by F the d,f. of X
0

, i.e., F (x) = P(X
0

 x).
Given any d.f. F , let ¯F = 1� F and let uF denote the right endpoint of the d.f. F ,
i.e., uF = sup{x : F (x) < 1}. We say we have an exceedance of the threshold
u < uF at time j 2 N

0

whenever {Xj > u} occurs. We define a new sequence of
random variables M

1

,M
2

, . . . given by (2.2.1)
In what follows for everyA 2 B, we denote the complement ofA asAc

:= X \A.
For some u 2 R, q 2 N, we define the events:

U(u) := {X
0

> u},

A(q)
(u) := U(u) \

q
\

i=1

T�i
(U(u)c) = {X

0

> u,X
1

 u, . . . ,Xq  u}.

(4.1.1)

where A(q)
(u) corresponds to the case where we have an extreme event at time zero

that is not followed by another one up to time t = q. This is a condition clearly
pointing to the absence of clusters. We also set for convenience A(0)

(u) := U(u),
Un := U(un) and A(q)

n := A(q)
(un), for all n 2 N and q 2 N

0

. Let

✓n :=

P
⇣

A(q)
n

⌘

P(Un)
. (4.1.2)

Note that 0  ✓n  1. Let now B 2 B be an event. For some s � 0 and ` � 0, we
define:

Ws,`(B) =

bsc+max{b`c�1, 0}
\

i=bsc
T�i

(Bc
). (4.1.3)

The notation T�i is used for the preimage by T i. We will write Wc
s,`(B) :=

(Ws,`(B))

c. Whenever is clear or unimportant which event B 2 B applies, we
will drop the B and write just Ws,` or Wc

s,`. Observe that

W
0,n(U(u)) = {Mn  u} and T�1

(W
0,n(B)) = {rB > n}. (4.1.4)
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where rB(x) is the first hitting time defined in Eq. 2.3.1. Also observe that W
0,n

has the following interpretation in terms of the sequence X
0

, X
1

, X
2

, . . ., namely
T i

(x) /2 A(q)
n means that Xi(x)  un or Xi+j(x) > un for some j = 1, . . . , q.

4.1.2
The New Conditions

When the stochastic processes arise from dynamical systems as described in Sec-
tion 4.2 below, condition D(un) cannot be verified using the usual available infor-
mation about mixing rates of the system except in some very special situations, and
even then only for certain subsequences of n. This means that the theory developed
by Leadbetter and others and discussed in Chapter 3 is not of practical utility in the
dynamical systems context. For that reason, motivated by the work of Collet ([72]),
Freitas and Freitas have proposed in [73] a new condition called D

2

(un) for general
stationary stochastic processes, which imposes a much weaker uniformity require-
ment than D(un), and, together with D0

(un), admits a proof of the existence of
EVL in the absence of clustering (with ✓ = 1).

The big advantage of D
2

(un) over D(un) is that in D(un) one has to establish
this rate uniformly with respect to the size of both blocks whereas in D

2

(un) the rate
has only to be uniform with respect to the size of one block. The great advantage is
that using such a weaker condition the EVL can be established easily for dynamical
systems and stochastic processes with su�ciently fast decay of correlations and hence
EVLs can be easily shown to apply for a much larger class of systems. We remark
that the original D(un) has actually never been verified for any dynamical system,
when considering the observables introduced later in Sect. 4.2.1. In the argument of
[73], this weakening has been achieved by a fuller application of condition D0

(un).
In [49], the authors proved a connection between periodicity and presence of clus-

ters. Motivated by the behaviour at periodic points, which led to the appearance
of clusters of exceedances, the authors proposed new conditions in order to prove
the existence of EVLs with EI less than 1. The main idea is that, under a condi-
tion SPp,✓(un), which imposed some sort of periodic behaviour of period p on the
structure of general stationary stochastic processes, the sequences P(Mn  un) and
P(W

0,n(A(p)
(un))) share the same limit (see [49, Proposition 1]). Then the strate-

gy has been to prove the existence of a limit for P(W
0,n(A(p)

(un))), which has been
achieved under conditions Dp(un) and D0

p(un). These latter conditions can be seen
as being obtained from D

2

(un) in [134] and the original D0
(un), respectively, by

replacing the role of exceedances {Xj > un} by that of escapes, which correspond
to the event {Xj > un, Xj+p  un}.

In [142] discontinuity points create two periodic types of behaviour (with possi-
bly di�erent periods) on the structure of the stochastic processes, so some further
adjustments to conditions Dp

(un) and D0
p(un) were needed.

We remark that in all the cases above the main advantage of the conditionsD
2

(un),
Dp

(un) is that they are much weaker than the original uniformity requirement im-
posed by D(un) and, unlike D(un), they all follow from su�ciently fast decay of
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correlations of the system.
While developing the techniques in [143] to sharpen the error terms, it has been

necessary to improve the estimates in [49, Proposition 1] (this is done in Proposi-
tion 4.1.12 below). One consequence of this is that the authors were then able to
essentially remove condition SPp,✓(un). Whence we developed two conditions that
refine all the previous conditions to obtain EVLs , in the way that they simultaneous-
ly include the cases of absence and presence of clustering and, on the other hand, to
combine all the scenarios considered before with no periodic behaviour, with simple
periodic behaviour or multiple types of periodic behaviour.

As seen in the historical discussion above, the notation of the condition D is ham-
pered with sub- and superscripts. In order to simplify the notation, here we follow
[143] and employ instead a cyrillic D, i.e., Д.

Condition (Дq(un)). We say that Дq(un) holds for the sequence X
0

, X
1

, . . . if for
every `, t, n 2 N,
�

�

�

P
⇣

A(q)
n \Wt,`

⇣

A(q)
n

⌘⌘

� P
⇣

A(q)
n

⌘

P
⇣

W
0,`

⇣

A(q)
n

⌘⌘

�

�

�

 �(q, n, t), (4.1.5)

where �(q, n, t) is decreasing in t for each n and, there exists a sequence (tn)n2N
such that tn = o(n) and n�(q, n, tn) ! 0 when n ! 1.

Remark 4.1.1. Note that the new condition Дq(un) imposes a condition in the first
block only on q random variables. On the contrary, the original condition D(un)

does require a bound independent of the number of variables considered in the first
block. This is the crucial di�erence that makes it possible to prove Дq(un) easi-
ly from decay of correlations of the underlying stochastic processes, in contrast to
D(un), which is not possible to be verified even in very simple situations. The
weakening of the uniformity imposed by D(un) came at price on the rate func-
tion: while for D(un), we need limn!1 kn↵(n, tn) = 0, for Дq(un), we need
limn!1 n�(q, n, tn) = 0. However, this is a very small price to pay because, when
the stochastic processes arise from dynamical systems, the verification of Дq(un)

means that we need decay of correlations having at least at a summable rate. But this
is precisely the regime where one can prove Central Limit Theorems. Hence, even
though we have a slight strengthening in the required mixing rate, when we compare
Дq(un) to D(un), the weakening on the uniformity is so much more important that
we believe it is fair to say Дq(un) is considerably weaker than D(un). This is sub-
stantiated by the fact that Дq(un) can be verified in a huge range of examples arising
from dynamical systems, where condition D(un) simply cannot be established.
Remark 4.1.2. Let’s try to provide a more heuristic explanation of the condition
Дq(un). What we are imposing is a sort of asymptotic independence between the
occurrence of an event A(q)

(u) (i.e. an exceedance of threshold at time zero not
followed by any other one within the next q time steps) and no occurrences of such an
event for a long period of length l, starting from time t, which introduces a time gap.
In other words, if one observes after a cluster for q time steps no other exceedance
then the time of the next exceedance is essentially an independent event. Instead, in
the D(un) condition, the role of A(q)

(u) is played by simple occurrences U(un),
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with the disadvantage that both blocks separated by the time gap t may be arbitrarily
large.

For some fixed q 2 N
0

, consider the sequence (tn)n2N, given by condition Д(un)

and let (kn)n2N be another sequence of integers such that

kn ! 1 and kntn = o(n). (4.1.6)

Condition (Д0
q(un)). We say that Д0

q(un) holds for the sequence X
0

, X
1

, X
2

, . . .
if there exists a sequence (kn)n2N satisfying (4.1.6) and such that

lim

n!1 n
bn/knc�1

X

j=q+1

P
⇣

A(q)
n \ T�j

⇣

A(q)
n

⌘⌘

= 0. (4.1.7)

Remark 4.1.3. Note that condition Д0
q(un) is very similar to condition D(q+1)

(un)

f[126, Equation (1.2)] (see (3.2.3)). Since T�j
⇣

A(q)
n

⌘

⇢ {Xj > un}, it is slight-
ly weaker than D(q+1)

(un) [126], but in the applications considered that does not
make any di�erence. Note that if q = 0 then we get back condition D0

(un) from
Leadbetter.

4.1.3
The Existence of EVL for General Stationary Stochastic Processes under
Weaker Hypotheses

Since condition Дq(un) is much weaker than the original D(un) of Leadbetter, in
the sense explained in Remark 4.1.1, then Theorem 4.1.4 can be seen, in particular,
as a generalisation of [126, Corollary 1.3].

Theorem 4.1.4. Let X
0

, X
1

, . . . be a stationary stochastic process and (un)n2N a
sequence satisfying (2.2.2), for some ⌧ > 0. Assume that conditions Дq(un) and
Д0

q(un) hold for some q 2 N
0

, and (tn)n2N and (kn)n2N are the sequences in those
conditions. Then, there exists C > 0 such that for all n large enough we have

�

�P(Mn  un)� e

�✓n⌧ �
�  C

"

kntn
⌧

n
+ n�(q, n, tn)

+ n
bn/knc�1

X

j=q+1

P
⇣

A(q)
n \ T�j

⇣

A(q)
n

⌘⌘

+ e

�✓n⌧
✓

|⌧ � nP (Un)|+
⌧2

kn

◆

+ qP
⇣

Un \A(q)
n

⌘

#

,

where ✓n is given by equation (4.1.2).

In case the limit ✓ = limn!1 ✓n exists, where ✓n is as in (4.1.2), then we can use
the previous result to obtain:
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Corollary 4.1.5. Let X
0

, X
1

, . . . be a stationary stochastic process and (un)n2N
a sequence satisfying (2.2.2), for some ⌧ > 0. Assume that conditions Дq(un) and
Д0

q(un) hold for some q 2 N
0

, and (tn)n2N and (kn)n2N are the sequences in
those conditions. Moreover assume that the limit in (3.2.4) exists. Then, there exists
C > 0 such that for all n 2 N we have

�

�P(Mn  un)� e

�✓⌧ �
�  C

"

kntn
⌧

n
+ n�(q, n, tn)

+ n
bn/knc
X

j=1

P
⇣

A(q)
n \ T�j

⇣

A(q)
n

⌘⌘

+ e

�✓⌧
✓

|⌧ � nP (Un)|+
⌧2

kn
+ |✓n � ✓| ⌧

◆

+ qP
⇣

Un \A(q)
n

⌘

#

,

where ✓n is given by equation (4.1.2) and ✓ = limn!1 ✓n.

This criterium can be e�ectively used for general stochastic processes as well as
to a large class of dynamical systems such as those studied in [74, 136, 49, 144].
Remark 4.1.6. Note that the estimates of Theorem 4.1.4 and Corollary 4.1.5 hold
under Дq(un) alone. However, if Д0

q(un) does not hold, the upper bound is useless
since the third term on the right hand side would not converge to 0 as n ! 1.

Observe that a direct consequence of the previous result is the following:

Corollary 4.1.7. Let X
0

, X
1

, . . . be a stationary stochastic process and (un)n2N
a sequence satisfying (2.2.2), for some ⌧ > 0. Assume that conditions Дq(un) and
Д0

q(un) hold for some q 2 N
0

, and (tn)n2N and (kn)n2N are the sequences in those
conditions. Moreover assume that the limit in (3.2.4) exists. Then,

lim

n!1P(Mn  un) = e

�✓⌧ .

Remark 4.1.8. The convergence result is based on the blocking argument as sever-
al quantities are constructed according to it. Namely, the number of blocks taken
(kn) and the size of the gaps between the blocks (tn) have to satisfy (4.1.6). The
first error term, depending on the choices for adequate kn and tn, typically, decays
like n�� , for some 0 < � < 1. The second term depends on the long range mixing
rates of the process (Д(un)). The third term takes into account the short range recur-
rence properties (Д0

(un)). The fourth has three components, the first depends on the
asymptotics of relation (2.2.2), the third on the asymptotics of (3.2.4) and the second
on the number of blocks, which must be traded o� with the first term. Note that the
term e

�✓⌧ ⌧2

kn
also appears in the i.i.d. case since it results from expansion (4.1.8)

below. The fifth term results from replacing Un by A(q)
n (see Proposition 4.1.12) and

should decay like 1/n. The constant C may depend on the rates just mentioned but
not on ⌧ .
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Remark 4.1.9. As observed above, in the special case q = 0, we have that condi-
tion Д0

0

(un) coincides with the original condition D0
(un) from Leadbetter, which

means there are no clusters of exceedances and it is straightforward to check that by
definition of A(0)

0

= Un that the limit in (3.2.4) trivially exists and is equal to 1.
Remark 4.1.10. In this approach, it is rather important to observe the prominent role
played by condition Д0

q(un). In particular, note that if condition Д0
q(un) holds for

some particular q = q
0

2 N
0

, then condition Д0
q(un) holds for all q � q

0

, which
also implies that if the limit in (3.2.4) exists for such q = q

0

it will also exist for
all q � q

0

and takes always the same value. This suggests that in trying to find
the existence of EVL, one needs to find the smallest value of q = q

0

such that the
condition Д0

q(un) holds.
Remark 4.1.11. Also note that the verification of conditions Дq(un) and Д0

q(un)

for certain stochastic process and, in particular, for the ones arising from dynamical
systems as described in the following sections, works as a sort of hunting license
to use the block maxima method or the POT approach to make statistical inference
on the tail of the considered distributions. This is clear in the case q = 0 but also
when q > 0, since the fact that every cluster must end when there are at least q
observations with no exceedances, just after the latest exceedance. This helps in
identifying clusters in order to perform a data declustering so that we can use the
POT and consequent GPD analysis.

4.1.4
Proofs of Theorem 4.1.4 and Corollary 4.1.5

In the following we construct the proofs of Theorem 4.1.4 and Corollary 4.1.5.
The following result gives a simple estimate but a rather important one. It is crucial

in removing condition SPp,✓(un) from [49], to present in a unified way the results
under the presence and absence of clustering in Theorem 4.1.4 and guarantee that
one can replace exceedances by the occurrence of A(q)

n .

Proposition 4.1.12. Given an event B 2 B, let q, n 2 N be such that q < n and
define A = B \Sq

j=1

T�j
(B). Then

|P(W
0,n(B))� P(W

0,n(A))| 
q
X

j=1

P
�

W
0,n(A) \ T�n+j

(B \A)

�

.

Proof. Since A ⇢ B, then clearly W
0,n(B) ⇢ W

0,n(A). Hence, we have to esti-
mate the probability of W

0,n(A) \W
0,n(B) which corresponds to the set of points

that at some time before n enter B but never enter its subset A.
Let x 2 W

0,n(A) \ W
0,n(B). Then T j

(x) 2 B for some j = 1, . . . , n � 1

but T j
(x) /2 A for all such j. We will see that there exists j 2 {1, . . . , q} such

that Tn�j
(x) 2 B. In fact, suppose that no such j exists. Then let ` = max{i 2

{1, . . . , n � 1} : T i
(x) 2 B} be the last moment the orbit of x enters B during

the time period in question. Then, clearly, ` < n � q. Hence, if T i
(x) /2 B, for
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all i = ` + 1, . . . , n � 1 then we must have that T `(x) 2 A by definition of A.
But this contradicts the fact that x 2 W

0,n(A). Consequently, we have that there
exists j 2 {1, . . . , q} such that Tn�j

(x) 2 B and since x 2 W
0,n(A) then we can

actually write Tn�j
(x) 2 B \A.

This means that W
0,n(A) \W

0,n(B) ⇢ Sq
j=1

T�n+j
(B \ A) \W

0,n(A) and
then
�

�P(W
0,n(B))� P(W

0,n(A))

�

�

= P(W
0,n(A) \W

0,n(B))

 P

0

@

q
[

j=1

T�n+j
(B \A) \W

0,n(A)

1

A 
q
X

j=1

P
�

W
0,n(A) \ T�n+j

(B \A)

�

,

as required.

In what follows we will need the error term of the limit expression limn!1
�

1 +

x
n

�n
=

e

x, namely,
⇣

1 +

x

n

⌘n
= e

x

✓

1� x2

2n
+

x3

(8 + 3x)

24n2

+O

✓

1

n3

◆◆

, (4.1.8)

which holds uniformly for x on bounded sets. Also, by Taylor’s expansion, for every
� 2 R and x 2 R we have
�

�

�

e

x+� � e

x
�

�

�

 e

x
⇣

|�|+ e

|�|�2/2
⌘

. (4.1.9)

The strategy is to use a blocking argument, that goes back to Markov, which con-
sists of splitting the data into blocks with gaps of increasing length. There are three
main steps. The first step is to estimate the error produced by neglecting the data cor-
responding to the gaps. The second is to use essentially the mixing condition Дq(un)

(with some help from Д0
q(un)) to show that the probability of the event correspond-

ing to the global maximum being less than some threshold un can be approximated
by the product of the probabilities of the maxima within each block being less than
un. The idea is that the gaps make the maxima in each block become practically
independent from each other. The last step is to use condition Д0

q(un) to estimate
the probability of the maximum within a block being smaller than un.

Next, we state a couple of lemmas and a proposition that give the main estimates
regarding the use of a blocking argument. Let us first bound the e�ect of ignoring
the exceedance events in the gaps.

Lemma 4.1.13. For any fixed A 2 B and s, t0,m 2 N, we have:

|P(W
0,s+t0+m(A))� P(W

0,s(A) \Ws+t0,m(A))|  t0P(A).

Proof. Using stationarity we have

P(W
0,s \Ws+t0,m)� P(W

0,s+t0+m) = P(W
0,s \Wc

s,t0 \Ws+t0,m)

 P(Wc
0,t0) = P([t0�1

j=0

T�j
(A))


t0�1

X

j=0

P(T�j
(A)) = t0P(A).
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Lemma 4.1.14. For any fixed A 2 B and integers s, t,m, we have:

|P(W
0,s(A) \Ws+t,m(A))� (1� sP(A))P(W

0,m(A))| 
�

�

�

�

�

�

sP(A)P(W
0,m(A))�

s�1

X

j=0

P(A \Ws+t�j,m(A))

�

�

�

�

�

�

+2s
s�1

X

j=1

P(A\T�j
(A)).

Proof. Observe that the first term in the bound is measuring the mixing across the
gap t and the second term is measuring the probability that two events A appear in
the first block. Adding and substracting and using the triangle inequality we obtain
that
�

�P(W
0,s \Ws+t,m)� P(W

0,m)(1� sP(A))

�

� 
�

�

�

�

�

�

sP(A)P(W
0,m(A))�

s�1

X

j=0

P(A \Ws+t�j,m(A))

�

�

�

�

�

�

+

+

�

�

�

�

�

�

P(W
0,s \Ws+t,m)� P(W

0,m) +

s�1

X

j=0

P(A \Ws+t�j,m)

�

�

�

�

�

�

. (4.1.10)

Regarding the second term on the right, by stationarity, we have

P(W
0,s \Ws+t,m) = P(Ws+t,m)� P(Wc

0,s \Ws+t,m)

= P(W
0,m)� P(Wc

0,s \Ws+t,m).

Now, since Wc
0,s \Ws+t,m = [s�1

i=0

T�i
(A) \Ws+t,m, we have by Bonferroni’s

inequality that

0 
s�1

X

j=0

P(A \Ws+t�j,m)� P(Wc
0,s \Ws+t,m) 

s�1

X

j=0

s�1

X

i>j

P(T�j
(A) \ T�i

(A) \Ws+t,m).

Hence, using these last two computations we get:

�

�

�

P(W
0,s \Ws+t,m)� P(W

0,m) +

s�1

X

j=0

P(A \Ws+t�j,m)

�

�

�


s�1

X

j=0

s�1

X

i>j

P(T�j
(A) \ T�i

(A) \Ws+t,m)


s�1

X

j=0

s�1

X

i>j

P(T�j
(A) \ T�i

(A))  s
s�1

X

j=1

P(A \ T�j
(A)).

The result now follows directly from plugging the last estimate into (4.1.10).
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Proposition 4.1.15. Fix A 2 B and n 2 N. Let `, k, t 2 N be such that ` = bn/kc
and `P(A) < 1. We have:

�

�

�

P(W
0,n(A))� (1� `P(A))

k
�

�

�

 2ktP(A) + 2n
`�1

X

j=1

P(A \ T�j
(A))

+

k�1

X

i=0

�

�

�

�

�

�

`P(A)P(W
0,i(`+t))�

`�1

X

j=0

P(A \W`+t�j,i(`+t))

�

�

�

�

�

�

.

Proof. The basic idea is to split the time interval [0, n) into k blocks of size bn/kc.
Then, using Lemma 4.1.13 we add gaps of size t between the blocks, and next we
apply Lemma 4.1.14 recursively until we exhaust all the blocks.

Noting that 0  k(` + t) � n  kt and using Lemma 4.1.13, with s = n,
t0 = k(`+ t)� n, m = 0, and setting Wi,0 := X , for all i = 0, 1, 2, . . . as well as
Wi,n = Wi,n(A) for n 2 N, we have:
�

�

�

P(W
0,n)� P(W

0,k(`+t))

�

�

�

 ktP(A). (4.1.11)

Using Lemmas 4.1.13 and 4.1.14 we obtain
�

�

�

P(W
0,i(`+t))� (1� `P(A))P(W

0,(i�1)(`+t))

�

�

�


�

�P(W
0,i(`+t))� P(W

0,` \W
(`+t),(i�1)(`+t))

�

�

+

�

�P(W
0,` \W

(`+t),(i�1)(`+t))� (1� `P(A))P(W
0,(i�1)(`+t))

�

�

 tP(A) +

�

�

�

�

�

�

`P(A)P(W
0,(i�1)(`+t))�

`�1

X

j=0

P(A \W`+t�j,(i�1)(`+t))

�

�

�

�

�

�

+ 2`
`�1

X

j=1

P(A \ T�j
(A)). (4.1.12)

Let ⌥i := tP(A) +

�

�

�

`P(A)P(W
0,i(`+t))�

P`�1

j=0

P(A \W`+t�j,i(`+t))

�

�

�

+

2`
P`�1

j=1

P(A\T�j
(A)). Since `P(A) < 1, then it is clear that |(1�`P(A))| < 1.

Also, note that |P(W
0,`+t)� (1� `P(A))|  ⌥

0

. Now, we use (4.1.12) recursively
to estimate

�

�P(W
0,k(`+t))� (1� `P(A))

k
�

�. In fact, we have
�

�

�

P(W
0,k(`+t))� (1� `P(A))

k
�

�

�


k�1

X

i=0

(1� `P(A))

k�1�i
�

�P(W
0,(i+1)(`+t))� (1� `P(A))P(W

0,i(`+t))
�

�


k�1

X

i=0

(1� `P(A))

k�1�i
⌥i 

k�1

X

i=0

⌥i (4.1.13)

The result follows now at once from (4.1.11) and (4.1.13).
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We are now in a position to prove Theorem 4.1.4.

Proof of Theorem 4.1.4. Letting A = A(q)
n , ` = bn/knc, k = kn and t = tn on

Proposition 4.1.15, we obtain
�

�

�

�

�

P(W
0,n(A

(q)
n ))�

✓

1�
�

n

kn

⌫

P(A(q)
n )

◆kn

�

�

�

�

�

 2kntnP(Un)

+ 2n
bn/knc�1

X

j=1

P
⇣

A(q)
n \ T�jA(q)

n

⌘

+

kn�1

X

i=0

�

�

�

�

�

�

n

kn

⌫

P(A(q)
n )P

⇣

W
0,i(`n+tn)

⇣

A(q)
n

⌘⌘

�
bn/knc�1

X

j=0

P
⇣

A(q)
n \W`n+tn�j,i(`n+tn)

⇣

A(q)
n

⌘⌘

�

�

�

�

�

. (4.1.14)

Using condition Д(un), we have that for the third term:

kn�1

X

i=0

�

�

�

�

�

�

�

n

kn

⌫

P(A(q)
n )P

⇣

W
0,i(`+t)

⇣

A(q)
n

⌘⌘

�
bn/knc�1

X

j=0

P
⇣

A(q)
n \W`+t�j,i(`+t)

⇣

A(q)
n

⌘⌘

�

�

�

�

�

�

 n�(q, n, tn). (4.1.15)

By (4.1.9), we have that there exists C such that
�

�

�

e

�b n
kn
cknP

(

A(q)
n ) � e

�✓n⌧
�

�

�

 e

�✓n⌧


�

�

�

�

✓n⌧ �
�

n

kn

⌫

knP
⇣

A(q)
n

⌘

�

�

�

�

+ o

✓

�

�

�

�

✓n⌧ �
�

n

kn

⌫

knP
⇣

A(q)
n

⌘

�

�

�

�

◆�

 Ce

�✓n⌧
�

�

�

✓n⌧ � nP
⇣

A(q)
n

⌘

�

�

�

 Ce

�✓n⌧ |⌧ � nP (Un)| .

Using (4.1.8) and (4.1.9), there exists C 0 > 0 such that
�

�

�

�

�

✓

1�
�

n

kn

⌫

P
⇣

A(q)
n

⌘

◆kn

� e

�b n
kn
cknP

(

A(q)
n )

�

�

�

�

�

=

e

�b n
kn
cknP

(

A(q)
n )

0

B

@

⇣

nP
⇣

A(q)
n

⌘⌘

2

2kn
+ o

✓

1

kn

◆

1

C

A

 e

�✓n⌧
✓

⌧2

kn
+ C

⌧2

kn
|⌧ � nP (Un)|+ o

✓

1

kn

◆◆

 C 0
e

�✓n⌧ ⌧
2

kn
.
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Hence, there exists C 00 > 0, independent of ⌧ , such that
�

�

�

�

�

✓

1�
�

n

kn

⌫

P
⇣

A(q)
n

⌘

◆kn

� e

�✓n⌧
�

�

�

�

�

 C 00
e

�✓n⌧
✓

|⌧ � nP (Un)|+
⌧2

kn

◆

.(4.1.16)

Finally, by Proposition 4.1.12 we have

�

�

�

P(Mn  un)� P
⇣

W
0,n

⇣

A(q)
n

⌘⌘

�

�

�


q
X

j=1

P
⇣

W
0,n

⇣

A(q)
n

⌘

\ T�n+j
(Un \A(q)

n )

⌘

 qP
⇣

Un \A(q)
n

⌘

. (4.1.17)

Note that when q = 0 both sides of inequality (4.1.17) are 0.
The estimate in Theorem 4.1.4 follows from joining the estimates in (4.1.14),

(4.1.15), (4.1.16) and (4.1.17).

Proof of Corollary 4.1.5. By (4.1.9), we have that there exists C > 0 such that
�

�

�

e

�✓n⌧ � e

�✓⌧
�

�

�

 e

�✓⌧
[|✓n � ✓|⌧ + o(|✓n � ✓|)]

 Ce

�✓⌧ |✓n � ✓|⌧. (4.1.18)

By Theorem 4.1.4 and (4.1.18), there exists C 0 > 0 such that

�

�P(Mn  un)� e

�✓n⌧ �
�  C 0

 

kntn
⌧

n
+ n�(q, n, tn) + n

bn/knc�1

X

j=1

P
⇣

A(q)
n \ T�j

⇣

A(q)
n

⌘⌘

+ e

�✓⌧
(1 + C|✓n � ✓|⌧)

✓

|⌧ � nP (Un)|+
⌧2

kn

◆

+ qP
⇣

Un \A(q)
n

⌘

!

.

So, there exists C 00 > 0 such that

�

�P(Mn  un)� e

�✓n⌧ �
�  C 00

 

kntn
⌧

n
+ n�(q, n, tn) + n

bn/knc�1

X

j=1

P
⇣

A(q)
n \ T�j

⇣

A(q)
n

⌘⌘

+ e

�✓⌧
✓

|⌧ � nP (Un)|+
⌧2

kn

◆

+ qP
⇣

Un \A(q)
n

⌘

!

.

(4.1.19)

The result follows from (4.1.18) and (4.1.19).

4.2
Extreme Values for Dynamically Defined Stochastic Processes

We next apply the above ideas and techniques to stochastic processes arising from
dynamical systems. So, we start by defining such processes and afterwards discuss



Lucarini, Faranda, Freitas, Freitas, Holland, Kuna, Nicol, Todd, Vaienti: Extremes and Recurrence in Dynamical
Systems — Chap. 4 — 2016/5/16 — 19:35 — page 54

54

their extremal properties already furnished with the results described in the previous
section, which were developed with such application in mind.

Take a system (X ,B,P, f), where X is a Riemannian manifold, B is the Borel �-
algebra, f : X ! X is a measurable map and P an f -invariant probability measure.

In Chapter 6, we will see applications to several types of dynamical systems. How-
ever, to give the reader some insight of applications we have in mind, we consider
a very simple toy example that we will use throughout this section to illustrate the
results and motivate possible applications. The example we will consider is often
referred to as doubling map and is one of the simplest examples of a chaotic system.

Example 4.2.1. Consider the circle S1, in its additive representation, i.e., we identify
S1 = [0, 1) where [0, 1) represents the equivalence classes of the relation ⇠ defined
in R and given by x ⇠ y if there exists some n 2 Z such that x = y + n. Let
f : [0, 1) ! [0, 1), be such that f(x) = 2x mod 1. See Figure 4.1. Please note
that the doubling map is a special example of the family of Bernoulli shift maps

f(x) = qx mod 1, q 2 N, q � 2 (4.2.1)

Figure 4.1 Graphic of the Bernoulli shift (doubling) map depicted in blue and identity map
in black

Observe that the map is di�erentiable in the whole S1 and for all x 2 [0, 1), we
have Df(x) = 2.

It is easy to see that Lebesgue measure, that we will denote by Leb, is an invariant
probability measure. In fact, consider the interval [a, b) with a, b 2 [0, 1). Note that
f�1

([a, b)) = [a/2, b/2) [ [a/2 + 1/2, b/2 + 1/2) and Leb([a, b)) = b � a =

Leb(f�1

([a, b))).
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The orbit of Leb-a.e. point x is dense in S1. There exist countably many periodic
points, which form a dense set of zero Lebesgue measure. In this case, the periodic
points are easily identifiable because they correspond to the points with a periodic
binary expansion, which means that they are among the rational points of [0, 1).

In particular, we have that 0 is a fixed point (f(0) = 0); 1/3 is a periodic point
of prime period 2 (f(1/3) = 2/3 and f(2/3) = 1/3); and 1/5 is a periodic point
of prime period 4 (f(1/5) = 2/5, f(2/5) = 4/5, f(4/5) = 3/5 and f(3/5) =
1/5).

This system is both ergodic and mixing with respect to Leb.

Suppose that the time series X
0

, X
1

, . . . arises from such a system simply by eval-
uating a given observable ' : X ! R[ {±1} along the orbits of the system, or in
other words, the time evolution given by successive iterations by f :

Xn = ' � fn, for each n 2 N. (4.2.2)

Clearly, X
0

, X
1

, . . . defined in this way is not an independent sequence. However,
f -invariance of P guarantees that this stochastic process is stationary.

We assume that the r.v. ' : X ! R [ {±1} achieves a global maximum at
⇣ 2 X (we allow '(⇣) = +1).

4.2.1
Observables and Corresponding Extreme Value Laws

We assume that the observable ' : X ! R [ {+1} is of the form

'(x) = g
�

dist(x, ⇣)
�

(4.2.3)

where ⇣ is a chosen point in the phase space X and the function g : [0,+1) !
R [ {+1} is such that 0 is a global maximum (g(0) may be +1); g is a strictly
decreasing bijection g : V ! W in a neighbourhood V of 0; and has one of the
following three types of behaviour:

Type g
1

: there exists some strictly positive function h : W ! R such that for all y 2 R

lim

s!g
1

(0)

g�1

1

(s+ yh(s))

g�1

1

(s)
= e

�y
; (4.2.4)

Type g
2

: g
2

(0) = +1 and there exists � > 0 such that for all y > 0

lim

s!+1
g�1

2

(sy)

g�1

2

(s)
= y�� ; (4.2.5)

Type g
3

: g
3

(0) = D < +1 and there exists � > 0 such that for all y > 0

lim

s!0

g�1

3

(D � sy)

g�1

3

(D � s)
= y� . (4.2.6)
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It may be shown that no non-degenerate limit applies if
R g

1

(0)

0

g�1

1

(s)ds is not
finite. Hence, an appropriate choice of h in the Type 1 case is given by

h(s) =
Z g

1

(0)

s
g�1

1

(t)dt/g�1

1

(s) for s < g
1

(0). (4.2.7)

Examples of each one of the three types are as follows:

1) g
1

(x) = � log x (in this case (4.2.4) is easily verified with h ⌘ 1);
2) g

2

(x) = x�1/↵ for some ↵ > 0 (condition (4.2.5) is verified with � = ↵);
3) g

3

(x) = D�x1/↵ for some D 2 R and ↵ > 0 (condition (4.2.6) is verified with
� = ↵).

The fact that the conditions on the shape of g�1 imposed by (4.2.4), (4.2.5) and
(4.2.6) correspond to the su�cient and necessary conditions (3.1.5), (3.1.6) and
(3.1.7), respectively, on the tail of a distribution which guarantee a non-degenerate
EVL in the i.i.d.setting, meaning that the only interesting cases for us are the ones
where g is of one of the three types above.
Remark 4.2.1. The choice of the observables in (4.2.3) implies that the shape of g
determines the type of extremal distribution we get. In particular, for observables
of type gi we get an extremal law of type e

�⌧i , for i = 1, 2, 3. While the type of
the extremal distribution is essentially determined by the shape of the observable, in
the cases when types (2) and (3) apply, i.e., the Fréchet and Weibull families of dis-
tributions, the exponents � and � appearing in types (2) and (3), in Theorem 3.1.1,
respectively, are also influenced by other quantities such as the EI and the local di-
mension of the stationary invariant measure P. In particular, when such measure is
absolutely continuous with respect to Lebesgue and its Radon-Nikodym derivative
has a singularity at ⇣ , then the order of the singularity also influences the value of ↵.
Remark 4.2.2. If P is absolutely continuous with respect to the d-dimensional
Lebesgue measure and the density of the invariant probability measure is continu-
ous, we could write P(B⌘(⇣)) ⇠ ⇢(⇣)Leb (B⌘(⇣)) ⇠ C⇢(⇣)⌘d, where we assume
that ⇢(⇣) = dP

Leb

(⇣) > 0 and C > 0 is a positive constant depending on the local
metric used.
Remark 4.2.3. If P is supported on an attractor with fractal dimension so that the
measure P has a local dimension at ⇣ given by [145]:

d(⇣) := lim

⌘!0

log(P(B⌘(⇣))
log ⌘

> 0, (4.2.8)

then we can write log(P(B⌘(⇣))) ⇠ d(⇣) log(⌘).We have that d(⇣) has constant
value equal to d if P follows the prescriptions given in Remark 4.2.2.

Following Remark 4.2.1, we can now relate the parameters � and � appearing in
types (2) and (3) in Theorem 3.1.1, which correspond to the shape parameter ⇠ of
the GEV (⇠ = 1/� for type (2) and ⇠ = �1/� for type (3)), to the local dimension
d(⇣) of the measure.

Let us take g
2

(x) = x�1/↵, for some ↵ > 0, and ' = g
2

(dist(x, ⇣)) then let

Qs,y :=

1� F (sy)

1� F (s)
=

P(B
(sy)�↵

(⇣))

P(Bs�↵
(⇣))

.
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From (4.2.8) we have that, for all s su�ciently large, limy!1
log(Qs,y)

log y = �↵d(⇣).
Recalling that for Type (2), by (3.1.6), we should have that lims!1

log(Qs,y)

log y = ��.
Hence, we conclude that the only possible value for � if the EVL holds is � = ↵d(⇣),
which we will use for numerical simulation purposes. Equivalently, we have:

⇠ =
1

↵d(⇣)
. (4.2.9)

In the case, we take g
3

(x) = D� x1/↵, for some ↵ > 0, and ' = g
3

(dist(x, ⇣))
then let

Qs,y :=

1� F (D � sy)

1� F (D � s)
=

P(B
(sy)↵(⇣))

P(Bs↵(⇣))
.

From (4.2.8) we have that, for all s su�ciently small, limy!0

log(Qs,y)

log y = ↵d(⇣).

Recalling that for Type (3), by (3.1.7), we should have that lims!0

log(Qs,y)

log y = �.
This gives the following relation that we will use for numerical simulation purposes:
� = ↵d or, equivalently,

⇠ = � 1

↵d(⇣)
. (4.2.10)

Note however that Eq. 4.2.8 is only necessary for the convergence of Qs,y in the
case of type 2 and type 3 observables, though not su�cient for invariant measures
with singular support. When the invariant probability measure P is not absolutely
continuous with respect to the Lebesgue measure, sometimes, in order to simplify,
we write, following [136], that

'(x) = g
�

P
�

Bdist(x,⇣)(⇣)
��

. (4.2.11)

In here, since P is not an absolutely continuous invariant measure, the function ~
defined for small ⌘ � 0 and given by

~(⌘) = P(B⌘(⇣)) (4.2.12)

is not absolutely continuous. However, we will require in the following that ~ is
continuous in ⌘. For example, if X is an interval and P a Borel probability with no
atoms,i.e., points with positive P measure, then ~ is continuous.

Throughout the text we assume that the observables and the measure are su�cient-
ly regular so that ~ is continuous. We will refer to this assumption as condition (R1).
In some applications, we will consider that the point ⇣ is a repelling periodic point,
which implies that condition (R2) defined below holds.

(R1) for u su�ciently close to uF := '(⇣), the event

U(u) = {X
0

> u} = {x 2 X : '(x) > u}

corresponds to a topological ball centred at ⇣ . Moreover, the quantity P(U(u)),
as a function of u, varies continuously on a neighbourhood of uF .
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(R2) If ⇣ 2 X is a repelling periodic point, of prime period1) p 2 N, then we have that
the periodicity of ⇣ implies that for all large u, {X

0

> u}\f�p
({X

0

> u}) 6= ;
and the fact that the prime period is p implies that {X

0

> u} \ f�j
({X

0

>
u}) = ; for all j = 1, . . . , p � 1. Moreover, the fact that ⇣ is repelling means
that we have backward contraction implying that there exists 0 < ✓ < 1 so that
Ti

j=0

f�jp
(X

0

> u) is another ball of smaller radius around ⇣ with

P

0

@

i
\

j=0

f�jp
(X

0

> u)

1

A ⇠ (1� ✓)iP(X
0

> u),

for all u su�ciently large. Note that at repelling periodic points, if the measure
is absolutely continuous with respect to Lebesgue, with a positive and su�ciently
regular density, then the EI can be given by:

✓ = 1� 1

| detD(fp
)(⇣)| .

One of our applications is to equilibrium states, which we explain in Section 4.5. In
some of these more general cases, although g is invertible in a small neighbourhood
of 0, the function ~ does not have to be. This means that the observable ', as a
function of the distance to ⇣ , may not be invertible in any small neighbourhood of ⇣ .

For that reason, we now set

`(�) := inf{⌘ > 0 : P(B⌘(⇣)) = �}, (4.2.13)

which is well defined for all small enough � � 0, by the continuity of ~. Moreover,
again by continuity of ~, we have

P
�

B`(�)(⇣)
�

= �. (4.2.14)

Remark 4.2.4. Observe that the choice of the observables in (4.2.11) and the assump-
tion on P regarding the continuity of ~ guarantee that condition (R1) holds.
Remark 4.2.5. Observe that if at time j 2 N we have an exceedance of level u
(su�ciently large), i.e., Xj(x) > u, then we have an entrance of the orbit of x
into the ball B`(g�1

(u))(⇣) of radius `(g�1

(u)) around ⇣ , at time j. This means
that the behaviour of the tail of F , i.e., the behaviour of 1 � F (u) as u ! uF is
basically determined by g�1 and by the local dimension of the measure at ⇣ . The
above conditions on g�1 are just the translation in terms of the shape of g�1, of the
su�cient and necessary conditions on the tail of F that appear in (3.1.5), (3.1.6) and
(3.1.7).

In Sect. 4.2.2 and later in Sects. 6.4-6.8, we will study in detail the mathematical
properties of the extremes of distance observables for various mathematical models
of increasing level of complexity.

In Chap. 7 we will consider dynamical systems with random components.

1) i.e., the smallest n 2 N such that fn
(⇣) = ⇣. Clearly f

ip
(⇣) = ⇣ for any i 2 N.



Lucarini, Faranda, Freitas, Freitas, Holland, Kuna, Nicol, Todd, Vaienti: Extremes and Recurrence in Dynamical
Systems — Chap. 4 — 2016/5/16 — 19:35 — page 59

59

In Sect. 8.2.1 we will extend the geometrical point of view hinted at above. We will
focus on relating the GPD parameters of the distance observables to the geometrical
properties of the attractor of high dimensional statistical mechanical systems, assum-
ing that they have Axiom A-like properties. In order to derive results of relevance
for generic physical systems, we will sacrifice some rigour and use some heuristic
arguments. Nonetheless, we will find closely related results.

4.2.2
Extreme Value Laws for Uniformly Expanding Systems

In this section, we illustrate the application of the theory developed in the previous
section to stochastic processes arising from specific systems, namely, uniformly ex-
panding and piecewise expanding systems. Although, these are not as general as the
non-uniformly expanding systems treated in Chapter 6, for these systems we can ac-
tually prove a dichotomy which basically states that either there exists an EI less than
1 at periodic repelling points or there exists an EI equal to 1 at every other point of
continuity of the map. An example of such systems is the doubling map introduced
in Example 4.2.1.

Up to our knowledge, the statement of this dichotomy appeared first in [49, Sec-
tion 6], where it is proved for uniformly expanding systems in S1 equipped with the
Bernoulli measure and for the cylinder case. Moreover, in the introduction of [49],
it is conjectured that this dichotomy should hold in much greater generality (both
for more general systems and for the more general case of balls rather than cylin-
ders). In [146], which appeared shortly after [49] on arXiv, the authors build up on
the work of [147] and eventually obtain the dichotomy for balls and for conformal
repellers. Then, in [141], making use of powerful spectral theory tools developed
in [148], the dichotomy for balls is established for general systems such as those for
which there exists as spectral gap for their respective Perron-Frobenius operator. In
[142], the dichotomy for balls is obtained once again for the same type of systems
considered in [141] but using as assumption the existence of decay of correlations
against L1 observables (see definition below). In the recent [149], the dichotomy for
cylinders is established for mixing countable alphabet shifts, but also in the context
of nonconventional ergodic sums.

We also mention that in the papers [150, 151, 152], the authors proved the existence
of a limiting law for the cases when ⇣ is not a periodic point and we remark that this
has been achieved for all such points.

Our basic assumption to prove conditions Дq(un), Д0
q(un)will be su�ciently fast

decay of correlations, in some specific function spaces. Hence we define:

Definition 4.2.6 (Decay of correlations). Let C
1

, C
2

denote Banach spaces of real
valued measurable functions defined on X . We denote the correlation of non-zero
functions � 2 C

1

and  2 C
2

w.r.t. a measure P as

CorP(�, , n) :=
1

k�kC
1

k kC
2

�

�

�

�

Z

� ( � fn
) dP�

Z

� dP
Z

 dP
�

�

�

�

.

We say that we have decay of correlations, w.r.t. the measure P, for observables in
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C
1

against observables in C
2

if, for every � 2 C
1

with every  2 C
2

we have

CorP(�, , n) ! 0, as n ! 1.

We say that we have decay of correlations against L1 observables whenever this
holds for C

2

= L1

(P) with k kC
2

= k k
1

=

R

| | dP.
We next state an abstract result giving general conditions to establish the dichoto-

my:

Theorem 4.2.7 ([142]). Consider a continuous dynamical system (X ,B,P, f) for
which there exists a Banach space C of real valued functions such that for all � 2 C
and  2 L1

(P),

CorP(�,  , t)  Ct�2, (4.2.15)

for some C > 0. Let X
0

, X
1

, . . . be given by (4.2.2), where ' achieves a global
maximum at some ⇣ 2 X and condition (R1) holds. Assume (un)n2N is such that
(2.2.2) holds.

• If ⇣ is a non periodic point and there exists some C 0 > 0 such that, for all
n 2 N, we have k1U(un)

kC  C 0, then conditions Д
0

(un) and Д0
0

(un) hold
for X

0

, X
1

, . . . which means we have an EI equal to 1, i.e., we have an EVL with
H(⌧) = 1� e

�⌧ .
• If ⇣ is a periodic point of prime period p, if there exists some C 0 > 0 such that, for

all n 2 N, we have k1
A

(q)
n
kC  C 0, where q = p and the limit ✓ = limn!1 ✓n

exists, where ✓n is as in (4.1.2), then conditions Дq(un) and Д0
q(un) hold for

X
0

, X
1

, . . . which means we have an EI equal to ✓ < 1, i.e., we have an EVL with
H(⌧) = 1� e

�✓⌧ .

Remark 4.2.8. Observe that decay of correlations as in (4.2.15) against L1

(P) ob-
servables is a very strong property. There are no obvious examples - except uniformly
expanding maps - with decay of correlations againstL1. In fact, regardless of the rate
(in this case n�2), as long as it is summable, one can actually show that the system
has exponential decay of correlations of Hölder observables against L1

(P). See
[153, Theorem B].
Remark 4.2.9. For simplicity, here, we will not deal with discontinuity points of the
map f . However, that can be done and the existence of an EI less than 1 depends on
the existence of some periodic behaviour. Otherwise, we also get an EI equal to 1.
See [142, Section 3.3].
Remark 4.2.10. We observe that the second statement of Theorem 4.2.7 had already
been established in [49]. The first statements of Theorem 4.2.7 and 4.3.5, which
finally allowed to establish the dichotomy, were obtained in [142].

In Section 4.5 we will show some specific expanding and piecewise expanding
systems for which we can verify the assumptions in Theorems 4.2.7 but to illustrate
the essence of their content, we give here a straightforward application to the doubling
map.
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Corollary 4.2.11. Consider the system f : S1 ! S1 given by f(x) = 2x mod 1,
as in Example 4.2.1, equipped with the Lebesgue measure. Let X

0

, X
1

, . . . be given
by (4.2.2), where ' achieves a global maximum at some ⇣ 2 S1 (take for example
'(x) = 1� |x� ⇣|). Then, if (un)n2N is such that (2.2.2) holds then

• If ⇣ 2 S1 is not periodic then the EI is equal to 1, i.e., limn!1 Leb(Mn  un) =

e

�⌧ .
• If ⇣ 2 S1 is periodic of prime period p 2 N then the EI is equal to ✓ = 1�(1/2)p,

i.e., limn!1 Leb(Mn  un) = e

�✓⌧ .

4.2.3
Example 4.2.1 revisited

In order to illustrate the application of the above results to a specific dynamical system
we consider the doubling map introduced in Example 4.2.1. To make things more
concrete, we choose the observable

'(x) = � log(|x� 1/3|), (4.2.16)

which archives a global maximum (+1) at ⇣ = 1/3 (see Figure 4.2).

1 ê 3
5 ê 61 ê 3 + e-u1 ê 3 - e-u

u

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

7

Figure 4.2 Graphic of the observable '(x) = � log(|x� 1/3|)

We start by computing the distribution function of X
0

. To do that we need to
estimate the Lebesgue measure of the set {X

0

 u}. By observing the Figure 4.2,
we see that if u � log 3 then {X

0

 u} = [0, 1/3� e

�u
][ [1/3+ e

�u, 1], hence
F (u) = Leb(X

0

 u) = 1 � 2e

�u. If log 2  u < log 3, then {X
0

 u} =

[1/3 + e

�u, 4/3� e

�u
], hence F (u) = Leb(X

0

 u) = 1� 2e

�u. If u < log 2



Lucarini, Faranda, Freitas, Freitas, Holland, Kuna, Nicol, Todd, Vaienti: Extremes and Recurrence in Dynamical
Systems — Chap. 4 — 2016/5/16 — 19:35 — page 62

62

then {X
0

 u} = ; and F (u) = 0. To recapitulate, we may write:

F (u) = Leb(X
0

 u) =

(

1� 2e

�u if u � log 2

0 if u < log 2.

The normalising sequence is computed as in the i.i.d. case, see Eq. 2.2.2, i.e. we
solve the equation: n(1 � F (un)) = ⌧ for some ⌧ � 0. One easily gets that
un = � log ⌧ + log(2n). We want to write this in the form un = y/an + bn,
we take y = � log ⌧ , ⌧ = e

�y , an = 1 and bn = log(2n). However, on the
contrary to the i.i.d. case, we have clusters created by the periodicity of the point
1/3.

The point 1/3 is a periodic point of period p = 2, which is also repelling because
Dfp

(1/3) = Df(2/3) · Df(1/3) = 4. Hence, condition (R2) is easily seen to
hold with ✓ = 3/4. In fact, for n su�ciently large we have

Un = {X
0

> un} = [1/3� e

�un , 1/3 + e

�un
]

Un \ f�1

(Un) = Un \ ([1/6� 1/2e�un , 1/6 + 1/2e�un
]

[ [2/3� 1/2e�un , 2/3 + 1/2e�un
]) = ;

and

Un \ f�2

(Un)

= Un \
 

[1/12� 1/4e�un , 1/12 + 1/4e�un
] [ [1/3� 1/4e�un , 1/3 + 1/4e�un

]

[ [7/12� 1/4e�un , 7/12 + 1/4e�un
] [ [5/6� 1/4e�un , 5/6 + 1/4e�un

]

!

= [1/3� 1/4e�un , 1/3 + 1/4e�un
].

The latter implies that Д0
0

(un) cannot hold because limn!1 nLeb(X
0

>
un, X2

> un) = ⌧/4, which is larger than 0 for every positive ⌧ . Hence, we
take q = p = 2 and set A(q)

n = Un \ f�2

(Un) = [1/3� e

�un , 1/3� 1/4e�un
][

[1/3 + 1/4e�un , 1/3 + e

�un
]. Using Theorem 4.2.7, we can actually check that

conditions Дq(un) and Д0
q(un) hold and in that case we have that Mn has an

asymptotic distribution similar to the one obtained in the i.i.d. case, which is now
a�ected by an Extremal Index equal to

✓ = lim

n!1
Leb([1/3� e

�un , 1/3� 1/4e�un
] [ [1/3 + 1/4e�un , 1/3 + e

�un
])

Leb[1/3� e

�un , 1/3 + e

�un
]

=

3

4

.

Hence, we can write that for the stochastic process X
0

, X
1

, . . . defined in (4.2.2),
with ' given by (4.2.16):

lim

n!1Leb(Mn � log(2n)  y) = e

� 3

4

e

�y

.
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4.2.4
Proof of the Dichotomy for Uniformly Expanding Maps

In this section we prove Theorems 4.2.7. We begin with the following notion:

Definition 4.2.12. For every A 2 B, we define the first return time to A, which we
denote by R(A), as the minimum of the return time function to A, i.e.,

R(A) = min

x2A
rA(x),

where rA(x) has been defined in in Eq. 2.3.1.

Proposition 4.2.13. Consider a dynamical system (X ,B,P, f) satisfying the as-
sumptions of Theorems 4.2.7, in particular, for which there exists decay of correla-
tions against L1. For any point ⇣ , assume that (R1) holds. Consider X

0

, X
1

, . . .
defined as in (4.2.2), let un be such that (2.2.2) holds. Then condition Д0

q(un) holds
for X

0

, X
1

, . . ., with q = 0 if ⇣ is not periodic and with q = p if ⇣ is periodic of
prime period p.

Proof. For every n 2 N, if ⇣ is not periodic take q = 0 if ⇣ is periodic of period p,
let q = p. Also, set Rn := R(A(q)

n ).
By hypothesis, for all n 2 N we have that 1

A
(q)
n

2 C and k1
A

(q)
n
kC  C 0, for

some C 0 > 0.
Taking � = 1

A
(q)
n

and  = 1
A

(q)
n

in (4.2.15) we get

P
⇣

A(q)
n \ f�j

(A(q)
n )

⌘

 (P(A(q)
n ))

2

+ C
�

�

�

1
A

(q)
n

�

�

�

C

�

�

�

1
A

(q)
n

�

�

�

L1

(P)
j�2

 (P(A(q)
n ))

2

+ C⇤P(A(q)
n )j�2, (4.2.17)

where C⇤
= CC 0 > 0. By considering the definition of Rn and the estimate

(4.2.17), and by recalling that nP(Un) ! ⌧ as n ! 1, it follows that there exists
some constant c > 0 such that

n
bn/knc
X

j=1

P(A(q)
n \ f�j

(A(q)
n )) = n

bn/knc
X

j=Rn

P(A(q)
n \ f�j

(A(q)
n ))

 n
⌅

n
kn

⇧

P(A(q)
n )

2

+ nC⇤P(A(q)
n )

bn/knc
X

j=Rn

j�2

 (nP(A(q)
n ))

2

kn
+ nC⇤P(A(q)

n )

1
X

j=Rn

j�2  c

0

@

⌧2

kn
+ ⌧

1
X

j=Rn

j�2

1

A .

Since by hypothesis kn ! 1, as n ! 1, the result is proved once we show that
Rn ! 1 as n ! 1. We separate the proof of the latter in two cases.

Let ⇣ be a non periodic point, in which case, we have that q = 0 and A(q)
n = Un.

Note that, by hypothesis, f i is continuous at ⇣ , for all i 2 N. For some fixed j, we
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define ✏ = mini=1,...,j dist(f i
(⇣), ⇣) Then, using the continuity of each f i at ⇣ , for

every i = 1, . . . , j, there exists �i > 0 such that f i
(B�i(⇣)) ⇢ B✏/2(f

i
(⇣)). Now,

let U := \j
i=1

B�i(⇣).
If we choose N su�ciently large so that Un ⇢ U for all n � N then, by definition

of ✏, it is clear that f i
(Un) \ Un = ; for all i = 1, . . . , j, which implies that

R(U(un)) > j. Since j is arbitrary, the statement follows.
Regarding the case when ⇣ is periodic point of prime period p, by the Hartman-

Grobman theorem there is a neighbourhood V around ⇣ where fp is conjugate to its
linear approximation given by the derivative at ⇣ . Hence, for n su�ciently large so
that Un ⇢ V , if a point starts in A(q)

n it takes a time �n to leave V , during which,
it is guaranteed that it does not return to Un. Moreover, since by condition (R1) and
definition of un, we have thatUn shrinks to ⇣ as n ! 1, then �n ! 1 as n ! 1.
Since Rn � �n then the statement follows.

We are left to prove condition Дq(un). As we have mentioned before, the main
advantage of the theory developed in Section 4.1 is that the new condition Дq(un) is
designed to follow easily by decay of correlations, in contrast to the original D(un)

condition of Leadbetter. In fact, we don’t even need this strong type of decay of
correlations against L1 (see Section 4.4).

Proof of Theorems 4.2.7. Choose � = 1
A

(q)
n

and  = 1
W

0,`(A
(q)
n )

. We have that
we can take �(n, t) = CC 0t�2. Hence, condition Дq(un) is trivially satisfied for
the sequence (tn)n given by, e.g. tn = n↵ for 1/2 < ↵ < 1.

4.3
Point Processes of Rare Events

If we enrich the process by considering multiple exceedances, we are led to studying
point processes of rare events as a result of counting the number of exceedances
within a certain time frame. For uniformly expanding systems, under the exact same
assumptions just seen above, the REPP converges in distribution to a standard Poisson
process, when no clustering is involved and to a compound Poisson process with
intensity ✓ and a geometric multiplicity d.f., otherwise.

4.3.1
Absence of Clustering

When condition Д0
0

(un) holds, there are no clusters and so we may benefit from a
criterion, proposed by Kallenberg [127, Theorem 4.7], which applies only to sim-
ple point processes without multiple events. Accordingly, we merely need to adjust
condition Д

0

(un) to this scenario of multiple exceedances in order to prove that
the REPP converges in distribution to a standard Poisson process. We denote this
adapted condition by:



Lucarini, Faranda, Freitas, Freitas, Holland, Kuna, Nicol, Todd, Vaienti: Extremes and Recurrence in Dynamical
Systems — Chap. 4 — 2016/5/16 — 19:35 — page 65

65

Condition (D
3

(un)). Let A 2 R and t 2 N. We say that D
3

(un) holds for the
sequence X

0

, X
1

, . . . if

|P ({X
0

> un} \ {Nun(A+ t) = 0})� P({X
0

> un})P(Nun(A) = 0)|  �(n, t),

where �(n, t) is nonincreasing in t for each n and n�(n, tn) ! 0 as n ! 1 for
some sequence tn = o(n). (The last equality means that tn/n ! 0 as n ! 1).

In [74, Theorem 5] it is proved a strengthening of [73, Theorem 1] which says the
following:

Theorem 4.3.1 ([74, Theorem 5]). Let X
1

, X
2

, . . . be a stationary stochastic pro-
cess for which conditions D

3

(un) and Д0
0

(un) hold for a sequence of levels un such
that (2.2.2) holds. Then the REPP Nn defined in (3.3.1) is such that Nn

d�! N , as
n ! 1, where N denotes a Poisson Process with intensity 1.

4.3.2
Presence of Clustering

Condition Д0
0

(un) prevents the existence of clusters of exceedances, which implies
that the EVL is standard exponential ¯H(⌧) = e

�⌧ . When Д0
0

(un) fails, the cluster-
ing of exceedances is responsible for the appearance of a parameter 0 < ✓ < 1 in
the EVL, called EI, and implies that, in this case, ¯H(⌧) = e

�✓⌧ . In [49], the authors
established a connection between the existence of an EI less than 1 and a periodic
behavior. This has been later generalized for REPP in [140].

For the convergence of the REPP when there is clustering, one cannot use the
aforementioned criterion of Kallenberg because the point processes are not simple
anymore and possess multiple events. This means that a much deeper analysis must
be done in order to obtain convergence of the REPP. This was carried out in [140]
and we describe below the main results and conditions needed.

Let ⇣ be a periodic point of prime period q. Firstly, we consider the sequence
⇣

U ()
(un)

⌘

�0

of nested balls centred at ⇣ given by

U (0)

(un) = U(un) = Un and U ()
(un) = T�q

(U (�1)

(un))\U(un), 8 2 N.(4.3.1)

Then, for i,, `, s 2 N [ {0}, we define the following events:

Q
q,i(un) := T�i

⇣

U ()
(un)� U (+1)

(un)

⌘

. (4.3.2)

These events correspond to +1 exceedences that appear separated by q units of time
and which are followed by a period of length larger than q, during which no excee-
dences occur. Note that Q0

q,0(un) = A(q)
n . Besides, Un =

S1
=0

Q
q,0(un)

S{⇣}
which means that the ball centred at ⇣ which corresponds to Un can be decomposed
into a sequence of disjoint annuli where Q0

q,0(un) are the most outward annuli and
the inner annuli Q+1

q,0 (un) are sent outward by T p onto the annuli Q
q,0(un), i.e.,

T q
(Q+1

q,0 (un)) = Q
q,0(un).
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Remark 4.3.2. When ' achieves a global maximum at a repelling periodic point ⇣ ,
we are lead to the appearance of clusters of exceedances whose size depends on the
severity of the first exceedance that begins the cluster. To be more precise, let x 2 X :
if we have a first exceedance at time i 2 N, which means that f i

(x) enters the ball
U(u), then we must have that f i

(x) 2 Q
p,0(u) for some  � 0, which we express

by saying that the entrance at time i had a depth. Notice that the deeper the entrance,
the closer f i

(x) got to ⇣ and the more severe is the exceedance. Now, observe that
if f i

(x) 2 Q
p,0(u) we must have f i+p

(x) 2 Q�1

p,0 (u), . . . , f i+p
(x) 2 Q0

p,0(u)

and f i+(+1)p
(x) /2 U(u) which means that the size of the cluster initiated at time

i is exactly  + 1 and ends with a visit to the outermost ring Q0

p,0(u), which plays
the role of an escaping exit from U(u). So the depth of the entrance in U(u) de-
termines the size of the cluster, and the deeper the entrance, the more severe is the
corresponding exceedance and the longer the cluster.

We are now ready to state the adapted condition:

Condition (Dq(un)
⇤). We say thatDq(un)

⇤ holds for the sequenceX
0

, X
1

, X
2

, . . .
if for any integers t,

1

, . . . ,⇣ , n and any J = [q
i=2

Ij 2 R with inf{x : x 2
J} � t,
�

�

�

P
⇣

Q
1

q,0(un) \
⇣

\q
j=2

Nun
(Ij) = j

⌘⌘

� P
⇣

Q
1

q,0(un)

⌘

P
⇣

\q
j=2

Nun
(Ij) = j

⌘

�

�

�

 �(n, t),

where for each n we have that �(n, t) is nonincreasing in t and n�(n, tn) ! 0 as
n ! 1, for some sequence tn = o(n).

In [140], for technical reasons only, the authors introduced a slight strengthening
to Д0

q(un). This condition was denoted by D0
q(un)

⇤ and it requires that

lim

n!1 n
[n/kn]
X

j=1

P(Q(0)

p,0(un) \ {Xj > un}) = 0, (4.3.3)

which holds whenever condition Д0
q(un) does.

From the study developed in [140] and as noticed in [142, Appendix B], we can
state the following result which applies to general stationary stochastic processes,
whose full proof is appearing in the forthcoming paper [154].

Theorem 4.3.3. Let X
0

, X
1

, . . . satisfy conditions Dq(un)
⇤, D0

q(un)
⇤ and

lim

n!1
X

�1

P(U ()
(un)) = 0,

where (un)n2N is such that (2.2.2) holds. Assume that the limit ✓ = limn!1 ✓n
exists, where ✓n is as in (4.1.2) and moreover that for each  2 N, the following limit
also exists

⇡() = lim

n!1

⇣

P(Q�1

q,0 (un))� P(Q
q,0(un))

⌘

P(Q0

q,0(un))
. (4.3.4)
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Then the REPP Nn converges in distribution to a compound Poisson process with
intensity ✓ and multiplicity d.f. ⇡ given by (4.3.4).

When X
0

, X
1

, . . . arise from a dynamical system and the point ⇣ is a repelling
periodic point for which condition (R2) holds, then it follows immediately from (R2)
that for each  the limit in (4.3.4) exists and equals ⇡() = ✓(1� ✓)�1. Hence, as
corollary we can state now the main result of [140].

Corollary 4.3.4 ( [140, Theorem 1]). Let X
0

, X
1

, . . . be given by (4.2.2), where
' achieves a global maximum at the repelling periodic point ⇣ , of prime period p,
and conditions (R1) and (R2) hold. Let (un)n2N be a sequence satisfying (2.2.2).
Assume that conditions Dp(un)

⇤, D0
p(un)

⇤ hold. Then the REPP Nn converges in
distribution to a compound Poisson process N with intensity ✓ and multiplicity d.f.
⇡ given by ⇡() = ✓(1 � ✓)�1, for every  2 N

0

, where the extremal index ✓ is
given by the expansion rate at ⇣ stated in (R2).

4.3.3
Dichotomy for Uniformly Expanding Systems for Point Processes

Making minor adjustments to the proof of Theorem 4.2.7, we can check the condi-
tions of Theorem 4.3.1 and Corollary 4.3.4 to obtain the following stronger version
of the dichotomy.

Theorem 4.3.5 ([142]). Under the same assumptions of Theorem 4.2.7,

• If ⇣ is a non periodic point and there exists some C 0 > 0 such that, for all
n 2 N, we have k1U(un)

kC  C 0, then conditions D
3

(un) and Д0
0

(un) hold
for X

0

, X
1

, . . ., which means that the REPP Nn defined in (3.3.1) converges in
distribution to a standard Poisson process as n ! 1.

• If ⇣ is a periodic point of prime period p, at which condition (R2) holds and there
exists someC 0 > 0 such that, for all n 2 N, we have k1Qp(un)

kC  C 0, then con-
ditions Dp

(un)
⇤ and D0

p(un)
⇤ hold for X

0

, X
1

, . . . which means that the REPP
Nn converges in distribution to a compound Poisson process N with intensity ✓
and multiplicity d.f. ⇡ given by ⇡() = ✓(1 � ✓), for every  2 N

0

, where the
extremal index ✓ is given by the expansion rate at ⇣ stated in (R2).

Remark 4.3.6. We remark that the second statement of the previous theorem had
already been obtained in [140] but the final version of the dichotomy, which also
includes the statement regarding non periodic points was only established in [142].

The proof of condition D
3

(un) follows after minor adjustments to the proof of
Дq(un) in Section 4.2.4. Since condition Д0

0

(un) holds at every non-periodic point
⇣ (see Proposition 4.2.13), then for all such points ⇣ the corresponding REPP Nn

converges in distribution to a standard Poisson process.
The proof of condition Dq(un)

⇤ follows with some adjustments from the proof of
Дq(un) in Section 4.2.4. Since condition Д0

q(un) holds at every periodic point ⇣ ,
as was shown in Proposition 4.2.13, then condition D0

q(Un)
⇤ from [140] also holds

for all such points ⇣ . So, at every periodic point ⇣ of prime period p, the respective
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REPP Nn converges in distribution to a compound Poisson process with intensity ✓
and multiplicity d.f. ⇡ given by ⇡() = ✓(1 � ✓), for every  2 N

0

, where the
extremal index ✓ is given by the expansion rate at ⇣ stated in (R2).
Remark 4.3.7. We note that the pattern of appearance of clusters resulting from a
periodic repelling point is quite rigid and obeys a very strict pattern. Let ⇣ be a
repelling periodic point of period p 2 N, then a clustering is easily identified by a
bulk of strictly decreasing exceedances which appear separated precisely by p � 1

non-exceedances. This observation is quite helpful in order to identify clusters and
to perform a data declustering in order to apply the POT method, for example, to
make statistical inference on the tail of the distributions.

4.4
Conditions Дq(un), D3(un), Dp

(un)
⇤ and Decay of Correlations

In general terms the conditions Дq(un), D3

(un), and Dp
(un)

⇤ follow from su�-
ciently fast (e.g. polynomial) decay of correlations of the dynamical system. This is
why these conditions can be considered being much more useful than Leadbetter’s
condition D(un). Indeed D(un) usually follows only from strong uniform mixing,
like ↵-mixing (see [155] for a definition), and even then applies only on certain sub-
sequences,. This means that that EVLs can only be shown for cylinders. Conditions
Дq(un), D3

(un), and Dp
(un)

⇤ follow from decay of correlations, which is much
weaker and allows instead for deriving EVLs s for balls.

In fact, in order to prove Дq(un), D3

(un), and Dp
(un)

⇤, there is actually no
need for such strong type of decay of correlations as such as against L1, like in the
assumptions of Theorems 4.2.7 or 4.3.5. It su�ces to have decay of correlations
against all  in, e.g., L1.

Rates of decay of correlations are nowadays well known for many chaotic systems.
Examples of these include hyperbolic or uniformly expanding systems as well as the
non-hyperbolic or non-uniformly expanding admitting, e.g., inducing schemes with
a well behaved return time function. See Sect. 5.5. for some related discussion. In
fact, in two remarkable papers L.-S..Young[156, 157] showed that the rates of decay
of correlations of the original system are intimately connected with the recurrence
rates of the respective induced map.

Just to give an idea of how simple it is to check Дq(un), D3

(un), and Dp
(un)

⇤

for systems with su�ciently fast decay of correlations, let us begin by defining the
following Banach spaces:

Given a function  : Y ! R on an interval Y , the variation of  is defined as

Var( ) := sup

(

n�1

X

i=0

| (xi+1

)�  (xi)|
)

,

where the supremum is taken over all finite ordered sequences (xi)
n
i=0

⇢ Y .
We use the norm k kBV = sup | |+Var( ), which makesBV := { : Y ! R : k kBV < 1}

into a Banach space.
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Now, let X be a compact subset of Rd and let  : X ! R. Given a Borel set
� ⇢ X , we define the oscillation of  2 L1

(Leb) over � as

osc( ,�) := ess sup

�

 � ess inf

�

 .

It is easy to verify that x 7! osc( , B"(x)) defines a measurable function (see
[158, Proposition 3.1]). Given real numbers 0 < ↵  1 and "

0

> 0, we define
↵-seminorm of  as

| |↵ = sup

0<""
0

"�↵
Z

Rd

osc( , B"(x)) dLeb(x).

Let us consider the space of functions with bounded ↵-seminorm V↵ = { 2
L1

(Leb) : | |↵ < 1}, and endow V↵ with the norm k · k↵ = k · kL1

(Leb)

+ | · |↵
which makes it into a Banach space. We note that V↵ is independent of the choice
of "

0

.
In what follows we assume that, for every ⇣ 2 X condition (R1) holds, and, in

case ⇣ is periodic of period p, then condition (R2) also holds.

Proposition 4.4.1. Assume that for our system f : X ! X we have decay of
correlations for all � 2 C, where C is BV or V↵, depending on whether X is a
compact subset of R or Rd (with d = 2, 3, . . .), and all  2 L1 so that there exist
C , independent of �, , and a rate function % : N ! R such that
�

�

�

�

Z

� · ( � f t
)dP�

Z

�dP
Z

 dP
�

�

�

�

 Ck�kCk k1%(t), 8t 2 N
0

, (4.4.1)

and n%(tn) ! 0, as n ! 1 for some tn = o(n). Then conditions Дq(un),
D

3

(un), and Dp
(un)

⇤ hold.

Proof. In what follows, for alln 2 N, letAn = U(un), in case ⇣ is non periodic, and
An = Qp(un) if ⇣ is periodic of prime period p. Take � = 1An

,  = 1W
0,`(An)

.
Observe that whether k · kC is k · kBV or k · k↵, we have that there exists some
C 0 > 0 such that k1An

kC  C 0, for all n 2 N. Set c = CC 0. Then (4.4.1) implies
that, in case ⇣ is non periodic, condition D

2

(un) holds and, in case ⇣ is periodic of
prime period p, condition Dp

(un) holds, where �(n, t) = �(t) := c%(t) and the
sequence tn is such that n%(tn) ! 0, as n ! 1. Note that to prove D

3

(un), we
just have to take  = 1N(A)=0

and for Dp
(un)

⇤, we would take � = 1Q

1

p,0(un)
,

 = 1
(

\&
j=2

Nun (Ij)=j)
and the argument would follow as before.

Note that, in the proof above, it has been useful for checking Дq(un) that 1An 2
C and k1AnkC  C 0. However, these conditions can still be checked even when
1An /2 C. This is the case when C is the Banach space of Hölder observables, which
is used, for example, to obtain decay of correlations for systems with Young towers.
The idea is to use, as in [72, Lemma 3.3], an adequate Hölder approximation for 1An .

Now, let X be a compact subset of Rd and let � : X ! R. Let H� denote the
space of Hölder continuous functions � with exponent � equipped with the norm
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k�kH�
= k�k1 + |�|H�

, where

|�|H�
= sup

x 6=y

|�(x)� �(y)|
|x� y|� .

Proposition 4.4.2. Assume that X is a compact subset of Rd and f : X ! X is a
system with an absolutely continuous invariant measure P, such that dP

dLeb 2 L1+✏.
Assume, moreover, that the system has decay of correlations for all � 2 H� against
any  2 L1 so that there exists some C > 0 independent of �, and t, and a rate
function % : N ! R such that
�

�

�

�

Z

� · ( � f t
)dP�

Z

�dP
Z

 dP
�

�

�

�

 Ck�kH�
k k1%(t), (4.4.2)

and n1+�(1+max{(0,✏+1)/✏�d}+�)%(tn) ! 0, as n ! 1 for some � > 0 and
tn = o(n). Then conditions D

2

(un), D3

(un), Dp
(un) and Dp

(un)
⇤ hold.

Proof. Since dP
Leb

2 L1+✏, by Hölder’s inequality, this last fact implies that for all
Borel sets B, there exists C > 0 such that

P(B)  C(Leb(B))

⇥, (4.4.3)

where ⇥ = ✏/(1 + ✏).
For ⌘ = max{⇥�1 � d, 0} + � > 0 we build the Hölder approximation �

of 1An
, where An is as in the proof of Proposition 4.4.1. Let Dn := {x 2 An :

dist(x,Ac
n) � (P(An))

1+⌘},where ¯A denotes the closure ofA. Define� : X ! R
as

�(x) =

8

>

>

<

>

>

:

0 if x 2 Ac
n

dist(x,Ac
n)

dist(x,Ac
n)+dist(x,Dn)

if x 2 Ac
n
c \Dn

1 if x 2 Dn

.

Observe that � is Hölder continuous with Hölder constant (P(An))
��(1+⌘).

Now, we apply the decay of correlations to the Hölder continuous function �
against  = 1W

0,`(An)
to get

�

�

�

�

Z

� · (1W
0,`(An)

� f t
)dP�

Z

�dP
Z

1W
0,`(An)

dP
�

�

�

�

 C(P(An))
��(1+⌘)%(t).

Observe that the support of 1An � � is contained in An \ Dn whose Lebesgue
measure is O

�

(P(An))
d+⌘

�

and, using (4.4.3), we get that
R

1An � �dP 
O
⇣

(P(An))
⇥(d+⌘)

⌘

. It follows that
�

�P(An \ f�t
(W

0,`(An)))� P(An)P(W0,`(An))
�

�

 (P(An))
��(1+⌘)%(t) +O

⇣

(P(An))
⇥(d+⌘)

⌘

.

Hence, we take �(n, t) = O
⇣

(P(An))
��(1+⌘)

⌘

%(t)+O
⇣

(P(An))
⇥(d+⌘)

⌘

. Let
tn be as in the hypothesis and recalling that P(An) ⇠ ✓⌧/n, where ✓ < 1 is
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given by (R2) if ⇣ is periodic and ✓ = 1 otherwise, we have that n�(n, tn) 
O
⇣

n1+�(1+⌘)
⌘

%(tn) +O
�

n��� ����!
n!1 0. As before, to prove D

3

(un) the argu-
ment is the same except for the fact that we need to take  = 1N(A)=0

. In order to
prove Dp

(un)
⇤ we just need to follow the proof as before and use a Hölder contin-

uous approximation for 1Q

1

p (un)
. The only extra di�culty is that we need an upper

bound that works for all 
1

2 N
0

. Now, taking  = 1
(

\&
j=2

Nun (Ij)=j)
, recalling

that P(Q
p,0) ⇠ ✓(1 � ✓)P(X

0

> un) and following the same steps, we easily
conclude that (4.4.2) leads to the following estimate
�

�

�

P
⇣

Q
1

p,0(un) \
⇣

\&j=2

Nun
(Ij) = j

⌘⌘

� P
⇣

Q
1

p,0(un)

⌘

P
⇣

\&j=2

Nun
(Ij) = j

⌘

�

�

�

 C

 

✓

n

(1� ✓)1

◆�(1+⌘)

%(t) +

✓

(1� ✓)1

n

◆

⇥(d+⌘)
!

,

for any ⌘ > 0, some C > 0 and where d is the dimension of X . Now, we have to be
cautious because the first term in the right hand side explodes as 

1

! 1. However,
the trivial observation:
�

�

�

P
⇣

Q
1

p,0(un) \
⇣

\&j=2

Nun
(Ij) = j

⌘⌘

� P
⇣

Q
1

p,0(un)

⌘

P
⇣

\&j=2

Nun
(Ij) = j

⌘

�

�

�

 2P
⇣

Q
1

p,0(un)

⌘

,

allows us to set:

�(n, t) = min


1

2N
0

(

2✓(1� ✓)1P(X
0

> un),

C

 

✓

n

(1� ✓)1

◆�(1+⌘)

%(t) +

✓

(1� ✓)1

n

◆

⇥(d+⌘)
!)

.

Since by assumption, there is a sequence (tn)n2N such that n1+�(1+⌘)%(tn) +
n�� ����!

n!1 0, then n�(n, tn) ! 0 as n ! 1, as required.

4.5
Specific Dynamical Systems where the Dichotomy Applies

In Chapter 6, we compile a list of examples for which the existence of EVL has been
proved. However, before we finish this chapter we give a class of maps for which we
can prove the dichotomies stated in Theorem 4.2.7 and Corollary 4.3.4.

Let f : X ! X be a measurable function as above. For a measurable potential
� : X ! R, we define the pressure of (X , f,�) to be

P (�) := sup

P2Mf

⇢

h(P) +
Z

� dP : �
Z

� dP < 1
�

,
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where h(P) denotes the metric entropy of the measure P, see [106] for details. If P
is an invariant probability measure such that h(P�) +

R

� dP = P (�), then we say
that P is an equilibrium state for (X , f,�).

A measure m is called a �-conformal measure if m(X ) = 1 and whenever for a
Borel set A holds that f : A ! f(A) is a bijection, then m(f(A)) =

R

A e�� dm.
Therefore, setting

Sn�(x) := �(x) + · · ·+ � � fn�1

(x),

if fn
: A ! fn

(A) is a bijection then m(fn
(A)) =

R

A e�Sn� dm.
Note that for example for a smooth interval map f , Lebesgue measure is �-

conformal for �(x) := � log |Df(x)|. Moreover, if for example f is a topologi-
cally transitive quadratic interval map then as in Ledrappier [159], any absolutely
continuous invariant measure P with h(P) > 0 is an equilibrium state for �. This
also holds for the even simpler case of piecewise smooth uniformly expanding maps,
which we consider below. This is the case we principally consider in this subsection.
For results on more general equilibrium states see [136].

4.5.1
Rychlik Systems

The first class of examples to which we apply our results is the class of interval maps
considered by Rychlik in [160], that is given by a triple (Y, f,�), where Y is an
interval, f a piecewise expanding interval map (possibly with countable discontinuity
points) and � a certain potential. This class includes, for example, piecewise C2

uniformly expanding maps of the unit interval with the associated physical measures.
We refer to [160] or to [49, Section 4.1] for details on the definition of such class and
instead give the following list of examples of maps in such class:
• Given m 2 {2, 3, . . .}, let f : x 7! mx mod 1 and � ⌘ � logm. Then

m� = P� = Leb.
• Let f : x 7! 2x mod 1 and, for ↵ 2 (0, 1), let

�(x) :=

(

� log↵ if x 2 (0, 1/2)

� log(1� ↵) if x 2 (1/2, 1)

(and� = �1 elsewhere). Thenm� = P� is the (↵, 1�↵)-Bernoulli measure
on [0, 1].

• Let f : (0, 1] ! (0, 1] and � : (�1, 0) ! R be defined as f(x) = 2

k
(x �

2

�k
) and �(x) := �k log 2 for x 2 (2

�k, 2�k+1

]. Then m� = P� = Leb.
In order to prove that the stated dichotomies hold for these systems, we basically need
to show that these systems satisfy the conditions of Theorems 4.2.7 and 4.3.5.

In this setting, as in [160], there is a unique f -invariant probability measure P� ⌧
m� which is also an equilibrium state for (Y, f,�) with a strictly positive densi-
ty dP�

dm�
2 BV . Moreover, there exists exponential decay of correlations against

L1

(m�), i.e., there exist C > 0 and � > 0, such that for any � 2 BV and
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 2 L1

(m�) we have
�

�

�

�

Z

 � fn · � dP� �
Z

 dP�
Z

� dP�
�

�

�

�

 Ck�kBV k kL1

(m�)
e

��n.

Assume that ⇣ is such that 0 < dP�

dm�
(⇣) < 1 and the observable ' : X !

R[{+1} is of the form (4.2.3). The regularity ofP� and' guarantee that condition
(R1) holds for every such ⇣ . Besides, if ⇣ is a repelling p-periodic point, which means
that fp

(⇣) = ⇣ , fp is di�erentiable at ⇣ and 0 < |detD(f�p
)(⇣)| < 1. As shown

in [49, Theorem 5], we have that (R2) holds. Moreover, the EI is given by the formula
✓ = 1� e

Sp�(⇣).
Finally, since U(un) is an interval and Q

1

p,0(un) is the union of two intervals, for
all 

1

, we have that k1U(un)
kBV  3 and k1Q


1

p,0(un)
kBV  5, which means all

the assumptions of Theorems 4.2.7 and 4.3.5 hold.

4.5.2
Piecewise Expanding Maps in Higher Dimensions

The second class of examples we consider here corresponds to a higher dimensional
version of the piecewise expanding interval maps of the previous section. We refer to
[158, Section 2] for precise definition of this class of maps and give a very particular
example corresponding to a uniformly expanding map on the 2-dimensional torus:
• let T2

= R2/Z2 and consider the map f : T2 ! T2 defined by the action of a
2⇥ 2 matrix with integer entries and eigenvalues �

1

,�
2

> 1.
According to [158, Theorem 5.1], there exists an absolutely continuous invariant
measure P. Moreover, in [158, Theorem 6.1], it is shown that, on the mixing com-
ponents, P enjoys exponential decay of correlations against L1 observables on V↵.
More precisely, if the map f is as defined above, and if P is the mixing absolutely
continuous invariant measure , then there exist constants C < 1 and � < 1 such
that
�

�

�

Z

 �fn h dP
�

�

�

 Ck kL1khk↵�n, 8h 2 V↵ and 8 2 L1, where
Z

 dP = 0.

Assume that the observable ' : X ! R [ {+1} is of the form (4.2.3). This
guarantees that condition (R1) holds. If ⇣ is a repelling p-periodic point, which
means that fp

(⇣) = ⇣ , fp is di�erentiable at ⇣ and 0 < |detD(f�p
)(⇣)| < 1.

Then condition (R2) holds and the EI is equal to ✓ = 1� |detD(f�p
)(⇣)| (see [49,

Theorem 3]). It is also easy to check that k1U(un)
k↵ and k1Q


1

p,0(un)
k↵ are bounded

by a positive constant, for all 
1

, which means that all conditions of Theorems 4.2.7
and 4.3.5 hold. R
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4.6
Extreme Value Laws for Physical Observables

Let (X ,B, µ, f) be a dynamical system, where X is a d-dimensional Riemannian
manifold, f : X ! X a measurable map and µ an f -invariant probability measure.
Assume that there is a compact invariant set ⌦ ⇢ X which supports the measure µ.
Specifically, our main interest is the situation where ⌦ is a strange attractor and µ is
a Sinai-Ruelle-Bowen (SRB) measure.

By a strange attractor we mean a compact invariant set ⌦ attracting the orbits of
a non-empty interior set of points and having a dense orbit with positive Lyapunov
exponent (sensitive dependence on initial condition, see [70, 71]).

We recall that an SRB measure is an invariant measure of a dynamical system that
is additionally characterised by having absolutely continuous conditional measure
on unstable manifolds. As well known, it is possible to provide other equivalent
definitions of the SRB measure, see [70, 71, 161].

Given an observable � : X ! R [ {+1}, previous sections have considered
the cases where � has the form given in (4.2.3), in which case, the observable can be
seen as a function depending directly on the distance to a specific point ⇣ chosen in
the phase space, and most typically belonging to the attractor.

However, typical observable functions used in applications are not of this form, at
least when dist(·, ·) is taken to be the ambient (usually Euclidean) metric. In certain
geophysical applications, see [81], observables can take the form
AE(x) = xTEx, AW (x) = ||Wx||, AV (x) = V x, respectively, (4.6.1)

where x is a point in the phase space X = Rd, || · || denotes the Euclidean norm and
E 2 Rd⇥d, W 2 R2⇥d, V 2 R1⇥d are matrices. When dist(·, ·) is the Euclidean
metric then none of the observables in (4.6.1) has the form (4.2.3), assuming that
the origin (which can be thought as representing a state of rest) does not belong
to the attractor. In fact this situation is to be expected in many observables found
in applications, including the atmospheric and oceanic models of [162]. Although
observables such as (4.6.1) are usually unbounded in the system’s phase space, the
system attractor ⌦ is usually bounded due to the presence of dissipative processes in
the models. Therefore, time series of such observables should be expected to have
an upper bound and, hence, large values typically obey Weibull limit distributions.

In the discussion that follows we consider the invariant measure µ and the observ-
able A given, with A of the form (4.6.1). If the attractor ⌦ is compact, then there
exists a point x

0

2 ⌦where the observable is maximized. An alternative approach to
the problem could be to find a function  : R+ ! R and a metric in X such that the
given observable A can be rewritten in the form (4.2.3). In some particular cases  
and the metric can be made explicit, but in general finding this adapted construction
may be just as di�cult as working with the original observable given by the problem.
Indeed the adapted metric would also depend on the geometry of the attractor.

Given an observable A : X ! R and a threshold u 2 R, we define the level
regions L+

(u) (resp. level sets L(u)) as follows:
L+

(u) = {x 2 X : A(x) � u}, L(u) = {x 2 X : A(x) = u}. (4.6.2)
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We consider observables which achieve a finite maximum within ⌦, although the
observable themselves could be unbounded in X . We define

uF = sup

x2⌦
A(x). (4.6.3)

Since ⌦ is compact there exists (at least) one point x
0

2 ⌦ for which A(x
0

) = uF .
We will assume that such an extremal point x

0

is unique. Given our focus on the
Weibull case we consider sequences un := u/an + bn, and let

⌧n(u) := lim

n!1nµ(L+

(un)), (4.6.4)

and investigate whether the limit ⌧(u) := limn!1 ⌧n(u) exists. If L+

(u) is in
the domain of attraction of a Type III distribution, then following [1], we can choose
bn = uF , and we take an ! 1. The precise form of an depends on the regularity of
A, and the regularity of the density of µ in the vicinity of the extremal point p̃ (if such
a density exists). As before, we consider the process Mn = max(X

0

, . . . , Xn�1

)

with Xn = A�fn, and we investigate to what extent the following statement is true:

nµ({x : A(x) � un}) ! ⌧(u) , µ({Mn  un}) ! e�⌧(u). (4.6.5)

If ⌧(u) = u↵, then the process Mn is described by a Type III extreme value distri-
bution. The statement (4.6.5) and its analogues are known to hold for a wide class
of dynamical systems, such as those governed by non-uniformly expanding maps,
and systems with certain (non)-uniformly hyperbolic attractors, [163, 138]. These
systems will be discussed in Chapter 6. However much of the theory for analysing
extremes assumes that the level regions L+

(u) introduced in (4.6.2) are described
by balls in the ambient metric, and moreover that these balls are centred on points in
⌦ that are generic for µ. These assumptions allow for the index ↵ to be expressed in
terms of local dimension formulae for measures.

When leading with more physical observables, we do not assume that the level
sets are balls (in the Euclidean metric): for example we consider observables of the
form A(p) = A(x

1

, . . . , xd) =

P

i |xi|ai , where the level sets have cusps or are
non-conformal. We also consider observables A(p) =

P

i cixi, for which the level
sets are hyperplanes. For observables of these types (also compare with (4.6.1)) the
standard machinery does not immediately apply. The first problem is to determine
the sequence un and the limit ⌧(u) defined in (4.6.4). Even if the measure µ is
su�ciently regular then the sequence un will depend on the geometry of the attractor
close to where A(p) achieves its maximum value on ⌦, in addition to depending on
the form of A.

In Chapter 6 we illustrate the various geometrical scenarios that can arise using an
hyperbolic toral automorphism as a simple example. When µ is a more general SRB
measure, then even for uniformly hyperbolic systems (such as the solenoid map) it
becomes a non-trivial problem to determine un and ⌧(u). In fact for systems with
general SRB measures we do no expect convergence of the left hand side of (4.6.4)
to some limit function ⌧(u), at least for linear scaling sequences un.
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Even if such a limit ⌧(u) exists, we must then check the two conditions Д
0

(un),
Д0

0

(un). If the level sets have complicated geometry, or if the measure µ is support-
ed on a fractal set then these conditions must be carefully checked. For uniformly
hyperbolic systems, and for observables that are functions of balls in the ambient
metric these conditions are checked in e.g. [138].

Later in Section 8.2.2, instead, we take a more heuristic point of view on physical
observables. We sacrifice mathematical rigour and derive results using the GPD
approach that we claim are correct - within the level of rigour necessary and suitable
for physical investigations - for generic statistical mechanical systems.
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5
Hitting and Return time Statistics

5.1
Introduction to Hitting and Return Time Statistics

Rare events in the context of dynamical systems have long been studied in the frame-
work of Hitting Time Statistics (HTS)/Return Time Statistics (RTS) by, e.g., Pitskel
[164] Collet, Galves and Schmitt [165, 166], and Hirata [147]. Interestingly, there
is a conceptual bridge between the limit laws described in this framework and the
EVLs for distance observables. In this chapter, we first introduce the notions of HTS
and RTS, and discuss a theorem which gives an explicit link between these classical
concepts. Some of the results on HTS/RTS have long been presented and discussed
in the literature, so that we will mostly just state results, explaining the main ideas,
but omitting the proofs. Since the link between these two kinds of statistical laws
and the EVL point of view is central to the development of the ideas of this book, we
will give a full proof of the relevant theorem.

Since the HTS properties can be pulled back to the features of the corresponding
RTS, we present some basic findings on specific systems by focussing on HTS only.
We start by considering uniformly hyperbolic dynamical systems. We note that early
results in this context were restricted in their application to particular sets shrinking
down to ⇣ (cylinders rather than balls). Next we give more recent results for non-
uniformly hyperbolic dynamical systems. One of the techniques here is inducing,
where essentially a speeded up version of the dynamical system, which is uniformly
hyperbolic, has the same recurrence properties as the original system. We close by
giving a brief outline of systems which have been shown to have unusual recurrence
laws in the context of Hitting Time Statistics. So, due to the link to the properties of
extremes, this means that we also have unusual EVLs for distance observables.

Before delving into the more technical material contained in this chapter, we give
some idea of the perspective of hitting times. Given a measure space (X ,B), a
measurable function f : X ! X and a point x 2 X , we denote the iterates of x by
f as x, f(x), f2

(x), . . . fn
(x), . . .. We can study the recurrence properties of this

system, i.e., understand how the iterates of typical x make repeated visits to certain
parts of the system, using the framework of rare events. Namely, we will fix a point
⇣ , and a rare event will be an occurrence of a point x having some iterate fn

(x)
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very close to ⇣ . One way to quantify very close is to assume that X is a metric space
endowed with the Borel �-algebra with metric denoted by d : X ⇥ X ! [0,1],
and consider entries of iterates of typical x to the "-ball around ⇣ denoted B"(⇣).
When " is very small, we would expect most points to take a long time before they
hit the ball B"(⇣). This idea is discussed in detail below. We assume the existence
of a probability measure µ on X , i.e., µ(X ) = 1 which is, moreover, f -invariant,
i.e. µ�f�1

= µ, and ergodic. We denote the set of such measures by Mf . Specific
members of Mf will be discussed later in this and the following chapters.

Note that in the dynamical systems context, a measure which in other parts of this
book is written as P is often called µ. Also, while iteration of dynamical systems has
been discussed in previous chapters, we will go over this notion again here for the
sake of clarity. Repetita iuvant.

5.1.1
Definition of Hitting and Return Time Statistics

We start by taking a set A ⇢ X and we recall the definition of first hitting time given
in Eq. 2.3.1 as rA : X ! N [ {1}:

rA(x) := inf{n 2 N : fn
(x) 2 A}.

Note that if x never enters A under iteration by f then rA(x) = 1. If we restrict
our attention to points x starting in A, the rA(x) is also called the first return time
to A. For A 2 B, the relevant measure on these specific points is the conditional
measure on A, where the measure of a set B 2 B is defined as:

µA(B) :=

µ(B \A)

µ(A)

. (5.1.1)

The first result is that ifA is measurable then the expected value of rA is the inverse
of the measure of A itself:

Z

rA dµA =

1

µ(A)

.

This is known as Kac’s Theorem (see, e.g., [167, Theorem 2.44]). Given this fact, in
order to learn about the first return time function, it makes sense to normalise by the
expectation value of rA, i.e., to study the distribution of µ(A) · rA. It is common to
approach this as the study of

µA

✓⇢

x 2 A : rA(x) >
t

µ(A)

�◆

for all values t � 0. In order to study the asymptotic recurrence to a given point
⇣ 2 X , one can take a family of sets {U(u)}u where u is a real parameter and sets
U(u) shrink to ⇣ in some way as u tends to some limiting parameter uF .
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5.1.1.1 Hitting and Return Time Statistics to balls
First, we will restrict ourselves to the case that {U(u)}u is a family of balls centered
in ⇣ and having a radius that tends to zero. In particular, we say that (X , f, µ) has
Return Time Statistics (RTS) ˜G if

lim

�!0

µB�(⇣)

✓⇢

x 2 B�(⇣) : rB�(⇣)(x) >
t

µ(B�(⇣))

�◆

=

˜G(t)

for some non-degenerate function ˜G : [0,1] ! [0, 1]. Returning to general mea-
surable sets A, it turns out that 1/µ(A) is also the relevant normalising factor for the
first hitting time not restricted to A. So for the asymptotics of the first hitting time,
say that (X , f, µ) has Hitting Time Statistics (HTS) G if

lim

�!0

µ

✓⇢

x 2 X : rB�(⇣)(x) >
t

µ(B�(⇣))

�◆

= G(t)

for some non-degenerate function G : [0,1] ! [0, 1].
In most cases we outline below, the functions ˜G andG are of the formG(t) = e�✓t

for ✓ 2 (0, 1]. If the HTS (RTS) law above is G(t) = e�t ( ˜G(t) = e�t), we say
that we have exponential HTS (RTS) to balls around ⇣ .

5.1.1.2 Hitting and Return Time Statistics to Cylinders
LetP

0

denote a partition ofX and define the corresponding pullback partitionPn =

Wn�1

i=0

f�i
(P

0

), where _ denotes the join of partitions. We refer to the elements of
the partition Pn as cylinders of order n. For every ⇣ 2 X , we denote by Zn[⇣]
the cylinder of order n that contains ⇣ . For some ⇣ 2 X this cylinder may not be
unique (this is the case when ⇣ belongs to the border of Pn) , but we can make an
arbitrary choice, so that Zn[⇣] is well defined. In good cases, as in most cases where
the system is uniformly expanding, Zn[⇣] ! {⇣} as n ! 1. Note, however, that
for our laws we generally only require that limn!1 µ(Zn[⇣]) = 0.

Now we let {U(u)}u be the (countable) set of cylinders {Zn[⇣]}n. So we say that
the system has HTS (RTS) G ( ˜G) to cylinders at ⇣ if we have HTS (RTS) G ( ˜G)
when U(u) is replaced by the cylinder Zn(⇣), and the limit is taken as n ! 1.

5.2
HTS vs RTS and Possible Limit Laws

Tthe elegant paper [168] presented a complete description of the relationship between
HTS and RTS. In order to describe the main aspects of the connection between HTS
and RTS, we first need to clarify some notions of convergence of distributions and
also set up our classes of possible distributions.

Given a sequence of d.f.’s (Fn)n2N, we say that the sequence converges weakly to
a function F if F is non-increasing right-continuous and satisfies limn!1 Fn(t) =
F (t) at every point t of continuity of F . If this is true, then the notation we use is
Fn ) F .
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Set

F :=

(

F : R ! [0, 1], F ⌘ 0 on (�1, 0], F is non-decreasing,
continuous and concave on [0,+1), F (t)  t for t � 0

)

.

and

˜F :=

8

>

<

>

:

˜F : R ! [0, 1], ˜F ⌘ 0 on (�1, 0], ˜F is non-decreasing,

right continuous and
Z

+1

0

(1� ˜F (s)) ds  1

9

>

=

>

;

.

Given a dynamical system (X , f), for U ⇢ X , we let

FU (t) := µ({µ(U)rU  t})
and

˜FU (t) :=
1

µ(U)

µ({U \ {µ(U)rU  t}}).

The idea is that we can choose sequences (Un)n2N such that FUn
will converge to

a function F 2 F and ˜FUn
will converge to a function ˜F 2 ˜F . These limiting

distributions are the tails of the HTS and RTS respectively.

Theorem 5.2.1 ([168]). Let (X , f, µ) be an ergodic dynamical system and {Un}n2N
a sequence of positive measure measurable subsets ofX . ThenFUn

converge weakly
if and only if ˜FUn

converge weakly. Moreover, given this convergence, to F and ˜F
respectively, we have the following relation:

F (t) =
Z t

0

(1� ˜F (s)) ds

for t � 0, and we must have F 2 F and ˜F 2 ˜F .

The last part of this theorem, the assertion that F 2 F and ˜F 2 ˜F , follows
from [169, 170]. Furthermore, those papers show that for any F 2 F , there exists
a sequence Un of sets with µ(Un) ! 0 such that FUn ) F . We will discuss the
possible limit laws further in Section 5.2 and Section 5.6. Our main interest is in
the fixed point 1 � e�t of the integral in Theorem 5.2.1, as well as the distribution
F (t) = 1�e�✓t with ✓ 2 (0, 1), which corresponds to ˜F (t) = 1�✓+✓(1�e�✓t).

Since there is a clear relationship between HTS and RTS and since HTS is most
directly linked to EVLs, after this subsection we will restrict ourselves to discussing
HTS .

5.3
The Link between Hitting Times and Extreme Values

Note that, by assumption (R1), we have that f�1

({Mn  u}) = {rU(u) > n}.
This relationship was essentially implicit in the work of Collet in [72] and was men-
tioned in [171]. In [74], a complete relation between the existence of HTS/RTS and
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EVLs was rigorously proved for absolutely continuous (with respect to Lebesgue)
invariant measure and natural observables depending on the distance to ⇣ . Then, in
[136], by adapting the observables, this relation was further developed to hold for
general equilibrium states. Below we prove the link between HTS and EVL in the
general case. Note that, in order to make the connection to EVL more explicit, we
denote our measures by P, again, as in the previous chapters.

We recall that the stochastic process X
0

, X
1

, . . . is defined by (4.2.2) where the
observable ' is defined by (4.2.11). We stress that g stands for some gi with i =

1, 2, 3 defined by conditions (4.2.4), (4.2.5) and (4.2.6), respectively.
The theorems 5.3.1 and 5.3.2 below provide a dictionary for translating results

obtained for HTS into EVLs and vice versa. Our first main result, which derives
EVLs from HTS for balls, reads as follows.

Theorem 5.3.1 ([136, Theorem 1]). Let (X ,B,P, f) be a dynamical system, ⇣ 2 X
be in the support of P and assume that P is such that the function ~ defined on (4.2.12)
is continuous.

If we have HTS G to balls centred on ⇣ 2 X , then we have an EVL H = G for
Mn that applies to the observables (4.2.3) achieving a maximum at ⇣ . Moreover, for
all i = 1, 2, 3, if un is chosen as linear normalising sequence, as in (3.1.1), then the
shape gi for the observable corresponds to an extremal type law of the form e�⌧i ,
given in (4.6.4).

Proof of Theorem 5.3.1. Set

un = g
1

�

n�1

�

+ h
�

g
1

�

n�1

��

y, for y 2 R, for type g
1

;

un = g
2

�

n�1

�

y, for y > 0, for type g
2

;

un = D �
�

D � g
3

�

n�1

��

(�y), for y < 0, for type g
3

.

For n su�ciently large,

{x : Mn(x)  un} =

n�1

\

j=0

{x : Xj(x)  un} =

n�1

\

j=0

�

x : g
�

P
�

Bdist(fj
(x),⇣)(⇣)

��

 un

 

=

n�1

\

j=0

�

x : P
�

Bdist(fj
(x),⇣)(⇣)

�

� g�1

(un)
 

. (5.3.1)

Consequently, by (4.2.14),

P({x : Mn(x)  un}) = P

0

@

n�1

\

j=0

�

x : P{Bdist(fj
(x),⇣)(⇣)} � P{B`(g�1

(un))
(⇣)}

 

1

A

= P

0

@

n�1

\

j=0

�

x : dist(f j
(x), ⇣) � `(g�1

(un))
 

1

A

= P
⇣n

x : rB`(g�1

(un))

(⇣)(x) � n
o⌘

. (5.3.2)



Lucarini, Faranda, Freitas, Freitas, Holland, Kuna, Nicol, Todd, Vaienti: Extremes and Recurrence in Dynamical
Systems — Chap. 5 — 2016/5/16 — 19:35 — page 82

82

Now, observe that (4.2.4), (4.2.5) and (4.2.6) imply

g�1

1

(un) = g�1

1

⇥

g
1

(n�1

) + p
�

g
1

(n�1

)

�

y
⇤

⇠ g�1

1

⇥

g
1

(n�1

)

⇤

e

�y
=

e

�y

n
;

g�1

2

(un) = g�1

2

⇥

g
2

(n�1

)y
⇤

⇠ g�1

2

⇥

g
2

(n�1

)

⇤

y�� =

y��

n
;

g�1

3

(un) = g�1

3

⇥

D �
�

D � g
3

(n�1

)

�

(�y)
⇤

⇠ g�1

3

⇥

D �
�

D � g
3

(n�1

�⇤

(�y)� =

(�y)�

n
.

Thus, we may write

g�1

(un) ⇠
⌧(y)

n
,

meaning that

g�1

i (un) ⇠
⌧i(y)

n
, 8i 2 {1, 2, 3}

where ⌧
1

(y) = e

�y for y 2 R, ⌧
2

(y) = y�� for y > 0, and ⌧
3

(y) = (�y)� for
y < 0.

Recalling (4.2.14), we have

P
�

B`(g�1

(un))
(⇣)

�

⇠ ⌧(y)

n
,

and so,

n ⇠ ⌧(y)

P
�

B`(g�1

(un))
(⇣)

� . (5.3.3)

Now, we claim that using (5.3.2) and (5.3.3), we have

lim

n!1P(Mn(x)  un) = lim

n!1P
 

rBl(g�1

(un))

(⇣)(x) �
⌧(y)

P
�

B`(g�1

(un))
(⇣)

�

!

(5.3.4)
= 1�G(⌧(y)), (5.3.5)

which gives the first part of the theorem.
To see that (5.3.4) holds, observe that by (5.3.2) and (5.3.3) we have
�

�

�

�

�

P(Mn  un)� P
 

rB`(g�1

(un))

(⇣) �
⌧(y)

P
�

B`(g�1

(un))
(⇣)

�

!

�

�

�

�

�

=

�

�

�

P
⇣

rB`(g�1

(un))

(⇣) � n
⌘

� P
⇣

rB`(g�1

(un))

(⇣) � (1 + "n)n
⌘

�

�

�

,

where ("n)n2N is such that "n ! 0 as n ! 1. Since we have
n

rB`(g�1

(un))

(⇣) � m
o

\
n

rB`(g�1

(un))

(⇣) � m+ k
o

⇢
m+k�1

[

j=m

f�j
�

B`(g�1

(un))
(⇣)

�

, 8m, k 2 N, (5.3.6)
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it follows by stationarity that
�

�

�

P
⇣

rB`(g�1

(un))

(⇣) � n
⌘

� P
⇣

rB`(g�1

(un))

(⇣) � (1 + "n)n
⌘

�

�

�

 |"n|nP
�

B`(g�1

(un))
(⇣)

�

⇠ |"n|⌧ ! 0,

as n ! 1, completing the proof of (5.3.4).

Now, we state a result in the other direction, i.e., we show how to get HTS from
EVLs for balls.

Theorem 5.3.2 ([136, Theorem 2]). Let (X ,B,P, f) be a dynamical system, ⇣ 2 X
be in the support of P and assume that P is such that the function ~ defined in (4.2.12)
is continuous.

If we have an EVL H for Mn which applies to the observables (4.2.3) achieving a
maximum at ⇣ 2 X then we have HTS G = H to balls at ⇣ .

For the proof of Theorem 5.3.2, we require the following lemma. This is essen-
tially contained in [1, Theorem 1.6.2]. See also [74, Lemma 2.1] where the lemma
was proved for absolutely continuous invariant measures. We provide a proof in the
general case for completeness.

Lemma 5.3.3. Let (X ,B,P, f) be a dynamical system, ⇣ 2 X and assume that P
is such that the function ~ defined on (4.2.12) is continuous. Furthermore, let ' be
as in (4.2.3). Then, for each y 2 R, there exist sequences (an)n2N and (bn)n2N so
that the sequence (un(y))n2N as in (3.1.1) is such that

nP({x : '(x) > un(y)}) ����!
n!1 ⌧(y) � 0.

Moreover, for every t > 0 there exists y 2 R such that limit ⌧(y) = t.

Proof. We will prove the lemma in the case when g is of type g
2

. For the other two
types of g observables, the argument is the same, but with minor adjustments, see [1,
Theorem 1.6.2].

First we show that we can always find a sequence (�n)n2N such that

nP(X
0

> �n) ����!
n!1 1.

Take �n := inf{y : P(X
0

 y) � 1� 1/n}, and let us show that it has the desired
property. Note that nP(X

0

> �n)  1, which means that lim supn!1 nP(X
0

>
�n)  1. Using (4.2.14) and (4.2.5), for any z < 1, we have

lim inf

n!1
P(X

0

> �n)

P(X
0

> �nz)
= lim inf

n!1
P(B`(g�1

2

(�n))
(⇣))

P(B`(g�1

2

(z�n))
(⇣))

= lim inf

n!1
g�1

2

(�n)

g�1

2

(z�n)
= z� ,

where ` is the function defined in (4.2.13). Since, by definition of �n, for any
z < 1, nP(X

0

> �nz) � 1, letting z ! 1, it follows immediately that
lim infn!1 nP(X

0

> �n) � 1.
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Let un(y) = �ny; thus means that, for all n 2 N, we take an = ��1

n and bn = 0

in (3.1.1). Hence, using (4.2.5), it follows that for all y > 0

nP(X
0

> �ny) = nP(B`(g�1

2

(�ny))
(⇣)) = ng�1

2

(�ny)

⇠ ny��g�1

2

(�n) = y��nP(B`(g�1

2

(�n))
(⇣))

= y��nP(X
0

> �n) ����!
n!1 y�� .

Hence, taking y = t�1/� > 0 would suit our purposes.

Proof of Theorem 5.3.2. We assume that by hypothesis for every y 2 R and some
sequence un = un(y) as in (3.1.1) such that nP ({x : '(x) > un(y)}) ����!

n!1
⌧(y), we have

lim

n!1P ({x : Mn(x)  un(y)}) = ¯H(⌧(y)) = H(y).

Observe that, by Khintchine’s Theorem (see [1, Theorem 1.2.3]), up to linear scal-
ing the normalising sequences are unique, which means that we may assume that
they are the ones given by Lemma 5.3.3. Hence given t > 0, Lemma 5.3.3 implies
that there exists y 2 R such that

nP ({x : '(x) > un(y)}) ����!
n!1 t.

Given (�n)n2N ⇢ R+ with �n ����!
n!1 0, we define

n := bt/P(B�n(⇣))c.

We will prove

g�1

(un
) ⇠ P(B�n(⇣)). (5.3.7)

If n is su�ciently large, then

{x : '(x) > un} =

�

x : g(P(Bdist(x,⇣)(⇣))) > un

 

=

�

x : P(Bdist(x,⇣)(⇣)) < g�1

(un)
 

.

By (4.2.14) and the definition of ` in (4.2.13) we obtain

P({x : '(x) > un}) = P
��

x : P(Bdist(x,⇣)(⇣)) < g�1

(un)
 �

= P
��

x : P(Bdist(x,⇣)(⇣)) < P(B`(g�1

(un))
(⇣))

 �

= P
��

x : dist(x, ⇣) < `(g�1

(un))
 �

= P
�

B`(g�1

(un))
(⇣)

�

.

Hence, by assumption on the sequence un, we have nP
�

B`(g�1

(un))
(⇣)

�

����!
n!1

⌧(y) = t. As we know thatP
�

B`(g�1

(un))
(⇣)

�

= g�1

(un), we haveng�1

(un) ����!
n!1

t. Thus, we can write g�1

(un) ⇠ t
n and, after substituting n by n, we immediately

obtain (5.3.7) by definition of n.
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Again, by the definition of ` in (4.2.13) and (4.2.14) we note that

P({x : Mn(x)  un}) = P

0

@

n�1

\

j=0

�

x : P{Bdist(fj
(x),⇣)(⇣)} � g�1

(un)

 

1

A

= P

0

@

n�1

\

j=0

n

x : P{Bdist(fj
(x),⇣)(⇣)} � P{B`(g�1

(un ))

(⇣)}
o

1

A

= P

0

@

n�1

\

j=0

�

x : dist(f j
(x), ⇣) � `(g�1

(un
))

 

1

A

= P
⇣n

x : rB`(g�1

(un ))

(⇣)(x) � n
o⌘

. (5.3.8)

We claim that

lim

n!1P
✓⇢

x : rB�n (⇣)(x) �
t

P(B�n(⇣))

�◆

= lim

n!1P({x : Mn
(x)  un

}).(5.3.9)

Using such a claim the first part of the theorem easily follows, since by hypothesis,

P ({x : Mn(x)  un}) ����!n!1
¯H(⌧(y)) = ¯H(t).

We need to show that (5.3.9) holds. First, we observe that

P
✓

rB�n (⇣) �
t

P(B�n(⇣))

◆

= P(Mn
 un

) +

⇣

P
⇣

rB�n (⇣) � n
⌘

� P(Mn
 un

)

⌘

+

✓

P
✓

rB�n (⇣) �
t

P(B�n(⇣))

◆

� P
⇣

rB�n (⇣) � n
⌘

◆

.

For the third term on the right, we note that, using the definition of n t, we have
�

�

�

�

P
⇣

rB�n (⇣) � n
⌘

� P
✓

rB�n (⇣) �
t

P(B�n(⇣))

◆

�

�

�

�

=

�

�

�

P
⇣

rB�n (⇣) � n
⌘

� P
⇣

rB�n (⇣) � (1 + "n)n
⌘

�

�

�

,

for some sequence ("n)n2N such that "n ! 0, as n ! 1. Using (5.3.6) and
stationarity, we derive that
�

�

�

P
⇣

rB�n (⇣) � n
⌘

� P
⇣

rB�n (⇣) � (1 + "n)n
⌘

�

�

�

 |"n|nP(B�n(⇣)) ⇠ |"n|t ! 0,

as n ! 1.
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As for the remaining term, using the definition of n and (5.3.8), we have
�

�

�

P
⇣n

rB�n (⇣) � n
o⌘

� P ({Mn  un})
�

�

�

=

�

�

�

P
⇣n

rB�n (⇣) � n
o⌘

� P
⇣

{rB`(g�1

(un ))

(⇣) � n}
⌘

�

�

�


n
X

i=1

P
⇣

f�i
⇣

B�n(⇣)4B`(g�1

(un ))

(⇣)
⌘⌘

= nP
⇣

B�n(⇣)4B`(g�1

(un ))

(⇣)
⌘

⇠ t

P (B�n(⇣))

�

�

�

P (B�n(⇣))� P
⇣

B`(g�1

(un ))

(⇣)
⌘

�

�

�

= t

�

�

�

�

�

�

1�
P
⇣

B`(g�1

(un ))

(⇣)
⌘

P (B�n(⇣))

�

�

�

�

�

�

,

where 4 indicates the operation of symmetric di�erence, and, which, by (4.2.14)
and (5.3.7), tends to 0 as n ! 1; this ends the proof of (5.3.9).

In the rest of the chapter we discuss explicitly only HTS. The reader can then inter-
pret the obtained results in terms of EVLs using the theorems 5.3.1 and 5.3.2 above.

5.4
Uniformly Hyperbolic Systems

HTS were first applied in a dynamical context to study Markov chains. This was
later extended to symbolic dynamical systems with good mixing properties, such as
�-mixing. We refer the reader to the excellent reviews in [172, 173] for a more com-
plete discussion of these results. In this chapter, we explore these ideas, focussing
on (piecewise) smooth dynamical systems. We begin by considering the uniformly
hyperbolic case.

Perhaps, the simplest case of uniformly hyperbolic systems is given by Markov
shifts. Let S := {1, . . . , n} be a finite alphabet (note that we extend to an infinite
alphabet later), and A = (ai,j) be an n⇥ n matrix of 0’s and 1’s, and consider the
set of sequences

⌃

+

A := {(x
0

, x
1

, . . .) : axi,xi+1

= 1 for each i 2 N
0

}.

Any finite word (x
0

, x
1

, . . . , xk�1

) 2 ⌃k of length k with axi,xi+1

= 1 for each
i = 0, . . . , k � 1 is called allowable, and the set of all such words, where k is
any finite number is denoted ⌃+

A. Then the corresponding one-sided subshift of fi-
nite type (SFT) is the pair (⌃+

A,�) where � is the left-shift map: �(x
0

, x
1

, . . .) =
(x

1

, x
2

, . . .). If A is irreducible1), then we say that (⌃+

A,�) is topologically mixing.

1) A matrix is irreducible if if it is not similar via a permutation to a block upper triangular matrix that has
more than one block of positive size.
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A special case of this is the one-sided full shift on n symbols, were ai,j = 1 for all
i, j 2 {1, . . . , n}.

An SFT has a canonical cylinder structure: for any allowable word (x
0

, x
1

, . . . , xk�1

) 2
⌃

⇤
A, the corresponding k-cylinder is the set

{y = (y
0

, y
1

, . . .) 2 ⌃+

A : yi = xi for i = 0, . . . , k � 1}.

Given x 2 ⌃+

A, let Zk[x] denote the k-cylinder containing x. We denote the set of
k-cylinders by Pk. Hence, formally, P

0

denotes the whole of⌃+

A. Note that later we
will use the same language and notation to describe dynamical cylinders in settings
other than the purely symbolic one.

The cylinder structure induces a topology on⌃+

A, which is the same as that induced
by the metric d : ⌃

+

A ⇥ ⌃+

A ! [0, 1], where d(x, y) = 2

�k, when x and y are in
the same k-cylinder, but in di�erent (k + 1)-cylinders.

5.4.1
Gibbs Measures

Given a function � : ⌃

+

A ! R, the kth Variation is defined as

Vn(�) := sup

Zk2Pk

sup

x,y2Zk

|�(x)� �(y)|.

We say that � is Hölder if there exists ↵ > 0 such that for k 2 N
0

, Vk(�) =

O(e�↵k).
Given an SFT (⌃

+

A,�) and a Hölder potential �, there exists a �-invariant measure
µ� which has the following property: There exist K � 1 and P 2 R where

1

K
 µ

�

(Zk)

eSk�(x)�kP
 K for any x 2 Zk,

where Sk�(x) denotes the kth ergodic sum �(x)+�(�x)+ · · ·+�(�k�1x). This
is called the Gibbs property, and we call P the Gibbs constant. Note that replacing
� by � � P makes the Gibbs constant zero. See [174, 175, 176] for a proof of that
µ� exists and satisfies these properties.

5.4.2
First HTS theorem

In particular, the Gibbs property means that µ� has a strong form of mixing, which
is used in [177] to prove the following statement, also proved in this context in [147]:

For µ�-a.e. ⇣ 2 ⌃+

A,

lim

�!0

µB�(⇣)

✓⇢

x 2 B�(⇣) : rB�(⇣)(x) >
t

µ(B�(⇣))

�◆

= e�t.

We will formalise these results in a theorem using the more complete picture, given
by the full treatment made in [146], which builds up on the work developed in [147]
and also, to some extent, in [150]. The method there was a transfer operator approach.
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Theorem 5.4.1. Let (⌃+

A,�) be a topologically transitive SFT withµ� a �-invariant
Gibbs measure for a Hölder potential � : ⌃

+

A ! R with Gibbs constant P = 0.
Then, for ⇣ 2 ⌃A,

lim

�!0

µB�(⇣)

✓⇢

x 2 B�(⇣) : rB�(⇣)(x) >
t

µ(B�(⇣))

�◆

= e�✓t,

where

✓ =

(

1� eSk�(⇣) if ⇣ is periodic of prime period k,

1 otherwise

Note that, in this case, the symbolic metric implies that balls are, in fact, like cylin-
ders. Also note that a law for all points ⇣ in⌃+

A, rather than just µ�-typical ones and
periodic ones can also be found in [165, 178] along with subsequent works along
that line such as [179, 180]. Nonetheless, the dichotomy between periodic and non-
periodic behaviour, as well as the associated explicit expressions for ✓, are not pre-
sented in those contributions. We also refer to [172, 173] for a more complete picture
of the early developments along that line, which include early estimates on the speed
of convergence of the law of HTS.

Theorem 5.4.1 can be extended to a large class of uniformly hyperbolic dynamical
systems via coding, as we explain below.

5.4.3
Markov partitions

In some cases, a dynamical system f : X ! X is equipped with a finite Markov
partition. There are two natural ways to define this: the first being for non-invertible
expansive systems, and the second being for invertible hyperbolic dynamical systems
in two dimensions or more. Note that these definitions appear in a variety of di�erent
ways in the literature.

If f : X ! X is non-invertible, let ⇤ ⇢ X be the set of points for which f is
defined for all time. Moreover, suppose that P

1

is a set of maximal sets such that
f : Z ! f(Z) is a homeomorphism for each Z 2 P

1

. Then P
1

is a finite Markov
partition for f if

1) it has finitely many elements;
2) ⇤ ⇢ [Z2P

1

Z;
3) if x 2 ⇤ has x 2 Z 2 P

1

and f(x) 2 Z0 2 P
1

, then f(Z) \ ⇤ ⇢ Z0 \ ⇤.
4) sup{d(x, y) : f i

(x), f i
(y) 2 Zi for some Zi 2 P

1

with i = 0, . . . n� 1} ! 0

as n ! 1.

In this case, we call f a Markov map
This structure yields a coding since writing P

1

= {Z1, · · · ,Zn}, for any x 2 ⇤,
there is a code x = (x

0

, x
1

, . . .) 2 {1, . . . , n}N0 given by the rule xi = k if
f ix 2 Zk. If the closures of elements of P

1

are pairwise disjoint, or if they do
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intersect then this intersection takes place outside ⇤, then the coding is uniquely
defined. Otherwise, there is ambiguity and the coding is ill-defined in some places.
However, since this is usually a zero measure phenomenon, it is not a significant
problem.

The Markov structure gives us a set of allowable transitions, namely, the transition
from Zi to Zj is allowable if Zj ⇢ f(Zi

). This also defines a matrix A, where
ai,j = 1 if the transition from Zi to Zj is allowable and ai,j = 0 otherwise. Thus,
we obtain the SFT (⌃

+

A,�). It is now standard to look at these properties thorough
the lens of the following commuting diagram:

⌃

+

A
�����! ⌃

+

A

⇡

?

?

y

?

?

y

⇡

⇤

f����! ⇤

Here, ⇡ is the inverse of the coding above: we write it in this way so that the
functions we deal with are well-defined. The continuous function ⇡ : ⌃

+

A ! ⇤

is a semi-conjugacy. As above, if the coding map is uniquely defined, then ⇡ is a
homeomorphism, and is called a conjugacy.

We can now start to link the Gibbs measures on ⌃+

A to those on ⇤. First, we need
to ensure smoothness of potentials, for which it is su�cient to assume that on each
Z 2 P

1

, if x, y 2 Z \ ⇤ then d(f(x), f(y)) > 1. Note that this is not true for
general hyperbolic system, so that we need to add such specific hypothesis. Then the
following lemma is easily proved.

Lemma 5.4.2. If � : [Z2P
1

Z ! R is↵-Hölder continuous, then there exists↵0 > 0

such that the potential � � ⇡ : ⌃! R is ↵0-Hölder continuous.

Therefore, given such a potential � : [Z2P
1

Z ! R, we can take the invariant
Gibbs measure µ

⌃

+

A,� on ⌃+

A for the associated symbolic version � � ⇡ of �, then
transport this to ⇤ using ⇡ to produce a measure µ� = µ

⌃

+

A,� � ⇡�1. This is an
f -invariant measure and which also has the Gibbs property.

Therefore, any HTS law for (⌃+

A,�, µ
⌃

+

A,�) passes on to (⇤, f, µ�). However,
an important caveat is that the metrics on these two spaces usually do not match. In
particular, not all balls in X are images of balls/cylinders in ⌃A. An approximation
argument of balls by cylinders can sometimes be done, in particular for the following
example.

Let I := [0, 1] and let f : [n
i=1

Ii ! I be a Markov map as above with Markov
partition P

1

= {I
1

, . . . , In} such that on each Z 2 P
1

, f is continuously di�eren-
tiable and infx2Z |Df(x)| > 1. We call (I, f) a Markov interval map.

Theorem 5.4.3. Given a Markov interval map (I, f), suppose that µ� is a �-
invariant Gibbs measure for a Hölder potential � : [Z2P

1

Z ! R with Gibbs
constant P = 0. Then, for ⇣ 2 ⇤,

lim

�!0

µ�

✓⇢

x 2 I : rB�(⇣)(x) >
t

µ(B�(⇣))

�◆

= e�✓t,
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where

✓ =

(

1� eSk�(⇣) if ⇣ is periodic of prime period k,

1 otherwise

This is Theorem 5.4.1, but adapted to balls using the results contained in [147,
Section 5].

For non-Markov interval maps that are nevertheless uniformly expanding on a finite
number of intervals, under certain conditions for the Gibbs-like measure, Paccaut
proved the same result as above in [181].

5.4.4
Two-sided Shifts

For a hyperbolic di�eomorphism, if there is a shift system that codes it, then the
system is invertible. Hence, we have the motivation to extend the results above to
invertible shift systems. As before, we start with an alphabet S = {1, . . . , n} and
A an n⇥ n matrix of 0’s and 1’s. Then

⌃A := {(. . . , x�1

, x
0

, x
1

, . . .) : axi,xi+1

= 1 for each i 2 Z}.

Therefore, the corresponding two-sided subshift of finite type is the pair (⌃A,�)
where � is the again the left-shift map

In this case the cylinder structure is given as follows. Given a, b 2 N
0

, for any
allowable word (x�a, x�a+1

, . . . , xb�1

, xb) 2 ⌃⇤
A, the corresponding cylinder is

the set

{y = (. . . , y�1

, y
0

, y
1

. . .) 2 ⌃A : yi = xi for i = �a, . . . , b}.

If a = b, we call this a (two-sided) k-cylinder. Given x 2 ⌃A, let Zk[x] denote the
two-sided k-cylinder containing x.

It is a standard construction, see [174, Section 3] and [176, Lemma 1.6], to show
that for any Gibbs measure on (⌃A,�), which is defined naturally through two-sided
k-cylinders, there is a Gibbs measure on (⌃

+

A,�) with precisely the same ergod-
ic properties. In particular, this can be exploited as in [147] to prove a version of
Theorem 5.4.3 for two-sided cylinders.

5.4.5
Hyperbolic Di�eomorphisms

Suppose now that we have a di�eomorphism f of a Riemannian manifold X , with
metric d, with the following hyperbolic structure on an an f -invariant set⇤. Set�s <
0 < �u and suppose C > 0. For each x 2 ⇤ we require disks W s

(x),Wu
(x),

called the local stable manifold and the local unstable manifold with the following
properties:
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1) f(W s
(x)) ⇢ W s

(f(x)) and f�1

(Wu
(x)) ⇢ Wu

(f�1

(x));
2) For n 2 N,

d(fn
(x), fn

(y))  Ce�
snd(x, y) for y 2 W s

(x),

d(f�n
(x), f�n

(y))  Ce��
und(x, y) for y 2 Wu

(x),

3) There exists " > 0 such that for the sets W s
" (x) := B"(x) \ W s

(x) and
Wu
" (x) := B"(x)\Wu

(x), for each x, y 2 ⇤, the intersectionW s
" (x)\Wu

" (y)
consists of at most one point.

The numbers �s,�u can be thought of as the exponential rates at which the systems
contracts/expands on the stable/unstable directions. Note that in general, more struc-
ture is required, but we will only give a sketch of the fundamental properties. Given
a set A ⇢ ⇤, for " as above, let W s,u

(x,A) := A \W s,u
" (x). This structure can

give rise to a Markov partitions by ‘rectangles’: R ⇢ ⇤ is a rectangle if

1) R = int(R);
2) x, y 2 R implies that W s

(x,R) \Wu
(y,R) is exactly one point.

Here closures and interiors are taken relative to ⇤. Hence, in the context of a
di�eomorphism f : X ! X as above, with an invariant set ⇤, a Markov partition
for f is a collection of rectangles {R

1

, . . . , Rn} such that

1) ⇤ = [n
i=1

Ri;
2) If x 2 int(Ri) and f(x) 2 int(Rj), then

f(W s
(x,Ri)) ⇢ W s

(f(x), Rj) and f(Wu
(x,Ri)) � Wu

(f(x), Rj).

3) If x 2 int(Ri) \ f�1

(int(Rj)), then

int(Rj) \ f(Wu
(x, int(Ri))) = Wu

(f(x), int(Rj))

and
int(Ri) \ f�1

(W s
(f(x), int(Rj))) = W s

(x, int(Ri)).

Under these conditions, see,e.g., [182, Chapter 8], there is a topological conju-
gacy between (⇤, f) and a SFT (⌃A,�) where A is determined by the third part
of the definition above. This means that Theorem 5.4.1 holds, but for two-sided k-
cylinders defined at points in ⇤ rather than balls. The approximation results of balls
by cylinders, performed in [147, 146] means that the result also extends to balls. The
application given in [147] is to Axiom A di�eomorphisms, e.g., the so-called Arnold
cat map given by

� xn+1

yn+1

�

=

�

2 1

1 1

�� xn
yn

�

on the 2-torus, since it is well-known that
these have the requisite Markov partition, see, e.g. [176, 182]. We will present some
results on this map in Chapters 6 and 9. The measures considered here are (two-
sided) Gibbs measures on ⇤.

The reader is encouraged to look into additional relevant investigations performed
using di�erent methods on the same type of systems [150, 151].
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5.4.6
Additional Uniformly Hyperbolic Examples

We close this section by making some brief comments on other uniformly hyperbolic
dynamical systems for which the HTS/EVLs have been amenable to analysis. The
first natural example is the class of tent maps. Given a 2 (1, 2], we define the tent
map Ta : [0, 1] ! [0, 1] by

Ta =

(

ax if x 2 [0, 1/2],

a(1� x) if x 2 (1/2, 1].

This map has an absolutely continuous invariant measure µa, and it is natural to ask
whether we can prove thatµa-typical points have exponential HTS to balls around the
point. This can be shown in various ways, one of which is described for more general
interval maps in Sect. 5.5.3. since these maps fit into the framework of [160]. We note
that, while this class of maps is uniformly expanding, not every map in the family has
a finite Markov partition, so any proof via coding would be more problematic than
the examples seen so far in this chapter.

The class of tent maps have many of the same topological characteristics as the lo-
gistic family we discuss in Section 5.5.3. Similarly, Hénon maps, which we describe
below, share many topological properties with the Lozi family: a member of which
is a homeomorphism of R2 with real parameters a and b defined by fa,b(x, y) =

(1 + y � a|x|, bx). For a certain set of pairs (a, b), this mapping has an invariant
Sinai-Ruelle-Bowen (SRB) measure. It is shown in [138] that almost every point
has exponential HTS to balls centered around the point. Again, there needs not be a
Markov partition here.

We recall that an SRB measure is an invariant measure of a dynamical system that
is additionally characterised by having absolutely continuous conditional measure
on unstable manifolds. As well known, it is possible to provide other equivalent
definitions of the SRB measure, see [70, 161].

Another class of uniformly hyperbolic systems are certain billiard systems. We
refer the reader to [138] for results on these systems. One of the features of these
systems is that they can be viewed as a suspension flow over a discrete dynamical
system. In [139] it was shown how to go between the corresponding discrete system
and its (semi-)flow: this was applied going from billiard maps to flows in [138].

5.5
Non-uniformly Hyperbolic Systems

So far we have focussed in this chapter on systems which are uniformly hyperbolic,
either uniformly expanding or with a hyperbolic splitting. Here we will focus on
systems which only exhibit non-uniform hyperbolicity. In particular this means that
these systems do not have nice Gibbs properties. (A more in-depth description of
properties one might like good systems to have is given in Chapter 6.) These systems
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can be analysed directly, or by looking at a speeded-up version: by ‘inducing’ to
produce a uniformly hyperbolic system. So before beginning to consider specific
systems, we outline the inducing technique. In the specific examples given below, we
will usually discuss absolutely continuous invariant measures, and their properties,
but these ideas also extend to other classes of measures.

5.5.1
Induced System

Given a dynamical system f : X ! X with an f -invariant probability measure µ,
suppose that we are interested in the HTS to a point ⇣ 2 X . If, e.g., if our system
is not uniformly hyperbolic, it can be useful to choose some subset ˆX ⇢ X which
also contains ⇣ and consider the first return map ˆf :

ˆX ! ˆX , where ˆf = fR
ˆX and

R
ˆX :

ˆX ! N [ {1} is the first return time to ˆX , i.e., for x 2 ˆX ,

R
ˆX (x) = inf{n 2 N : fn

(x) 2 ˆX}.

In particular, if x never returns to ˆX , then R
ˆX (x) = 1. We denote the conditional

measure on ˆX by µ̂ = µ
ˆX , so for A ⇢ X , µ̂(A) =

µ(A\ ˆX )

µ( ˆX )

as in Eq. 5.1.1.

By Kac’s Theorem, µ̂ is ˆf -invariant. The basic idea here is that the HTS of this
induced system can pass to the HTS of the original system. So if ( ˆX , ˆf, µ̂) is a
system with well-understood HTS, e.g., a uniformly hyperbolic system, then the HTS
of the original system is also understood. We next give more details of this approach.

In order to discuss the HTS for the induced system, we need to consider the hitting
time to a set A with respect to ˆf , which we denote by r̂A. Suppose that (An)n is
a sequence of sets shrinking down to ⇣ . It is shown in [183] that for a distribution
H 2 F ,

µ̂(An)r̂An

µ̂
=) H if and only if µ(An)rAn

µ
=) H.

Note that the proof of this theorem for typical points ⇣ can be found in [184], while
the proof for periodic points is given in [140]. The basic idea of the proof is that since
ˆf is a speeded up version of f , the hitting times should be speeded up too, by some
average scaling factor related to the first returns to ˆX . Indeed, by Kac’s Theorem,

lim

j!1
1

j

j�1

X

k=0

R
ˆX =

1

µ( ˆX )

,

and because the important returns to An take longer and longer as n ! 1 (if ⇣ is
periodic, then the periodic behaviour could be dealt with separately), ˆrAn

asymptot-
ically behaves like rAn

µ( ˆX )

. Note also that by definition µ(An)

µ̂(An)
= µ( ˆX ) if An ⇢ ˆX .
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5.5.2
Intermittent Maps

Perhaps, the simplest non-uniformly hyperbolic systems are the map that are topo-
logically equivalent the standard doubling map, x 7! 2x mod 1 on [0, 1), but are
non-uniformly expanding at the fixed point. Such maps are usually referred to as
Manneville-Pomeau maps [185]; though, we use the version considered in [186].
For ↵ > 0, set

g↵(x) =

(

x(1 + 2

↵x↵) if x 2 [0, 1/2),

2x� 1 if x 2 [1/2, 1).
(5.5.1)

For all ↵ > 0, g↵ has an acim µ↵, but this is only a probability measure, an
absolutely continuous invariant measure, when ↵ 2 (0, 1). In none of these cases
does µ↵ satisfy a Gibbs property. It is interesting to note that some of the earliest
studies of HTS in this context were done for the case ↵ � 1, see [166, 187], although
these were laws for cylinders where the partition P

1

was not the canonical one P
1

=

{[0, 1/2), [1/2, 1)}, but rather one tailored to suit the specific problem. Namely, the
partition elements were given by An := [an+1

, an) where a
0

= 1, a
1

= 1/2 and
g↵(an+1

) = an for n 2 N. Since then g↵(A0

) = [0, 1) and g↵(An) = An�1

for n 2 N, the system is topologically the renewal shift: i.e., the sequence space
{(x

0

, x
1

, . . .) : xi 2 N follows xi�1

if either xi = xi�1

� 1 or xi = 1}, equipped
with the left shift. Therefore, we refer to this as the renewal partition.

A significant step in the proof of HTS laws in general, and for non-uniformly hyper-
bolic systems in particular, comes from the framework devised in [188]. This gives
useful tests on a system which, if satisfied, guarantees an exponential HTS law. One
of the applications is to prove a HTS law for cylinders in the Manneville-Pomeau
setting for µ↵ when ↵ 2 (0, 1). However, the cylinders come from the renewal
partition.

In [184], these results have been extended to balls, as well as other kinds of sets,
using the inducing technique described above in Section 5.5.1. In particular, ˆX =

[1/2, 1) and ˆf is the first return map of g↵ to ˆX . In order to prove that this induced
system had exponential HTS to balls around almost-every point, they show that this
induced map fits into the class of Rychlik maps defined in [160], which in particular
have good mixing properties, such as the exponential mixing for BV against L1. In
concert with [188], this has allowed them to prove that for µ̂-a.e. ⇣ 2 ˆX , there is
exponential HTS to balls around ⇣ . Then they have been able to pull this informa-
tion back to the original system, proving the same result for ([0, 1), g↵, µ↵). Later
in [140], these ideas have been extended to periodic points, ultimately proving the
following.

Theorem 5.5.1. For↵ 2 (0, 1), consider the Manneville-Pomeau map ([0, 1), g↵, µ↵).
Then for µ↵-a.e. ⇣ ,

lim

�!0

µ↵

✓⇢

x 2 [0, 1) : rB�(⇣)(x) >
t

µ(B�(⇣))

�◆

= e�t.
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Moreover, if ⇣ is a periodic point of prime period p, then

lim

�!0

µ↵

✓⇢

x 2 [0, 1) : rB�(⇣)(x) >
t

µ(B�(⇣))

�◆

= e�✓t,

for ✓ = 1� 1

|Dgp
↵(⇣)| .

5.5.3
Interval Maps with Critical Points

The two key properties of the Manneville-Pomeau maps, in the context of HTS, are
that despite being non-uniformly hyperbolic, they have a Markov structure, and that
first return maps fit into the class given in [160]. In order to extend understanding of
HTS beyond such settings, we consider the logistic family f� : [0, 1] ! [0, 1] such
that f�(x) = �x(1�x). We are most interested when the parameter � lies in (3, 4].
In that range of parameters there are maps f� with a wide variety of behaviours. By
convention, we denote the critical point 1/2 by c. Notice that the only interesting dy-
namics is in the set [f2

�(c), f�(c)], the dynamical core, since any other point, except
0 and 1 must map inside this interval eventually. Some of these maps are Markov
(this is the case where the orbit of the critical point is finite), in which case the anal-
ysis is similar to that for the Manneville-Pomeau system. In some cases, the critical
point gets attracted to an attracting cycle, i.e., a cycle x, f�(x), . . . , fn�1

� (x) where
fn
� (x) = x and |Dfn

(x)| < 1, the Axiom A case: here Lebesgue-a.e. point in [0, 1]
is also attracted to that cycle and there is no absolutely continuous invariant measure.
The set of � for which f� is Axiom A is open and dense in [0, 4] ([189, 190]). We fo-
cus on the case of the positive Lebesgue measure set of parameters � such that there
is an absolutely continuous invariant measure for f� [191]. Note that while we spe-
cialise to the logistic family, the results discussed here extend to smooth multimodal
maps and beyond.

If the critical point of f� is non-recurrent, i.e., there is a neighbourhood U of
c such that the forward orbit of c never enters U , then f� is called a Misiurewicz
map. Misiurewicz showed in [192] that such maps have an absolutely continuous
invariant measure µ. One of the nicest properties of these maps is that one can find
an interval X ⇢ [0, 1] such that the first return map to X is a full-branched mapping
satisfying the conditions of [160], so using [184, 140] we can show an analogue of
Theorem 5.5.1 for (I, f�, µ). Indeed, this type of result, for typical points appeared
in [184].

The most interesting maps in the logistic family are the f� whose critical orbit is
dense in the dynamical core. In this case, first return maps to a given interval X are
not generally well-behaved. The best studied, and best-behaved, maps of this form
are the Collet-Eckmann maps: there exist C,↵ > 0 such that

|Dfn
� (f(c))| � Ce↵n. (CE)

It is shown in [193] that for such maps there exists an absolutely continuous invariant
measure. In the language of HTS, Collet proved the following in [72] using a Young
tower method.



Lucarini, Faranda, Freitas, Freitas, Holland, Kuna, Nicol, Todd, Vaienti: Extremes and Recurrence in Dynamical
Systems — Chap. 5 — 2016/5/16 — 19:35 — page 96

96

Theorem 5.5.2. Suppose that � is such that f� satisfies (CE). Then for µ an abso-
lutely continuous invariant measure, for µ-a.e. ⇣ ,

lim

�!0

µ

✓⇢

x 2 [0, 1) : rB�(⇣)(x) >
t

µ(B�(⇣))

�◆

= e�t.

When the growth of |Dfn
� (f(c))| is subexponential, [194] uses a Hofbauer exten-

sion technique, see also [184], to prove an analogue of Theorem 5.5.2: for example,
if |Dfn

� (f(c))| grows faster than n1+� for some � > 0 then the same result holds.
This has been subsequently improved in [195], where it has been shown that all that
is needed to derive the desired result is only the existence of an absolutely continuous
invariant measure. Instead, properties such as growth along the critical orbit, and the
related mixing behaviour do not play any role. The periodic case here has been stud-
ied in [140]. Unfortunately, in order to get good information on the density of the
absolutely continuous invariant measure at the periodic points, it has been necessary
to make assumptions on the map f�. stronger than (CE). As a result, the authors
obtained the following result. Recall here that if ⇣ is a repelling periodic cycle of
period p for some f�, then for all �0 close enough to �, there is an equivalent point
⇣�0 , the hyperbolic continuation of ⇣ , which is a repelling periodic cycle of period p
for f�0 .

Theorem 5.5.3. Suppose that ⇣ is a periodic point of period p for f
4

. Then there
exists a positive Lebesgue measure set �⇣ such that for the hyperbolic continuation
⇣� of ⇣ for maps f� where � 2 �⇣ ,

lim

�!0

µ

✓⇢

x 2 [0, 1) : rB�(⇣�)(x) >
t

µ(B�(⇣�))

�◆

= e�✓t.

Here µ is an absolutely continuous invariant measure and ✓ = 1� 1

|Dfp
�(⇣�)| .

Our catalogue of non-uniformly hyperbolic interval maps for which it is possible
to prove HTS laws is not exhaustive. As an example, we do not discuss Lorenz-like
interval maps considered in [139], where, moreover, these results have been extended
to the relevant Lorenz flow.

5.5.4
Higher Dimensional Examples of Non-uniform Hyperbolic Systems

To finish this section we make some short remarks, with very few details, on higher-
dimensional non-uniformly hyperbolic systems. In [74] a non-uniformly hyperbolic
system on the 2-torus was considered. This was non-uniformly expanding and it was
possible to prove exponential HTS around almost every point w.r.t. the SRB measure.

In [150], a complete analogue of Theorem 5.4.3 was shown for partially hyperbolic
di�eomorphisms w.r.t. the ‘u-Gibbs states’ there. More recently, in [163], Hénon
maps were considered (recall the simple model of Lozi maps above). Given real
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parameters a, b 2 R, the Hénon map is the homeomorphism fa,b : R2 ! R2

defined by fa,b(x, y) = (1�ax2

+y, bx). In [196] it is shown that there is a positive
Lebesgue measure set of parameters (a, b) 2 R2 such that fa,b has an SRB measure
µa,b with good mixing properties (one should think of a being close to 2 and b being
small here). In [163] it is shown that for µa,b-typical points ⇣ , we have exponential
HTS to balls around ⇣ . We do not give any details at this stage, but we remark that, in
contrast to the uniformly hyperbolic toral automorphisms, the structure of the stable
and unstable manifolds here is very complicated due to the criticality at (0, 0). There
is certainly no simple Markov structure to work with here.

5.6
Non-exponential Laws

We finish this chapter by commenting on some systems where the limiting laws are
not of an exponential type. We have already mentioned that any law in F , defined in
Section 5.2 can be realised as the HTS for a certain sequence of sets. However, these
sequences are arguably unnatural in general. However in [197], and later in [198],
some very natural cases were considered, and we wish to give here a quick sense of
these results.

Consider the circle rotation R↵ : S1 ! S1 with rotation number ↵, induced from
the transformationx 7! x+↵ onRwhereS1 is identified withR/Z. Denote byµ the
Haar measure onS1. Given ⇣ 2 S1, consider the interval/arc J" := [⇣, ⇣+"] ⇢ S1.
Note that is only interesting to consider ↵ irrational here.

Theorem 5.6.1. ([198, Theorem 1]) For any irrational rotation number ↵, the dis-
tribution µ(J")rJ" does not converge as "! 0.

This striking result is then followed by laws along special sequences of sets, which
complement further such findings [197]. For example, for certain ↵ (of unbounded
type in the sense of the continued fraction expansion), one can choose a c 2 (0, 1)
and an explicit sequence "n ! 0 as n ! 1 such that the limiting distribution for
µ(J"n)rJ"n

is

F (t) =

(

t if 0  t  c,

c if t > c.

One of the features of the system (S1, R↵, µ) is that it has zero entropy. For more
work in this direction see [199, 200]. Conversely, in [201] it is shown that there is a
zero-entropy system which, nevertheless, has exponential HTS along all sequences
of cylinders at a typical point.
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6
Extreme Value Theory for Selected Dynamical Systems

6.1
Rare Events and Dynamical Systems

As it can be seen in Section 5.3, the theory of HTS/RTS and the theory of EVL for
dynamical systems are two sides of the same coin. This means that we can prove the
existence of EVLs by proving HTS and the other way around.

The theory of HTS/RTS laws is now a well developed topic, applied first to cylin-
ders and hyperbolic dynamics, and then extended to balls and also to non-uniformly
hyperbolic systems. We refer to [172] and [202] for very nice reviews as well as
many references on the subject. (See also [173], where the focus is more towards a
finer analysis of uniformly hyperbolic systems.) Since the early papers [164, 147],
several di�erent approaches have been used to prove HTS/RTS: from the analysis of
adapted Perron-Frobenius operators as in [147], the use of inducing schemes as in
[184], to the relation between recurrence rates and dimension as explained in [202,
Section 4].

For many mixing systems it is known that the HTS/RTS are standard exponential
around almost every point. Among these systems we note the following: Markov
chains [164], Axiom A di�eomorphisms [147], uniformly expanding maps of the
interval [203], 1-dimensional non-uniformly expanding maps [188, 184, 194, 195],
partially hyperbolic dynamical systems [150], toral automorphisms [151], higher di-
mensional non-uniformly hyperbolic systems (including Hénon maps) [163].

In most of the papers mentioned so far, exponential HTS and RTS have been proved
for generic points, in the sense that there exists exponential HTS/RTS for almost all
⇣ in the phase space, with respect to the invariant measure. However, in [147] and
[129], the authors consider specific points. Namely, they consider the cases when ⇣
is a periodic point and obtain the existence of an EI less than 1, although they did
not stated in these terms because, at the time, the connection with EVL was not yet
established. In fact, Galves and Schmitt [165] introduced a short correction factor �
in order to get exponential HTS, that was then studied later in great detail by Abadi
et al. [173, 204, 205, 206, 152, 180], and which, in case of being convergent, can
actually be seen as the EI itself.

On the other hand, EVLs for the partial maximum of dynamically defined stochas-
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tic processes is a much recent topic and have been proved directly in the recent pa-
pers [72, 134, 74, 137, 138, 139, 49, 141, 140, 142, 207, 144, 143]. We highlight
the pioneering work of Collet [72] for the innovative ideas introduced. The dynami-
cal systems covered in these papers include non-uniformly hyperbolic 1-dimensional
maps (in all of them), higher dimensional non-uniformly expanding maps in [74],
suspension flows in [139], billiards and Lozi maps in [138].

The purpose of this chapter is to present the state of the art regarding the existence
of EVL for specific dynamical systems. We compile a list of systems for which
the existence of EVL have been proved and describe the main techniques used to
obtain such results. Furthermore, we present some results elucidating the rate of
convergence of BM to the asymptotic EVL.

6.2
Introduction and Background on Extremes in Dynamical Systems

In this chapter we consider a dynamical system (X ,B, µ, f), where X ⇢ Rd is a
compact Riemannian manifold, B is its Borel �-algebra, f : X ! X a measurable
transformation, and µ is an f -invariant probability measure supported on X . Given
an observable � : X ! R we consider the stationary stochastic processX

1

, X
2

, . . .
defined as in (4.2.2) and its associated maximum process Mn defined by (2.2.1) For
the stochastic process defined in (4.2.2), much recent work has focused on the com-
putation of the function G appearing on the right hand side of (3.1.3), and showing
that it exists and agrees, at least for su�ciently hyperbolic systems and for regular
enough observations �maximized at generic x̃, with that which would hold if {Xi}
were i.i.d. random variables. If x̃ is periodic we expect di�erent behavior (for details
see [49, 146, 147, 141]).

In this chapter we focus on a dynamical blocking argument approach that leads
to an estimation of µ{Mn  un} in terms of the distribution types described
above. This approach was first adopted in [72], and then applied more recently in
[163, 138, 144, 139, 208, 137]. We begin this chapter by reviewing this blocking ar-
gument approach. In large part it is purely probabilistic and in applications we just re-
quire knowledge of mixing rates (decay of correlations), and quantitative recurrence
statistics. We contrast the approach to the verification of conditions D(un), D0

(un)

described in Section 3.2. Using this approach we then prove extreme value laws for
observations maximized at generic points for a wide class of chaotic dynamical sys-
tems. We include a section on non-uniformly expanding systems [72, 139], a section
on non-uniformly hyperbolic systems [138, 163, 208], and a section on partially hy-
perbolic systems [137]. The blocking argument approach also leads to estimates of
rates on convergence to an EVL, and we describe this following [144].

Throughout we fix the following notations. For general sequences xn, yn, we say
that xn ⇠ yn if xn/yn ! 1 as n ! 1. We say xn ⇡ yn if there are real constants
c
1

, c
2

such that c
1

 xn/yn  c
2

. For positive sequences we write xn = O(yn)
if there is a constant C > 0 such that xn  Cyn, and we write xn = o(yn) if
xn/yn ! 0.
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6.3
The Blocking Argument for Non-uniformly Expanding Systems

We adapt the blocking argument used by Leadbetter in the classical setting described
in Section 3.2.1 to a dynamical setting. This adjustments are consistent with the
arguments in Section 4.1 and illustrate how the information about decay of corre-
lations and quantitative recurrence of the system come to play and allow to show
the existence of EVL for typical points in the absence of clusters. Moreover, these
computations allow the reader to follow the successive estimates in order to obtain
convergence rates.

We take (f,X , µ) to be an ergodic dynamical system. Let g̃ : N ! R be a
monotonically increasing function and let En be a sequence of sets defined by:

En :=

⇢

x 2 X : dist(x, f j
(x))  1

n
, for some j 2 [1, g̃(n)]

�

. (6.3.1)

In [208], the setsEn are referred to as recurrence sets. If the time scale g̃(n) = o(n),
these sets contain points which have what we call ‘fast’ returns. We will see that the
distributional rate of convergence to an EVL is partly determined by the rate at which
µ(En) converges to zero.

Assumptions on the invariant measure µ.
We will assume that the measure µ is absolutely continuous with respect to Lebesgue
m. Some of our results require also that µ admits a density ⇢ 2 L1+�

(m) for some
� > 0. For non-uniformly hyperbolic systems in dimension at least two, we require
further assumptions on the regularity of µ. We will discuss this further in Section
6.4.

Dynamical assumptions on (f,X , µ)

We list the following assumptions. The function g̃(n) and the sets En are from Eq.
(6.3.1).

(H1) (Decay of correlations) There exists a monotonically decreasing sequence⇥(j) !
0 such that for all '

1

Lipschitz continuous and all '
2

2 L1:
�

�

�

�

Z

'
1

· '
2

� f jdµ�
Z

'
1

dµ
Z

'
2

dµ

�

�

�

�

 ⇥(j)k'
1

kLipk'2

kL1 ,

where k · kLip denotes the Lipschitz norm. This is our decay assumption for non-
uniformly expanding maps.

(H1s) (Decay of correlations) There exists a monotonically decreasing sequence⇥(j) !
0 such that for all Lipschitz '

1

and '
2

:
�

�

�

�

Z

'
1

· '
2

� f jdµ�
Z

'
1

dµ
Z

'
2

dµ

�

�

�

�

 ⇥(j)k'
1

kLipk'2

kLip,

where k · kLip denotes the Lipschitz norm. This is our decay assumption for non-
uniformly hyperbolic systems with a stable direction.
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(H2a) (Strong quantitative recurrence rates). There exist numbers �,↵ > 0 such that

g̃(n) ⇠ n� =) µ(En) 
C

n↵
. (6.3.2)

Condition (H1) is an assumption on the rate of mixing in a suitable Banach space
of functions. The correlation decay in the Banach spaces of Lipschitz versus L1

has been shown to hold for our applications to non-uniformly expanding maps. In
Section 4, where we detail results on hyperbolic systems with stable directions, we
will assume a correlation decay in Lipschitz versus Lipschitz as given in (H1s). In
the statement of the results we will make precise asymptotic statements about the
rate of decay of ⇥(j).

Condition (H2a) is a quantitative control on the recurrence statistics. For general
non-uniformly expanding systems, checking this condition requires careful analysis.
See for example [137, 139]. In Section 6.4 we show how to check this condition
for uniformly expanding Markov maps and certain Markov intermittency maps. For
systems having sub-exponential decay of correlations we specifically require (H2a)
to hold in order to derive error rates. It is conjectured in [208] that (H2a) holds for
a broad class of non-uniformly hyperbolic systems, and this is observed numerically
(when analytic estimates are not available). For systems with exponential decay of
correlations we can work with a weaker version of (H2a), which we label as (H2b).
This is stated as follows:

(H2b) (Weak quantitative recurrence rates). For some �0 > 1, ↵ > 0:

g̃(n) ⇠ (log n)�
0

=) µ(En) 
C

n↵
. (6.3.3)

This latter condition only requires control of the recurrence up to a slow time scale
g̃(n) ⇠ (log n)�

0
and is easier to check analytically relative to (H2a), see for example

[72, 138, 208]. To obtain convergence to an EVL (and to find corresponding error
rates), it is su�cient to check this condition provided the system has exponential
decay of correlations.

To establish convergence rates for certain non-uniformly hyperbolic systems
(without absolutely continuous invariant measures) we will work with conditions
analagous to (H2a)/(H2b). Such conditions will be discussed in Section 6.5.

Assumption on the observable type
We will assume that the observable � : X ! R is a distance observable, so that it
can be written in the form �(x) =  (dist(x, x̃)), where  : R+ ! R has a unique
maximum at 0 and x̃ has a density ⇢(x̃) =

dµ
dm (x). Hence � is maximized at the

unique point x̃ 2 X . In earlier chapters, the dependence of the distributional limit G
on the specific functional form of was considered. Within this section we will focus
on the case where (y) = � log y, and thus we will be in the domain of attraction of
a Type I distribution at µ-a.e. x̃, provided the density of µ is absolutely continuous
with respect to Lebesgue measurem. In the case of observable types having multiple
maxima, distributional limit theorems can also be derived, see [139].
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Statement or Results
Theorem 6.3.1. Suppose that f : X ! X is a map with ergodic measure in
L1+�

(m) for some � > 0, and µ absolutely continuous with respect to m. We
have the following cases.

1) Suppose that⇥(n) = O(✓n
0

) for some ✓
0

< 1 and (H1), (H2b) hold. Then for all
✏ > 0 and µ-a.e. x̃ 2 X we have that
�

�

�

µ{Mn  un}�
�

1�
p
nµ{X > un}

�

p
n
�

�

�

 C
1

(log n)1+✏p
n

+

C
2

n↵�✏
,(6.3.4)

where C
1

, C
2

> 0 are constants independent of n, but dependent on x̃.
2) Suppose that ⇥(n) = O(n�⇣

) for some ⇣ > 0 and (H1), (H2a) hold. Then for
all ✏ > 0 and µ-a.e. x̃ 2 X we have that
�

�

�

�

�

µ{Mn  un}�
�

1�
p
nµ{X > un}

�

p
n

�

�

�

�

�

 C
1

n� 1

2

+
+ C

2

n�↵+,

with  = ✏+
2(1 + 2�)

⇣�
. (6.3.5)

where C
1

, C
2

> 0 are constants independent of n, but dependent on x̃.

As we indicate in Section 6.8 the conclusions of Theorem 6.3.1 provide quantita-
tive estimates on the convergence rates to an extreme value distribution. We state the
following corollary which indicates that we do indeed get convergence to a distribu-
tion of given type. The type depends on the regularity of the measure and the precise
form of the distance observable function �(x). We state the following corollary in
the case �(x) = � log dist(x, x̃).

Corollary 6.3.2. Suppose that f : X ! X is a map with ergodic measure in
L1+�

(m) for some � > 0, and µ absolutely continuous with respect to m. Suppose
that i) ⇥(n) = O(✓n

0

) for some ✓
0

< 1 and (H1), (H2b) hold, or ii) ⇥(n) =

O(n�⇣
) for some ⇣ > 0 and (H1), (H2a) hold. Consider the observable function

�(x) = � log dist(x, x̃) and the associated process Mn. Then for µ-a.e. x̃ 2 X
we have:

lim

n!1µ{Mn  u+ log n} = exp{�2⇢(x̃)e�u}. (6.3.6)

6.3.1
The Blocking Argument in One Dimension

To simplify our exposition we will suppose that our system is one-dimensional, the
modifications for d > 1 are obvious. We suppose that there are scaling sequences
an, bn such that Eq. (3.1.3) is valid. In particular for the distance observable type
�(x) = � log(dist(x, x̃)) in dimension one, we may take un = v + log n, and

lim

n!1nµ{x 2 X : �(x) > un} = lim

n!1nµ{dist(x, x̃)  e�v

n
}

! 2⇢(x̃)e�v. (6.3.7)
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6.3.2
Quantification of the Error Rates

The following propositions give precise quantification of the error rates in terms of
the assumptions on the correlation decay ⇥(j), and the decay of µ(En). They will
be used in the proof of Theorem 6.3.1. To state the propositions, we fix integers
p(n), q(n) > 0 and let n = pq+r with 0  r < p (by Euclid’s division algorithm).
The blocking argument consists of writing n = p(n)q(n) and between each of the
q gaps of length p we take a gap of length t = g(n). The decay of correlations over
the gap of length t = g(n) allows us to consider successive blocks as approximately
independent. We suppose that p, q ! 1 as n ! 1. We let un be the sequence
with the property that nµ{X

1

> un} ! ⌧(u), for some function ⌧(u), and un =

u/an + bn.

Proposition 6.3.3. Suppose that f : X ! X is ergodic with respect to a measure µ
which has a density ⇢ 2 L1+�

(m) for some � > 0. Suppose that (H1) holds. Then
for µ-a.e. x̃ 2 X , all p, q such that n = pq + r, and t < p, we have

|µ{Mn  un}� (1� pµ{X
1

> un})q|  En, (6.3.8)

where for any ✏ > 0 and �
1

= �/(1 + 2�):

En = max{qt, p}µ{X
1

� un}+ qp2(µ{X
1

> un})2

+ C
1

pq2⇥(t)�1�✏ + pq
t
X

j=2

µ(X
1

> un, Xj > un). (6.3.9)

Proposition 6.3.4. Suppose that f : X ! X is ergodic with respect to a measure
µ with density ⇢ 2 L1+�

(m) for some � > 0. Suppose that (H2a) or (H2b) hold,
and suppose for given ✏ > 0 that g(n) = g̃(n)1�✏. Then for all ✏ > 0, and µ-a.e.
x̃ 2 X :

g(n)
X

j=2

µ(X
1

> un, Xj > un)  C(x̃)
g(n)

n↵̃
, with ↵̃ = ↵+ 1� ✏

1

(6.3.10)

where the constant C depends on x̃, and ↵ is as defined in (H2a) or (H2b).

6.3.2.1 Proof of Proposition 6.3.3
To prove Proposition 6.3.3 we need the following result which is purely probabilistic,
see [72, Proposition 3.2].

Lemma 6.3.5. For any integers t, r,m, k, p � 0

0  µ(Mr < u)� µ(Mr+k < u)  kµ(X
1

� u),
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and
�

�

�

�

�

�

µ(Mm+p+t < u)� µ(Mm < u) +
p
X

j=1

E
�

1{X
1

�u}1{Mm�fp+t�j<u}
�

�

�

�

�

�

�

 2p
p
X

j=1

E
�

1{X
1

�u}1{Xj<u}
�

+ tµ(X
1

> u).

Proof of Proposition 6.3.3. We will apply the estimates of Lemma 6.3.5. Note
first of all that these estimates are expressed in terms as expectations of prod-
ucts 1{X

1

�u}1{Xj<u}. To use decay of correlation estimates, we must approx-
imate the indicator function 1{X>un} by a Lipschitz function. This is done by
approximating the indicator function � := 1{X

1

>un} by a Lipschitz continu-
ous function �B , which is set equal to 1 inside a ball centered at x̃ of radius
`0n :=  �1

(un) � [ �1

(un)]
1+⌘ , for some ⌘ > 0, and decaying to 0 at a linear

rate so that �B vanishes on the boundary of {X
1

> un}. The Lipschitz norm of
�B is bounded by [ �1

(un)]
�(1+⌘). For any measurable set A ⇢ Rd this leads to

the estimate

|µ(1{X>un} \ f�t
(A))� µ(1{X>un})µ(A)|  m(1{X>un})

� (1+⌘)

d
⇥(t)

+O(1)m(1{X>un})
✓(1+⌘) (6.3.11)

where ⇥ is the decay of Lipschitz functions agains the L1-norm,

|
Z

� ·  � fndµ�
Z

�dµ
Z

 dµ|  ⇥(n)k kL1k�k
Lip

.

This is obtained by approximating 1I with a piecewise-linear function.
Putting this together gives:
�

�µ(Mn < un)� µ(Mq(p+t) < un)
�

�  max{qt, p}µ(X
1

� un),

and for 1  `  q we have

|µ(M`(p+t) < un)� (1� pµ( > un))µ(M
(`�1)(p+t) < un)|



�

�

�

�

�

�

pµ(X
1

� un)µ(M
(`�1)(p+t) < un)�

p
X

j=1

E
⇣

�{ �fj�un}�M
(`�1)(p+t)�fp+t<un

⌘

�

�

�

�

�

�

+tµ(X
1

� un) + 2p
p
X

j=1

µ ({X
1

� un} \ {Xj � un}) .

This latter expression is bounded above by �n by the estimates above.

Proof of Corollary 6.3.2. We see that if pµ( � un) < 2 then an iterative argument
shows that

|µ(Mq(p+t) < un)� (1� pµ( � un)
q|  q�n
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and so

|µ(Mn < un)� (1� pµ( � un)
q|  q�n +max{qt, p}µ(X

1

� un)

by the results above.
Hence if q�n ! 0 and qtµ( < un) ! 0 then

µ(max{X
1

, . . . , Xn}  un) ! exp(� lim

n
nµ(X

1

� un)).

We state and prove the following lemma. Combining this result with the blocking
argument described earlier in Section 6.3.2 completes the proof of Proposition 6.3.3.

Lemma 6.3.6. For any g(n) < p we have that:

p
X

j=g(n)

µ(X
0

> un, Xj > un)  pO(1)(⇥(g(n)))�1 + p(µ{X
1

> un})2,

with �
1

=

�

(1 + 2�)
� ✏, (6.3.12)

where ✏ > 0 can be taken arbitrarily small, and the implied constant O(1) depends
on �.

Under assumptions (H2a) or (H2b), and Propostion 6.3.4 a condition on the choice
of g(n) is that g(n) = o(g̃(n)). We now use decay of correlations to prove the sec-
ond part of (6.3.12). We will write �(x) =  (dist(x, x̃)), and recall that we work
with the explicit observable  (y) = � log y, for y > 0. As before we approx-
imate the indicator function � := 1{X

1

>un} by a Lipschitz continuous function
�B , which is set equal to 1 inside a ball centered at x̃ of radius `0n := ��1

(un) �
[ �1

(un)]
1+⌘ , for some ⌘ > 0, and decaying to 0 at a linear rate so that �B van-

ishes on the boundary of {X
1

> un}. The Lipschitz norm of �B is bounded by
[ �1

(un)]
�(1+⌘).

We now take j 2 [g(n), n]. We have the following triangle inequality:
�

�

�

�

�

Z

�(� � f j
)dµ�

✓

Z

�dµ

◆

2

�

�

�

�

�


�

�

�

�

Z

�B(� � f j
)dµ�

Z

�Bdµ
Z

�dµ

�

�

�

�

+

�

�

�

�

Z

(�B � �)� � f jdµ�
Z

(�� �B)dµ
Z

�dµ

�

�

�

�

,

and we estimate each term on the right hand side. By decay of correlations and for
su�ciently large n:
�

�

�

�

Z

�B(� � f j
)dµ�

Z

�Bdµ
Z

�dµ

�

�

�

�

 k�BkLipk�k1⇥(j)

= O
�

n1+⌘
⇥(g(n))

�

,
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and
�

�

�

�

Z

(�B � �)� � f jdµ�
Z

(�� �B)dµ
Z

�dµ

�

�

�

�

 2k�k1µ(x : �B(x) 6= �(x))

= O(n�✓(1+⌘)
),

where we can take any ✓ < �/(1 + �). Hence for each j > g(n) we obtain:

µ(X
1

> un, Xj > un)  C
1

(m{X
1

� un})�1�⌘
⇥(j)

+ C
2

(m{X
1

� un})✓(1+⌘) + (µ{X
1

> un})2.
(6.3.13)

The constants C
1

, C
2

depend on the regularity of ⇢(x) at x̃ and on the Lipschitz
norm. The constant ⌘ is arbitrary, and hence we can optimize the right hand side by
varying ⌘. If we let x = (m{X

1

� un})1+⌘ , then we can write the first two terms
on the right hand side of inequality (6.3.13) as:

A(x) := C
1

x�1

⇥(j) + C
2

x✓. (6.3.14)

The minimizer of A(x) is the value x = O(1)⇥(j)
1

✓+1 , and leads to the bound:

µ(X
1

> uk, Xj > uk)  O(1)(⇥(j))�1 + (µ{X
1

> un})2,

with �
1

=

�

(1 + 2�)
� ✏. (6.3.15)

Here ✏ > 0 can be made arbitrarily small. The implied constant depends only on �.
This gives the required result.

6.3.2.2 Proof of Propositon 6.3.4: The maximal function argument
For a function ' 2 L1

(m) we define the Hardy–Littlewood maximal function

M(x) := sup

a>0

1

2a

Z x+a

x�a
'(y)dm(y).

A theorem of Hardy and Littlewood [209], implies that

m(|M(x)| > �)  k'k
1

�
(6.3.16)

where k · k
1

is the L1 norm with respect to m. Recalling

En =

⇢

x : dist(x, f j
(x))  1

n
for some j  g̃(n)

�

,

let ⇢(x) denote the density ofµwith respect tom and letMn(x) denote the maximal
function of 'n(x) := 1En(x)⇢(x). For constants a, b > 0 to be fixed later consider
sequences �n = n�a and ↵n = bnbc. Inequality (6.3.16) gives

m(|M↵n(x)| > �n) 
µ(E↵n

)

�n
 1

n↵b�a
.
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If ↵b � a > 1 (first constraint required on a and b), then the First Borel–Cantelli
Lemma implies for µ a.e. x there exists an N := N(x) such that for all n � N
we have |M↵n(x̃)| < �n. Recall in the case of Theorem 6.3.1 that µ is absolutely
continuous with respect to m. Hence, for all n su�ciently large

µ(
�

x : dist(x, x̃) < ↵�1

n

 

\ E↵n) 
Z x̃+↵�1

n

x̃�↵�1

n

'↵n(y)dm(y)

 2↵�1

n M↵n
(x̃)

 2↵�1

n �n = O(n�a�b
). (6.3.17)

Denote A := {X
1

> uk, Xj > uk} with 2  j  g(k), and g(n) = g̃(n)(1�✏)

for some ✏ > 0. We assume that g̃(n) has the representations given in either (H2a)
or (H2b). For distance observables of the form �(x) =  (dist(x, x̃)), we have
 �1

(uk) ⇡ 1/k. Hence there exists a v > 0 such that

A ⇢
n

x : dist(x̃, x)  v

k
dist(x̃, f j

(x))  v

k
for some j  g(k)

o

.

Given the sequence ↵n, let k/(2v) 2 [↵n,↵n+1

). Then (by monotonicity of g(n)),

A ⇢
⇢

x : dist(x̃, x)  1

2↵n
, dist(x̃, f j

(x))  1

2↵n
for some j  g((2v)↵n+1

)

�

.

Applying the triangle inequality dist(x, f j
(x))  dist(x̃, x) + dist(x̃, f j

(x)) gives

A ⇢
⇢

x : dist(x̃, x)  1

↵n
, dist(x, f j

(x))  1

↵n
for some j  g((2v)↵n+1

)

�

.

Since ↵n = bnbc we have that limn!1 ↵n+1

/↵n = 1. By the growth properties
of g and g̃ (as given in Proposition 6.3.4), there exists v > 0 and a sequence cn ! 0

such that for all su�ciently large ↵n:

g((2v)↵n+1

)  g(2(2v)↵n)  cng̃((2(2v)↵n)  cnv g̃(↵n).

Moreover, there exists N such that 8n � N we have cnv < 1, and hence

A ⇢
⇢

x : dist(x̃, x)  1

↵n
, dist(x, f j

(x))  1

↵n
for some j  g̃(↵n)

�

.

Applying inequality (6.3.17) gives

µ(X
1

> uk, Xj > uk) = O(k�1� a
b
) for all k > N,

so that
g(k)
X

j=1

µ(X
1

> uk, Xj > uk) = O(k�1� a
b g(k)) for all k > N.
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To complete the proof of Proposition 6.3.4 we now choose optimal values of a and b
(positive) to minimize �1 � a/b, subject to the constraint ↵b � a > 1. This gives
for all k > N :

g(k)
X

j=1

µ(X
1

> uk, Xj > uk) = O(k�1� a↵
a+1 g(k)) = O(k�1�↵+✏g(k)),

valid for all ✏ > 0. Hence Eq. (6.3.10) is satisfied.

6.3.3
Proof of Theorem 6.3.1

Before considering specific dynamical systems, we show how Theorem 6.3.1 fol-
lows from Propositions 6.3.3 and 6.3.4. The proof requires optimizing the choice of
constants q, p and the gap length t < p which appear in the division algoritheorem
n ⇠ q(n)p(n) of the blocking argument, as well taking into account the decay of
correlations and regularity of µ.

Given � 2 (0, 1) we will suppose first that p ⇠ n1�� and so q ⇠ n� . The
constant r in n = pq + r satisfies r < p and hence r = O(n1��

). Assuming (H1)
and either (H2a) or (H2b), we immediately have from Propositions 6.3.3 and 6.3.4
that:

En  C
1

max{n��1g(n), n��}+C
2

n��
+C

3

n2��{⇥(g(n))}�1�✏+C
4

g(n)

n↵�✏
,(6.3.18)

where �
1

= �/(1 + 2�), and ✏ > 0 arbitrary. In this estimate we take t = g(n) and
used the fact that

µ{X
1

> un} =

⌧(u)

n
+ o

✓

1

n

◆

, (6.3.19)

Thus the constants C
1

and C
2

depend on the functional form of ⌧(u). In turn this
behaves on the local behaviour of the invariant density at x̃ and on the functional form
of the observable �. The constant C

3

depends on � (and hence the regularity of µ).
The constant C

4

is from Proposition 6.3.4 and depends on the recurrence properties
associated to x̃.

Let us now prove part 1 Theorem 6.3.1. In this case ⇥(n)  O(✓n
0

), and under
assumption (H2), we can take t = (log n) for some  > 1. For this choice it
follows that⇥(t) ! 0 at a super-polynomial rate. By assumption the measure µ has
density in L1+� for some � > 0, and hence for any choice of p, q = o(n) we have

C
3

n2��{⇥(t)} �
1+2��✏

= o(1/n).

Inspecting the first two terms on the right hand side of Eq. (6.3.9), gives an optimal
choice p ⇡ q ⇡ p

n. For this choice of p and q, and noting that n = pq + r,
we conclude the proof of part 1 of Theorem 6.3.1 via the following sequence of
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estimates:

(1� pµ{X
1

> un})q =

✓

1� (n� r)p
n

µ{X
1

> un}
◆

p
n

,

=

�

1�
p
nµ{X

1

> un}
�

p
n
+O

✓

1p
n

◆

,

where in the last line we have used Proposition 6.8.1 in conjunction with the fact that
rµ{X

1

> un}  O(1/
p
n). The convergence is pointwise in u.

To prove part 2 of Theorem 6.3.1, we see from (H2a) and Proposition 6.3.4 that in
the estimation of En we can take t = n for any  < �. We inspect each term of
the error En in Eq. (6.3.9). Again we take � = 1/2. The contribution of the first
error term on the right hand side of (6.3.9) gives a contribution of order n�1/2+.
The next significant error term is now the third right hand term of (6.3.9). Putting in
t = n gives an error contribution:

C
3

n2��{⇥(n)}�1 = C
3

n3/2n�⇣�
1 , with �

1

=

�

1 + 2�
� ✏,

for any ✏ > 0. In fact we require this error to be order n�1/2, and hence this gives a
bound on . We obtain for any ✏

1

> 0:

 � 2(1 + 2�)

�⇣
+ ✏

1

, (6.3.20)

and thus we just take the minimal value of . This gives the required conclusion to
part 2 of Theorem 6.3.1.

This gives the required conclusion to part 2 of Theorem 6.3.1.

6.4
Non-uniformly Expanding Dynamical Systems

We consider examples of non-uniformly expanding dynamical systems that fit as-
sumptions (H1) and (H2), and hence whose extreme statistics can be understood via
Theorem 6.3.1. These systems will admit an invariant measure that is absolutely con-
tinuous with respect to the ambient Riemannian measure m. We will consider the
following examples: uniformly expanding maps, quadratic maps [210], expanding
Lorenz maps [211], and intermittency maps with subexponential mixing rates [156].
Extreme value laws have been proved for these systems on a case by case basis.

6.4.1
Uniformly Expanding Maps

We derive explicit convergence rates for the tent map f(x) = 1 � |1 � 2x| on
[0, 1]. Let E(j)

n := {x : dist(x, f j
(x)) < 1/n}, and suppose I is a monotonicity

sub-interval of f j and let J = I \ E(j)
n . Since f j

(I) = [0, 1] and f j has slope
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2

j , it follows easily that |J | = O(2

�j/n). Hence, summing over all such J , we
have µ(E(j)

n ) = O(1/n) and hence µ(En) = O(g̃(n)/n). To optimize En, we
can take a functional form g̃(n) = (log n)�

0
for any �0 > 1. By exponential decay

of correlations, ⇥(g(n)) tends to zero at a superpolynomial rate. Here g(n) =

(log n) for some 1 <  < �0. Thus conditions (H1) and (H2b) are valid, in
particular the latter for ↵ > 1/2. We summarize as follows:
Proposition 6.4.1. Suppose (f, [0, 1],Leb) is the tent map. For the observation
�(x) = � log |x� x̃|, we have for Leb-a.e x̃ 2 [0, 1] and all ✏ > 0:

lim

n!1µ{Mn  u+ log n} = e�2e�u

(6.4.1)

where C(x̃) > 0 is a uniform constant depending on x̃.

Remark 6.4.2. The main technical step required to achieve Eq. (6.4.1) is in the es-
timation of µ(En). For a wide class of uniformly expanding Markov maps, such as
those considered in [139, Section 3.3] we expect the same error estimate to apply.

6.4.2
Non-uniformly Expanding Quadratic Maps

Consider the quadratic family f(x) = a�x2 for x 2 [�2, 2] and parameter a ' 2.
For a positive measure set of parameter values, it is known that f admits an absolutely
continuous invariant measure µ with density ⇢ 2 L1+� for some � > 0. Moreover
the system admits exponential decay of correlations, see [157]. Here En had explicit
representation:

En = {x 2 [0, 1] : dist(f jx, x) <
1

n
, some j  (log n)5}. (6.4.2)

It was shown in [72] that µ(En)  n�↵ for some ↵ > 0. Hence conditions (H1)
and (H2b) are satisfied for this family, and we can take g(n) = (log n)1+ for some
 > 0.
Proposition 6.4.3. Suppose (f, [�2, 2], µ) is the quadratic family with a a Benedicks-
Carlesion parameter. For the observation �(x) = � log |x� x̃|, we have for µ-a.e
x̃ 2 [0, 1] and all ✏ > 0:

lim

n!1µ{Mn  u+ log n} = e�2⇢(x̃)e�u

, (6.4.3)

where C(x̃) > 0 is a uniform constant independent of n, but dependent on x̃.

We remark that for observables maximized at specific points x̃ 2 X , such as
values of the critical orbit, EVLs where established in [134]. The proof used specific
combinatorics of the critical orbit to verify D(un) and D0

(un).

6.4.3
One-dimensional Lorenz Maps

In this section we consider extreme statistics for a family of uniformly expanding
maps with singularities. In [138] the family of Lorenz maps where considered, but
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the methods easily extend to other expanding maps with discontinuities or singu-
larities. The Lorenz family of maps f : [�1, 1] \ {0} ! [�1, 1], are defined as
follows:

(L1) There exists C > 0 and � > 1 such that for all x 2 I and n > 0, |(fn
)

0
(x)| >

C�n.
(L2) There exists � 2 (0, 1) such that f 0x = |x|��1g(x) where g 2 C�✏

(X), g > 0.
(L3) f is locally eventually onto. i.e. For all intervals J ⇢ X , there exists k = k(J) >

0 such that fk
(J) = X .

These maps can be modelled by a Young tower with exponential tails. Hence there
exists an absolutely continuous invariant measure µ and (f,X, µ) has exponential
decay of correlations in the space of Hölder continuous functions. It is known that
the the density ofµ is of bounded variation. We will return again to the Lorenz family
in Section 6.11.1, but in the context of non-uniformly expanding systems we have the
following result:

Proposition 6.4.4. Suppose (f, [0, 1], µ) is a Lorenz map satisying (L1), (L2) and
(L3). Consider the observable �(x) = � log |x� x̃|. Then for all ✏ > 0 and µ-a.e.
x̃ 2 X we have that

lim

n!1µ{Mn  un} = e�2⇢(x̃)e�u

, (6.4.4)

where C(x̃) > 0 is a constant independent of n.

6.4.4
Non-uniformly Expanding Intermittency Maps.

Consider the following interval map defined for b > 0:

f(x) =

(

x(1 + (2x)b) for 0  x < 1

2

,

2x� 1 for 1

2

 x  1.
(6.4.5)

This map is non-uniformly expanding, and it has a neutral fixed point at x = 0. It
was introduced in [186] as a simple model of intermittency and is sometimes called
the Liverani-Saussol-Vaienti map. For b 2 (0, 1), the map admits an absolutely
continuous invariant measure, where the density lies in L1+� for any � < 1/b� 1.

The system has polynomial decay of correlations: ⇥(n) = O
⇣

n1�1/b
⌘

, see [156].
We have the following result:

Proposition 6.4.5. Suppose (f, [0, 1], µ) is the intermittent system (6.4.5) with b <
1/20 and consider the observable �(x) = � log |x � x̃|. Then for all ✏ > 0 and
µ-a.e. x̃ 2 X we have that

lim

n!1µ{Mn  un} = e�2⇢(x̃)e�u

, (6.4.6)

where C(x̃) > 0 is a constant independent of n.
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Proof. The following lemma, a version proved in [139] will be of use to us: Define
En(✏) := {x : dist(x, fn

(x)) < ✏}.
Lemma 6.4.6. Suppose f is the interval map given by Eq. (6.4.5). There exists a
uniform constantC > 0, such that 8n � 0, and 8✏ > 0we havem(En(✏))  C

p
✏.

Proof. The following proof is specific to the intermittent family. In [139], an ex-
tended result is proved for general non-uniformly expanding maps with convex
slope. We prove Lemma 6.4.6 as follows. Let P = {[0, 1/2], [1/2, 1]}, and
Pn =

Wn�1

k=0

f�kP . Here
W

denotes the join of partitions. Elements of P consist of
intervals of the form Jk = [ak, ak+1

]where fn
: Jk ! [0, 1]. In particular fn | Jk

is a function with increasing derivative, with slope (fn
)

0 � 1. We take fn
(ak) =

0, fn
(ak+1

) = 1, where it is understood on Jk, that limx!ak+1

fn
(x) = 1, while

on Jk+1

we have limx!ak+1

fn
(x) = 0.

Suppose that there are points x±
k 2 (ak, ak+1

) such that fn
(x±

k ) = x±
k ± ✏. If

these points exist then they are unique, and in particular En(✏) \ Jk = [x�
k , x

+

k ].
Let x � x�

k in Jk. Since (fn
)

0 is increasing on Jk,

(fn
)

0
(x) � (fn

)

0
(x�

k ) �
R

[ak,x
�
k ]

(fn
)(t)0 dt

x�
k � ak

=

x�
k � ✏

x�
k � ak

,

and therefore

(fn
)

0
(x)� 1 � ak � ✏

x�
k � ak

� ak � ✏

m(Jk)
.

By integrating each term, we obtain:

2✏ =
Z

[x�
k ,x+

k ]

h

(fk
)

0
(t)� 1

i

dt � (x+

k � x�
k )

(ak � ✏)

m(Jk)
,

and thus

m(En(✏) \ Jk) 
2✏

(ak � ✏)
m(Jk). (6.4.7)

This estimate is useful provided (ak�✏) is not small. Given ⌘ > 0, let k0 = sup{k :

ak < ⌘}, and let W (⌘) = [k+1k0Jk. Then

m(En(✏)) = m(En(✏) \W (⌘)) +m(En(✏) \ Jk0
) +m(En(✏) \ (W (⌘) [ Jk0

)

c
)

 m(W (⌘)) +m(En(✏) \ Jk0
) +

2✏

⌘ � ✏
m((W (⌘) [ Jk0

)

c
).

We estimate these sets in two di�erent ways depending on whethern is large or small.
Following [139], the optimal choice turns out to be ⌘ =

p
✏ and so we work with this

value. This would give the desired result modulo the middle term (especially when
n is small). If diam(Pn) <

p
✏. Then for all Jk ⇢ W (

p
✏) we have |Jk| <

p
✏,

and moreover |Jk0 | < p
✏. Hence,

m(En(✏))  C
p
✏.
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Note that the analysis above assumes that we can always solve for such a x±. If we
cannot, then the estimates are actually improved in the sense that either En(✏)\Jk =

; or Jk partially crosses En(✏) and the required measure would be smaller than that
computed in Eq. (6.4.7).

Suppose now that n is small with diam(Pn) >
p
✏. By the explicit form of the

intermittency map, the largest element of Pn is in fact J
0

= [a
0

, a
1

], with a
0

= 0.
Hence a

1

>
p
✏. In this case x�

= 0, and on J
0

we have fn
(x) � x � 2

bxb+1.
Therefore En \ J

0

⇢ {x : 2

bxb+1 < ✏}, and so x+  O(✏1/(1+b)
) = o(

p
✏).

Therefore for n small, we have

m(En(✏)) = m(En(✏) \ J
0

) +m(En(✏) \ Jc
0

)

 C
p
✏+

2✏p
✏� ✏

m(Jc
0

)  C
p
✏.

Hence the conclusion of the Lemma follows.

It follows that m(En)  Cg̃(n)n�1/2, and hence by Hölder’s inequality

µ(En)  C(g̃(n)n�1/2
)

1�b.

Therefore if we take g̃(n) = n� for any � 2 (0, 1/2), µ(En) tends to zero,
and so (H2a) applies. In order to control the error term En in Proposition 6.3.3
we require that ⇥(g(n)) ! 0 su�ciently fast, for some g(n) = n = o(g̃(n)).
The latter choice being made also so that Proposition 6.3.4 applies with any ↵ 
(1/2��)(1�b). We can follow again the proof of part 2 of Theorem 6.3.1, and work
out the minimal choice of . Recalling that � < 1/b� 1, and⇥(n) = O

⇣

n1�1/b
⌘

we obtain using Eq. (6.3.20) the following bound on  (valid for all ✏
1

> 0):

� >  � 2b(2� b)

(1� b)2
+ ✏

1

.

Notice for b close to one, this bound is of little utility since we require  < 1/2.
However for b < 1/20, we can take  � 5b + ✏

1

. From Proposition 6.3.4 we also
have the additional error term:

g(n)
X

j=2

µ(X
1

> un, Xj > un) 
C(x̃)

n↵̃
, with ↵̃ = 1 + ↵� � + ✏ (6.4.8)

with ✏ > 0 arbitrary and ↵ = (1/2 � �)(1 � b). By choice of  and hence �, this
latter term gives a contribution of order n�1/2+˜b with ˜b = 10b+ ✏.

6.5
Non-uniformly Hyperbolic Systems

In this section we discuss extreme laws and corresponding convergence rates for cer-
tain hyperbolic and non-uniformly hyperbolic dynamical systems. Examples include
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the Anosov Cat map, the Lozi map, hyperbolic billiard systems, and systems with
rank one attractors such as the Hénon family. Extreme statistics for these systems
have been investigated in [163, 138, 81, 208]. For these systems, rate estimates are
possible in the spirit of Theorem 6.3.1 though there are complications in choosing
the correct scaling un := u/an + bn as the invariant measure may fluctuate wildly.
To establish rates of convergence (or even just convergence) to a limitG(u) along the
sequence µ{Mn  un} for a linear scaling u/an+bn information on the regularity
of µ is required. In general such estimates on the regularity of µ are not established
for non-uniformly hyperbolic systems. Ideally we would like to know the scaling un

for broad classes of physical systems without fine knowledge of the invariant mea-
sure, which will typically have a fractal structure.

We suppose (f,X , µ) is a non-uniformly hyperbolic dynamical system, and that
the invariant measureµ is a physical or SRB measure supported on the f -invariant set
X ⇢ Rn. In most of our examples n = 2. In the late 1990’s L.S-Young [157, 156]
developed a method of inducing, subsequently called a Young tower construction, to
determine the rate of decay of correlations for non-uniformly hyperbolic dynamical
systems. This method revolutionized the field of dynamics and in particular solved
a longstanding problem by proving that Sinai dispersing billiards have exponential
decay of correlations for Hölder observables.

We will assume that (f,X , µ) is modelled by a Young tower. In dimension one
this is not an assumption as it has been shown that a system with a positive Lyapunov
exponent and an absolutely continuous invariant measure has a Young tower [153].

Most of the dynamical systems we consider have exponential decay of correlations
for Hölder observables, but in the statement of our results we will allow also for sub-
exponential decay of correlations. We will assume that condition (H1s) as defined in
Section 6.3 holds. For non-uniformly hyperbolic systems, we introduce the follow-
ing short return time (SRT) conditions in place of conditions (H2a) and (H2b). Let
B(x, r) be the ball of radius r centered at x 2 X .

(SRT1) Suppose {B(x̃, un)}is a sequence of balls centered at x̃ 2 X with lim supnµ(B(x̃, un)) <
1. Then there exists ↵ > 0, and � > 0 such that for µ-a.e. x̃ 2 X :

µ
⇣

B(x̃, un) \ f�kB(x̃, un)

⌘

 µ ((B(x̃, un))
1+↵ (6.5.1)

for all k = 1, . . . g̃(n), with g̃(n) = n� .
(SRT2) As in (SRT1) but g̃(n) = (log n)�

0
for some �0 > 1.

The (SRT) conditions are easier to verify that (H2a) and (H2b) for systems where the
SRB measure µ is not absolutely continuous with respect to Lebesgue measure. For
example the Hénon family of maps possess an SRB measure that is not absolutely
continuous with respect to two-dimensional Lebesgue measure. For systems with
absolutely continuous invariant measures conditions (H2a) and (H2b) actually imply
the (SRT) conditions for generic points x̃ 2 X . This follows from the proof of
Proposition 6.3.4. We make further comment on how (H2a) and (H2b) relate to the
(SRT) conditions in Section 6.5.1.

In our analysis of extremes for non-uniformly hyperbolic systems, we require some
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control on the regularity of µ. Recall that the pointwise local dimension of µ is given
by:

d(x) := lim

r!0

logµ(B(x, r))

log r
, (6.5.2)

whenever this limit exists. For the examples we consider the local dimension of µ
exists and is constant µ-a.e. In addition we need to control the regularity of µ on
certain shrinking annuli. We assume (H3):

(H3) (Regularity of µ on shrinking annuli). For all � > 1 and µ-a.e.x 2 X , there
exists � > 0 such that

|µ(B(x, r + r�))� µ(B(x, r))|  Cr��. (6.5.3)

The constant C and � depend on x but are independent of �.

Condition (H3) (and versions thereof) have been stated and verified in [163, 138, 208]
for the systems we consider here.

Theorem 6.5.1. Suppose that f : X ! X is a non-uniformly hyperbolic system
with ergodic SRB measure µ, and the the local dimension d exists µ-a.e. Assume
that condition (H3) holds.

1) If we have exponential decay of correlations, i.e. ⇥(n) = O(✓n
0

) with ✓
0

< 1

and conditions (H1s) and (SRT2) hold, then for all ✏ > 0 and µ-a.e. x̃ 2 X ,
�

�

�

µ{Mn  un}�Gp
n(u)

�

�

�

 C
1

(log n)1+✏p
n

+ C
2

(log n)1+✏

n↵
(6.5.4)

where C
1

, C
2

> 0 are constants independent of n, but dependent on x̃.
2) If we have polynomial decay of correlations i.e. ⇥(n) = O(n�⇣

) for some ⇣ > 1

and conditions (H1) and (SRT1) hold, then for all ✏ > 0 and µ-a.e. x̃ 2 X
�

�

�

µ{Mn  un}�Gp
n(u)

�

�

�

 C
1

n� 1

2

+
+C

2

n�↵+, with  = ✏+
C�
⇣

.(6.5.5)

where C
1

is independent of n. The constant C� > 0 is independent of ⇣ , but
depends on � in (H3).

The proof of this theorem follows in large part from the proof of Propositions 6.3.3
and 6.3.4, where in the latter we use the (SRT) conditions in place of conditions (H2a)
and (H2b). Within [163, 138, 208], a direct blocking argument approach is used to
verify D0

(un), D(un) for hyperbolic systems. We point out in Section 6.5.1, how
the proofs of these propositions are modified in the hyperbolic setting. Lozi maps,
hyperbolic billiardss and the Hénon family satisfy conditions (H1s), (SRT) and (H3)
with exponential decay of ⇥(n) (see [163, 138, 208]). The constant ↵ will depend
on the mixing rates, the regularity of the invariant measure, and on geometrical prop-
erties of the map. In the present situation we do not attempt to optimize an estimate
for ↵, though with work it could be done for the systems we have mentioned. To
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show how to do so we shall estimate ↵ for the Arnold cat map (discussed below),
which is perhaps the simplest invertible uniformly hyperbolic system. This map has
both a stable and unstable foliation. For higher dimensional hyperbolic systems with
polynomial decay of correlations, less is known about convergence to EVL (i.e. ex-
amples that satisfy (H1s), (SRT) and (H3)), but some progress in this direction is
made in [212].

For non-uniformly hyperbolic systems the estimates (6.5.4) and (6.5.5) are the best
convergence rates that our techniques allow, at least for regular observables � : X !
R. The main di�culty is in the control of the fluctuations of µ{�(x) > un} as
n ! 1. From the definition of local dimension the function r 7! µ{B(x, r)}
need not be regularly varying as r ! 0, and hence even for smooth observables such
as �(x) = � log(dist(x, x̃)), the sequence ⌧n(u) = nµ{�(x) > u + log n} may
fluctuate wildly asn ! 1. Thus, in the statement of the (SRT) conditions we choose
un so that lim sup ⌧n(u) < 1. However, along other (non-linear) scalings un(u)
of u control on the the rate of convergence of ⌧n(u) to ⌧(u) might be achievable,
though determining these scalings is impracticable. Alternatively, for observables
� : X ! R tailored to the measure µ, so that µ{�(x) > un} is regularly varying
in u, convergence rates can again be achieved. Such observables are considered in
[136].

6.5.1
Proof of Theorem 6.5.1

The blocking argument described in Section 6.3.2 is purely probabilistic. For dynam-
ical systems, we require an extra hypothesis (H3) on the regularity of the measure µ.
For non-uniformly expanding systems, we used the fact that the density ofµ belonged
to L1+� for some � > 0, which implies condition (H3).

We point out the main modifications required over and above the details presented
in the proofs of Propositions 6.3.3 and 6.3.4 in order to prove Theorem 6.5.1. For
non-uniformly hyperbolic systems, we assume (SRT1) and (SRT2) instead of (H2a)
and (H2b).

The scheme of proof of Proposition 6.3.4, under the assumptions (H2a) and (H2b)
encounters a problem when using the maximal function approach, as the Borel-
Cantelli argument used to establish Eq. (6.3.17) is no longer valid. It required µ
to be absolutely continuous with respect to m and this is no longer the case. If we
assume intend the (SRT) conditions, then Eq. (6.3.10) in Proposition 6.3.4 becomes:

g(n)
X

j=2

µ(X
1

> un, Xj > un) =

g(n)�1

X

j=1

µ
�

B(x̃, �1

(un)) \ f�jB(x̃, �1

(un)
�

,


g(n)
X

j=1

µ
�

(B(x̃, �1

(un))
�

1+↵
,

 g(n)n�1�↵,

where we recall that �(x) =  (dist(x, x̃)), and un is chosen in such a way that
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lim supnµ{B(x̃, �1

(un))} < 1. This gives us the corresponding error term
contributions as stated in Theorem 6.5.1.

Under the assumption of (H1s) and (H3), the modification of proof of Proposition
6.3.3 in the hyperbolic case again follows the proofs of [138, 208]. In particular
condition (H3) comes into the Lipschitz approximation of 1{X

1

>un}, to estimate
k�(x)� �B(x)k1. The result is that Eq. (6.3.15) is modified to

µ(X
1

> uk, Xj > uk)  O(1)(⇥(j))�
0
+ (µ{X

1

> un})2, (6.5.6)

for some constant �0 > 0. A lower bound on the constant �0 can be achieved by
using the proofs within [138, Lemmas 3.1, 3.2]. In particular the bound depends on
� (from (H3)), and also on the rates of contraction along stable manifolds. Theorem
6.5.1 now follows.
Remark 6.5.2. To check the (SRT) conditions in specific examples, arguments based
upon Hardy Littlewood maximal functions are still applicable, see [138, 208]. How-
ever, the approach used to prove versions of Propostion 6.3.4 must be modified. In-
stead the problem is reduced to studying the quantity:

M(x) := sup

r>0

1

m�(B(x, r))

Z

B(x,r)
'(y)dm�(y),

where m� is the Riemannian measure on the local unstable manifold � centered at x,
and 'n(x) := 1En

(x)⇢�(x) where ⇢� is the conditional density of µ on � (which
is absolutely continuous with respect to m� .) Conditions analogous to conditions
(H2a) and (H2b) are then verified on local unstable manifolds. On an example driven
basis arguments based on the regularity of unstable foliations, and on the geometrical
properties of the system can sometimes be used to establish the (SRT) conditions.

6.6
Hyperbolic Dynamical Systems

Hyperbolic toral automorphisms are canonical models of invertible uniformly hy-
perbolic dynamics. We will consider in detail one of the best studied, the Arnold cat
map, mainly from the point of view of establishing the rate of convergence to EVLs
for observables maximized at generic points.

6.6.1
Arnold Cat Map

The Arnold cat map (f,T2, µ) is given by

f(x, y) = (2x+ y, x+ y) mod T2. (6.6.1)

where T2

= R2/Z2 is the two-torus and µ is two-dimensional Lebesgue measure or
Haar measure. We are able to establish the following convergence rates:
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Proposition 6.6.1. Suppose (f,T2, µ) is the Arnold cat map defined by Eq. 6.6.1.
If �(x) = � log(dist(x, x̃)), then for µ-a.e x̃ 2 [0, 1] and all ✏ > 0:
�

�

�

µ{Mn  un}� (1�
p
nµ{X

1

> un})
p
n
�

�

�

 C

n
1

2

�✏ , (6.6.2)

Here C is a constant depending on ✏ and x̃. Hence

lim

n!1µ{Mn  (u+ log n)/2} = e�⇡e
�u

, (6.6.3)

where C is independent of n, but dependent on x̃.

Proof. This map is uniformly hyperbolic, admits a finite Markov partition, and
has expansion estimates on unstable manifolds. Thus condition (H1s) holds, with
⇥(j)  O(✓j

0

) for some ✓
0

< 1. Since the invariant SRB measure is Lebesgue
measure it is more natural to check condition (H2b) (rather than (SRT2)) and apply
the proof of Proposition 6.3.4 to establish the error bound.

Consider the set En as defined in Eq. (6.3.1), with g̃(n) = (log n)�
0

for some
�0 > 1. Using the Markov structure of the Arnold cat map we can repeat the method
of Section 6.4.1 to estimate µ(En). Since the conditional invariant measures on
unstable manifolds are uniformly equivalent to Lebesgue measure we obtain the es-
timate

µ(En) 
(log n)�

0

n
.

We then follow the proof of Proposition 6.3.4 step by step. The only technical mod-
ification being that we apply a Hardy Littlewood maximal operator on functions
' : R2 ! R, with ' 2 L1

(m), (and m is two dimensional Lebesgue measure). See
also [139] for analogous higher dimensional arguments. We then obtain the bound

g(k)
X

j=1

µ(X
1

> uk, Xj > uk) = O(k�3/2+✏g(k)),

valid for all ✏ > 0. We now take g(k) = (log k)1+✏
0

for some ✏0 < �0, and
following the proof of Proposition 6.3.3 this latter bound is the main contribution to
the error term. Due to exponential decay of correlations the remaining error terms are
of higher order. Condition (H3) clearly holds since µ is Lebesgue measure. Hence
for any ✏ > 0:
�

�

�

µ{Mn  un}� (1�
p
nµ{X

1

> un})
p
n
�

�

�

 C

n
1

2

�✏ , (6.6.4)

and the result follows.

6.6.2
Lozi-like Maps

The Lozi map f is a homeomorphism of R2 given by

fa,b(x, y) = (1 + y � a|x|, bx) (6.6.5)
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where a and b are parameters. A graphic representation of the attractor of this sys-
tem is given in Fig. 6.1 for a = 1.7 and b = 0.2. It has been studied as a model of
chaotic dynamics intermediate in complexity (or di�culty) between Axiom A dif-
feomorphisms and Hénon di�eomorphisms [213, 214, 215]. The derivative is dis-
continuous on the y-axis and this leads to arbitrarily short local unstable manifolds.
Misuiurewicz [213] proved that there exists a positive measure set G of parameters
such that if (a, b) 2 G the map f is hyperbolic. If (a, b) 2 G, then fa,b has in-
variant stable and unstable directions (where the derivative is defined) and the angle
between them is bounded below by ⇡/5. We will restrict our attention to maps with
parameters in the set G.

−2 −1 0 1 2
−1

−0.5

0

0.5

1

x

y

Figure 6.1 Numerical approximation to the attractor of the Lozi map given in Eq. 6.6.5 for
a = 1.7 and b = 0.5.

The tangent derivatives, where defined, satisfy uniform expansion estimates [214]
in that there exists � > 1 such that |Dfnv| � �nv for all v 2 Eu, the unstable
direction and correspondingly for Es, the stable direction. fa,b has an invariant
ergodic probability measure µ [214] which is absolutely continuous with respect to
the one-dimensional Lebesgue measure along local unstable curves. One reason for
restricting to maps fa,b, (a, b) 2 G is that for such maps Collet and Levy have
shown that for µ almost every point on the attractor the Hausdor� dimension of µ
exists and is constant [214]. Hence these maps fall within the class of systems we
have axiomatized. The existence of a pointwise local dimension d which is µ a.e.
constant implies that for almost every x in the attractor, the dimension constant d
in the definition of un is the same. We will use a sequence of scaling constants
un(x0

, v) defined for a generic pointx
0

by the requirement thatnµ(B(x
0

, e�un
) !
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e�v .
The Lozi map fa,b with (a, b) 2 G, b su�ciently small admits such a Tower with

exponential tails [156]. Hence the Lozi maps we consider satisfy exponential decay
of correlations for Hölder continuous observations.

Proposition 6.6.2. Let fa,b : M ! M be a Lozi map with (a, b) 2 G with b
su�ciently small. Then for µ a.e. x

0

the stochastic process defined by Xn(x) =

� log(d(x
0

, fnx)) satisfies a Type I extreme value law in the sense that limn!1 µ(Mn 
un(v)) = e�e�v

Remark 6.6.3. We don’t have useful convergence rates in this setting.
We do not know the precise scaling constantsun, but for all ✏ > 0, limn!1 µ(Mn 

(1 � ✏)(log n + v)/d))  e�e�v  limn!1 µ(Mn  (1 + ✏)(log n + v)/d))
which provides an estimate of the correct sequence un.

6.6.3
Sinai Dispersing Billiards

Let � = {�i, i = 1 : k} be a family of pairwise disjoint, simply connected C3

curves with strictly positive curvature on the two-dimensional torus T2. We consid-
er the billiard map f : T2 \ � ! T2 \ �. We assume the finite horizon condi-
tion, namely, that the number of successive tangential collisions of the freely mov-
ing particle with the convex scatterers is bounded above. More precisely we take
M := � ⇥ [�⇡/2,⇡/2] and we will let f be the Poincaré map that gives the po-
sition and instantaneous velocity after collision, according to the rule angle of inci-
dence equals angle of reflection. The billiard map preserves a measure µ equivalent
to 2-dimensional Lebesgue measure m with density ⇢(x

0

) =

dµ
dm (x

0

). We refer
to the book by Chernov and Markarian [216] for a comprehensive exposition of the
ergodic properties of hyperbolic billiards.

Proposition 6.6.4. Let f : M ! M be a Sinai dispersing billiard map. Then
for µ a.e. x

0

the stochastic process defined by Xn(x) = � log(d(x
0

, fnx)) satis-
fies a Type I extreme value law in the sense that limn!1 µ(Mn  (v + log n +

log(⇢(x
0

)))/2) = e�e�v

.

6.6.4
Hénon maps

Hénon maps f are di�eomorphisms of R2 given by

fa,b(x, y) = (1 + y � ax2, bx), (6.6.6)

for parameters a, b 2 R. A representation of the attractor of this map is given in
Fig. 6.2 for a = 1.4 and b = 0.3. Unlike the Lozi maps, these maps are non-
uniformly hyperbolic. It has been shown [196] that there is a positive measure set
of parameters (a ' 2 and |b| ⌧ 1) for which the invariant set is a strange attractor
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(containing a dense orbit with positive Lyapunov exponent). For the same param-
eters, the Hénon map admits an SRB measure µ, and can be modeled by a Young
tower with exponential decay of correlations, see [217, 156]. Thus condition (H1)
holds. The verification of conditions (H2b) and (H3) rely on technical calculations
using the Besicovitch Covering Lemma, see [163]. The main technical obstacles in
the Hénon map being the non-invariance of the stable and unstable foliations.

−2 −1 0 1 2−0.4

−0.2

0

0.2

0.4

x

y

Figure 6.2 Numerical approximation to the attractor of the Hénon map given in Eq. 6.6.6
for a = 1.4 and b = 0.3.

Proposition 6.6.5. Let fa,b : M ! M be a Hénon map with (a, b) 2 ⌦. Then for
µ a.e. x

0

the stochastic process defined by Xn(x) = � log(d(x
0

, fnx)) satisfies a
Type I extreme value law in the sense that limn!1 µ(Mn  un(v)) = e�e�v

Remark 6.6.6. We do not know the precise scaling constants un, but for all ✏ > 0,
limn!1 µ(Mn  (1 � ✏)(log n + v)/d))  e�e�v  limn!1 µ(Mn  (1 +

✏)(log n+ v)/d)) which provides an estimate of the correct sequence un.

6.7
Skew-product Extensions of Dynamical Systems.

In this section we review the results of [137] concerning extreme value laws for skew
product extensions, in particular compact group extensions of hyperbolic systems.
Suppose that Y is a compact, connected, M -dimensional manifold with metric dY
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and X is a compact N -dimensional manifold with metric dX . We let D = M +N
and define a metric on X ⇥ Y by

d((x
1

, ✓
1

), (x
2

, ✓
2

)) =

q

dX(x
1

, x
2

)

2

+ dY (✓1, ✓2)2.

We denote the Lebesgue measure on X by mX , the Lebesgue measure on Y by mY

and the product measure on X ⇥ Y Y by m = mX ⇥mY .
If f : X ! X is a measurable transformation and u : X⇥Y ! Y a measurable

function, then we may define g, the Y -skew extension of f by u, via: g : X ⇥ Y !
X ⇥ Y :

g(x, ✓) = (f(x), u(x, ✓)).

We assume further that T : X ! X has an ergodic invariant measure µX , and f
preserves an invariant probability measure µ with density in hµ 2 Lp

(m). Given
(x̃, ˜✓), we consider the observable function �(x, ✓) with representation

�(x, ✓) =  dist((x, ✓), (x̃, ˜✓)),

where  : R+ ! R takes it maximum value at 0.

Theorem 6.7.1. Assume that hµ 2 L1+� for some � > 0, and

1) There exist constants C
1

> 0, � > 0 and an increasing function l(n) ⇡ n�D

(with 0 < � < 1) such that if:

EX
n :=

⇢

x 2 X : dX(f jx, x) <
1

n
, some g  l(n)

�

,

then µX(EX
n ) < Cn�� .

2) Condition (H1) holds for (g, µ), and there exists ⇣ > 0 such that ⇥(n)  n�⇣ .

Suppose �(x) = � log dist((x, ✓), (x̃, ˜✓)), then for µ-a.e (x̃, ˜✓) and for every u 2
R:

lim

n!1µ(Mn < u+ log n) = exp{�hµ(x̃, ˜✓)e
�Du} (6.7.1)

The method of proof is simple [137] and relies on the observation that if points
don’t have short returns in the base system they also don’t have short returns in the
skew-product system. In [137] applications to the extreme value theory of compact
group extensions of hyperbolic systems and other partially hyperbolic dynamical sys-
tems are considered.

6.8
On the Rate of Convergence to an Extreme Value Distribution

In this section we focus on the speed of convergence of µ{Mn  un} to G(u). In
the case of i.i.d random variables ˆXi, with probability distribution functionF (u) :=
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P (

ˆXi  u) the rate of convergence depends on the normalization sequences an, bn,
and the functional form of F (u) := P (

ˆXi  u) as u ! uF := max

ˆXi, see
[1]. For illustration in the i.i.d case, uniform estimates on rates of convergence can
be obtained for the exponential distribution and the Gaussian distribution. For the
exponential distribution F (u) = 1� e�u, it is shown in [218] that:

sup

u

�

�

�

�

P

⇢

Mn  u+

log n

�

�

� e�e�u

�

�

�

�

= sup

u

�

�

�

�

�

✓

1� e�u

n

◆n

� e�e�u

�

�

�

�

�

 1

n

✓

1 +

2

n

◆

e�2. (6.8.1)

However, in general the convergence rate can be quite slow, and this is evident for
the Gaussian distribution [219], where it is established that:

C
1

log n
 sup

u

�

�

�

{�(u/an + bn)}n � e�e�u
�

�

�

 C
2

log n
. (6.8.2)

Here�(u) is the standard Gaussian distribution function, C
1

, C
2

are uniform con-
stants, and an, bn satisfy:

an = bn, 2⇡b
2

ne
b2n

= n2.

In this case, the choice of constants is optimal for the error rate.
In the setting of dynamical systems, we consider the corresponding quantity µ{x :

�(x) < u} (which corresponds to F (u)), and study the behaviour of this measure
as u ! max�. We take the scaling sequence un = u/an + bn (as we would in the
i.i.d case), and study the errors involved in approximating the limit distibution G(u)
by µ{Mn  un}. For a given sequence un, we define functions ⌧n(u) and Gn(u)
by

⌧n(u) = nµ{�(x) � un}, Gn(u) =

✓

1� ⌧n(u)

n

◆n

.

The function ⌧n(u) ! ⌧(u) uniformly for all u lying in a compact subset of R.
The problem is to estimate |µ{Mn  un} � G(u)| (as n ! 1, for u lying in

compact subsets of R). However, we cannot immediately express µ{Mn  un} in
terms of Gn(u). However, the blocking arguments used in proving Theorem 6.3.1
give a partial answer towards estimating the error. Indeed as we have shown in The-
orem 6.3.1, µ{Mn  un} can be approximated by Gn� (u) (for some � 2 (0, 1]),
up to an error of order O(n�↵

) for some constant ↵ > 0. Here

Gn� (u) =

✓

1� ⌧n(u)

n�

◆n�

,

and the optimal choice of � turns out to be 1/2 for most applications. Bounds on the
constant ↵ depend on the recurrence statistics and rates of decay of correlations. In
applications, we achieve ↵ close to 1/2. Estimating the error between Gn� (u) and
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G(u) depends on the regularity of the observable � and on the regularity of the mea-
sure µ. We now describe the methods involved. We have the following elementary
results, see [1].

Proposition 6.8.1. For all n � 2:

�n� :=

�

�

�

�

�

✓

1� ⌧n(u)

n�

◆n�

� e�⌧n(u)
�

�

�

�

�

 (⌧n(u))2e�⌧n(u)

2(n� � 1)

 0.3

(n� � 1)

.(6.8.3)

Suppose that ⌧n and ⌧ satisfy |⌧n � ⌧ |  log 2. Then for some ✓ 2 (0, 1):

�

0
n := |e�⌧n(u)�e�⌧(u)|  e�⌧(u){|⌧(u)�⌧n(u)|+✓(⌧(u)�⌧n(u))2}.(6.8.4)

We remark that the bound for�n� is uniform in u. This gives the corollary:

Corollary 6.8.2. Suppose (f,X , µ) is an ergodic dynamical system, then:

|µ{Mn  un}�G(u)|  |µ{Mn  un}�Gp
n(u)|+�p

n +�

0
n. (6.8.5)

Theorem 6.3.1 is used to estimate the first term on the right hand side of Eq. (6.8.5).
The estimation of �n and �0

n require knowledge of the explicit representation of
�(x). We will consider four explicit forms of �(x), and then comment on the general
cases. For these explicit forms, we will give explicit bounds on �n and �0

n under
the additional assumption that the density at x̃ is Lipschitz. For the class of non-
uniformly expanding systems under consideration, this is a reasonable assumption.
Consider the following representations � = �i : X ! R (for i =1,2 and 3) defined
by:

�
1

(x) = � log(dist(x, x̃)), �
2

(x) = dist(x, x̃)�↵, �
3

(x) = C�dist(x, x̃)↵,(6.8.6)

for ↵ > 0 and C 2 R. We also consider a fourth observable:

�
4

(x) =  
4

(dist(x, x̃)) :  �1

4

(y) = �(y log y)�1. (6.8.7)

In the cases of Eq. (6.8.6) the scaling sequences un = u/an + bn can be made
explicit with nµ{� > un} ⇠ ⌧(u), and we have:

µ{�
1

(x) > u+ log n} ⇠ 2⇢(x̃)e�u/n,

µ{�
2

(x) > un↵} ⇠ 2⇢(x̃)u�1/↵/n,

µ{�
3

(x) � C � u/n↵} ⇠ 2⇢(x̃)u1/↵/n.

Since the density is Lipschitz, the higher order terms in the above set of asymp-
totics are all O(1/n2

), where the implied constant depends on the Lipschitz norm.
Hence by Proposition 6.8.1, �p

n is bounded by O(1/
p
n) and �0

n is bounded by
O(1/n). If instead the invariant density has Hölder exponent � 2 (0, 1), the error
�

0
n is bounded by O(1/n�). For observations that are general (regularly varying)

functions of dist(x, x̃), the scaling sequences an and bn cannot always be made ex-
plicit and this leads to weaker estimates on the error bounds �n and �0

n. Indeed,
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consider the observable �
4

(x), and for simplicity take µ to be Lebesgue measure.
This observable is regularly varying with index �1, and we are therefore in the do-
main of attraction of a Type II distribution. We take bn = 0 and estimate an so
that nµ{�(x) > un} ! ⌧(u) = u�1. In this case �(x) =  

4

(dist(x, x̃)) with
 �1

4

(y) = �(y log y)�1. Using asymptotic inversion the orginal function  (y)
takes the form  (y) ⇠ �y�1

(log y) as y ! 0. Using the particular form of  (y)
we try an = log n/n, and obtain:

|⌧n(u)� ⌧(u)| =
�

�nLeb{dist(x, x̃)   �1

(un log n)}� 2u�1

�

�

= 2u�1

�

�

�

log n (log log n� log u� log n)�1 � 1

�

�

�

= 2u�1

log log n

log n
+O

✓

(log log n)2

(log n)2

◆

,

and hence for fixed u, this error is of order 1/(log n)1�✏ for any ✏ > 0. It is fea-
sible other sequences an give rise to smaller errors, but significant improvement is
not expected. For the Gaussian distribution, only bounds of order 1/(log n) can be
achieved, see [1].

6.8.1
Error Rates for Specific Dynamical Systems

Based on the results of Theorem 6.3.1 and Corollary 6.8.2 we can obtain error rates
for the systems studied in Section 6.4. For simplicity we consider the distance ob-
servable �(x) = � log |x� x̃|, and hence we obtain the convergence rate associated
to a Type I distribution. Further details can be found in in [144], but we give the main
steps below

The Tent Map. Convergence to EVL for the tent map was proved in Section 6.4.1.
We have the following result concerning the rate of convergence to an EVL.

Proposition 6.8.3. Suppose (f, [0, 1],Leb) is the tent map. For the observation
�(x) = � log |x� x̃|, we have for Leb-a.e x̃ 2 [0, 1] and all ✏ > 0:

|µ{Mn  u+ log n}� e�2e�u |  C
(log n)1+✏p

n
, (6.8.8)

where C(x̃) > 0 is a uniform constant depending on x̃.

To analyse �n,�0
n from the function form �(x) = � log |x � x̃|, we have in

this case equality µ{X
1

> u + log n} = 2e�u/n (since µ is Lebesgue measure).
Hence ⌧(u) = 2e�u, and Proposition 6.8.1 implies that:

�

p
n +�

0
n  Cn�1/2,

and so the result follows.



Lucarini, Faranda, Freitas, Freitas, Holland, Kuna, Nicol, Todd, Vaienti: Extremes and Recurrence in Dynamical
Systems — Chap. 6 — 2016/5/16 — 19:35 — page 127

127

Intermittent Maps. We consider the map intermittent map defined by Eq. (6.4.5)
in Section 6.4.4. We have the following result

Proposition 6.8.4. Suppose (f, [0, 1], µ) is the intermittent system (6.4.5) with b <
1/20 and consider the observable �(x) = � log |x � x̃|. Then for all ✏ > 0 and
µ-a.e. x̃ 2 X we have that
�

�

�

µ{Mn  un}� e�2⇢(x̃)e�u
�

�

�

 Cn� 1

2

+

˜b, with ˜b = ✏+ 10b. (6.8.9)

where C(x̃) > 0 is a constant independent of n.

The proof of this proposition has two steps. In the first step, equation (6.3.5) of
Theorem 6.3.1 applies, and its right hand side is estimated using properties of the
regularity of the invariant density, and knowledge of the rate of decay of correlations,
each of which can be expressed in terms of the parameter b. Moreover Lemma 6.4.6
can be used to estimate the measure of the recurrence sets En.

In the second step, we analyse,�p
n and�0

n (recalling a block size q ⇠ p
n). For

x̃ 6= 0, we can apply Lebesgue di�erentiation to deduce that

µ{�(x) > u+ log n} ⇠ 2⇢(x̃)e�u/n.

However we need higher order regularity information on µ to deduce bounds on
�n,�0

n. In [186], the density of ⇢ is in fact locally Lipschitz µ-a.e. The fact that
⇢ 2 L1+� is proved from an analysis of the singularity in ⇢(x) at x = 0. The density
scales as O(x�b

) as x ! 0. Hence for x̃ 6= 0, we have

µ{�(x) > u+ log n} = 2⇢(x̃)e�u/n+O(n�2

),

and this turns out to be of higher order error relative to the estimate in Eq. (6.3.5).

The quadratic map We consider the quadratic map defined by Eq. (6.4.3) in
Section 6.4.2. We have the following result:

Proposition 6.8.5. Suppose (f, [�2, 2], µ) is the quadratic family with a is a Mis-
iurewicz parameter. For the observation �(x) = � log |x � x̃|, we have for µ-a.e
x̃ 2 [0, 1] and all ✏ > 0:

|µ{Mn  u+ log n}� e�2⇢(x̃)e�u |  C
1

(log n)1+✏p
n

+

C
2

n↵�✏
. (6.8.10)

where C
1

, C
2

> 0 are uniform constants independent of n, but dependent on x̃.

This is proved in [144]. To get quantitative error estimates we require the critical
orbit to satisfy a Misiurewicz condition, see [220]. Such a condition is required to
ensure the invariant density is su�ciently regular. If ↵ > 1/2 then the error bound
in Eq. (6.4.3) is improved to O(n�1/2+✏

) (for any ✏ > 0). It is feasible to extract
bounds on the constant ↵ using the proof of [72, Proposition 2.4]. However such
bounds will in turn depend on the (exponential) rate of decay of correlations.
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Hyperbolic systems For general hyperbolic systems, the error term in Theorem
6.5.1 is the best that can be achieved. For systems with SRB measures, the function
⌧n(u) = nµ{�(x) > un} need not converge to a limit as n ! 1. An example of a
(uniformly) hyperbolic system for which error rates can be achieved is in the case of
the Arnold cat map (f,T2, µ) as discussed in Section 6.6.1. We have the following
result:

Proposition 6.8.6. Suppose (f,T2, µ) is the Arnold cat map defined by Eq. (6.6.1).
For the observation �(x) = � log(dist(x, x̃)), we have for µ-a.e x̃ 2 [0, 1] and all
✏ > 0:

|µ{Mn  (u+ log n)/2}� e�⇡e
�u |  C(x̃)

n
1

2

�✏ , (6.8.11)

where C is independent of n, but dependent on x̃.

The proof follows that of Proposition 6.6.1 but we keep track of the decay rate
of Leb(En). The method of estimating �n and �0

n is identical to that for the tent
maps. The result follows.

6.9
Extreme Value Theory for Deterministic Flows

A common model of a continuous time dynamical system (�t,M) (where �t is a
flow on a manifold M ) is a suspension flow. One way this model arises is to take a
Poincaré section X , where X is a codimension-one submanifold tangent to the flow
direction, and study the first return map f : X ! X . More precisely if we define
the first return time h : X ! R by h(x) := inf{t > 0 : �t(x) 2 X} then
f : X ! X is given by f(x) := �h(x)(x).

We then define the suspension space

Xh
= {(x, u) 2 X ⇥ R | 0  u  h(x)}/ ⇠, (x, h(x)) ⇠ (f(x), 0)

The flow�t : M ! M is modeled by the suspension (semi) flow fs : Xh ! Xh,

fs(x, u) =

⇢

(x, u+ s) if u+ s < h(x);
(f(x), 0) if u+ s = h(x).

The projection ⇡(x, t) = �t(x) semi-conjugates the original flow and the semi-
flow, and �t � ⇡(x, u) = ⇡ft(x, u). For more details of this construction see [221]

In general the study of the ergodic and mixing properties of flows is much more
delicate than that of discrete time transformations. One advantage of the suspension
flow model is that it (sometimes) enables ergodic and statistical properties of the
underlying base map to be ‘lifted’ to the suspension flow. A systematic study in this
direction is given in [222].

The results we discuss in this section concerning extreme value theory for suspen-
sion flows of chaotic base maps are mainly found in [139].
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These results may also be seen as an extension of certain theorems in extreme
value theory where instead of sampling at a ‘random’ time h(x) a discrete sampling
at constant times is considered(see [1, Theorem 13.3.2] and related results in [1,
Chapter 13]).

To use a suspension flow to understand statistical properties we need to relate in-
variant measures of the base map f : X ! X to invariant measures for the suspen-
sion flow. In fact, we may always lift an invariant measure µ for f : X ! X to an
invariant measure µh for the suspension flow fs : Xh ! Xh.

Assume that T : X ! X preserves the probability measure µ. We suppose that
h 2 L1

(µ) is a positive roof function.
The f invariant probability measure µ lifts to a flow-invariant probability measure

µh on Xh given by dµh
= dµ ⇥ du/¯h and ¯h =

R

X hdµ, where du is Lebesgue
measure.

Given a (measurable) observation ˜� : M ! R we may lift it it to � : Xh ! R by
defining �(x, u) = � � ⇡(x, u). By the semi-conjugacy that ⇡ provides statistical
properties of the stationary process ˜�t sampled from (M,µ) are the same as those
of �t sampled from (Xh, µh

).
Define � : X ! R by

�(x) := max{�(fs(x)) | 0  s < h(x)}. (6.9.1)

Denote

�t(p) := max{�(fs(p)) | 0  s < t}
�N (x) := max{�(fk

(x)) | 0  k < N}. (6.9.2)

In this setting [139]:

Theorem 6.9.1 (discrete or continuous suspensions). Assume that T : (X,µ) !
(X,µ) is ergodic and h 2 L1

(µ). Suppose also that the normalizing constants
an > 0 and bn satisfy:

lim

✏!0

lim sup

n!1
an|b

[n+✏n] � bn| = 0, (6.9.3)

lim

✏!0

lim sup

n!1

�

�

�

�

1�
a
[n+✏n]

an

�

�

�

�

= 0. (6.9.4)

Then, if G is a non-degenerate distribution,

aN (�N � bN ) ! G =) abT/hc(�T � bbT/hc) ! G. (6.9.5)

Furthermore if h�1 2 L1

(µ) then

aN (�N � bN ) ! G () abT/hc(�T � bbT/hc) ! G. (6.9.6)

Equations (6.9.3) and (6.9.4) are satisfied for most of the linear scalings discussed
in this book. For example, they are satisfied in the Type I case where bn = log n and
an = 1, in the Type II and Type III scenarios when an is regularly varying and bn
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is constant. Thus the assumptions on an,bn hold for logarithmic singularities, power
singularities and power function maxima. In the flow case the constants an,bn are
not determined by the requirement µh

(� > v
an

+ bn) = O(

1

n ).
The proof of this theorem follows this route. First we show that the convergence is

mixing in distribution [223].
A sequence of random variables Sn : X ! R on a probability space (X,µ)

converges mixing in distribution to G if for each A ⇢ X with positive measure,
Sn|A ! G with respect to the conditional measure µA(B) := µ(B \A)/µ(A) on
A. This notion was introduced by Renyi [224].

A useful criterion to establish mixing in distribution was given by Eagleson [223,
Thm. 6]: if X

1

, X
2

, . . . have a trivial invariant �-field, (which is a conse-
quence of ergodicity), Tn(X1

, . . . , Xn) ! T for a sequence of statistics Tn, and
Tn(X1

, . . . , Xn)�Tn(Xk+1

, . . . , Xk+n) ! 0 for each k, thenTn(X1

, . . . , Xn) !
T is mixing in distribution.

Following proving mixing in distribution we establish the distributional conver-
gence of �T (p) by obtaining bounds on the distributional convergence of �N (x),
where N = N(x, T ) is a function of time (governed by measure µ) which satisfies
the strong law of large numbers.

Let (X,µ, f) be a m.p.t. on a probability space and � : X ! R an (a.e. finite)
random variable.

Denote �n,m(x) := max{� � fk
(x) | n  k < m}, for n,m � 0. Hence

�n = �

0,n.

Lemma 6.9.2. If f is ergodic then:

(a) �n ! ess� sup (�) a.e.
(b) an(�0,n � �k,n+`) ! 0 as n ! 1, for each k � 0 and `. Therefore, by [223,

Thm. 6], if an(�n�bn) ! G, then the convergence toG is mixing in distribution.
Moreover, for each k � 0 and `, an(�k,n+` � bn) ! G mixing as well.

(c) Let h 2 L1

(µ) be a roof function and denote ˆ

�n := �n �⇡h. If an(ˆ�n� bn) !
G on (Xh, µh

), then the convergence to G is mixing in distribution .

Remark 6.9.3. Note that if an(�n � bn) ! G, then (b) implies that an(�n+k �
bn) ! G for any fixed k. Hence, by Khintchine’s Theorem (see, e.g., [1, Theo-
rem 1.2.3]), an+k/an ! 1 and an+k(bn � bn+k) ! 0 as n ! 1. Conditions
(6.9.3) and (6.9.4) are stronger versions of this.

Proof. Part (a) is a straightforward consequence of the Birkho� ergodic theorem.
For (b) consider the case when ` � 0, the other being similar. Then

�

0,n � �
0,n+`  �0,n � �k,n+`  �0,n+` � �k,n+`

Ergodicity implies a.e. convergence to zero if esssup(�) is finite. For the case in
which esssup(�) = 1, we show that the left side (which is non-positive) and right
side (which is non-negative) in the above inequalities converge in probability to zero.
Let ✏ > 0 and pick a < esssup(�) such that µ(�

0,k � a)  ✏ (this is possible
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because � is a.e. finite and esssup(�) = 1). Then

µ(an(�0,n+` � �k,n+`) � ✏) = µ(�
0,k � �k,n+` + ✏/an)

 µ(�
0,k � a) + µ(�

0,k < a,�
0,k � �k,n+` + ✏/an)

 µ(�
0,k � a) + µ(�k,n+` < a� ✏/an)

 µ(�
0,k � a) + µ(�k,n+` < a)

which converges to µ(�
0,k � a) by (a). The other side is dealt with similarly, using

the stationarity of the process:

µ(an(�0,n+` � �0,n) � ✏)  µ(�n,n+` � a) + µ(�
0,n < a� ✏/an)

 µ(�n,n+` � a) + µ(�
0,n < a).

Using ergodicity and the result of Eagleson [223, Thm. 6] the other statements in
(b) follow.

Part (c) follows since ˆ

�

1,n+1

�ˆ

�

0,n ! 0 on (Xh, µh
) because�

1,n+1

��
0,n !

0 on (X,µ) and h 2 L1

(µ). Furthermore the invariant �-field of {(��fk
)�⇡h}k is

the pull-back through ⇡h of the invariant �-field on X , hence it is still trivial, hence
all the conditions for Eagleson’s Theorem hold [223, Thm. 6]

6.9.1
Lifting to X

h

Mixing in distribution convergence allows to relate the extreme value laws for obser-
vations on X to observations on Xh.

Lemma 6.9.4. Let f : (X,µ) ! (X,µ) be ergodic and Xh the suspension space
with a roof function h 2 L1

(µ). Let � : X ! R be an observation.
Set �N (x) = maxkN�1

�(fk
(x)) and define ˆ

�N : Xh ! R by ˆ

�N (x, u) =
�N � ⇡h

(x, u) = �N (x).

(a) If aN (�N � bN ) !d G on X , then aN (

ˆ

�N � bN ) !d G on Xh.
(b) If 1/h 2 L1

(µ) and aN (

ˆ

�N � nN ) !d G on Xh, then aN (�N � bN ) !d G
on X .

Proof. By a result of Renyi [225], mixing convergence in distribution on (X,µ)
implies convergence in distribution on (X, ⌫) whenever ⌫ is absolutely continuous
with respect to µ.

For (a), take ⌫ to be the probability measure on X give by dµ := h/hdµ. Then
Z

X
exp{itaN (�N � bN )}h/h dµ ! E(eitG), 8 t 2 R

because the convergence aN (�N � bN ) !d G is mixing in distribution. However,
Z

Xh

exp{itaN (

ˆ

�N � bN )} dµh
=

1

h

Z

X

Z h(x)

0

exp{itaN (

ˆ

�N � bN )} du dµ

=

Z

X
exp{itaN (�N � bN )}h/h dµ.
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Hence
R

Xh exp{itaN (

ˆ

�N � bN )} dµh ! E(eitG), and the result follows.
For (b), note that the probability measure d⌫h := h/h dµh is an absolutely con-

tinuous probability with respect to dµh, so we may repeat this argument.

6.9.2
The Normalization Constants

Lemma 6.9.5. Assume that gn : X ! Z are measurable functions such that
gn(x)/n ! 0 a.e. Let Sn be an increasing sequence of random variables on X . If
conditions (6.9.3) and (6.9.4) hold then

an(Sn � bn) ! G () an(Sn+gn(x)(x)� bn) ! G.

Proof. If we define Xn = an(Sn�bn) and Yn = an(Sn+gn �bn) then the lemma
is a straightforward consequence of the inequality

Xn  Yn  an
an+✏n

Xan+✏n
+ an(bn+✏n � bn) (6.9.7)

valid on the set | gnn | < ✏.

As a consequence:
Remark 6.9.6.(a) If lim infn!1 µ(an(Sn+gn(x)(x) � bn)  v) � G(v) at each

continuity point v of G, then lim infm!1 µ(am(Sm � bm)  v) � G(v) at
each continuity point v of G.

(b) If lim supn!1 µ(an(Sn+gn(x)(x)� bn)  v)  G(v) at each continuity point
v of G, then lim supm!1 µ(am(Sm � bm)  v)  G(v) at each continuity
point v of G.

6.9.3
The Lap Number

Now we relate the sequence of return times to the base X , namely the sum h(x) +
h(fx) + . . . + h(fnx) to the flow time t via the strong law of large numbers. By
the strong law of large numbers,

hN = Nh+ o(N) a.e. as N ! 1 (6.9.8)

where hN (x) = h(x) + h(f(x)) + . . .+ h(fN�1

(x)).
Given a time T � 0 define the lap number N(x, T ) by

hN(x,T )

(x)  T < hN(x,T )+1

(x). (6.9.9)

The strong law of large numbers also implies that

lim

T!1
N(x, T ) = 1 a.e. (6.9.10)

and thus

lim

T!1
T

N(x, T )
= h a.e. (6.9.11)
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Sublemma 6.9.7. For µ almost all x 2 X we have

lim

T!1
N(x, T + h(x))

N(x, T )
= 1

Proof. Let Za = {x 2 X : h(x)  a}, and given ✏ > 0 and T > 0 let

X✏,T = {x 2 X :

�

�

�

�

N(x, t+ h(x))

N(x, t)
� 1

�

�

�

�

� ✏ for some t � T}.

Then we have

µ(X✏,T )  µ

✓

x 2 X :

�

�

�

�

N(x, t+ h(x))

N(x, t)
� 1

�

�

�

�

� ✏ for some t � T, h(x) 2 [0, a]

◆

+µ(X\Za).

Now for given a > 0 we have that µ-a.e.

t

N(x, t)
= h+ o(1),

t+ a

N(x, t+ a)
= h+ o(1) as t ! 1,

and therefore N(x, t+ a)/N(x, t) ! 1 almost surely as t ! 1. Hence by taking
a arbitrarily large and then T ! 1 it follows that µ(X✏,T ) ! 0. The result
follows.

6.9.4
Proof of Theorem 6.9.1.

The main observation is that for (x, u) 2 Xh with 0  u < h(x)

�

1,N(x,T )

(x)  �T (x, u)  �N(x,T+h(x))+1

(x) (6.9.12)

(recall that �n,m(x) := max{� � fk
(x) | n  k < m}). Indeed, �N (x) =

�hN (x)(x, 0) for x 2 X and thus, taking into account the identifications of Xh:

�

1,N(x,T )

(x) = max{�(x, t) | h(x)  t < hN(x,T )

(x)}
�T (x, u) = max{�(x, t) | u  t < u+ T}

�N(x,T+h(x))+1

(x) = max{�(x, t) | 0  t < hN(x,T+h(x))+1

(x)}.

The definition (6.9.9) of the lap number gives

hN(x,T )

(x)  T, u+ T < T + h(x) < hN(x,T+h(x))+1

(x),

and (6.9.12) follows.
We will also use that
N(x, T )

bT/hc
! 1,

N(x, T + h(x)) + 1

bT/hc
! 1 a.e. on X (and hence on Xh

),(6.9.13)

which follow from (6.9.11) and Sublemma 6.9.7.
We first prove the implication

an(�n � bn) ! G on X =) aT/h(�T � bT/h) ! G on Xh. (6.9.14)
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By Lemma 6.9.4(a), the left hand side of (6.9.14) implies

abT/hc(ˆ�bT/hc � bbT/hc) ! G on Xh, (6.9.15)

where brc denotes the largest integer not exceeding r. By Lemma 6.9.2(b)

abT/hc(�1,bT/hc � �bT/hc) ! 0 on X

and, because h 2 L1

(µ), this convergence in probability also holds on Xh if we
extend the function�

1,N to ˆ

�

1,N := �

1,N �⇡h. Together with (6.9.15) this implies

abT/hc(ˆ�1,bT/hc � bbT/hc) ! G on Xh. (6.9.16)

By Lemma 6.9.5, (6.9.13), (6.9.16) and (6.9.15) imply

abT/hc(ˆ�1,N(x,T )

(x, u)� bbT/hc) ! G,

abT/hc(ˆ�N(x,T+h(x))+1

(x, u)� bbT/hc) ! G on Xh.

Use (6.9.12) to obtain

abT/hc(�T � bbT/hc) ! G on Xh,

We now show the converse,

abT/hc(�T � bbT/hc) ! G on Xh
=) an(�n � bn) ! G on X. (6.9.17)

Denote by ⌦ ⇢ R the continuity points of G.
Since (6.9.12) implies

µh
(abT/hc(ˆ�1,N(x,T )

(x, u)� bbT/hc)  v) � µh
(abT/hc(�T (x, u)� bbT/hc)  v)

µh
(abT/hc(ˆ�N(x,T+h(x))+1

(x, u)� bbT/hc)  v)  µh
(abT/hc(�T (x, u)� bbT/hc)  v)

we obtain from the left hand side of (6.9.17) that

lim inf

T!1
µh

(abT/hc(ˆ�1,N(x,T )

(x, u)� bbT/hc)  v) � G(v),

lim sup

T!1
µh

(abT/hc(ˆ�N(x,T+h(x))+1

(x, u)� bbT/hc)  v)  G(v), v 2 ⌦.

By Remark 6.9.6 and (6.9.13), we conclude that

lim inf

T!1
µh

(abT/hc(ˆ�1,bT/hc � bbT/hc)  v) � G(v), (6.9.18)

lim sup

T!1
µh

(abT/hc(ˆ�bT/hc � bbT/hc)  v)  G(v), v 2 ⌦. (6.9.19)

Use that, by Lemma 6.9.2(b), abT/hc(ˆ�bT/hc � ˆ

�

1,bT/hc) ! 0 on Xh to deduce
from the first relation above that

lim inf

T!1
µh

(abT/hc(ˆ�bT/hc � bbT/hc)  v) � G(v), v 2 ⌦. (6.9.20)

From (6.9.19) and (6.9.20) it follows that

abT/hc(ˆ�bT/hc � bbT/hc) ! G on Xh.

and Lemma 6.9.4(b) completes the proof.
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6.10
Physical Observables and Extreme Value Theory

In this section we discuss the extent to which we can obtain convergence to an EVL
for physical observables. The reader is advised that such an issue is addressed also
in Chap. 8 taking a more heuristic point of view aimed at providing results for high
dimensional statistical mechanical systems.

While in Chap. 8 a POT point if view is taken and results are derived relating GPD
parameters and geometrical property of the attractor, in this section we focus on the
BM approach and aim at deriving the GEV description of extremes.

We start with Arnold’s Cat Map which is a uniformly hyperbolic system with
Lebesgue measure as the ergodic invariant measure. For this system, and for gener-
al observables we can obtain a functional form for ⌧(u) which is regularly varying.
However, for systems with general SRB measures only bounds on ⌧(u) exist, at least
for linear scaling sequences un. We discuss this situation the solenoid map, the Lozi
map, the Hénon map, and the Lorenz ’63 model. In the following, the constant↵will
refer to the constant of regular variation of ⌧(u). For a generalized extreme value
distribution, the tail index ⇠ is precisely �1/↵.

6.10.1
Arnold Cat Map

Let T2

= R2

mod 1 be the 2 dimensional torus and let’s consider the Arnold cat
map given in Eq. 6.6.1. This system is Anosov and it has Lebesgue measure µ on the
torus T2 as an invariant measure. With this example we want to study the role of the
observable in determining extreme value laws. For this purpose we will consider f
as a map ofR2 having the square [0, 1)2 as the invariant set. In other words, X = R2

and⇤ = [0, 1)2, hence⇤ is not an attractor, strictly speaking. The advantage is that
this allows us to take functions of R2 as observables, rather than functions of T2. In
this way, we can construct observables which are maximised at points in the interior
or in the complement of ⇤ and whose level sets have di�erent shapes.

The main point of this section is that the value of the tail index is determined
by the interaction between the shape of level sets (4.6.2) of the observable and the
shape of the support of the invariant measure. To illustrate our ideas, and without
attempting to cover all possible cases, we consider the following two observables
�� ,�a,b : R2 ! R

��(x, y) = 1� dist(p, p̃)� , with p = (x, y) 2 R2. (6.10.1)

�a,b(x, y) = 1� |x� x̃|a � |y � ỹ|b, (6.10.2)

where, given our focus on the Weibull case, we require a, b, � > 0. Both observ-
ables are maximised at a point p̃ = (x̃, ỹ) 2 R2. When p̃ is in the interior of ⇤,
observable (6.10.1) has the form so far analysed in the mathematical literature about
extremes in dynamical systems, but we will also consider the case p̃ 62 ⇤. Observ-
able (6.10.2) has been chosen to illustrate the e�ect of the shape of the level sets:
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the level regions of (6.10.2) are not (Euclidean) balls unless a = b = 2, in which
case (6.10.2) can be written as (6.10.1) for � = 2.

The level regions L+

(u) as defined in (4.6.2) are always balls for observ-
able (6.10.1). However three (main) di�erent situations occur, depending on the
location of the point p̃ relative to the support of the invariant measure. We have the
following result.

Theorem 6.10.1. Consider the process Mn = max(X
1

, . . . , Xn) with Xn =

�� �fn�1, where f is the map 6.6.1 and �� : R2 ! R is the observable in (6.10.1).
Then for µ-a.e. p̃ = (x̃, ỹ) 2 R2, statement 4.6.5 holds with ⌧(u) = u↵, and we
have the following cases:

↵ = 2��1, for p̃ 2 ⇤; (6.10.3)
↵ = 3/2, for p̃ 62 ⇤, with either ỹ 2 (0, 1) or x̃ 2 (0, 1); (6.10.4)
↵ = 2, for p̃ 62 ⇤, with both x̃, ỹ 62 [0, 1]; (6.10.5)

For observable (6.10.2) the shape of the level sets L(u) depends on a and b. For
example, L(u) has a convex elliptic-like shape when both a, b > 1, or an asteroid-
like shape when both a, b < 1. Clearly various possibilities arise, depending on the
geometry of the level sets, on whether the point p̃ is in the interior of ⇤ and on the
local geometry of⇤ near the extremal point p̂ = (x̂, ŷ) with minimum distance from
p̃.

Theorem 6.10.2. Consider the process Mn = max(X
1

, . . . , Xn) with Xn =

���fn�1, where f is the map (6.6.1) and�� : R2 ! R is the observable in (6.10.2).
Then for µ-a.e. p̃ = (x̃, ỹ) 2 R2, statement 4.6.5 holds with ⌧(u) = u↵, and

↵ =

1

a
+

1

b
for p̃ 2 ⇤. (6.10.6)

To prove Theorems 6.10.1-6.10.2 the main step is to determine the explicit se-
quence un and functional form of ⌧(u) as defined in (4.6.4).

The verification of Д
0

(un), Д0
0

(un) follows from the techniques of [138, 139] for
this class of observables. Since the observable geometry is non-standard, we discuss
briefly the idea of proof at the end of this subsection and point out the limitations.
The main proof of 6.10.1 is contained in Lemmas 6.10.3,6.10.4 and 6.10.5.

The proof of 6.10.2 is given in Lemma 6.10.6.

Lemma 6.10.3. Suppose p̃ 2 int(⇤) = (0, 1)2 and � takes the form of (6.10.1),
then ↵ = 2/�.

Proof. If p̃ is an interior point of ⇤ then we see that

nµ{�(x, y) � un} = nµ{d((x, y), p̃)  (1� un)
1/�}

= Cµn(1� un)
2/� .

Thus the correct scaling laws are an = C 0
µn

�/2, bn = 1 and ⌧(u) = (�u)2/� .
Here Cµ, C 0

µ are uniform constants.
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Lemma 6.10.4. Suppose p̃ 62 ⇤ = [0, 1]2 and � takes the form of (6.10.1). If
ỹ 2 (0, 1) or x̃ 2 (0, 1) then ↵ = 3/2.

Proof. If p̃ 62 ⇤ then there will exist a unique extremal point p̃ = (x̃, ỹ) 2 ⇤

where �(p) achieves its supremum with value ũ as in (4.6.3). Since ỹ 2 (0, 1) or
x̃ 2 (0, 1) then this point p̃ will not be a vertex of @⇤. The scaling un will be chosen
to so that

nµ{�(x, y) � un} = nµ{p = (x, y) 2 ⇤ : d(p, p̃)  (1�un)
1/�} ! ⌧(u).(6.10.7)

The middle term is no longer O(n(1�un)
1/�

) since the level region that intersects
⇤ is not a ball. We first of all set un = u/an + ũ so that

µ{�(x, y) � un} = µ

(

p = (x, y) 2 ⇤ : (1� ũ)1/�  d(p, p̃) 
✓

1� ũ� u

an

◆

1/�
)

.(6.10.8)

To choose an we first note that the level set L(ũ1/�
) as defined in (4.6.2) is a circle

that is tangent to @⇤ (since the extremal point p̃ is not a vertex). However the level
set L((ũ � u

an
)

1/�
)) crosses @⇤ transversely (and is concentric to L(ũ1/�

)). To
estimate the measure in Eq. (6.10.8), we suppose without loss of generality that
ỹ 2 (0, 1) and x̃ > 1. Hence

ũ = sup

(x,y)2⇤
{1� d((x, y), (x̃, ỹ))�} = 1� |1� x̃|�

Thus the measure (6.10.8) is of the order�x�y, where

�x = (1� ũ� u/an)
1/� � (1� ũ)1/� ,

and

�y = 2

n

(1� ũ� u/an)
2/� � (1� ũ)2/�

o

1/2
.

The former expression was obtained by solving �(x, ỹ) = un for x and taking the
di�erence of this (smaller) root with x̃, while the latter result for �y was obtained
by solving �(1, y) = un for y and then taking the di�erence between the roots. If
u/an is su�ciently small, then a Taylor expansion implies that

µ{�(x, y) � un} ⇡ �x�y ⇡ (u/an)
3/2, (6.10.9)

where ⇡ means equal to up to a uniform multiplication constant. Setting an = n2/3

implies that ⌧(u) = O((�u)3/2).

Lemma 6.10.5. Suppose p̃ 62 ⇤ and� takes the form of (6.10.1). If both x̃, ỹ 62 [0, 1]
then ⇠ = �1/2.

Proof. Without loss of generality we consider p̃ = (x̃, ỹ) defined so that x̃ = 1 +

� cos ✓, ỹ = 1 + � sin ✓ for � > 0 and ✓ 2 (0,⇡/2). For such values of (x̃, ỹ),
the corner point (1, 1) 2 @⇤ will always maximise �. The proof is identical to
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Lemma 6.10.4 except that the level sets are not tangent to @⇤ at (1, 1). Setting
un = u/an + ũ and arguing as in the proof of Lemma 6.10.4, we obtain:

ũ = sup

(x,y)2⇤
{1� d((x, y), (x̃, ỹ))�} = 1� ((x̃� 1)

2 � (ỹ � 1)

2

)

�/2,

�x = 1� x̃+ {(1� ũ� u/an)
2/� � (1� ỹ)2}1/2,

�y = 1� ỹ + {(1� ũ� u/an)
2/� � (1� x̃)2}1/2.

Again, if u/an is su�ciently small, then a Taylor expansion implies that

µ{�(x, y) � un} ⇡ �x�y ⇡ (u/an)
2, (6.10.10)

and hence setting an = n1/2 implies that ⌧(u) = O((�u)2).

This concludes the proof of Theorem 6.10.1. For the proof of Theorem 6.10.2 we
have the following lemma.

Lemma 6.10.6. Suppose that p̃ 2 int(⇤) = (0, 1)2 and� takes the form of (6.10.2).
Then for u . 1 we have that Leb(L(u)) = C(1 � u)

1

a+

1

b for some C
0

 C  4

where C
0

> 0.

Proof. Let u = 1� ". For " su�ciently small the level region can be written as

L+

(u) = {(x, y) 2 int(⇤) : |x|a + |y|b  "}. (6.10.11)

The area of this set is bounded from above by the area of a rectangle of sides 2"1/a
and 2"1/b. Also, for any q 2 (0, 1), the area of the set is bounded from below
by that of a rectangle of sides 2q1/a"1/a and 2(1 � q)1/b"1/b, so we can choose
C

0

= 4q1/a(1� q)1/b.

Hence if (x̃, ỹ) 2 int(⇤), we see that (for uniform Cµ > 0),

nµ{p = (x, y) : �(p) � un} ! Cµ(�u)
1

a+

1

b with an = n
ab

a+b , bn = 1.(6.10.12)

We now explain how to check Д0
0

(un) and Д
0

(un) for the observables given
in (6.10.2). The other scenarios are similar. The methods used in [138] are primar-
ily geared towards observables that are expressed as functions of distance. In our
situation the observables are not given explicitly in this form, but they do have a
bounded geometry in the sense that the level set {�(p) = ✏} can be circumscribed
by a ball of radius ✏d

0
with d0 = max{a�1, b�1}. This fact is useful when checking

the Д0
0

(un) and Д
0

(un) conditions.
More specifically, to check Д

0

(un) following [138] it su�ces to show that for
(fixed) r > 0, µ{r  �(p)  r + �} is bounded by a power of � as � ! 0.
By a simple integration calculation, this estimate holds for the observables (6.10.2).
Another property required is that the system has exponential decay of correlations.
This is property holds by uniform hyperbolicity.

Checking D0
(un) is generally harder, but the main estimate, see [138, 139, 72]

involves a control of the measure of the set {p : d(p, f j
(p))  an} for some specific

sequence an ! 0, usually power law in n with j = o(n). The aim is then to show
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that the measure of this set goes to zero at a rate bounded by a power law in n. When
the observables are functions of distance, then a natural choice for an is n�1/d. This
follows by observing that (by choice of un)

{�(p) � un} ⇢ {p : d(p, p̃)  1

n1/d
}. (6.10.13)

When the observables have the form given in (6.10.2) then a similar statement holds,
but for the right hand set in (6.10.13) we instead have d(p, p̃) = O(n��

) for some
� = �(a, b). This relationship is su�cient to allow the methods, such as the maximal
function technique utilized in [72] to be applied to this class of observables.

However we remark that the methods have limitations, and at present the arguments
do not directly extend to more exotic observables, such as

�(x, y) = exp

⇢

� 1

|x� x̃|

�

+ |y � ỹ|c. (6.10.14)

This observable has the property that the Lebesgue measure of the level set {�(p) =
✏} is O

⇣

✏1/c/ log(1/✏)
⌘

, but any circumscribing ball must have radius at least
O (1/ log(1/✏)) . Thus, if an extreme value law is to be proved for this observable
then the methods of [138, 139] would need to be adapted to situations where the an
have sub-polynomial asymptotics.

6.10.2
Uniformly HyperbolicHyperbolic Attractors: the Solenoid Map

Consider the solid torus as the product ofT = R/Z times the unit disc in the complex
plane DR = {z 2 C| |z| < R}, for some R with 0 < R < 1. Then the solenoid
map is defined as follows:

f� : T⇥ DR ! T⇥ DR

( , w) 7!
⇣

2 ,�w +Kei2⇡ 
⌘

.
(6.10.15)

In order to have the map well defined we need K + �R < R and �R < K. For
our purposes it is convenient to have the torus embedded in R3. Consider Cartesian
coordinates (x, y, z) 2 R3 and define corresponding cylindrical coordinates r, , z
by x = r cos( ) and y = r sin( ). Then the torus of width R can be identified
with the set D = {(r � 1)

2

+ z2  R2} for R < 1. The torus T ⇥ DR (with
coordinates ( , u+ iv)) can be identified with D taking r = 1+ u and z = v. We
thus obtain an embedded solenoid map

g� : D ! D, g�( , r, z) = (2 , 1 +K cos( ) + �(r � 1),K sin( ) + �z).
(6.10.16)

The solenoid attractor is defined as the attracting set of the map g�:

⇤ =

\

j�1

gj�(D).
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For � < 1

2

we have

dimH(⇤) = 1 +

log 2

log ��1

, (6.10.17)

where dimH denotes the Hausdor� dimension [226]. We consider the following
observables �� ,�abcd : R3 ! R:

��(x, y, z) = 1� dist(p, p̃)� , with p = (x, y, z) 2 R3, (6.10.18)
�abcd(x, y, z) = ax+ by + cz + d, (6.10.19)

Observable (6.10.18) is maximised at a point p̃ 2 R3, whereas (6.10.19) is unbound-
ed in the phase space R3 (except for the trivial choice a = b = c = 0).

For the case of observable (6.10.18) and when p̃ 2 ⇤, results on convergence of
Mn to an extreme value distribution where discussed in Section 6.6, and indeed only
bounds on the convergence could be achieved since µ does not admit a density with
respect to Lebesgue measure on R3.

More interesting considerations arise for the observable (6.10.19), and similarly for
observable (6.10.18) when p̃ 62 ⇤. In the following we focus on observable (6.10.19).
The case for obsevable (6.10.18) turn out to be similar, since geometrically the level
sets are smooth curves, i.e. their tangent vectors vary continuously. As a simple
case, consider first the degenerate solenoid with � = 0 and take a planar observable
� := ax + by + d, thus reducing the problem to the (x, y)-plane. In this case we
have the trivial dimension formula dimH(⇤) = 1 since ⇤ is a circle. However, for
computing the tail index we lose a factor of 1/2 due to the geometry of the level set.
Indeed, level sets are straight lines within the (x, y)-plane, and at the extremal point
p̃ = (x̃, ỹ) the critical level setL(ũ) is tangent to⇤. Since the tangency is quadratic,
we find that

µ(L+

(ũ� ✏)) = m�u{�u(p̃) \ L+

(ũ� ✏)} = O(

p
✏). (6.10.20)

Here �u(p̃) is the unstable manifold through p̃ (i.e. it is the unit circle), and m�u is
the one-dimensional conditional (Lebesgue) measure on �u(p̃). Hence ⌧(u) = u↵

with

↵ = dimH(⇤)� 1

2

=

1

2

.

The mechanism described above is similar to that for the cat map, leading to formu-
la (6.10.4): indeed, there we have dimH(⇤) = 2, yielding the value 3/2 for the
constant ↵.

For � > 0, the attractor has more complicated geometry and is locally the product
of a Cantor set with an interval [226]. Planar cross sections that intersect ⇤ trans-
versely form a Cantor set of dimension dimH(⇤)�1 = � log 2/ log �. To calculate
µ(L+

(ũ� ✏)) we would like to repeat the calculation above using Eq. (6.10.20), but
now the set of unstable leaves that intersect L+

(ũ � ✏) form a Cantor set (for each
✏ > 0). The extremal point p̃ where �(p) attains its maximum on ⇤ forms a tip of ⇤
relative to L(ũ). Such a tip corresponds to a point on p̃ 2 ⇤whose unstable segment
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�u(p̃) is tangent to L(ũ) at p̃, and moreover normal to r�(p̃) at p̃. Given ✏ > 0,
we (typically) expect to find a Cantor set of values t 2 [0, ✏] for which the level sets
L(ũ� t) are tangent to some unstable segment �u ⇢ ⇤. For other values of t these
level sets cross the attractor transversely. Given (fixed) ✏

0

> 0 we can define the tip
set � ⌘ �(✏

0

) ⇢ ⇤ as follows: let Tp�u(p) be the tangent space to �u at p. Then
we define

� = {p 2 L+

(ũ� ✏
0

) \ ⇤ : Tp�
u
(p) ·r�(p) = 0}. (6.10.21)

This tip set plays a role in proving the following result, which in turn provides us
with information on the form of the tail index ⇠.

Proposition 6.10.7. Suppose that g� is the map (6.10.16) and � = �abcd. Define
⌧(✏) = µ{�(p) � ũ � ✏}. If dimH(�) < 1, then modulo a zero measure set of
values (a, b, c, d),

lim

✏!0

log ⌧(✏)

log ✏
= 1/2 + dimH(�).

We give a proof below. Based on this proposition it is possible to bound the limiting
behaviour of µ{Mn  un} relative to the function e�⌧(u), with ⌧(u) = u↵, and

↵ = dimH(⇤)� 1

2

=

1

2

+

log 2

log ��1

. (6.10.22)

We outline the main technical steps required. Firstly, conditions D
0

(un) and
D0

0

(un) should be checked. We believe that this should follow from [138], how-
ever the proof would be non-standard due to the level set geometry. Secondly, we
claim that dimH(�) = dimH(⇤) � 1. The proof of this requires estimates on the
regularity of the holonomy map between stable disks, such as Lipschitz regularity.

Proof of Proposition 6.10.7. For each ✏ < ✏
0

, consider the set �(✏) ⇢ �\L+

(ũ�
✏). Then for each p 2 �(✏), there exists t < ✏ such that �u(p) is tangent to L(ũ �
t). If the observable � takes the form of (6.10.19), then by the same calculation
as (6.10.20) we obtain

m�u{�u(p) \ L+

(ũ� ✏)} = O(

p
✏� t). (6.10.23)

Thus to compute µ(L+

(ũ� ✏)), we integrate (6.10.23) over all relevant t < ✏ using
the measure µ

�

, which is the measure µ conditioned on �. Provided dimH(�) < 1,
the projection of � onto the line in the direction of r� is also a Cantor set of the
same dimension for typical (full volume measure) (a, b, c, d), see [226]. Thus the
set of values t corresponding to when L(ũ � t) is tangent to � form a Cantor set
of dimension dimH(�). If ⇡ is the projection from � onto a line in the direction
of r�, then the projected measure ⇡⇤µ� has local dimension dimH(�) for typical
(a, b, c, d). We have

µ(L+

(ũ� ✏)) =
Z ✏

0

Z

L+

(ũ�✏)
dm�udµ

�

. (6.10.24)
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To estimate this integral we bound it above via the inequality m�u
(�u \ L+

(ũ �
✏))  C

p
✏, and bound it below using the fact that for t > ✏/2, m�u

(�u \L+

(ũ�
✏)) � C

p
✏. Here C > 0 is a uniform constant. Putting this together we obtain for

typical (a, b, c, d)

µ(L+

(ũ� ✏)) =
Z ✏

0

Z

L+

(ũ�✏)
dm�udµ

�

=

p
✏ · ✏dimH(�)+�(✏)

= ✏1/2+dimH(�)+�(✏), (6.10.25)

where �(✏) ! 0 as ✏! 0. The constant �(✏) comes from the definition of dimen-
sion of an SRB measure, namely that for µ-a.e. x 2 ⇤, logµ(B(x, ✏))/ log ✏ !
dimH(µ).

6.11
Non-uniformly Hyperbolic Examples: the Hénon and Lozi maps

We here consider the Hénon map and the Lozi map given in Eqs. 6.6.6 and 6.6.5,
respectively, and the observables

��(x, y) = 1� dist(p, p̃)� , with p = (x, y) 2 R2, (6.11.1)
�✓(x, y) = x cos(2⇡✓) + y sin(2⇡✓), (6.11.2)

where � > 0 and ✓ 2 [0, 2⇡] are parameters and p̃ is a point in R2. Following the
discussion for the solenoid map, and defining as before ⌧(✏) = µ{�(p) � ũ � ✏},
we could conjecture that for � = �✓ , or for � = �� with p̃ 62 ⇤:

lim

✏!0

log ⌧(✏)

log ✏
= dimH(⇤)� 1

2

. (6.11.3)

For the Hénon map under observable (6.10.1), and in view of the results of a re-
cent paper [227], it is expected that formula (6.11.3) holds for so-called Benedicks-
Carleson parameter values [134]. Such parameter values, however, are obtained by
a perturbative argument near (a, b) = (2, 0), where the bound on the smallness
of b is not explicit. Moreover, the parameter exclusion methods used to define the
Benedicks-Carleson parameter values are not constructive. For these reasons, it is not
possible to say whether Benedicks-Carleson behaviour is also attained at the classical
parameter values (a, b) = (1.4, 0.3).

For planar observables, we again study the tip set � ⇢ ⇤ as defined for the Solenoid
map, namely, for fixed ✏

0

> 0 and p = (x, y), let

� = {p 2 L+

(ũ� ✏
0

) \ ⇤ : Tp�
u
(p) ·r�(p) = 0}, (6.11.4)

and for each ✏ < ✏
0

, consider the set�(✏) ⇢ �\L+

(ũ�✏). Then for each p 2 �(✏),
there exists t < ✏ such that �u(p) is tangent to L+

(ũ� t). For the planar observable
� we would expect to obtain (as with the solenoid):

m�u{�u(p) \ L+

(ũ� ✏)} = O(

p
✏� t), (6.11.5)
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where m�u is the conditional (Lebesgue) measure on the one-dimensional unstable
manifold. However in this calculation we have assumed that the tangency between
�u(p) and L(ũ� t) is quadratic, and that the unstable segment is su�ciently long so
as to crossL(ũ�✏) from end to end. For the Hénon map both of these conditions can
fail. In particular, the Hénon attractor admits a critical set of folds that correspond to
points where the attractor curvature is large. More precisely the critical set is formed
by homoclinic tangency points between stable and unstable manifolds. This set has
zero measure, but it is dense in the attractor. Furthermore the attractor has compli-
cated geometry, where local stable/unstable manifolds can fold back and forth upon
themselves. However, the regions that correspond to these folds (of high curvature)
occupy a set of small measure. See [228] and references therein for a more detailed
discussion.

As discussed for the solenoid, for linear scaling sequences un we expect not to have
convergence to an EVL. However similar to [138], it is possible to obtain bounds on
limiting behaviour of µ{Mn  un} relative to the function e�⌧(u), with ⌧(u) =

u↵. To estimate ↵ we conjecture to have the following formula:

lim

✏!0

log ⌧(✏)

log ✏
= dimH(µ)� 1

2

(6.11.6)

where µ is the SRB measure for the Hénon map (at Benedicks-Carleson parameters).
This would follow from the estimate:

µ(L+

(ũ� ✏)) =
Z ✏

0

Z

L+

(ũ�✏)
dm�udµ

�

=

p
✏ · ✏dimH(�)+�(✏), (6.11.7)

where the factor of
p
✏ comes from Eq. (6.10.23) and �(✏) ! 0 as ✏! 0. To obtain

Eq. (6.11.6), we would need to show that dimH(�) = dimH(µ)�1. This is perhaps
harder to verify and it will depend on the regularity of the holonomy map taken
along unstable leaves. Finally we would project this set onto a line in the direction
of r�(p), and typically the projection would preserve the dimension.

6.11.1
Extreme Value Statistics for the Lorenz ’63 Model

In this section we examine what results are known about recurrence and extremes for
the classical Lorenz ’63 model [105]:

ẋ = �(y � x),

ẏ = x(⇢� z)� y,

ż = xy � �z.

(6.11.8)

These equations provide the time evolution of three modes of the temperature and
streamfunction obtained by performing a severe truncation of the full dynamics of the
Rayleigh-Bènard convection problem in two dimensions [229]. Here � is the Prandtl
and ⇢ the Rayleigh number, while � is a geometrical factor taking into account the
aspect ratio of the modes in physical space. We set � = 10, � = 8/3 and ⇢ =
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28, which is a fairly common choice in the vast literature on the Lorenz model, see
e.g. [211, 230]. A graphical representation of the Lorenz attractor for this choice
of the parameters’ value is given in Fig. 6.3. See also [231, 232] for a discussion
of the properties of generalised Lorenz-like models. Considering the Lorenz ’63

10
20

30
40

50

−20
0

20
40
−20
−10
0
10
20
30

xy

z

Figure 6.3 Numerical approximation to the attractor of the Lorenz ’63 model given in Eq.
6.11.8, where the classical values for the parameters parameters � = 10, � = 8/3 and
⇢ = 28 are used.

model (6.11.8) we recall some geometrical facts of the Poincaré map to z = constant
sections. Given the planar sections ⌃ = {(x, y, 1) : |x|, |y|  1}, and ⌃0

=

{(1, y, z) : |y|, |z|  1}, the map P : ⌃! ⌃ decomposes as P = P
2

�P
1

, where
P
1

: ⌃ ! ⌃

0 and P
2

: ⌃

0 ! ⌃. To describe the form of P , let � = |�s|/�u,
�0

= |�ss|/�u, where �s, �ss and �u are the eigenvalues of the linearised Lorenz
flow at the origin, with �s = �8/3, �ss = �22.83 and �u = 11.83 for our choice
of parameters. Then it can be shown that P

1

(x, y, 1) = (1, x�
0
y, x�), and P

2

is
a di�eomorphism. Thus the rectangle ⌃+

= {(x, y, 1) : x > 0, |y|  1} gets
mapped into a region P

1

(⌃

+

) with a cusp at y = 0. The cusp boundary can be
represented as the graph |y| = z�

0/� ⇡ z8. The flow has a strong stable foliation,
and we form the quotient space b⌃ = ⌃/ ⇠ by defining an equivalence relation p ⇠ q
if p 2 �s(q), for a stable leave �s. Hence the map P : ⌃! ⌃ can be reduced to a
uniformly expanding one-dimensional map f :

b

⌃! b

⌃, with a derivative singularity
at x = 0. Here b

⌃ identified with [�1, 1], and f 0
(x) ⇡ |x|��1 near x = 0. The

extreme statistics associated to such a map was discussed in Section 6.4.3.
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The Lorenz flow admits an SRB measure µwhich can be written as µ = µP ⇥Leb

(up to a normalisation constant). The measure µP is the SRB measure associated to
the Poincaré map P , and the local dimension is defined (and constant) µ-a.e., see
[233]. Using the existence of the stable foliation, and the SRB property of µ, we can
write µP as the (local) product µ�u ⇥ µ�s where µ�u is the conditional measure
on unstable manifolds, and µ�s is the conditional measure on stable manifolds. We
can identify each measure µ�u (via a holonomy map) with that of the invariant mea-
sure µf associated to f . The measure µf is absolutely continuous with respect to
Lebesgue measure, but it has zero density at the endpoints of b⌃, that is

µf ([1� ✏, 1]) ⇡ ✏1/� ⇡ ✏4.4 as ✏! 0. (6.11.9)

Results on extreme statistics for the two dimensional map P : ⌃ ! ⌃ and the
Lorenz model were established recently in [234]. The proof required verification of
conditions (H1s), (SRT1), and (H3) as described in Section 6.5. Using our discussion
in Section 6.5 the result of [234] can be expressed as follows:

Proposition 6.11.1. Let P : ⌃ ! ⌃ be the Poincaré return map associated to the
Lorenz model for the classical parameters, and letMn denote the associated maximal
process. Then for µP a.e. x̃ 2 ⌃
�

�

�

µ{Mn  un}�Gp
n(u)

�

�

�

 C
1

(log n)1+✏p
n

+ C
2

(log n)1+✏

n↵
(6.11.10)

where C
1

, C
2

> 0 are constants independent of n, but dependent on x̃.

Remark 6.11.2. The situation here is similar to that for the Lozi map, and the Hénon
map in the sense that we cannot precise estimates on convergence rates due to the
irregularity of the measure. We do not know the precise scaling constants un. For the
observable �(x) = � log dist(x, x̃) we have that for all ✏ > 0, limn!1 µ(Mn 
(1 � ✏)(log n + v)/d))  e�e�v  limn!1 µ(Mn  (1 + ✏)(log n + v)/d))
which provides an estimate of the correct sequence un.

Using methods of Section 6.9, extreme statistics for the corresponding Lorenz
model can be deduced. This is discussed also in [234] and the following is achieved.

Proposition 6.11.3. Assume that P : ⌃ ! ⌃ is the Lorenz map and ft is the
corresponding Lorenz flow. Assume there is a sequence un := un(u) such that

nµ{�
0

 un} ! ⌧(u),

and suppose this sequence gives rise to normalizing constants an > 0 and bn satis-
fying:

lim

✏!0

lim sup

n!1
an|b

[n+✏n] � bn| = 0, (6.11.11)

lim

✏!0

lim sup

n!1

�

�

�

�

1�
a
[n+✏n]

an

�

�

�

�

= 0, (6.11.12)
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and

an(�n � bn) ! e�⌧(u). (6.11.13)

Then

abT/hc(�T � bbT/hc) ! e�⌧(u). (6.11.14)

Remark 6.11.4. The above result assumes the existence of a linear scaling sequence
un. In general the observable �

0

would not vary regularly if nµ{�
0

 un} !
⌧(u). If �

0

is regularly varying, then a similar statement to Remark 6.11.2 applies.
To end, we note that for physical observations corresponding extreme value laws

depend on the geometry of the level sets, and also on the geometry of the attractor.
For a planar observable, e.g. �(x) = ax+ by + cz + d, it was conjectured in [81]
that

lim

✏!0

log ⌧(✏)

log ✏
=

1

�
+

1

2

+

˜ds. (6.11.15)

The constant ˜ds comes from the dimension of µs which is (numerically) seen to be
small due to the strong stable foliation. In contrast with the solenoid and Hénon
maps, the tail index associated to this planar observable comes from an estimate of
the measure of µ(L+

(ũ � ✏)) which we assume scales as the product of the three
factors:

p
✏ · ✏du · ✏8ds . Here the factor

p
✏ comes from the measure µ conditioned

on ⇤ \ L+

(ũ � ✏) in the (central)-flow direction, while the factor ✏du comes from
the µP -measure conditioned on unstable manifolds that terminate at the cusp. In a
generic case we would expect du = 1. However, since we are near the cusp (namely
near the boundary @b⌃) we have du = 1/� = 4.4 due to the zero in the density of
µf , see (6.11.9). Finally we have a contributing factor ✏8ds that comes from the the
strength of the cusp at P (@⌃), with ds the local dimension of µ�s .
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7
Extreme Value Theory for Randomly Perturbed
Dynamical Systems

7.1
Introduction

The aim of this chapter is to show that EVT can be defined and developed for dy-
namical systems that are randomly perturbed. Two kinds of perturbations will be
considered: random transformations and the observational noise. Random trans-
formations will also be split in two categories: additive noise and randomly applied
stochastic perturbations. At this point we would like to stress that in the general theo-
ry of randomly perturbed dynamical systems one could consider perturbations other
than the previous two. Our choice is motivated by the fact that our main result for
the extreme values in presence of noise could be relatively easily shown with those
assumptions, but it is also clear from the proof where possible generalizations could
occur and we will quote a few of them. Let us notice that other authors basically used
additive noise when they studied statistical properties of random dynamical systems
[235, 236, 237], for instance. Random transformations with additive noise will be
investigated with two methods: the first is the usual probabilistic approach which is
at the base of all the previous mathematical formalisations presented in this book: we
will briefly refer to it as the probabilistic approach. The second method is a spec-
tral approach using perturbation theory of the Perron-Frobenius operator [238]: we
will refer to it as the spectral approach. The probabilistic approach is in some sense
more flexible since it is adapted to higher dimensions and, what is more important,
it allows to get extreme value statistics even if the original unperturbed system does
not obey it; we will show that on rotations and pure contractions on the interval. The
spectral technique has the advantage to condensate in a very limited amount of as-
sumptions what is really needed to prove the existence of limiting distribution and
even to characterize the extremal index. The disadvantage is that the unperturbed
map should have strong mixing properties, in particular the transfer operator must be
quasi-compact on suitable functional spaces.

We will then describe two other kinds of noises, the observational noise and the
randomly applied stochastic perturbation which will allow us respectively to detect
the fractal properties of the invariant measure whenever the distribution of the max-
imum converges toward the Gumbel law and to get such an asymptotic distribution



Lucarini, Faranda, Freitas, Freitas, Holland, Kuna, Nicol, Todd, Vaienti: Extremes and Recurrence in Dynamical
Systems — Chap. 7 — 2016/5/16 — 19:35 — page 148

148

even for piecewise contracting maps. We will finally spend a few words about the
extreme value statistics for sequential dynamical systems, where the stationarity of
the random process is broken due to the non-autonomous concatenation of (close)
maps.

7.2
Random Transformations via the Probabilistic Approach: Additive Noise

The random transformations approach consists in perturbing a given deterministic
dynamical system 1). The latter will be given, in the following considerations, by
a map f acting either on a compact subset of RD or on the D-dimensional torus.
In both cases we will denote it with M, and we denote with B the related Borel
�-algebra. If moreover the set is the one dimensional torus, we will denote it with
S1; still for tori we will let dist(·, ·) be the induced usual quotient metric on M
and Leb a normalised volume form on the Borel sets of M that we call Lebesgue
measure. As in the previous Chapters, we denote the ball of radius " > 0 around
x 2 M as B"(x) := {y 2 M : dist(x, y) < "}.

Consider now a sequence of i.i.d. random variables W
1

,W
2

, . . . taking values in
the set ⌦ and with common distribution given by ✓; we associate to each ! 2 ⌦ a
measurable map f! : M ! M. Let ⌦N denote the space of realisations of such
process and ✓N the product measure defined on its Borel subsets. Given a point
x 2 M and the realisation of the stochastic process ! = (!

1

,!
2

, . . .) 2 ⌦N, we
define the random orbit of x as x, f!(x), f2

!(x), . . . where, the evolution of x, up to
time n 2 N, is obtained by the concatenation of the respective randomly perturbed
maps in the following way:

fn
! (x) = f!n � f!n�1

� · · · � f!
1

(x), (7.2.1)

with f0

! being the identity map on M.
As a very special case, but important for the next sections, we construct the additive
noise by taking, for some " > 0, ⌦ = B"(0) and ✓ := ✓" be a probability measure
defined on the Borel subsets of B"(0), such that

✓" = g"Leb
Z

g" dLeb = 1, and 0 < g"  g"  g" < 1. (7.2.2)

where g
✏

and g✏ are respectively a strictly positive lower bound and a finite upper
bound for the density g✏. For each ! 2 B"(0), we define the additive perturbation
of f that we denote by f! as the map f! : M ! M, given by

f!(x) = f(x) + ! mod d (7.2.3)

Remark 7.2.1. In the previous formula we implicitly considered M as an D-
dimensional torus and this explains the mod-d operation. We could consider any

1) We defer to [142] for a more detailed introduction to randomly perturbed dynamical systems and for
exhaustive references
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compact subsetM ofRD by simply requiring that all the images ofM are still inM
and this of course imposes additional assumptions on the choice of the unperturbed
map. Most of the following results will be stated for maps on the torus.
The ext definition introduces a notion that plays the role of invariance in the deter-
ministic setting.

Definition 7.2.2. We say that the probability measure µ on the Borel subsets of M
is stationary if
ZZ

�(f!(x)) dµ(x) d✓(!) =
Z

�(x) dµ(x),

for every � : M ! R integrable w.r.t. µ.

The previous equality could also be written as
Z

U� dµ =

Z

� dµ

where the operator U : L1
(Leb) ! L1

(Leb), is defined as (U�)(x) =

R

⌦

�(f!(x)) d✓ and it is called the random evolution operator. We define the ran-
dom Perron-Frobenius operator as the linear operator P : L1

(Leb) ! L1

(Leb)

acting by duality as
Z

P · � dLeb =

Z

U� ·  dLeb (7.2.4)

where  2 L1 and � 2 L1 and from now on these spaces will be be intended w.r.t.
the Lebesgue measure, when the latter will be not explicitly mentioned.
It is immediate from this definition to get another useful representation of this oper-
ator, namely for  2 L1:

(P )(x) =
Z

⌦

(P! )(x) d✓(!),

where P is the Perron-Frobenius operator associated to f! .
We recall that the stationary measure µ is absolutely continuous w.r.t. the Lebesgue
measure and with density h if and only if such a density is a fixed point of the random
Perron-Frobenius operator: Ph = h

We can give a deterministic representation of this random setting using the follow-
ing skew product transformation:

S : M⇥ ⌦ �! M⇥ ⌦
(x,!) 7�! (f!

1

,�(!)),
(7.2.5)

where � : ⌦ ! ⌦ is the one-sided shift �(!) = �(!
1

,!
2

, . . .) = (!
2

,!
3

, . . .).
We remark that µ is stationary if and only if the product measure µ ⇥ ✓N is an S-
invariant measure.

Hence, the random evolution can fit the original deterministic model by taking
the product space X = M ⇥ ⌦, with the corresponding product Borel �-algebra
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B, where the product measure P = µ ⇥ ✓N is defined. The system is then given
by the skew product map T = S. We recall here the notion of decay of correlation
given in Definition 4.2.6 and point out that the correlations taken with respect to
the (product) measure P are called annealed, to distinguish them from the quenched
correlations, where the expectations are taken with respect to the stationary (or the
ambient) measure and with a fixed realisation.

In the random setting, we will be mostly interested in Banach spaces of functions
that do not depend on ! 2 ⌦, hence, we assume that �, are actually functions
defined on M and the correlation between these two observables can be written
more simply as

CorP(�, , n) : =
1

k�kC
1

k kC
2

�

�

�

�

Z

✓

Z

 � fn
! d✓N

◆

� dµ�
Z

� dµ
Z

 dµ

�

�

�

�

=

1

k�kC
1

k kC
2

�

�

�

�

Z

Un · � dµ�
Z

� dµ
Z

 dµ

�

�

�

�

(7.2.6)

where (Un )(x) =

R

· · ·
R

 (f!n
� · · · � f!

1

x) d✓(!n) . . . d✓(!1

) =

R

 �
fn
! (x) d✓

N.

Note that when µ is absolutely continuous with respect to Leb and the respective
Radon-Nikodym derivatives are bounded above and below by positive constants, then
L1

(Leb) = L1

(µ).
As in the deterministic case, the goal is to study the existence of an EVL for the

partial maximum of observations made along the time evolution of the system. To be
more precise consider the time series X

0

, X
1

, X
2

, . . . arising from such a system
simply by evaluating a given observable � : M ! R [ {+1} along the random
orbits of the system:

Xn(x,!) := � � fn
! (x), for each n 2 N. (7.2.7)

Clearly, X
0

, X
1

, . . . defined in this way is not an independent sequence, never-
theless the stationarity of µ guarantee that the stochastic process (7.2.7) ruled out by
P is itself stationary.

We assume that the real-valued function � : M ! R [ {±1} achieves a global
maximum at ⇣ 2 M (we allow �(⇣) = +1). As before, we also assume that � and
P are su�ciently regular so that for u su�ciently close to uF := �(⇣), the event

U(u) = {X
0

> u} = {x 2 M : �(x) > u} (7.2.8)

corresponds to a topological ball centred at ⇣; explicit examples of these prescriptions
will be presented in the following. We assume that (R1) given in Chapter 4 holds.

Let Mn be defined as in 2.2.1. As before, for every sequence (un)n2N satisfying
(2.2.2) we define:

Un := {X
0

> un}. (7.2.9)
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When X
0

, X
1

, X
2

, . . . are not independent, the standard EVL law still applies
under some conditions on the dependence structure; these conditions are the same
as in the deterministic case since they are expressed solely in terms of the process
((Xk)k�1

,P) and of the event Un: we call them again Д
0

(un) and Д0
0

(un) and
we refer to Chapter 4 for the definitions. We stress that Corollary 4.1.5 says that, if
conditions Д

0

(un) and Д0
0

(un) hold for X
0

, X
1

, . . ., then there exists an EVL for
Mn and the EVL reads H(⌧) = 1� e

�⌧ .

7.2.1
Main Results

We anticipated above that by perturbing a very regular system like rotations or con-
tractions, one could prove the existence of an EVL for some observable. One more
advantage relies in the possibility of finding the scaling sequence (un)n2N in the case
where it is a�ne un =

y
an

+ bn. In particular, this is achieved when the distance
observable � is of the form: �(x) = � log(dist(x, ⇣)), being ⇣ a given point in M,
and for a particular choice of the probability measure ✓.

Before stating this result, we should recall that by using Theorem 1.7.13 in [1], one
disposes of a su�cient condition to guarantee the existence of the limit (2.2.2) for
0 < ⌧ < 1. Such a condition requires that 1�F (x)

1�F (x�)

! 1, as x ! uF , where F is
again the distribution function of X

0

, the term F (x�) in the denominator denotes
the left limit of F at x and uF was defined above as sup{x;F (x) < 1}. For the
observable just introduced uF = 1 and if the probability P satisfies (R1) we have
that F is continuous at ⇣ and therefore the above ratio goes to 1. We said above that
in the context of random transformations the observables do not depend on the noise,
therefore the probability (P > un) simply reduces to (µ" > un); therefore it will
be su�cient to have a stationary measure which is not atomic at ⇣ to verify (R1). Of
course this general result will not allow to compute explicitly the scaling coe�cients
an and bn.

Remark 7.2.3. From now on in this chapter we index all the random quantities, in
particular the stationary measure µ, the distribution ✓ on ⌦, the evolution operator
U , and the random Perron-Frobenius operator P , with the lower index ", where "
represents the magnitude of the noise.

We start by recalling the following result from [239]:

Proposition 7.2.4. Let us consider the dynamical systems (M,B, f),where, as usu-
al M is a compact set in RD or it is the D-dimensional torus. We perturb it with
additive noise admitting the stationary measure µ". We consider the associated pro-
cess Xn(x,!) := � log(|fn

! (x)� ⇣|) endowed with the probability P = µ" ⇥ ✓N" ,
and suppose moreover that ✓" is the Lebesgue measure measure on B"(0). Then the
linear sequence un := u/an + bn given in (2.2.2), verifies:

an = d; bn =

1

D
log

✓

n Kd µ"(B"(⇣))

(2")D

◆

,
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where KD is the volume on the unit hypercube in RD.

We observe that the proof of the previous Proposition holds because ✓" behaves ex-
actly as the Lebesgue measure. This fact has another interesting consequence when-
ever we consider the additive noise. In fact by the very definition of the stationary
measure, we have that for any Borel set A: µ"(A) =

R

✓"(!; f(x) + ! 2 A)dµ".

But ✓"(!; f(x) + ! 2 A)  Leb(A)

(2")d
, which implies that the stationary measure is

absolutely continuous with respect to the Lebesgue measure on M.
We now come to the proof of conditions Д

0

(un) and Д0
0

(un). We first collect a
few facts and definitions:

• (Y1) We call random transformations the collections of random orbits given in
(7.2.1 ), defined on the topological space M with the stationary measure µ" asso-
ciated to the distribution ✓". We remind that additive noise is a special case of it.
We consider on the measurable space (M,B) two Banach spaces of observable,
where C

2

= L1

(Leb) and C
1

are defined as the adapted spaces for which the decay
of correlations applies.

• (Y2) We suppose that the decay actually holds and that the characteristic functions
of measurable sets belong to C

1

.
• (Y3) We consider the process (7.2.7) Xn := � � fn

! , with the probability P =

µ"⇥ ✓N" , where the observable � obeys condition (R1) and it defines the level sets
Un := {� > un} (see 7.2.9)), where un is a sequence of real numbers. We finally
suppose that condition (2.2.2) is satisfied.

From [142], we have

Proposition 7.2.5. If a random transformation (Y1) enjoys property (Y3), condition
(Д

0

(un)) is satisfied for the random process Xn defined in (Y3), provided there
exists a constant C 0 such that ||1Un ||C1

 C 0.

Proof. Sketch. The proof is a simple computation of the correlation integral in Def-
inition (4.2.6), by choosing the right observable. We should actually take 2)

�(x) = 1{X
0

>un} = 1{'(x)>un},

 (x) =
Z

1{'(x),'�f!̃
1

(x), ... ,'�f`�1

!̃ (x)un} d✓
`�1

" (!̃).

which, after substitution in the random evolution operator U" yields
Z

�(x) (U t
" )(x) dµ"

=

Z

µ"
⇣

'(x) > un,' � f t
!(x)  un, . . . ,' � f t+`�1

! (x)  un

⌘

d✓N" (!).

2) The integer ` in the definition of  is motivated by the definition of the condition Д
0

(un), which
actually requires to control the following correlation for all `, t and n

|P (X

0

> un \max{Xt, . . . , Xt+`�1

 un})� P(X
0

> un)P(M`  un)|  �(n, t),

where �(n, t) is decreasing in t for each n and n�(n, tn) ! 0 when n ! 1 for some sequence
tn = o(n).
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The result then follows by observing that
Z

�(x)dµ" = µ"(X0

(x) > un) =

Z

µ"(X0

(x) > un) d✓
N
" (!)

Z

 (x)dµ" =

Z

µ"
⇣

'(x)  un,' � f!
1

(x)  un, . . . ,' � f `�1

! (x)  un

⌘

d✓N" (!).

If we restrict ourselves to additive noise, it is possible to find systems that verify
the previous proposition. Here we present three of such systems, for which we suc-
cessively investigate property Д0

0

(un). We would like to warn the reader that the
regularity conditions of the maps we introduce could be sometimes weakened; we
defer to the quoted references for that; our aim here is to focus on the qualitative
features of such maps.

• S1: one-dimensional uniformly expanding maps. We have already emphasized
above that there will not be a substantial di�erence between maps defined on the
unit circle and on the unit interval, if in the latter situation the image of the unit
interval will be mapped strictly into itself when we add the noise to the unperturbed
map. With this precision, we will refer in the following to maps f defined on the
unit interval M. We will therefore suppose that

1) f is locally injective on the open intervals Ak, k = 1, . . . ,m, that give a (finite)
partition of the unit interval M up to zero measure sets.

2) f isC2 on eachAk and has aC2 extension to the boundaries. Moreover there ex-
ist ⇤ > 1, C

1

< 1, such that infx2M |Df(x)| � ⇤ and supx2M

�

�

�

D2fx)
Df(x)

�

�

�


C

1

. This assumption ensures that the map f admits many absolutely continuous
invariant measure. We will therefore suppose that

3) f admits a unique absolutely continuous invariant measure which is mixing. The
Banach spaces invoked at point (Y1) above will be respectively C

2

= L1

(Leb)
and C

1

: the space of bounded variation (BV) functions defined in Section 4.4.

• S2: multidimensional uniformly expanding maps These maps have been extensive-
ly investigated in [158, 129, 142, 153, 240, 241] and we defer to those papers for
more details. We consider it a particular case corresponding to smooth bound-
aries. Let M be a compact subset of RN which is the closure of its non-empty
interior. We take a map f : M ! M and let A = {Ai}mi=1

be a finite family of
disjoint open sets such that the Lebesgue measure of M\Si Ai is zero, and there
exist open sets ˜Ai � Ai and C1+↵ maps fi : ˜Ai ! RN , for some real number
0 < ↵  1 and some su�ciently small real number "

1

> 0 such that
1) fi( ˜Ai) � B"

1

(f(Ai)) for each i, where B"(V ) denotes a neighborhood of size
" of the set V. The maps fi are the local extensions of f to the ˜Ai.

2) there exists a constant C
1

so that for each i and x, y 2 f(Ai) with dist(x, y) 
"
1

,

| detDf�1

i (x)� detDf�1

i (y)|  C
1

| detDf�1

i (x)|dist(x, y)↵;
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3) there exists s = s(f) < 1 such that 8x, y 2 f( ˜Ai) with dist(x, y)  "
1

, we
have

dist(f�1

i x, f�1

i y)  s dist(x, y);

4) each @Ai is a codimension-one embedded compact piecewise C1 submanifold
and

s↵ +

4s

1� s
Z(f)

�N�1

�N
< 1, (7.2.10)

where Z(f) = sup

x

P

i
#{smooth pieces intersecting @Ai containing x} and

�N is the volume of the unit ball in RN .
5) The Banach space C

2

will be againL1

(Leb),while C
2

will be the space of quasi-
Hölder functions defined in Section 4.4. According to [242, Theorem 5.1], the
assumptions (1)-(4) imply the existence of (many) acip’s µ which will be in
V↵. Since these measures have densities which are convex combinations of the
eigenfunctions of the dual of the transfer operator which is quasi-compact on
V↵, we could find a finite number of mixing measures for some power of f . In
the following we will assume without restriction that:

6) There is only one mixing measure which is invariant with respect to f .

One of the main results in [142] is

Theorem 7.2.6. Let us consider the class of transformations described in the items
S1 and S2 and perturbed with additive noise with probability density equivalent to
the Lebesgue measure on the compact set ⌦. We suppose moreover that properties
Y1, Y2, Y3 are satisfied, with CorP(�,  , t)  Ct�2, for all � 2 C

1

and  2 C
2

.
Then the process Xn = � � fn

! satisfies Д0
0

(un) which together condition Д
0

(un)

established in Proposition 7.2.5 imply that we have an EVL forMn such thatH(⌧) =
e�⌧ . 3)

Proof. Sketch We remind that we have to estimate the quantity

lim

n!1 n
bn/knc
X

j=1

P(X
0

> un, Xj > un), (7.2.11)

where (kn)n2N satisfies kn ! 1 and kntn = o(n). By remembering that
the event Xj > un equals, for our class of observable, the event f�j

! Un, where
Un = {X

0

> un}, we decompose (7.2.11) as

n
bn/knc
X

j=1

P(Un \ f�j
! (Un))  n

bn/knc
X

j=↵n

P
⇣

�

(x,!) : x 2 Un, f
j
!(x) 2 Un

 

⌘

3) Actually, the previous assumptions imply an exponential decay of correlations when the perturbation
is not too large since the random Perron-Frobenius operator remains quasi-compact, see also Remark
7.3.2
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+n
bn/knc
X

j=1

P
⇣

�

(x,!) : x 2 Un, R
!
(Un)  ↵n

 

⌘

:= I + II. (7.2.12)

where, for a given set A, we have defined R!(A) := minx2A minj2N{f j
!(x) 2

A}, and (↵n) is some sequence such that ↵n ! 1 and ↵n = o(log kn). The first
term takes into account the long returns and it can handled by decay of correlations.
We should stress at this point that decay against L1 functions plays here an essential
role. We in fact have for suitable constants C and C⇤

:

P
�

{(x,!) : x 2 Un, f
j
!(x) 2 Un}

�

 (µ"(Un))
2

+ C k1Un
kC

1

k1Un
kL1

(µ")
j�2

 (µ"(Un))
2

+ C⇤µ"(Un)j
�2, (7.2.13)

where C
1

is the Banach space adapted to L1. We should also stress here another
useful fact: the Banach norms are actually computed on characteristic functions and
this will turn out to be crucial in a forthcoming situation. By returning to (7.2.12)
and by summing over j, we see that the first term on the right hand side will go to
zero since by assumption µ✏(Un) ⇠ ⌧/n and for the same reason the second goes
to 0 after having summed the rest of the convergent series in j�2. The second term
II deals with short returns and it is usually the di�cult one to compute because it
uses the topological features of the map. In particular since our maps are defined
on (quotient of) Banach vector spaces, and by using the translation invariance of the
Lebesgue measure (we denote here with g" the density of ✓"), we have for another
suitable constant which takes into account also the finite expectation of g" :

✓N"
��

! : R!(Un)  ↵n

 �


↵n
X

j=1

Z

✓"
⇣n

!j : f
⇣

f j�1

! (⇣)
⌘

+ !j 2 B
2⌘j |Un|(⇣)

o⌘

d✓N"

=

↵n
X

j=1

Z

✓"
⇣n

!j : !j 2 B
2⌘j |Un|(⇣)� f

⇣

f j�1

! (⇣)
⌘o⌘

d✓N"

=

↵n
X

j=1

ZZ

B
2⌘j |Un|(⇣)�f

(

fj�1

! (⇣)
)

g"(x)dLeb d✓
N
"


↵n
X

j=1

g"Leb
�

B
2⌘j |Un|(⇣)

�

 CLeb(Un)
⌘

⌘ � 1

⌘↵n .

The quantity ⌘ > 1 is a Lipschitz constant for the map f which could be easily
defined locally if the map is piecewise continuous on a finite number of domains. By
summing over j and remembering the scaling of kn, ↵n and µ"(Un), it is easy to
check that this second term converges to zero too.

We said above that in order to establish the EVL, it will be enough to get decay
of correlations for characteristic functions. This turns out to be relevant in the rather
unexpected situation of random perturbations of rotations (including rational ones).
Let us therefore introduce our third class of maps:
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• S3: rotations of the unit circle. We consider on the unit circle M the map f(x) =
x + ↵ mod 1, ↵ 2 R, and we perturb it with random noise in this way: f"! =

x + ↵ + "! mod 1, where ! is a random variable uniformly distributed over the
interval [�1, 1].

Notice that we slightly modified the previous notations, especially to emphasize the
role of the strength of the perturbation ". Therefore ✓", the distribution of the noise,
will now be the normalized Lebesgue measure over [�1, 1] and the stationary mea-
sure µ" is now simply the Lebesgue measure (dx) over the unit interval. Finally, we
continue to call U" the random evolution operator. We observe that Proposition 7.2.4
applies to our case and therefore the scaling (2.2.2) is guaranteed: we consider again
the process generated by the observations introduced in (7.2.7) with the probability
P given by assumption (Y3) above. The first interesting result is the decay of corre-
lations for the evolution of measurable sets, which can be proved using the Fourier
transform as in [79]:

Proposition 7.2.7. Let us take the observable � = 1A and  = 1B , where B =

[`l=1

B`, for some ` 2 N and A,B
1

, . . . , B` ⇢ M are connected intervals, then

Cj," :=

�

�

�

�

Z

1

0

U j
" ( )�dx�

Z

1

0

 dx
Z

1

0

�dx

�

�

�

�

 4e�j"2 log(2⇡), (7.2.14)

as long as "2 < 1� log 2/ log(2⇡).

This will enable us to prove immediately condition Д
0

(un) and assumption
Д0

0

(un) is proved similarly to Theorem 7.2.6. We could summarise by establishing
one of the main results in [79]:

Theorem 7.2.8. Let us consider rotations of the unit circle perturbed with additive
noise with uniform distribution. Then the process X

0

, X
1

, . . ., given by (7.2.7) ver-
ifies the scaling of Proposition 7.2.4 and the distribution of the maximum Mn will
converge to an EVL with H(⌧) = e�⌧ .

This result address the question of whether it is possible to distinguish numerically
the real nature of the underlying (unperturbed) system when we look at the extremal
statistics of the randomly perturbed data. To answer this question which is of practi-
cal interest, we used in [79] the fact that the numerical round o� is comparable to a
random noise on the last precision digit [243]. This observation allowed us to claim
that, for systems featuring periodic or quasi periodic motions (as the rotations on the
circle), such a noise level is not su�cient for producing detectable changes regard-
ing the observed extremal behavior. In fact the simulations produced in [79] clearly
showed that EVLs are obtained when considering small but finite noise amplitudes
only when very long trajectories are considered. The quality of the fitting improves
when larger bins are considered: this is in agreement with the idea that we should
get EVL for infinitely small noises in the limit of infinitely long samples. In our
case, EVLs are obtained only for " > 10

�4, which is still considerably larger than
the noise introduced by round-o� resulting from double precision, as the round-o�
procedure is equivalent to the addition to the exact map of a random noise of order
10

�7 [243, 244].
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7.3
Random Transformations via the Spectral Approach

We introduced above the quantity R!(A) as the first random return of the set A to
itself; it is equivalently defined as as the infimum over x 2 A of the first random
hitting time defined by

r!A(x) := min{j 2 N : f j
!(x) 2 A} (7.3.1)

As we will see in the next section this quantity is intimately related to the EVL
statistics; for our actual pourposes it will be enough to observe that if we consider
again the distribution of the maximum {Mm  um} (we keep here the notations of
the previous section), where Um = {� > um} is the event given by a topological
ball shrinking to the point ⇣ , then

(µ" ⇥ ✓N" )((x,!) : r
!
m(x) > m) = (µ" ⇥ ✓N" )(Mm  um) (7.3.2)

Let us write the measure on the left-hand side of (7.3.2) in terms of integrals: it is
given by

ZZ

{r!m>m}

d(µ" ⇥ ✓N" )

=

ZZ

h"1Uc
m
(x)1Uc

m
(f!

1

x) · · ·1Uc
m
(f!m�1

� · · · � f!
1

x) dLeb d✓N" (7.3.3)

which is in turn equal to
Z

M

ePm
",mh"(x) dLeb (7.3.4)

where we have now defined

eP",m (x) := P"(1Uc
m
 )(x), (7.3.5)

Let us note that the operator eP",m depends on m via the set Um, and not on " which
is kept fixed and that eP",m “reduces” to P" as m ! 1. It is therefore tempting
to consider eP",m as a small perturbation of P", the random Perron-Frobenius oper-
ator defined in (7.2.4), when m is large and to see if the spectral properties of P"
could give information on the behavior of eP",m. This approach has been success-
fully proposed by Keller [141] for deterministic systems where the Perron-Frobenius
operator is quasi-compact on suitable adapted spaces. A few properties should be
verified by those systems. These properties are referred to as Rare event Perron-
Frobenius operators (REPFO) by Keller and we summarise them below. Although
those assumptions are stated in a general way, it turns out that they can be success-
fully checked when one of the adapted spaces is L1

(Leb). This is equivalent to
ask exponential decay of correlations on the mixing components against L1

(Leb)
observables. We remind that such a decay reveals to be particularly useful in the
usual probabilistic approach to EVL in order to control the short returns in condition



Lucarini, Faranda, Freitas, Freitas, Holland, Kuna, Nicol, Todd, Vaienti: Extremes and Recurrence in Dynamical
Systems — Chap. 7 — 2016/5/16 — 19:35 — page 158

158

Д0
0

(un). As a byproduct of the REPFO technique, one gets an explicit computation
of the EI. Next, we illustrate Keller’s method in the random setting, and in particular
for random maps defined on the unit interval or on the unit circle. We choose as the
couple of adapted spaces L1

(Leb) and the space BV of bounded variation functions
introduced in Section 4.4. We assume:

(A1) There are constants A > 0, B > 0, D > 0 such that:

8m � 1, 8 2 V, 8n 2 N : || ePn
",m ||1  D|| ||

1

(7.3.6)

9↵ 2 (0, 1), 8m � 1, 8 2 V, 8n 2 N : k ePn
",m kBV  A↵nk kBV +B|| ||

1

(7.3.7)

(A2) The unperturbed operator P" verifies the mixing condition

P" = h" ⌦ Leb +Q",

where h" is the density of the stationary measure and Q" has spectral radius less
than 1.

(A3) 9C > 0 such that

⌘m := sup

k kBV 1

�

�

�

�

Z

(P" � eP",m) dLeb
�

�

�

�

! 0, as m ! 1 (7.3.8)

(A4) and

⌘m
�

�

�

(P" � eP",m)'
0

�

�

�

BV
 C �",m (7.3.9)

where�",m = µ"(Um) = Leb((P" � eP",m)h").

In [142] the following results was obtained

Proposition 7.3.1. The maps introduced in (S1) perturbed with additive noise verify
Assumptions (A1) to (A2) provided we add to the three items quoted in the former
(S1) and the additional requirement:
(4) The density h" of the stationary measure is bounded from below Leb-a.e. .

Remark 7.3.2. It should be pointed out that in order to prove the mixing condition
(A2) we use the fact that the original unperturbed map, with Perron-Frobenius oper-
ator P, is mixing and the fact that the L1-norm of the di�erence P �P" is of order
" for the additive noise.

We now return to Keller’s theory; the above assumptions ensure that the operator
eP",m verifies the spectral equations

eP",m'",m = �",m'",m; ⌫",m eP",m = �",m⌫",m, ��1

",m
eP",m = '",m⌦⌫",m+Q",m

where supm2N ||Qn
",m||BV decays exponentially as n ! 1 and the eigenval-

ues �",m obey 1 � �",m = �",m#"(1 + o(1)), where in turns #" verifies
lim"!0

1��",m

�",m
= #" := 1�P1

k=0

qk,", with

qk," := lim

m!1 qk,",m := lim

m!1
Leb((P" � eP",m)

ePk
",m(P" � eP",m)(h"))

�",m
(7.3.10)
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Armed with these asymptotic expansions of the eigenvalues �",m for m large, we
have

(µ" ⇥ ✓N" )(Mm  um) =

Z

M

ePm
",mh"(x) dLeb

= �m",m

Z

h" d⌫",m + �m",m

Z

Qm
",mh" dLeb

= e�(#"mµ"(Um)+mo(µ"(Um)))

Z

h" d⌫",m +O(�m",m
�

�Qm
",m

�

�

BV
)

Remember that we are under the assumption that m (µ" ⇥ ✓N" )(� > um) =

mµ"(� > um) = mµ"(Um) ! ⌧ , when m ! 1; moreover it follows from
the theory of [148] that

R

h" d⌫",m !
R

h" dLeb = 1, as m goes to infinity. In
conclusion we get

(µ" ⇥ ✓N" )(Mm  um) = e�⌧#"
(1 + o(1))

in the limit, as m ! 1. We remind that in the deterministic case the exponent
multiplying ⌧ was defined as the EI at the point ⇣ , see Definition 3.2.4. It is interesting
to observe that in the random setting the extremal index will always be the same
(= 1), for all the points ⇣ . This is the content of the next proposition drawn from
[142], whose proof is reminiscent of that of Theorem 7.2.6.

Proposition 7.3.3. Let us suppose that f verifies the assumptions of Proposition
7.3.1, but with the density h" not necessarily bounded away from zero. Then for
each k,

lim

m!1 qk,",m = 0,

i.e., the limit in the definition of qk," in (7.3.10) exists and equals zero. Also the EI
verifies #" = 1�P1

k=0

qk," = 1 and this is independent of the point ⇣ serving as
centre of the ball Um.

Another interesting application of this technique is that it provides an explicit for-
mula for HTS with respect to the (annealed) probability.

Proposition 7.3.4 ([142]). Let us suppose that f verifies the assumptions of Propo-
sition 7.3.1; then there exists a constant C > 0 such that for all m big enough there
exists ⇠m > 0 s.t. for all t > 0

�

�

�

�

(µ" ⇥ ✓N" )

⇢

r!Um
>

t

⇠m µ"(Um)

�

� e�t

�

�

�

�

 C�m(t _ 1)e�t

where �m = O(⌘m log ⌘m), and

⌘m = sup

⇢

�

�

�

Z

Um

 dLeb

�

�

�

; k kBV  1

�

.

Moreover, ⇠m goes to #" as m ! 1, and ⌘m goes to zero being bounded by
Leb(Um).
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This result is the random counterpart of the relation between the EVL and the
HTS established in Section 5.3. We get here basically the same result based on the
identification (7.3.2). We would like to point out that the convergence towards the
exponential law and for any ⇣ could be obtained as well using the pure probabilistic
approach of Section 7.2, see in [142, Corollary E]. The spectral approach strength-
ens the latter, since it provides the error in the convergence to the exponential law.
Instead the probabilistic approach allows us to get a further statistical property, by
considering the distribution of the number of exceedances (or hits to U(un)) during
a suitable re-scaled time period. Consider the REPP defined in (3.3.1). In [142] the
following result was proved:

Proposition 7.3.5. Let us suppose that f verifies the assumptions of Proposition
7.3.1; then for the stochastic process defined in (7.2.7) the REPP Nn converges in
distribution to N for n ! 1, where N denotes a Poisson Process with intensity 1.

Remark 7.3.6. The paper [245] gets similar results for the annealed distribution of
the first hitting and return times defined with respect to the probability P introduced
above. The author used super-polynomial decay of correlations against L1 observ-
ables instead of L1 functions.The perturbations used are di�erent from the additive
noise.

7.4
Random Transformations via the Probabilistic Approach: Randomly
Applied Stochastic Perturbations

We have seen in a previous section how a very regular systems like rotations could
enjoy EVL whenever it is perturbed with additive noise. We now introduce another
kind of noise which will allows us to get EVL even for perturbed piecewise contacting
maps (PCM). The noise we refer to was introduced by Lasota and Mackey (see [246],
for instance) and correspond to randomly applied stochastic perturbations (RASP).
They consist in operating a random reset of the initial condition of the original dy-
namical system (M, f)4), at each failure of a Bernoulli random variable: if (xn)n2N
denotes the successive states of such a random dynamical systems, then at each time
n 2 N we have xn+1

= f(xn) with probability (1 � ✏) and xn+1

= ⇡n with
probability ✏, where ⇡n is the realization of a random variable with value in X . This
kind of perturbation corresponds to the family (f!)!2⌦" of random transformations
defined by

f!(x) = ⌘f(x) + (1� ⌘)⇡ 8x 2 X, (7.4.1)

where ! = (⌘,⇡) is a random vector with value in ⌦" = {0, 1} ⇥ X . The two
components ⌘ and ⇡ of ! are independent and ⌘ is a Bernoulli variable with the

4) We are using the notation introduced in the previous section, where the maps f act on a compact subset
M of RD or on the D-dimensional torus.
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probability of being 0 equal to ", while ⇡ is a random variable that we will sup-
pose Lebesgue-uniformly distributed on X . The joint distribution ✓" of these two
components is the product of the Bernoulli measure with weights (1� ", ") and the
uniform measure on X . We will consider again the process (7.2.7) Xn := ' � fn

! ,

with the probability P = µ" ⇥ ✓N" , where the observable � defines the level sets
Un := {� > un} (see 7.2.9)), where un is a sequence of real numbers. We now
apply this kind of noise to contracting maps on the unit interval; we present here a
few already established results [239], further generalizations are under investigations
and they will be simply quoted in the following [247].
Let us therefore take the map f defined on the unit interval I = [0, 1] by

S(x) = ↵x, ↵ 2 (0, 1).

We perturb it according to eq. (7.4.1) giving raise to the family of random maps
defined for each n � 1 by

f!n
(x) = ⌘nS(x) + (1� ⌘n)⇡n, 8x 2 I,

where !n = (⌘n,⇡n).
The first interesting result is that there is only one stationary measure µ" which is
absolutely continuous with respect to the Lebesgue measure on the unit interval and
the density h" reads [246]:

h"(x) = "
p�1

X

k=0

(1� ")k

↵k
8x 2 (↵p,↵p�1

], p � 1.

Notice that the density is bounded for (1� ") < ↵. We can also compute explicitly
the scaling coe�cients of the a�ne normalization un:

Proposition 7.4.1 ([247]). Let ⌧ > 0, y = � ln(⌧) and un =

y
an

+ bn with

an = 1 and bn = log

 

2n"
p�1

X

k=0

(1� ")k

↵k

!

8n 2 N,

If:
(i) z 6= 0 on the interval but not in the countably many discontinuity points of h",
namely z /2 [j2N{↵j};
(ii) p � 1 such that z 2 (↵p,↵p�1

) and n is large enough such that the ball
B(z, e�un

) ⇢ (↵p,↵p�1

), then:

nP(X
0

> un) = ⌧

The next step will be to check the conditions Д
0

(un) and Д0
0

(un). To verify
condition Д

0

(un) we need to show that for specific observables � 2 L1 and  2
L1 the correlations

Cor(�, , n) :=

�

�

�

�

Z

Un
" (�(x)) (x)dµ" �

Z

�(x)dµ"

Z

 (x)dµ"

�

�

�

�
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�

�

�

�

Z Z

�(fn
! (x)) (x)dµ"d✓

N
" �

Z

�(x)dµ"

Z

 (x)dµ"

�

�

�

�

(7.4.2)

decay su�ciently fast with n; U denotes again the random evolution operator.

Proposition 7.4.2 ([247]). If � 2 L1 and  2 L1 \ L1, then

Cor(�, , n)  2(1� ")n||�||L1 || h"||L1 .

We notice that condition Д
0

(un) requires that and � are characteristic functions
of measurable sets. Condition Д0

0

(un) is needed to control short returns in the ball
around z. We can prove that it holds for z 6= 0 and the proof is basically based on
the fact that the image of the ball does not intersect the ball itself for large n. Instead,
whenever z = 0 an extremal index appears in the limiting law for the distribution of
the maxima.

Proposition 7.4.3 ([239, 247]). For the map S(x) = ↵x, ↵ 2 (0, 1) perturbed
with the noise (7.4.1), and by considering the observable �(x) = � log(|x � z|),
conditions Д

0

(un) and Д0
0

(un) hold.
If z = 0 we have the existence of an extremal index less than 1, which is given by ".

The previous result could be generalised in the following direction. We first define
the system

Definition 7.4.4. RASP maps Let us take X a compact subset of RD which is
the closure of its interior X = int(X),equipped with some metric d and with the
normalized Lebesgue measure Leb; suppose {Xi}Ni=1

is a collection of N disjoint
open subsets of X such that X =

SN
i=1

Xi and Leb(�) = 0, where � := X \
SN

i=1

Xi is the singular set. We will consider non singular maps f : X ! X
which are injective and such that f |X\� is a C1-di�eomorphism. We say that f
is continuous in a point w of the boundary of X if there is an open ball of radius
, B(w) such that f is continuous on B(w) \ int(X) and it can be extended
continuously on B(w,).

In the examples we have treated, the set� will be composed by points where f is
discontinuous and by the points of the boundary of X . We would like to stress that
a point of that boundary is not necessarily a discontinuity point of f .

The density of the stationary measure has the expression

h"(x) = "
1
X

k=0

(1� ")kJk(x)1⇤k
(x) 8x 2 X. (7.4.3)

where {⇤k}k2N be the sequence of sets defined by ⇤
0

:= X and ⇤k+1

:= f(⇤k \
�) for all k � 1. We denote with Jk(x) :=

Qk
l=1

| det(f 0
(f�l

(x))|�1 for all
k � 1 and J

0

(x) := 1(x).
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We then decompose our study of the existence of EVL in two parts. The first part
concerns the point of ⇤

1

\ ˜

⇤, where

˜

⇤ :=

\

k2N
⇤k. (7.4.4)

The set ˜⇤ is called the global attractor of f and contains all the point of⇤. In⇤
1

\ ˜⇤
we can verify the conditions Д

0

(un) and Д0
0

(un) to show the existence of EVL still
for the observable �(·) = � log d(·, ⇣), ⇣ 2 X , but in ˜

⇤ condition Д0
0

(un) is not
verified. For this reason in the second part, we introduce other conditions which allow
us to show the existence of an EVL but with an extremal index di�erent from 1; this
is achieved by assuming an additional property, namely, by choosing f as a piecewise
contracting map. It has been shown in [248] that for any piecewise contracting map
defined on a compact space, if the global attractor ˜⇤ does not intersect the set of the
discontinuities, then it is composed of a finite number of periodic orbits. Moreover,
this condition, for injective maps as ours, is generic in the C0 topology [249].

Theorem 7.4.5 ([247]). Suppose f : X ! X satisfies Definition 7.4.4 and consider
the random perturbations defined in (7.4.1) with P = µ" ⇥ ✓N" , where µ" is the sta-
tionary probability measure.Then, for any z 2 ⇤

1

\˜⇤, the sequence {Mn}n2N of the
maxima of the process defined for every n 2 N by Yn(x,!) := � log d(fn

! (x), z)
admits the Gumbel’s law as extreme values distribution.
Suppose now that f is piecewise contracting, that is, there exists ↵ 2 (0, 1) such
that for every i 2 {1, . . . , N} we have

d(f(x), f(y))  ↵d(x, y) 8x, y 2 Xi.

Suppose that the set ˜⇤ does not contain any discontinuity point of f , and let z 2 ˜

⇤.
LetY

0

, Y
1

, . . . be the stochastic process given byYn(x,!) := � log d(fn
! (x),O(z),

whereO(z) is the orbit of z. Let (un)n2N be a sequence such that limn!1 nP(X
0

>
un) = ⌧ > 0. Then we have

lim

n!1P(Mn  un) = e

�"⌧ .

We notice that the existence of the limit limn!1 nP(X
0

> un) = ⌧ > 0

could be proved again with general arguments, since P satisfies (R1), but the scaling
coe�cients an and bn could also be computed explicitly even on the global attractor
provided the density of the stationary measure is essentially bounded.

Typical examples of piecewise contracting maps for which the attractor is gener-
ically a finite set of periodic orbits are piecewise a�ne. That is, if for each i 2
{1, . . . , N} the restriction fi := f |Xi

of the map f : X ! X of Definition 7.4.4
to a piece Xi has the following form:

fi(x) = Aix+ ci 8x 2 Xi,

where Ai : RD ! RD is a linear contraction and ci 2 X .
The simplest example of a piecewise contracting map of this class is given in di-
mension 1 on the interval [0, 1] by f(x) = ax + c with a, c 2 (0, 1) (here
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X
1

= (0, (1 � c)/a), X
2

= ((1 � c)/a, 1) and � = {0, 1, (1 � c)/a}). For
almost all the values of the parameters a and c, the global attractor e⇤ is composed of
a unique periodic orbit (whose period depends on the specific values of the parame-
ters), but for the remaining set of parameters the global attractor is a Extremal Index
- EI set supporting a minimal dynamics. We refer to [248] for a detailed description
of the asymptotic dynamics of this map. We just quoted above the case with c = 0

and 0 the (unique) fixed point.
In the unit square X = [0, 1]2, another interesting example is given by a map
with four pieces X

1

:= (0, T
1

) ⇥ (0, T
2

), X
2

:= (T
1

, 1) ⇥ (0, T
2

), X
3

:=

(0, T
1

) ⇥ (T
2

, 1) and X
4

:= (T
1

, 1) ⇥ (T
2

, 1), singular set � given by the two
segments {x = T

1

}, {y = T
2

} and the boundary of the unit square, and restricted
maps f

1

(x, y) := a(x, y) + (1 � a)(1, 0), f
2

(x, y) := a(x, y) + (1 � a)(1, 1),
f
3

(x, y) := a(x, y) and f
4

(x, y) := a(x, y)+(1�a)(0, 1). Once again, for almost
all values of the parameter a 2 [0, 1), T

1

and T
2

, the global attractor is composed of
a finite number of periodic orbits. However, contrarily to the 1 dimensional case, the
number of periodic orbits increases with the parameter a and tends to infinity when
a goes to 1. This example belongs to a larger class of higher dimensional piecewise
a�ne contracting maps which are models for genetic regulatory networks and are
studied in [250]. We would like to conclude this section with two comments:

1) We stress that the first part of Theorem 7.4.5 applies to any map verifying the as-
sumptions in Definition 7.4.4, not necessarily to PCM, provided we take the target
point z outside the global attractor. As an example we could quote the baker’s
transformation defined on the unit square, see [247] for a detailed description of it.

2) Piecewise contacting maps could also be perturbed with additive noise. In [239],
a numerical analysis was performed. In this situation it is di�cult to get rigorous
results since we do not dispose of useful tools like the Fourier series technique
for rotations. Nevertheless we could show a convergence toward a Gumbel’s law
together with the presence of an EI less than 1 for some periodic target points z.
It is remarkable that for PCM the two kinds of perturbations considered, RASP
and additive noise, do not smoothen out completely the periodicity features of the
unperturbed map, as this is reflected in the persistency of an extremal index less
than one.

7.5
Observational Noise

A di�erent type of perturbation is given by the observational noise; it a�ects the
observations of the orbits of a dynamical systems (M, f, µ), where µ is f -invariant,
but does not a�ect the dynamics itself (here again M is a compact subset of RD or
on theD-dimensional torus). Precisely, it consists in replacing the orbit (fn

(x))n2N
of a point x 2 M, by the sequence (yn)n2N defined by

yn := yn(x,⇡) := fn
(x) + "⇡n 8n 2 N, (7.5.1)
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where " > 0 and ⇡n = ⇧n(⇡), n 2 N, where⇧n projects on then-th component of
⇡ = (⇡

0

,⇡
1

, . . . ,⇡n, . . . ), and these components are i.i.d. random vectors, which
take values in the hypercube ⌦

1

of RD centered at 0 and of side 2, and with com-
mon distribution ✓, which we choose absolutely continuous with density ⇢ 2 L1

Leb,
namely, d✓(⇡) = ⇢(⇡)dLeb(⇡), with

R

⌦

1

⇢(⇡)dLeb(⇡) = 1

5).
An orbit perturbed with observational noise mimics the behavior of an instrumen-

tal recorded time series. Instruments characteristics, defined as precision and accu-
racy, act both by truncating and randomly displacing the real values of a measured
observable. It has also been shown in [251] that in the computation of some statis-
tical quantities, the dynamical noise corresponding to the random transformations
described above, could be considered as an observational noise with the Cauchy dis-
tribution.

We now take a function � as in (7.2.7), and we define the stochastic process

X
0

(x,⇡) = �(x+"⇧
0

⇡), X
1

(x,⇡) = �(f(x)+"⇧
1

⇡), . . . , Xn(x,⇡) = �(fn
(x)+"⇧n⇡)

It is easy to see that this process is stationary with respect to the product measure
P = µ⇥ ✓N, defined on the product space M⇥ ⌦N

1

with the product �-algebra.
If the observable � is chosen as �(x) = � log(dist(x, ⇣)), being dist a distance

on the metric space M, then we have the analogous of Proposition 7.2.4, namely:

Proposition 7.5.1 ([65]). Let us consider the dynamical systems (M, f, µ); we per-
turb it with observational noise and we consider the associated processXn(x,⇡) :=
� log(||fnx+ "⇡n)� ⇣||) endowed with the probability P = µ⇥ ✓N. We suppose
moreover that ✓ is the Lebesgue measure measure on S. Then the linear sequence
un := y/an + bn defined in (2.2.2) verifies

an = d and bn =

1

D
log

✓

n KD µ(B"(⇣))

(2")D

◆

. (7.5.2)

where KD is the volume on the unit hypercube in RD and ⇣ belongs to the support
of the measure µ.

The next step will be to provide class of maps f for which conditions Д
0

(un) and
Д0

0

(un) are satisfied; these maps are very similar to those given in the items S1 and
S2 above. We call this class:

• SO. They are defined on the torus M = TD with the norm || · || and satisfy:
1) There exists a finite partition (mod-0) of M into open sets Yj , j = 1, · · · , p,

namely M = [p
j=1

Yj , such that T has a Lipschitz extension on the closure of
each Yj with a uniform and strictly larger than 1 Lipschitz constant ⌘, ||T (x)�
T (y)||  ⌘||x� y||, 8x, y 2 Yj , j = 1, · · · , p.

2) We will suppose that f preserve a Borel probability measure ⌫ which is also
mixing with decay of correlations given by
�

�

�

�

Z

f � fmhd⌫ �
Z

fd⌫
Z

hd⌫

�

�

�

�

 C||h||B||f ||1m�2 (7.5.3)

5) Each ⇡ is a vector with d components; all these components are independent and distributed withnoise
common density ⇢0; the product of such marginals ⇢0’s gives ⇢.
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where the constant C depends only on the map T , || · ||
1

denotes the L1

⌫ norm
with respect to ⌫ and finally B is a Banach space included in L1

Leb. We will also
need that ⌫ be equivalent to Leb with density in L1

Leb.

Proposition 7.5.2 ( [65]). Let us suppose that our dynamical systems verifies As-
sumption SO and it is perturbed with observational noise defined above. Then con-
ditions Д

0

(un) and Д0
0

(un) hold for the observable �.

An interesting application of the two previous Propositions is obtained when the
distribution of the additive noise is exactly the Lebesgue measure. For the given
magnitude of the noise "we could take as first approximation to the invariant measure
of the ball ⌫(B"(⇣, ) ⇡ "d(⇣), where d(⇣) is the local dimension defined in Eq.
4.2.8; see a more detailed discussion of such a scaling in the Chapter 8, when noise
is, instead, absent. Then the linear scaling parameter bn of the EVL is expected to
behave as

bn ⇠ 1

D
log(n✏d(⇣)�D

). (7.5.4)

where D is the ambient space dimension. Therefore we have an useful technique
to detect the local dimension of the measure, with a finite resolution given by the
strength of the noise. This will also allow us to compute directly the distribution
of the maxima with the a�ne linearization given by the explicit expression of the
un. This would be particularly useful whenever the invariant measure is singular
and therefore the GEV distribution, see Section 1.1, does not admit a probability
density function: see also [77, Section 3.1] for a detailed discussion on this point.
Of course the rigorous applicability of these arguments is ensured for the moment
for systems verifying the two previous propositions; nevertheless we investigated the
scaling (7.5.4) for more general systems like one-dimensional repellers with a canto-
rian structure and strange attractors. In both cases the dimension D computed with
formula (7.5.4) is in good agreement with the value of the Kaplan-Yorke dimension.
We defer to Chapter 9 for a detailed description of these numerical experiments and
also to other applications of the observational noise, for instance the possibility to
discriminate between highly recurrent and sporadic points. This is based again on
formula (7.5.4) and the simple observation that if the ball around ⇣ is visited with
less frequency, the local density is of lower order with respect to ", which means
that one should go to higher values of n in order to have a reliable statistics, namely
a good convergence for bn. As we argued in [65] the main advantage of studying
recurrence properties in this way over applying other techniques is due to the built-in
test of convergence of this method: even for a point rarely recurrent there will be a
time scale n such that the fit converges. In [80] we used this technique to define rig-
orous recurrences in long temperature records collected at several weather stations
in Europe.
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7.6
Non-stationarity – the Sequential Case

We now discuss briefly the case when the process X
0

, X
1

, . . . is not stationary: we
stress that stationarity plays an important role to establish extreme value statistics.
On the other hand, Hüsler [252] gave a non-stationary version of EVL in the case
of non-stationary sequences without identical marginal distributions. In the domain
of non-autonomous dynamical systems it is natural to relax the stationary assump-
tion. In a forthcoming paper [253] we will present an approach to this problem with
applications to the class of sequential maps and we will now briefly mention these
results. The starting point is to provide a generalisation of Hüsler’s results in a pure
probabilistic setting and with an adjustment of the dependence conditions Дq(un)

and Д0
q(un) introduced in Chapter 4.

By using the notations introduced in the previous sections, we state that our main
goal is now to determine the limiting law of

Pn = P(X
0

 un,0, X1

 un,1, . . . , Xn�1

 un,n�1

)

as n ! 1, where {un,i, i  n� 1, n � 1} is considered a real-valued boundary.
Define x

0,i = sup{x : Fi(x) < 1} and let Fi(x0,i�) = 1 for all i and assume that

¯F
max

:= max{ ¯Fi(un,i), i  n� 1} ! 0 as n ! 1, (7.6.1)

which is equivalent to

un,i ! x
0,i as n ! 1, uniformly in i,

where ¯Fi(x) = 1� Fi(x) for all i.
Let us denote F ⇤

n :=

Pn�1

i=0

¯Fi(un,i),. and assume that there is ⌧ > 0 such that

F ⇤
n :=

n�1

X

i=0

¯Fi(un,i) ! ⌧. (7.6.2)

The main result in the first part of the forthcoming paper [253] is to show that for
X

0

, X
1

, . . . a non-stationary stochastic process such that (7.6.1) and (7.6.2) hold for
some ⌧ > 0,then as long as some specially adapted conditions Дq(un) and Д0

q(un)

hold then

lim

n!1Pn = e�✓⌧ ,

where ✓ is also defined as before with necessary adjustments to this non-stationary
setting.

Let us give now an example where the previous theorem applies; since we are in-
terested in connection with dynamical systems, we could get a situation which fits
with the previous considerations by taking, as before, a concatenation of maps but
which are now chosen without any distribution for the !k, namely we take the maps
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(f!k
)k�0

in some set and compose them. Let us consider for simplicity a distance
observable of the form (7.2.7) with �(·) = � log(dist(⇣, ·)), and take the very par-
ticular dynamical systems given by �-transformations. Let us call T (x) = T�(x) =
�x mod 1, the original unperturbed �-transformation and take the other transforma-
tions of the same kind x ! �kx mod 1, with �k � 1 + a, 8k � 1, where a is a
given positive number and moreover |�n � �|  1

n◆ , with ◆ > 1. Notice that the
process Xk(·) = �(f!k

� · · · � f!
1

(·)), equipped with the probability P given by
the Lebesgue measure Leb is not necessarily stationary nor independent.
By using the theory of sequential �-transformations developed in [254], we can apply
the generalisation of Extreme Value Theory to non-stationary sequences obtained in
the first part of [253] and actually verify the adapted conditions Дq(un) and Д0

q(un).
We can also obtain that, when ⇣ is periodic, explicit expressions for the EI. It is in-
teresting to notice that even in this sequential setting the extremal indices could be
smoothed out. Let us consider for instance � = 5/2 and T = T� = 5/2x mod 1.
Let ⇣ = 2/3. Note that T (2/3) = 2/3. Consider a sequence �n = 5/2 + "n, with
"n = n�↵, where ↵ < 1. Note that 1/n = o("n). It is possible to show that at
⇣ = 2/3 although for the unperturbed system T shows an EI equal to 1�2/5 = 3/5,
for the sequential systems chosen as above the EI is equal to 1.



Lucarini, Faranda, Freitas, Freitas, Holland, Kuna, Nicol, Todd, Vaienti: Extremes and Recurrence in Dynamical
Systems — Chap. 8 — 2016/5/16 — 19:35 — page 169

169

8
A Statistical Mechanical Point of View

8.1
Choosing a Mathematical Framework

In this chapter, we want to present some results of practical significance for studying
the extremes of complex systems featuring chaotic behavior. We take a di�erent point
of view with respect to the previous chapters of the book, as we will sacrifice some
mathematical rigour and try to address the properties of typical - to be understood
below - physically relevant systems, having the statistical mechanical perspective of
envisioning high-dimensional dynamical systems.

We focus our attention on Axiom A systems [70], which are a special class of dy-
namical systems possessing a Sinai-Ruelle-Bowen (SRB) invariant measure [161]
and featuring uniform hyperbolicity in the attracting set. Such invariant measure co-
incides with the Kolmogorov’s physical measure, i.e. it is robust against infinitesimal
stochastic perturbations. Another important property of Axiom A systems is that it
is possible to develop a response theory for computing the change in the statistical
properties of any observable due to small perturbations to the flow [83, 84]. Such
a response theory has recently been the subject of intense theoretical [255, 256], al-
gorithmic [257, 258, 259], and numerical investigations [260, 261, 262, 263] and is
gaining prominence especially for geophysical fluid dynamical applications. More-
over, the response theory seems to provide powerful tools for studying multiscale
systems and deriving parametrizations of the impact of the fast variables on dynam-
ics of the slow variables [264, 265].

Finally, most importantly, Axiom A systems are a good paradigm to describe high
dimensional systems, which can be described by statistical mechanics. While the dy-
namics of natural or artificial systems are most often definitely not Axiom A, Axiom
A systems can serve as good e�ective and tractable models already revealing fea-
tures of non-equilibrium statistical mechanics, that is features which should hold in
a properly interpreted manner for a much larger and more realistic class of systems.
In other words, we subscribe to the so-called chaotic hypothesis, which is somewhat
the equivalent in the non-equilibrium framework of the classic ergodic hypothesis
for equilibrium dynamics [266]. Moreover, as discussed in [263], when we perform
numerical simulations we e�ectively assume implicitly that the system under inves-
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tigation is in large parts like an Axiom A or very similar to an Axiom A system. In
order to avoid misconception, this does not mean that the story ends with Axiom A
systems, quite the contrary, it just shows the enormous relevance to extend the theory
of chaotic dynamical system further and further, which is a mathematical challenge
under active investigation [267, 268].

In this chapter we concentrate on Axiom A systems, which seems, in light of the
previous discussion, a good mathematical framework to provide insights and results
useful for a large spectrum of applications in statistical mechanics and physics in
general.

The strong technology developed for Axiom A systems is instrumental in the
derivation of various results on the relationship of parameters describing the ex-
tremes to the dynamical and geometrical properties of the system, and will allow
addressing the problem of the sensitivity of extremes to small perturbations of the
system in a general conceptual way. The dependence of the properties of extremes of
parametric modulations of the underlying dynamics is an issue of relevant theoretical
as well as applicative interest. The practical interest stems from the fact that it is
relevant to be able to control or predict variations in extreme events due to small
perturbations to the dynamics to quantify for example model errors. The theoretical
interest comes from the fact that when considering extremes, universal parametric
probability distributions can be defined, as opposed to the case of the bulk statistical
properties. Because of this, we may hope to reconstruct the parameters descriptive
of the extremes from simple moments of the distributions, express these in terms
of observables of the system, and use the Ruelle response theory for expressing
rigorously the sensitivity of extremes to small perturbations to the dynamics. Our
construction will be based on the POT method and will lead to deriving explicitly
the parameters of the corresponding GPD, but our results can be pulled back to the
equivalent GEV formulation.

8.2
Generalized Pareto Distributions for Observables of Dynamical Systems

Let us consider a continuous-time Axiom A dynamical system ẋ = G(x) on a com-
pact manifold X ⇢ RD (phase space), where x(t) = f t

(xin), with x(t = 0) =

xin 2 X initial condition and f t evolution operator, is defined for all t 2 R�0

.
Let us define ⌦ as the attracting invariant set of the dynamical system, so that µ is
the associated SRB measure supported in ⌦ = supp(µ). We consider two di�erent
classes of function mapping X to R, the so-called distance observables and the so-
called physical observables, which we have already encountered in Sect. 4.2.1 and
Sect. 4.6, respectively, and briefly recapitulated below.
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8.2.1
Distance Observables

Distance observables can be expressed as functions g : X ! R[ {+1} written as
g(r), with r = dist(x(t), ⇣) � 0, where ⇣ 2 ⌦ is a reference point belonging to
the attractor. In Section 4.2.1 we have already introduced the three observables gi,
i = 1, 2, 3:

g
1

(r) = � log(r) (8.2.1)
g
2

(r) = r�1/↵,↵ > 0 (8.2.2)
g
3

(r) = �r1/↵,↵ > 0 (8.2.3)

We analyze exceedances of g (chosen among the gi’s, i = 1, 2, 3, given above) above
a certain threshold T . Due to the invertibility of the function g, the threshold T is in
one to one correspondence to a radius r⇤, namely T = g(r⇤). An above-threshold
event happens every time the distance between the orbit of the dynamical system
and ⇣ is smaller than r⇤. See Figure 8.1 for clarification. In order to address the
problem of extremes, we have to consider balls of small radii. Therefore, we denote
the exceedances above T by z = g(r)�T . That is, if at time t the dynamical systems
is at x(t), then we have an exceedance g(dist(x(t), ⇣)) � T , if this expression is
non-negative. The number of exceedances above z + T relative to the number of
exceedances above T up to time t can be written as:
R t
0

⇥(g(dist(x(s), ⇣))� T � z)ds
R t
0

⇥(g(dist(x(s), ⇣))� T )ds
(8.2.4)

or discrete version of this expression, if discrete dynamics is considered. Hence, by
ergodicity of the system we can express this ratio for a large observation window in
time by the ergodic measure µ. If we choose the starting point with respect to the
invariant measure µ then the dynamics become a stationary process and if we denote
its law by P we can express the ratio as

P(g(dist(x, ⇣)) < z+T |g(dist(x, ⇣)) < T ) =
P(g(dist(x, ⇣)) < z + T )

P(g(dist(x, ⇣))r < T )
,(8.2.5)

In terms of the invariant measure µ of the system, we have that the probability
Hg,T (z) of observing an exceedance of at least z above T given that an exceedance
above T has occured is given by:

Hg,T (z) ⌘
µ(Bg�1

(z+T )

(⇣))

µ(Bg�1

(T )

(⇣))
. (8.2.6)

Obviously, the value of the previous expression is 1 if z = 0. In agreement with the
conditions given on g, the expression contained in Eq. 8.2.6 monotonically decreas-
es with z and vanishes when z = zmax

= gmax � T . Note that the corresponding
d.f. is given by Fg,T (z) = 1�Hg,T (z), so that, using the convention introduced in
Chapter 2, we write ¯Fg,T (z) = Hg,T (z). Equation 8.2.6 clarifies that we have trans-
lated the computation of the probability of above-threshold events into a geometrical
problem.
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Figure 8.1 If we consider a distance observable of the form g = g(r), where r is the
distance from ⇣ and g is monotonically decreasing with a maximum for r = 0, events
above the threshold T are given by close returns of the orbit near ⇣, at a distance r from ⇣

smaller than r

⇤
= g

�1
(T ). The conditional probability of exceedances is constructed by

taking the ratio of the mass of the attractor contained inside a sphere of radius r divided
by the mass of the attractor contained inside a sphere of radius r

⇤. For more details, cf.
the main text.

For Axiom A systems one has that the local dimension around ⇣ introduced in Eq.
4.2.8 and given by d(⇣) = limr!0

(log(µ(Br(⇣)))log(r)) is such that d(⇣) = dH
almost everywhere on the attractor [269, 270], where dH is the Hausdor� dimension,
and we additionally have that dH = dq , 8q 2 N, where dq are the generalised Renyi
dimensions [71]. Moreover, we follow the conjecture that dH = dKY , where dKY

is the Kaplan-Yorke dimension [71] (note that this conjecture is not essential for most
of the considerations in this chapter):

dKY = n+

Pn
k=1

�k
|�n+1

| , (8.2.7)

where the �j’s are the Lyapunov exponents of the systems, ordered from the largest
to the smallest, n is such that

Pn
k=1

�k is positive and
Pn+1

k=1

�k is negative.
Following [269], we can also write dH = du+dn+ds, where ds, du and dn are the

dimensions of the attractor⌦ restricted to the stable, unstable and neutral directions,
respectively, at the point x = x

0

. We have that du is equal to the number of positive
Lyapunov exponents �+j , du = #({�j > 0, j = 1, . . . , d}), the dimension dn is
unitary for Axiom A systems, while ds is given by ds = dH � du � dn. Note that,
if dH = dKY , it follows that {ds} = ds � bdsc =

Pn
k=1

�k/|�n+1

|, because the
last term gives a positive contribution smaller than 1, and du and dn are both integer
numbers.
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In order to proceed with the derivation of an EVL, the asymptotics provided in Eq.
4.2.8 is not su�cient to guarantee the convergence of the expression in (8.2.6). One
needs to assume that

µ(Br(⇣)) = f⇣(r)r
dH , (8.2.8)

where f⇣(r) is a slowly varying function of r as r ! 0 possibly depending on ⇣ , i.e.,
for small enough s, we have that limr!0

f⇣(sr)
f⇣(r)

= 1. Two functions f and g as such
that f ⇠ g for x ! y if limx!y f(x)/g(x) = 1. An equivalent way to express
that f is slowly varying is to say that for small enough s one has that f(st) ⇠ f(t)
at t ! 0. Hence, if f ⇠ g and if f is slowly varying, then also g is slowly varying.

Inserting the expression 8.2.8 in Eq. 8.2.6 we obtain the following expression for
the tail probability of exceedance:

¯Fg,T (z) ⇠
✓

g�1

(z + T )

g�1

(T )

◆dH

, (8.2.9)

where the slowly varying terms coming from f⇣(r) cancel out, as a result of the
property of f mentioned above. By replacing g with the specific observables we are
considering, we obtain explicitly the corresponding distribution for the extremes.

By choosing an observable of the form given by either g
1

(r) = � log(x), g
2

(r) =
x�1/↵, or g

3

(x) = C � x1/↵, we derive as EVL a member of the GPD family. In
fact, substituting g�1

1

(y) = exp(�y), g�1

2

(y) = y�↵, and g�1

3

(y) = (C � y)↵

into Eq. 8.2.9 and comparing with Eq. 3.1.8, we derive that

Fgi,T (z) = GPD⇠

⇣ z

�

⌘

,

where the parameters for the di�erent cases are:

• g
1

-type observable:

� =

1

dH
, ⇠ = 0; (8.2.10)

• g
2

-type observable:

� =

T

↵dH
, ⇠ =

1

↵dH
; (8.2.11)

• g
3

-type observable:

� =

C � T

↵dH
, ⇠ = � 1

↵dH
. (8.2.12)

The previous expressions show that there is a simple algebraic link between the pa-
rameters of the GPD and the Hausdor� dimension of the attractor, and suggest multi-
ple ways to extract it from di�erent outputs of statistical inferences procedures on da-
ta. Assuming Axiom A dynamics allows to derive global results from the recurrence
properties of almost every point of the attractor. One needs to note that assuming
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Axiom A property is relevant only for relating local measurements to global prop-
erties. Additionally, we remind that in the case of Axiom A systems the conditions
Д

0

(un) and Д0
0

(un) discussed in Chapter 4 are automatically obeyed for the consid-
ered observables gi’s, i = 1, 2, 3. This is fundamentally why the results presented
in this section agree with what obtained in Sect. 4.2.1 using the GEV approach, at
least when one does not consider as ⇣ one of the period points of the attractor.

Let’s now for step out of the comfortable Axiom A world. In this case, d(⇣) is not
necessarily constant a.e. in ⌦, but the formulas in Eqs. 8.2.8-8.2.12 are still valid,
modulo substituting dH with d(⇣). Hence the analysis of extremes of gi(dist(x, ⇣)),
i = 1, 2, 3 provides information on the local fine structure of the attractor, and,
in particular, on the local dimension d(⇣) around the point ⇣ . Note that nowhere
in the derivation we need to introduce conditions on the decay of correlations of
the observables, because our construction is purely geometrical, and no dynamics is
involved (except assuming ergodicity). Interestingly, the GPD approach can be used
also when studying regular systems or systems featuring slow decay of correlations
for the considered observables [78].

Instead, as discussed in the previous Chapters, deriving corresponding EVLs fol-
lowing the GEV approach requires assuming Д

0

(un) and Д0
0

(un) conditions for the
observable g(dist(x, ⇣)) [77]. If such conditions apply, the GPD and GEV points
of view on the extremes are, indeed, equivalent.

8.2.2
Physical Observables

Physical observables have been introduced in Sect. 4.6 and some examples of rel-
evance in, e.g., fluid dynamics are given in Eq. 4.6.1. The physical observables
can be written as functions A : ⌦ ! R whose maximum restricted to the sup-
port of µ is unique, so that is there exists a unique x

0

2 ⌦ such that A
max

⌘
max(A)|

⌦

= A(x
0

). Moreover, we assume that x
0

is not a critical point, so
that rA|x=x

0

6= 0, where the gradient is taken in RD . Therefore, we have that
the neutral manifold and the unstable manifold have to be tangent to the manifold
{A(x) = A

max

} = {x 2 X : A(x) = A
max

} in x = x
0

. We also have that the
intersection between the manifolds {x 2 X : A(x) = ˜A} and ⌦ is the empty set if
˜A > Amax. We define as ˜

⌃

T
A

max

the subset of RD included between the manifolds
{x 2 X : A(x) = A

max

} and {x 2 X : A(x) = T}.
Furthermore, we define as ⌃T

A
max

the subset of RD included between the hyper-
plane �max tangent to the manifold A(x) = A

max

in x = x
0

, that is {x 2 X :

(x� x
0

)n̂ = 0}, where n̂ = rA|x=x
0

/|rA|2x=x
0

| is the normal vector of length
|rA|�1

x=x
0

|, and the hyperplane �T , which is obtained by applying the translation
given by the vector (T �A

max

)n̂ to the hyperplane �
max

, in other words all points
with the distance (T�A

max

) from�
max

. Hence,⌃T
A

max

= {x 2 X : T�A
max


(x� x

0

)n̂  0}.
As T ! A

max

, which is the limit we are interested in, we have that ˜⌦T
A

max

=

⌦ \ ˜

⌃

T
A

max

and ⌦T
A

max

= ⌦ \ ⌃T
A

max

become undistinguishable up to leading
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Figure 8.2 A low-dimensional cartoon of the geometrical construction used for deriving
the EVL for exceedances above the threshold T for the observable A(x) such that
max(A)|⌦ = A

max

is realized for x = x0. a) The manifolds A(x) = A

max

and A(x) = T

are depicted, together with the attracting invariant set ⌦ and the two hyperplanes �
max

and �
T

. �
max

is tangent to A(x) = A

max

in x0 and �
T

is obtained from �

max

via
translation along (T �A

max

)ĝ. b) The hyperplanes �
max

and �
T

delimit the region
⌃

T

max

. Its intersection with ⌦ is ⌦

T

max

. c) The manifolds A(x) = A

max

and A(x) = T

delimit the region ˜

⌃

T

max

. Its intersection with ⌦ is ˜

⌦

T

max

. As T ! A

max

, we have that
⌦

T

max

! ˜

⌦

T

max

.

order. See Fig. 8.2 for a depiction of this geometrical construction.
More in general, we denote as ⌦U

V , with V > U > T , the intersection between ⌦
and the subset of RD included between the hyperplane �U and �V , where �X , X =

U, V , is obtained from �max by applying to it the translation given by the vector
(X �A

max

)n̂, that is ⌦U
V = {x 2 X : U �A

max

 (x� x
0

)n̂  V �A
max

}.
It is now clear that we observe an exceedance of the observable A(x) above T

each time the systems visits a point belonging to⌦T
Amax

. In more intuitive terms, and
taking the linear approximation described above, an exceedance is realized each time
the system visit a point x 2 ⌦ whose distance dist(x,�max) from the hyperplane
�max is smaller than ymax = (Amax � T )/|rA|x=x

0

|.
We define the exceedances Z above T as all points x 2 ⌦ with distance y =

dist(x,�T ) = Z/|rA|x=x
0

| from �T , and the maximum exceedance A
max

� T
corresponds to a distance (A

max

� T )/|rA|x=x
0

| between x
0

and �T .
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As P (z > Z|z > 0) = P (z > Z)/P (z > 0), the probability ¯FT (Z) of
observing an exceedance of at least Z conditionally that an exceedance occurs is
given by:

¯FT (Z) ⌘
µ(⌦T+Z

A
max

)

µ(⌦T
A

max

)

, (8.2.13)

where we have used the same arguments as in the case of distance observables based
on the ergodicity of the system. Obviously, the value of the previous expression is 1
if Z = 0. The expression contained in Eq. (8.2.13) monotonically decreases with Z
(as ⌦T+Z

2

A
max

⇢ ⌦T+Z
1

A
max

if Z
1

< Z
2

) and vanishes when Z = A
max

� T .
Let us now estimateµ(⌦T

A
max

) as a function of y
max

in the case of generic quadrat-
ic tangency between the hyperplane A(x) = A

max

and the unstable manifold in
x = x

0

.

8.2.3
Derivation of the Generalised Pareto Distribution Parameters for the
Extremes of a Physical Observable

We now wish to understand how to express the numerator and denominator of Eq.
8.2.13 as a function of T , Z , and Amax.

Following [44], we build upon the construction proposed by [81] and discussed
thoroughly in Sect. 6.10. We derive the result by considering the following heuristic
argument. Near x

0

, the attractor could be seen as the cartesian product of a multi-
dimensional paraboloid (of dimension du + dn) times a fractal set of dimension ds
immersed in RD�du�dn . Note that this excludes, e.g., conservative chaotic systems,
whose attractor has the same dimension of the phase space, and systems that can
be decomposed into a conservative part and a purely contractive part, whose attrac-
tor also has integer dimension. The mass of the cut of the paraboloid contained in
⌦

Z+T
A

max

with the stable and the neutral direction is ⇠ hu,x
0

(r)rdu+dn , where r is the
distance from the minimum and hu,x

0

(r) is a slowly varying function of r as r ! 0

for an SRB-measure µ. Instead, the cut of the paraboloid with the unstable directions
has asymptotically a mass of corresponding fractal set ⇠ hs,x

0

(l)lds , where l is the
distance along the cartesian projection and hs,x

0

(l) is a slowly varying function of l
as l ! 0, possibly depending on x

0

. The existence of such a function is an additional
requirement, cf. the discussion in the case of the distance variable.

In our case, l = �y
max

and r = 
p
y
max

, which results from the functional form
of the paraboloid, see also Fig. 8.2. The first asymptotic follows from the fact that
�
max

has to be tangential to the stable and the neutral direction in order that x
0

can be
a maximum ofA in⌦. The second asymptotic follows, if the direction n̂ is not exactly
pointing in a direction particular for the fractal structure in the stable direction, which
should hold generically. Hence, we obtain thatµ(⌦T

A
max

) ⇠ ˜hx
0

(y
max

)y�
max

, where

� = ds + (du + dn)/2, (8.2.14)

and ˜hx
0

(y
max

) = hs,x
0

(�y
max

) is also a slowly varying function of its argument.
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This construction can be made more formal by considering the disintegration of the
SRB measure µ along the stable and unstable directions of the flow [71]. If the
generic orientation of n̂ is not generic as in our previous hypothesis, then we have to
attribute a factor 1/2 also to some of the stable directions. In general, the following
should hold:

(ds + du + dn)/2  �  ds + (du + dn)/2. (8.2.15)

As a side note, we emphasize that in the case of more general tangencies between
the unstable and neutral manifold, and the manifold A(x) = Amax, we expect
that � = ds +

P

j=1

du(2j)/(2j) + dn(2j)/(2j), where du(2j) (dn(2j) ) gives
the number of directions along the unstable (neutral) manifold where a tangency
of order 2j with the manifold A(x) = Amax is found. We obviously have that
P

j=1

du(2j) = du.
We continue our discussion considering the case of generic tangency. Following

the same argument as above, we have that

µ(⌦T+Z
Amax

) ⇠ ˜hx
0

✓

A
max

� T � Z

|rAx=x
0

|

◆✓

A
max

� T � Z

|rAx=x
0

|

◆�

.

We define
z̃ = 1� Z

A
max

� T

and obtain µ(⌦T+Z
A

max

) ⇠ ˜hx
0

(z̃y
max

)z̃�y�
max

, where y
max

=

A
max

�T
|rAx=x

0

| . Using the
definition of slowly varying function and considering Eq. 8.2.13, we derive that in
the limit T ! Amax:

¯FT (Z) ⇠
✓

1� Z

Amax � T

◆�

. (8.2.16)

Note that the corresponding d.f. is given by FT (Z) = 1� ¯FT (Z). Comparing Eqs.
3.1.8 and 8.2.16, one obtains that FT (Z) belongs to the GPD family, so that

FT (Z) = GPD⇠

✓

Z

�

◆

,

and that the GPD parameters can be expressed as follows:

⇠ = �1/� (8.2.17)
� = (Amax � T )/�. (8.2.18)

These results generalise what discussed in Sect. 6.10.2 for two specific examples of
uniformly hyperbolic systems using the GEV approach, see also [81]. This comes to
relatively little surprise, given the properties of Axiom A systems.

It is important to remark that Eq. 8.2.16 has been obtained in the limit of T !
Amax, and under the assumption that µ(Br(x0

)) is a regularly varying function of
degree D as r ! 0. When considering a finite range Amax � T , one should expect
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deviations of the empirical distributions of extremes ofA from what prescribed in Eq.
8.2.16, which are intrinsic to the fractal nature of the measure. See also discussion
and Fig. 1 in [78]. When finite ranges for A are considered, one expects that, in
some averaged sense, Eq. 8.2.16 fits well the distributions of extremes of A and
Eqs. 8.2.17 and 8.2.18 give the value of the two relevant parameters of the GPD,
analogously to the idea that the number of points of the attractor at distance smaller
than a small but finite r from the point x

0

scales approximately, on the average as
rD .

8.2.4
Comments

It is clear that the ⇠A parameter is always negative (so that the distribution of extremes
is upper limited), reflecting the fact that the observable is smooth and the attractor
is a compact set. Equation 8.2.17 provides a very valuable information, as it shows
that the shape parameter ⇠ of the GPD does not depend on the considered observable
so long it fulfils the general conditions given above, but only on the dimensions of
the stable and of the unstable manifold. Moreover, the shape parameter is always
negative, which is hardly surprising as we are considering compacts attractor and a
well-behaved observable, whose values on the attractor have an upper bound. Note
that for Axiom A systems, ds and du are constant almost everywhere in the attractor
⌦, so that the information gathered for x = x

0

has a global value. Therefore, the
expression for ⇠A is universal, in the sense that we can gather fundamental properties
of the dynamical system by looking at the shape parameters of the extremes of a
generic observables with the properties described above. Measuring ⇠A allows us
to provide an upper and lower bound for dKY and vice versa. Note also that � can
be used to put upper and lower bounds to the Kaplan-Yorke dimension of the system
(which is also independent of the assumption that the direction n̂ is generic), as

dKY = ds + du + dn > ds + (du + dn)/2 = � = �1/⇠A

and
dKY = ds + du + dn < 2ds + du + dn = 2� = �2/⇠A,

so that
�1/⇠A < dKY < �2/⇠A.

In particular, we have that ⇠A is small and negative if and only if the Kaplan-Yorke
dimension of the attractor is large. If we consider a chaotic system with a high dimen-
sional attractor (e.g. in the case of an extensive chaotic system with many degrees
of freedom), we derive that ⇠A ⇡ 0. This may well explain why in a multitude of
applications in natural sciences the special ⇠ = 0 member of the GPD family often
gives a good first guess of the statistics of observed extremes [72]. Alternatively, this
result suggests that if we perform a statistical analysis of the extremes using the POT
method for a high-dimensional chaotic system and obtain, as a result of the statisti-
cal inference, a shape parameter ⇠A ⌧ 0 or ⇠A � 0, we should conclude that our
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sample is not yet suited for an EVT statistical fit. This may depend on the fact that
we have selected an insu�ciently stringent value for T . Obviously, choosing higher
values for T implies that we need to have longer time series of the observable under
investigations.

Furthermore, the expression we obtain for � leads to interpreting it as a scale pa-
rameter. We derive, as anticipated, that � > 0 and we observe that it is proportional
to the actual range of values considered as extremes of the observableA(x), by incor-
porating the di�erence between the absolute maximum of the observable Amax and
the selected threshold T . Therefore, if we consider as observable A

1

(x) = ↵A(x),
with ↵ > 0, and take as threshold for A

1

(x) the value ↵T , we have that ⇠A
1

= ⇠A
and �A

1

= ↵�A. In physical terms, � changes if we change the unit of measure
of the observable, whereas ⇠ does not. More generally, we can make the follow-
ing construction. Let’s define min(A)|

⌦

= Amin. If we select an observable
A

2

(x) = �(A(x)), with max(�)|
[Amin,Amax]

= �(Amax), � di�erentiable and
d�(y)/dy positive in a su�ciently wide neighbourhood around y = A(xmax) so to
ensure monotonicity of A

2

(x) near x = xmax, we get ⇠A
2

= ⇠A and �A
2

= ��A,
where � = d�(y)/dy|y=A(xmax)

. If one fits 8.2.16 to data, � will give an es-
timate for the absolute maximal extreme, even when it has not been observed yet
A

max

= T + ��.

8.2.5
Partial Dimensions along the Stable and Unstable Directions of the Flow

It is worth considering the following strategy of investigation of the local properties
of the invariant measure near x = x

0

, where A(x
0

) = Amax. By performing
statistical inference of the extremes of A we can deduce as a result of the data fitting
the best estimate of ⇠A = 1/�. If, following [78], we select as observable, e.g.
B(x) = C � (dist(x, x

0

))

1/↵, ↵ > 0, we have that the extremes of the observable
B feature as shape parameter ⇠B = �1/(↵D) = �1/(↵dKY ) and scale parameter
�B = (C � ⌧)/(↵D) = (C � ⌧)/(↵dKY ) [78], where C is a constant and ⌧ is
the chosen threshold.

We can then derive:
2

⇠A
� 2

↵⇠B
= du + dn, (8.2.19)

�

⇠B
� 2

⇠A
= ds, (8.2.20)

where, as discussed above, we can take dn = 1. Therefore, using rather general
classes of observables, we are able to deduce the partial dimensions along the stable
and unstable manifolds, just by looking at the index of extremes related to x = x

0

.
Note that, more generally, du and ds can be deduced from the knowledge of any pair
of values (⇠A, ⇠B), (�A, ⇠B), (⇠A,�B), and (�A,�B).

This provides further support to the idea that extremes can be used as excellent
diagnostic indicators for the detailed dynamical properties of a system. The mes-
sage we like to conclude is that one can construct observables whose large fluctua-
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tions give precise information on the dynamics. While considering various sorts of
anisotropic scalings of the neighborhood of a point of the attractor allows to derive its
partial dimensions [271], the specific result we obtain here is that using an arbitrary
physical observable and studying its extremes, we automatically select a special, non
ellipsoidal neighborhood, which splits automatically the stable and the unstable part
of the dynamics and identifies its dimensions.

8.2.6
Expressing the shape parameter in terms of the GPD moments and of the
invariant measure of the system

We consider the physical observable A. We denote by

fGPD(z; ⇠A,�A) =
d
dz

✓

GPD⇠A

✓

z

�A

◆◆

=

1

�A

✓

1 +

⇠Az

�A

◆�1/⇠A�1

. (8.2.21)

We can express its moments as follows:
Z

0

��A/⇠A

dz z fGPD(z; ⇠A,�A) =
�A

1� ⇠A
= M

1

(8.2.22)

Z

0

��A/⇠A

dz z2 fGPD(z; ⇠A,�A) =
2�2

A

(1� ⇠A)(1� 2⇠A)
= M

2

(8.2.23)

. . .
Z

0

��A/⇠A

dz zn fGPD(z; ⇠A,�A) =
n!�n

A

⇧

n
k=0

(1� k⇠A)
= Mn (8.2.24)

where convergence is obtained for all moments because the shape parameter ⇠A is
negative. Using the expression of the first two moments of the distribution, it is easy
to derive that

⇠A =

1

2

✓

1� M2

1

M
2

�M2

1

◆

=

1

2

✓

1� 1

indA

◆

(8.2.25)

and

�A =

M
1

M
2

2(M
2

�M2

1

)

(8.2.26)

where we indicate explicitly that we refer to the observableA and we have introduced
the index of dispersion indA, the ratio between the variance and the squared first
moment of the considered stochastic variable.

One can express ⇠A and �A as a function of higher moments as well. In general,
one obtains (considering n � 2):

⇠A =

1

n(n� 1)

 

n� 1� M2

n�1

Mn�2

Mn �M2

n�1

!

(8.2.27)
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and

�A =

1

n(n� 1)

Mn�1

Mn

Mn�2

Mn �M2

n�1

. (8.2.28)

We now connect the previous formulas to the properties of the invariant measure
of the dynamical system. As we know, the GPD is the exact asymptotic model for
the extremes of the observable A, so that we can express the results in terms of the
conditional invariant measure as follows:

MT
n =

h ˜AT
n i

h ˜AT
0

i
(8.2.29)

where ˜AT
n (x) = ⇥(A(x)� T )(A(x)� T )n and

h ˜AT
n i =

Z

µ(dx)⇥(A(x)� T )(A(x)� T )n, (8.2.30)

with ⇥ being the usual Heaviside distribution. Using the definition of the first mo-
ments of the distributions, we obtain the following expression for the shape and dis-
persion parameters, respectively:

⇠TA =

1

2

 

1� (h ˜AT
1

i)2

h ˜AT
0

ih ˜AT
2

i � (h ˜AT
1

i)2

!

, (8.2.31)

and

�T
A =

1

2

h ˜AT
1

ih ˜AT
2

i
h ˜AT

2

ih ˜AT
0

i � h ˜AT
1

i2
, (8.2.32)

where these results are exact in the limit for T ! Amax. The more general expres-
sions obtained using Eqs. 8.2.27 and 8.2.28 read as follows:

⇠TA =

1

n(n� 1)

 

n� 1� (h ˜AT
n�1

i)2

h ˜AT
n�2

ih ˜AT
n i � (h ˜AT

n�1

i)2

!

, (8.2.33)

and

�T
A =

1

n(n� 1)

h ˜AT
n�1

ih ˜AT
n i

h ˜AT
n�2

ih ˜AT
n i � h ˜AT

n�1

i2
, (8.2.34)

so that, if we consider n � 3, the normalization factor h ˜AT
0

i = µ(A(x) � T ) is
not present in the previous formulas and, the higher the value of n, the smoother the
functions defining the ˜AT ’s observables.

As a check, it is useful to verify that the right hand side of Eq. 8.2.31 gives the
same general result as given in Eq. 8.2.17. By definition we have for T ! A

max

:

µ(⌦T
A

max

) = h ˜AT
0

i =
Z

µ(dx)⇥(A(x)� T )

⇠ ˜hx
0

(A
max

� T )(A
max

� T )�
✏

. (8.2.35)
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Using the fundamental theorem of calculus, it is possible to derive that:

h ˜AT
n i =

Z Amax

T
dz n(z � T )n�1h ˜Az

0

i
0

. (8.2.36)

we obtain:

h ˜AT
1

i ⇠
˜hx

0

(Amax � T )

(� + 1)

(Amax � T )�+1 (8.2.37)

and

h ˜AT
2

i ⇠ 2

˜hx
0

(Amax � T )

(� + 1)(� + 2)

(Amax � T )�+2. (8.2.38)

By plugging these expression into Eq. 8.2.31, we indeed obtain ⇠ = �1/�, which,
as we expect, agrees with Eq. 8.2.17. We also note that it is possible to generalize
the results for Eqs. 8.2.33 and 8.2.34 for arbitrary n.

Moreover, note that the representation of the parameters via moments as we pre-
sented in this subsection can be replicated step by step for the distance observables
B(x, x

0

) = C � dist(x, x
0

)

1/alpha discussed above. We obtain:

⇠TB =

1

n(n� 1)

 

n� 1� (h ˜BT
n�1

i)2

h ˜BT
n�2

ih ˜BT
n i � (h ˜BT

n�1

i)2

!

, (8.2.39)

and

�T
B =

1

n(n� 1)

h ˜BT
n�1

ih ˜BT
n i

h ˜BT
n�2

ih ˜AT
n i � h ˜BT

n�1

i2
, (8.2.40)

where the quantities h ˜BT
k i0, k � 0, and h ˜BT

0

i
0

= 1 are constructed analogously to
how described in Eq. 8.2.29 .

We wish to remark that Eqs. 8.2.31-8.2.32 and Eqs. 8.2.39-8.2.40 combined could
in fact provide a very viable method for estimating the GPD parameters from data,
since moments estimators are in general more stable than maximal likelihood meth-
ods, and one can extract the value of both du and ds using Eqs. 8.2.19-8.2.20.

8.3
Impacts of Perturbations: Response Theory for Extremes

We wish to present some ideas on how to use response theory and the specific expres-
sions given in Eqs 8.2.17-8.2.18 to derive a response theory for extremes of physical
and distance observables in Axiom A dynamical systems. Let’s assume that we al-
ter the Axiom A dynamical system under consideration as ẋ = G(x) ! ẋ =

G(x) + ✏X(x), where ✏ is a small parameter and X(x) is a smooth vector field, so
that the evolution operator, that is the flow, is altered as f t ! f t

✏ and the invariant
measure is altered as µ ! µ✏. Ruelle’s response theory allows to express the change
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in the expectation value of a general measurable observable  (x) as a perturbative
series as

h i✏ = h i
0

+

1
X

j=1

✏jh i(j)
0

,

with j indicating the order of perturbative expansion, where

h i✏ =
Z

µ✏(dx) (x)

is the expectation value of over the perturbed invariant measure, that is the invariant
measure with respect to G+ ✏X , and

h i
0

=

Z

µ(dx) (x) (8.3.1)

is the unperturbed expectation value of  . The term corresponding to the perturba-
tive order of expansion j is given by h i(j)

0

, which can be expressed in terms of the
time-integral of a suitably defined Green function [83]:

h i(j)
0

=

Z 1

�1
d⌧

1

. . .
Z 1

�1
d⌧nG

(n)
 

(⌧
1

, . . . , ⌧n). (8.3.2)

The integration kernel G(n)
 

(⌧
1

, . . . , ⌧n) is the nth order Green function, which can
be written as:

G(n)
 

(⌧
1

, . . . , ⌧n) = h⇥(⌧
1

) . . .⇥(⌧n � ⌧n�1

)⇤⇧(⌧n � ⌧n�1

) . . .⇤⇧(⌧
1

) (x)i
0

,(8.3.3)

where ⇤(•) = X(·) ·r(•) describes the impact of the perturbation field and ⇧(�)
is the unperturbed time evolution operator such that ⇧(�)F (x) = F (x(�)). The
Green function obeys two fundamental properties

• its variables are time-ordered: if j > k, ⌧j < ⌧k ! G(n)
 

(⌧
1

, . . . , ⌧n) = 0;
• the function is causal: ⌧

1

< 0 ! G(n)
 

(⌧
1

, . . . , ⌧n) = 0.

It is important to stress that many authors suggest that, for all practical purposes, the
validity of the response theory extends well beyond the (well understood but some-
what limited) mathematical world of Axiom A systems if one consider reasonable
physical systems and reasonable observables. See discussions in, e.g., [263] and
references therein. This is closely related to the chaos hypothesis [266].

Limiting our attention to the linear case we have:

h i(1)
0

=

Z

+1

�1
d⌧

1

G(1)

 

(⌧
1

), (8.3.4)

where the first order Green function can be expressed as follows:

G(1)

 

(⌧
1

) = h⇥(⌧
1

)X(x) ·r (x(⌧
1

))i
0

. (8.3.5)

Recall that in general:
dnh i✏

d✏n

�

�

�

�

✏=0

= n!h i(n)
0

,

which we use, in particular, for the n = 1 case.
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8.3.1
Sensitivity of the Shape Parameter as Determined by the Changes in the
Moments

We wish to propose a linear response formula for the parameter ⇠A using Eq. 8.2.31.
We start by considering that in Eq. 8.2.31 the shape parameter is expressed for every
T < Amax as a function of actual observables of the system. Unfortunately, in order
to apply Ruelle’s response theory, we need the observables to be smooth, which is in
contrast with the presence of the⇥ in the definition of the terms h ˜AT

j i✏. Nonetheless,
replacing the⇥’s with a smooth approximation⇥S , the Ruelle response theory can
be rigorously applied. Considering a sequence of approximating ⇥m

S such that the
measure of the support of ⇥ � ⇥m

S is smaller than �m = (Amax � T )/m, it is
reasonable to expect that, as �m ! 0, the e�ect of the smoothing becomes negligible,
because a smaller and smaller portion of the extremes is a�ected, and the response of
the smoothed observable approaches that of h ˜AT

j i✏. Therefore, we derive formally
retaining the ⇥ in the definition of the h ˜AT

j i✏ for every T < Amax:

d⇠T,✏
A

d✏

�

�

�

�

✏=0

= � 1

n(n� 1)

d
d✏

(

(h ˜AT
n�1

i✏)2

h ˜AT
n�2

i✏h ˜AT
n i✏ � (h ˜AT

n�1

i✏)2

)

�

�

�

�

✏=0

(8.3.6)

and

d�T,✏
A

d✏

�

�

�

�

✏=0

=

1

n(n� 1)

d
d✏

(

h ˜AT
n�1

i✏h ˜AT
n i✏

h ˜AT
n�2

i✏h ˜AT
n i✏ � (h ˜AT

n�1

i✏)2

)

�

�

�

�

✏=0

, (8.3.7)

where n � 2. By expanding the derivative in Eq. 8.3.6, the previous expression can
be decomposed in various contributions containing exclusively h ˜AT

n�2

i
0

, h ˜AT
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i
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,
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0

, while higher order terms are not in-
cluded.

We obtain:
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(8.3.9)
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where
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and
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We wish to remark the special relevance of the observable h ˜AT
0

i✏, which is the
normalizing factor in Eq. 8.2.29, and, in practice, measures the fraction of above-T -
threshold events. Therefore, once T is chosen, the sensitivity of h ˜AT

0

i✏ with respect
to ✏ informs on whether the ✏-perturbation to the vector flow leads to an increase or
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decrease in the number of extremes. We obtain formally:
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(8.3.14)

where � is the derivative of the⇥ function, with all the caveats discussed above, and
f⌧ (x) is the position of the dynamics x(⌧) at time ⌧ if x(0) = x. The formula can
be interpreted as follows. In the last formula, @kf⌧i is the adjoint matrix of the tan-
gent linear of the unperturbed flow. At each instant ⌧ we consider, in the unperturbed
system, all the trajectories starting in the infinite past from points distributed accord-
ing to the invariant measure such that the observable A at time zero has value equal
to T . For each of these trajectories, we can measure whether the presence of the
perturbation field X(x) at time �⌧ would lead to a decrease or increase in A at time
zero. Summing over all trajectories, we get whether there is a net positive or negative
change in the above threshold events at time zero. We integrate over all times ⌧ at
which the perturbation can impact and get the final result. Considering the geomet-
rical construction given in Fig. 8.2, the previous formula can also be approximated
as follows, because f⌧ (x) has to be near to the maxima x

0

:
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(8.3.15)

Note that, when considering hAT
n i✏ for n � 1, we obtain:
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,

(8.3.16)

using that the derivative of xn
⇥(x) is nxn�1

⇥(x) for n � 1. Therefore, Eqs.
8.3.6-8.3.16 provide recipes for computing the sensitivity of ⇠T,✏

A and �T,✏
A at ✏ = 0

for any case of practical interest. In fact, Amax � T is indeed finite, because in or-
der to collect experimental data or process the output of numerical simulations we
need to select a threshold which is high enough for discriminating true extremes and
low enough for allowing a su�cient number of samples to be collected for robust
data processing. Note that all statistical procedures used in estimating GPD param-
eters from data are actually based on finding a reasonable value for T such that both
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conditions described above apply by testing in an appropriate sense that parameters’
estimates do not vary appreciably when changing T [40, 3].

We wish to underline that apparently potential problems emerge when taking the
limit in Eqs. 8.3.6-8.3.7 for higher and higher values of T . It is indeed not clear at
this stage whether

lim

T!Amax

d⇠T,✏
A

d✏

�

�

�

�

✏=0

= lim

T!Amax

lim

✏!0

⇠T,✏
A � ⇠T,0

A

✏
(8.3.17)

exists, because we cannot apply the smoothing argument presented above in the limit
of vanishing Amax � T . More important, it is not clear whether such limit is equal
to

lim

✏!0

lim

T!Amax

⇠T,✏
A � ⇠T,0

A

✏
, (8.3.18)

which seems at least as well suited for describing the change of the shape observable
given in Eq. 8.2.31 due to an ✏�perturbation in the dynamics and gives the link to
the universality of the asymptotic distribution. Obviously, if the two limits given in
Eqs. 8.3.17 and 8.3.18 exist and are equal, then a rigorous response theory for ⇠A
can be established. Same applies when considering the properties of �T,✏

A .
The same derivation and discussion can be repeated for the B observables intro-

duced above and we can derive the corresponding formulas for d⇠T,✏
B /d✏|✏=0

and
d�T,✏

B /d✏|✏=0

, where the relevant limit for T is T ! C .
Let us try to give a more intuitive interpretation to the results given above. Consider

Eq. 8.2.25 and assume that, indeed, ⇠TA is di�erentiable with respect to ✏. We have:
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, (8.3.19)

which implies that the sensitivity of the shape parameter is half of the opposite of the
sensitivity of the inverse of the index of dispersion indA. Alternatively

1

1� 2⇠A

d(1� 2⇠✏A)

d✏

�

�

�

�

✏=0

= � 1

indA
d ind✏A

d✏

�

�

�

�

✏=0

, (8.3.20)

which implies that relative sensivity of 1 � 2⇠TA and indA coincides. Therefore, a
positive sensitivity of the index of dispersion (larger relative variability of the ex-
tremes of the observable A with positive values of ✏) implies a larger value (closer
to 0) of ⇠A, and so the possibility that larger and larger extremes are realized. The
analogous interpretation applies for the B observables.

8.3.2
Sensitivity of the shape parameter as determined by the modification of
the geometry

In the previous subsection we have discerned that the Ruelle response theory supports
the idea that the shape parameters descriptive of the extremes of both the physical
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observables A and the distance observables B change with a certain degree of regu-
larity when considering ✏�perturbations to the dynamics.

In this subsection, we wish consider the sensitivity of extremes with respect to per-
turbation from another angle, i.e. investigating the relationship between the shape pa-
rameters ⇠A and ⇠B and the partial dimension of the attractor along the stable, neutral
and unstable manifolds of the underlying dynamical system, see Eqs. 8.2.19-8.2.20.
As long as the ✏-perturbation is small, the modified dynamical system belongs to
the Axiom A family, indeed we have structural stability, so that the results presented
above apply. Therefore, we can write in more general terms:

⇠✏A = �1/�✏ = �1/(d✏s + d✏u/2 + d✏n/2) (8.3.21)
⇠✏B = �1/(↵d✏KY ) = �1/(↵(d✏s + d✏u + d✏n)). (8.3.22)

In the following, we introduce somewhat heuristically derivatives with respect to ✏ of
quantities for which we do not know a priori that they are di�erentiable. The main
point we want to make is that if ⇠A and ⇠B are di�erentiable with respect to ✏, then
various quantities describing the structure of the attractor have to be di�erentiable.
Therefore, the existence of the limits given in Eqs. 8.3.17 and 8.3.18 (and their equiv-
alent for the B observables) would have far-reaching consequences. We will discuss
the obtained results at the end of the calculations. Another caveat we should mention
is that Eqs. 8.3.21-8.3.22 are in general true almost anywhere, so that we may have
to interpret the derivatives in this section in some suitable weak form.

It seems relevant to add the additional hypothesis of strong transversality for the
unperturbed flow, which is equivalent to invoking structural stability [71]. We take
such pragmatic point of view and proceed assuming that derivatives with respect to ✏
are well defined. Linearizing the dependence of ⇠A on ✏ around ✏ = 0 in Eq. 8.3.21,
we obtain:
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�
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.(8.3.23)

We have that d(d✏u)/d✏|✏=0

= d(d✏n)/d✏|✏=0

= 0, as, thanks to structural stability,
small perturbations do not alter the qualitative properties of the dynamics, and cannot
change in a step-wise way the integer dimension of the expanding or neutral direc-
tions. Hence we have for the local dimensionD that d(d✏s)/d✏|✏=0

= d(D✏
)/d✏|✏=0

which implies that
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)
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�

�

�

�

✏=0

.(8.3.24)

This implies that the shape parameter ⇠ increases, thus attaining a value closer to zero
(⇠A is always negative), when the perturbation increases the Kaplan-Yorke dimension
of the attractor. This corresponds to the case when the perturbation favours forcing
over dissipation. This matches quite well, at least qualitatively, with the discussion
following Eq. 8.3.19.

We have that, when considering a distance observable of the form B(x) =

�dist(x, x
0

)

1/↵, along the same steps described above one gets the following result:
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✏=0

; (8.3.25)

such result can be easily generalized by considering the class of observables de-
scribed in [78].

Combining Eq. 8.3.6 with Eq. 8.3.24, and the derivative with respect to ✏ of
Eq. 8.2.39 with Eq. 8.3.25, we can derive two expressions for the sensitivity of the
unstable dimension and of the Kaplan Yorke dimension at ✏ = 0:
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(8.3.27)

where, rigorously, we have to work in the limit T ! Amax in Eq. 8.3.26 and T ! 0

in Eq. 8.3.27, and we have assumed that the Hausdor� dimension coincides with the
Kaplan Yorke dimension.

The previous results imply that if one of ⇠A, ⇠B or the Kaplan-Yorke dimension
of the underlying Axiom A system change smoothly with ✏�perturbations to the dy-
namics, so do the other two quantities. The analogues formulas using Eqs. 8.2.33 and
8.2.39 are di�erentiable for n � 3 for fixed T . In order to make these considerations
more rigorous one should identify in which sense one may interchange the limits in
T and ✏ in Eqs. 8.3.17 and 8.3.18. This may suggest ways to study the regularity of
the Kaplan-Yorke dimension by resorting to the analysis of the regularity of a much
more tractable expressions involving moments of given observables only.

This result provides useful insight also not considering the problematic limits dis-
cussed above. Taking a more qualitative point of view, this suggests that, when con-
sidering small perturbation in the dynamics of chaotic systems behaving like Axiom
A systems, there is a link between the presence (or lack) of di�erentiability with
respect to ✏ of ⇠A, ⇠B and dKY , so that either all of them or none of them is dif-
ferentiable with respect to ✏. Specifically, we obtain that if the perturbation tends to
increase the dimensionality of the attractor (thus, in physical terms, favoring forcing
over dissipation), the value of ⇠ becomes closer to zero, so that the occurrence of
very large extreme events becomes more likely. The system, in this case, has more
freedom to perform large fluctuations.

Taking a more pragmatic point of view, these results provide at least a rationale
for the well-known fact that in moderate to high-dimensional strongly chaotic sys-
tems the Kaplan-Yorke dimension (and, actually, all the Lyapunov exponents) change
smoothly with the intensity of the perturbating vector field [272] using simplified yet
relevant fluid dynamical model. A detailed investigation of the apparent regularity
for all practical purposes of the Lyapunov exponents with respect to small perturba-
tions in the dynamics of intermediate complexity to high-dimensional models has
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been presented in [273]. We also wish to remark that if these regularity hypothe-
ses were not satisfied, the very widespread (and practically successful) procedure of
parametric tuning of high-dimensional models of natural, engineered or social phe-
nomena would be absolutely hopeless, and delicate numerical procedures such as
those involved in data assimilation of high-dimensional dynamical systems would
lack any sort of robustness, contrary to the accumulated experience.

8.4
Remarks on the Geometry and the Symmetries of the Problem

A specification is needed in the case of physical observables. We have here con-
sidered the case where the observable A has a unique maximum restricted to ⌦ in
x = x

0

2 ⌦. If ⌦ and A share some symmetries, x
0

is not unique, and instead
there is a set of points x

0

’s belonging to ⌦, finite or infinite, depending of the kind
of symmetries involved, where A reaches its maximum value restricted to ⌦. Let’s
consider the relevant case where A and ⌦ share a discrete symmetry, so that �

0

, the
set of the maximal point x

0

’s, has finite cardinality. The results discussed here for
the extremes of A will be the direct analogues, and all arguments are valid in the
appropriate sense, because we can perform an equivalent geometrical construction
as in Fig. 8.2 for each element of �

0

. When we consider an ✏-perturbation to the
dynamics which respects the discrete symmetry, it is clear that all the results of the
response presented here apply. Finally, one can deduce that if the considered pertur-
bation, instead, breaks the discrete symmetry, the results presented here will still be
valid as the break of the degeneracy will make sure that only one of the x

0

’s (or a
subset of �

0

, if the corresponding perturbed vector flow obeys to a subgroup of the
original symmetry group) still accounts for the extreme events of A.

We need to remark that such results have been derived using some intuitive ge-
ometrical construction and assuming generic relations between the direction of the
gradient of A at x = x

0

and the stable directions. It is possible to devise a special
pair of Axiom A systems and observables such that the strange attractors do not ful-
fill such generic conditions. One can easily construct a situation where the gradient
of A is orthogonal also to stable manifold by immersing the attractor in a higher di-
mensional space and taking observables defined on such a space. In this case, the
factor 1/2 appearing in Eq. 8.2.14 will a�ect also some of the stable dimensions.
Nonetheless, the result that for high-dimensional systems the distribution of extremes
is indistinguishable from the Gumbel as the shape parameters tends to zero from be-
low is of general validity. We believe that for a typical combinations of Axiom A
systems and an observable given by a function allow for the generic conditions to be
obeyed. We still need to understand how to frame precisely such a concept of gener-
icity, which obviously di�ers from the traditional one, which focuses either on the
observables, or on the systems. This should be the subject of theoretical investigation
and accurate numerical testing.

A final remark: let’s assume, instead, that the gradient of A is vanishing in x
0

and
that, at leading order near x

0

, A(x) ⇠ Amax + (x � x
0

)

TH(x � x
0

), where H
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is a negative definite symmetric matrix the scalar product. The geometrical consid-
erations will in this case imply, that apart from a linear change in the coordinates
and rescaling, the statistical properties of the extremes of A(x) will match those of
B(x) = C � dist(x, x

0

)

2.
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9
Extremes as Dynamical and Geometrical Indicators

In the previous chapters it has been shown that two di�erent approaches have been
devised for the study of extreme events, the BM method, which leads to using GEV
(see Eq. 3.1.4) as statistical models, and the POT method, where instead the statistical
model of reference is the GPD (see Eq. 3.1.8). As detailed in Chapter 3, if suitable
conditions of weak short and long time scale correlations are met, the two approaches
are equivalent in the asymptotic limit, so that, even if the selection procedure of the
extremes is di�erent, the information we derive is equivalent. For finite datasets, it is
crucial to investigate which approach provides more reliable results and if di�erences
between the use of the two methods arise when studying the extremes of the gi’s
observables.

We recall that analysing extremes poses the challenge of requiring extremely long
time series, because the first step in the procedure of statistical inference relies of
discarding the vast majority of the entries, and a su�cient number of true potential
extremes have to be left for the fitting procedures to converge and have low uncer-
tainty. In this chapter we wish to explore systematically how to get convergence of
the empirical d.f. of BM and POT to the corresponding EVLs. The theory present-
ed in the previous chapters is correct under the assumptions of an infinite sample of
maxima (minima) each extracted among an infinite number of observations posing a
question about the usefulness of the theorems when one has to deal with finite sam-
ples. In order to address this problem, we will construct the experiments as a sort of
numerical proofs of the theorems introduced in the previous chapters, i.e., define a
procedure able to reproduce step-by-step the theoretical description and the conver-
gence issues. One-dimensional and two-dimensional maps, are analyzed throughout
the chapter, and results are provided both for deterministic and stochastic systems.
The reader finds below also an extended review of the methods used to perform sta-
tistical inference of EVLs.

As an overall goal, we want to show here how extremes can be used for deriv-
ing crucial properties on the geometry of the system of mixing systems, allowing
to derive precise information on the local and global properties of the attractor, and
for studying qualitatively and quantitatively their dynamical properties, including the
possibility of separating regular from mixing chaotic systems.
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9.1
The Block Maxima Approach

In Chapter 3 we have introduced the intimate relationship between the BM procedure
of selection of extremes of time series and GEV statistical model, specifying the
relevance of the decorrelation properties D and D0.

In Chapter 4, we have then adapted this point of view for the study of observables
of dynamical systems, introducing a new set of conditions Дq and Д0

q , which can be
more easily related to standard properties of mixing the underlying dynamics. Final-
ly, in Chapter 6, we have investigated some dynamical systems and derived explicit
results for EVLs of specific observables.

Most of our theoretical results have been obtained considering the observables
gi(dist(f tx, ⇣)), i = 1, 2, 3, described in Sect. 4.2.1. These are functions of the
distance r between a point in the orbit and a chosen point ⇣ belong to the attractor of
the system. The basic requirements imposed on the gi(r) for achieving convergence
towards the classical EVLs are the existence of a global maximum at r = 0 and a
monotonic decrease with the argument. These properties imply that, by looking at
maxima of gi(dist(x, ⇣)), we are indeed looking at minima of dist(x, ⇣), regardless
the chosen metrics. This idea is schematically depicted in Fig. 9.1.

In the examples treated in this chapter, the BM approach boils down to to divid-
ing the time series of the observable gi, i = 1, 2, 3 of length NK into bins of equal
lengthK and to selecting the maximum value in each of them, so thatN potential ex-
tremes are selected [3]. The left plot depicts a hypothetical series of gi(dist(f tx, ⇣)
at di�erent values of time t, and indicates three di�erent bin lengths mA,mB ,mC .
The right picture is a 2-D representation of the balls centred on ⇣ inside which we
are more likely to sample extremes, with smalller balls corresponding to longer bins.
By choosing the BM approach we do not have a clear control of an e�ective radius
of the sampled balls, because the largest value selected in a bin can easily be smaller
than, e.g. the second largest of another bin. This situation is extremely common if
significant clusters of extremes is present.

We remark that the BM approach is widely used in climatological and financial
applications since it represents a very natural way of looking at extremes sampled
at fixed time intervals. As an example, when dealing with a long time series of
meteorological observations containing daily values - e.g. temperature records - one
year is a natural and common choice for the bin length. The BM method helps us,
in this case, in constructing a statistical model for the yearly maxima of temperature.
Of course, one should consider whether such a choice for the bin length is sensible,
given the total length of the time series and its rate of decay of correlations.

In general, the a priori knowledge of the asymptotic EVLs is usually precluded in
many practical cases, so that we must proceed heuristically, taking often into con-
sideration external constraints on the availability of data. In this sense, the use of
the gi observables in chaotic systems can help us in understanding the issues related
to finiteness and correlation of the data samples, because we are able to predict the
exact EVLs., by using the results contained in Chapters 3, 4, and 6.



Lucarini, Faranda, Freitas, Freitas, Holland, Kuna, Nicol, Todd, Vaienti: Extremes and Recurrence in Dynamical
Systems — Chap. 9 — 2016/5/16 — 19:35 — page 195

195

Figure 9.1 A schematic representation of the BM approach for the observable g

i

.
Increasing the bin length increases the probability of sampling extremes in a smaller ball
centred on ⇣.

9.1.1
Extreme Value Laws and the Geometry of the Attractor

We would like to provide further details on the relationship between EVLs and the
geometry of the attractor ⌦ of the dynamical system generating the stochastic pro-
cess, thus completing some of the calculations presented in Chapter 4 and 6. We
recapitulate the necessary ingredients we need in order to proceed further:

• Assumption 1: we consider observables of the form gi(dist(x, ⇣)), i = 1, 2, 3
defined in Sect. 4.2.1, and ⇣ 2 ⌦;

• Assumption 2: the dynamical system is such that the time series of the observables
obey the conditions Д

0

and Д0
0

;
• Assumption 3: the measure of a ball of radius r centred on the point ⇣ 2 ⌦ is a

continuous function of r the radius for almost all the center points ⇣; this can be
guaranteed simply by requiring that the measure has no atoms.;

• Assumption 4: we can define for almost all the center points ⇣ the local dimension
following Eq. 4.2.8, so that d(⇣) = limr!0

log µ(Br(⇣))
log r .

In Sect. 4.2.1 we have shown how to derive the shape parameters for each of the
three corresponding families of observables gi(dist(x, ⇣)), i = 1, 2, 3 and have
discussed their relationship with the local dimension of the attractor. In some cases,
e.g. if the system is Axiom A (see Chap. 8), we have seen that distance observables
with reference point ⇣ 2 ⌦ can provide global information on the properties of the
measure.

The missing ingredients in the picture presented so far are the normalising se-
quences an and bn (where n refers to the length of the bins used according to the
BM approach) first introduced in Eq. 3.1.2. Such sequences are key to avoiding
the derivation of degenerate d.f. for extremes, as thoroughly discussed in Theorem
3.1.1. What we want to do here is to find explicit expressions (or at least asymptotic
estimates) for an and bn and show their link with the geometrical properties of the
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attractor.

9.1.2
Computation of the Normalizing Sequences

We proceed by focusing, for illustrative purposes, on the simpler yet relevant case
of mixing dynamical systems possessing an absolutely continuous invariant measure
µ(x) supported on the attractor ⌦ such that the Radon-Nikodym derivative with
respect to the Lebesgue measure - ⇢(x) = dµ(x)/dLeb, in the given notation - is
constant. In this case, d(⇣) is constant everywhere in the attractor and is equal to
the dimension d of the phase space of the system. Low dimensional examples of
such are the uniformly hyperbolic maps f : [0, 1) ! [0, 1) of the form f(x) =

qx mod1 q 2 N, q � 2 (see Example 4.2.1 for the case q = 2), and the algebraic
automorphisms of the torus better known as the Arnold cat map, already discussed
in Sect. 6.6.1. These systems are studied later in the chapter.

In [46] one can find details on how to adapt the results presented below to the
case of systems whose invariant measure is absolutely continuous with respect to
Lebesgue, but the Radon-Nikodym derivative is not constant.

Constructing the normalising sequences an and bn for distance observables g in
the case of systems whose invariant measure is not absolutely continuous with respect
to Lebesgue is indeed more challenging. Some results and conjectures are presented
in the later Sect. 9.4, where we also discuss the numerical investigations of extremes
in various systems possessing a fractal invariant measure.

We go back to the simple setting discussed above. Starting from the definitions
and constructions provided by Gnedenko we derive the exact expression for the nor-
malising sequences an and bn which constitute the backbone of EVT. Constructing
such sequences have a great practical significance because when performing a GEV
fit of BM taken over bins of length n, we have that the best fit GEV⇠((x � µ)/�)
is such that an = 1/� and bn = µ, where, clearly, µ = µ(n) and � = �(n).
As opposed to ⇠, whose estimate, when we are in the asymptotic regime, does not
depend on n, taking maxima over longer and longer bins does in general a�ect the
obtained estimates of � and µ also when the asymptotic regime is realized.

This fact can be seen as a linear change of variable: the variable y = an(x �
bn) has a GEV distribution GEV⇠(y) (that is an EV one parameter distribution
with an and bn normalising sequences) while x is GEV distributed according to
GEV⇠(an(x� bn)). This allows relating such somewhat abstract sequences intro-
duced by Gnedenko to the output of a numerical inference procedure.

Case 1: g1(x) = � log(dist(x, ⇣)). Using the definition of the d.f. F (u) and
of its complement ¯F (u) = 1� F (u), we have

1� F (u) = ¯F (u) = 1� µ(g(dist(x, ⇣))  u)

= 1� µ(� log(dist(x, ⇣))  u)

= 1� µ(dist(x, ⇣) � e�u
). (9.1.1)
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Then, for maps with constant density measure, we can write:

1� F (u) = ¯F (u) = µ(Be�u
(⇣)) = ⌦de

�ud (9.1.2)

where d is the dimension of the space and ⌦d is a constant. In order to use Gne-
denko’s corollary it is necessary to calculate uF = sup{u;F (u) < 1}, which, in
this case, is infinite. Following the Gnedenko approach outlined in Sect. 3.1.1, we
can construct a function h(t) as follows:

h(t) =

R uF

t du(1� F (u)

1� F (t)
=

R1
t due�ud

e�td
=

1

d

Z 1

td

e�v

e�td
dv =

1

d
. (9.1.3)

Hence, according to the proof of Gnedenko theorem given in [1], we can study both
an and bn or �n convergence as:

lim

n!1m(1� F{�n + xh(�n)}) = e�x,

so that, using Eq. 9.1.2, we obtain:

lim

n!1m⌦de
�d(�n+xh(�n))

= lim

n!1m⌦de
�d(�n+x/d)

= e�x. (9.1.4)

As a result, we obtain that

�n ' log(n⌦d)

d

so that, since an = 1/h(�n) and bn = �n, we have:

an = d = 1/�(n) bn =

1

d
log(n) +

log(⌦d)

d
= µ(n). (9.1.5)

From Sect. 4.2.1 we know that ⇠ = 0.

Case 2: g2(x) = (dist(x, ⇣))

�1/↵ We can proceed as previously done for the
observable g

1

. We derive:

1� F (u) = ¯F (u) = 1� µ(dist(x, ⇣)�1/↵  u)

= 1� µ(dist(x, ⇣) � u�↵
)

= µ(Bu�↵
(⇣)) = ⌦du

�↵d (9.1.6)

Also in this case we have that uF = +1. We derive that:

�n = F�1

(1� 1/n) = (n⌦d)
1/(↵d)

= 1/an = �(n) (9.1.7)

Gnedenko’s theorem suggests that bn = 0 = µ; another possible choice of the
normalising sequences has been proposed by [274] as follows:

bn = c · n�⇠
= c · n�1/(d↵)

= µ, (9.1.8)

where c 2 R is a constant and we know from Sect. 4.2.1 that ⇠ = 1/(↵d).
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Case 3: g3(x) = C � dist(x, ⇣))

1/↵. Eventually, we compute an and bn for
the g

3

observable class:

1� F (u) = 1� µ(C � dist(x, ⇣)1/↵  u)

= 1� µ(dist(x, ⇣) � (C � u)↵)

= µ(B
(C�u)↵(⇣)) = ⌦d(C � u)↵d (9.1.9)

in this case uF = C .

�n = F�1

(1� 1/n) = C � (n⌦d)
�1/(↵d) (9.1.10)

For type 3 distribution:

an = (uF � �n)
�1

= (n⌦d)
1/(↵d)

= 1/�, bn = uF = µ. (9.1.11)

Remark 9.1.1. The previous expressions given in Eqs. 9.1.5, 9.1.8, and 9.1.11 pro-
vide important constraints on what our statistical inference procedure should give as
values for � and µ when we change the length n of bins considered according to
the BM method. Additionally, such expressions suggest multiple (and independent)
ways to derive two important properties of the attractor, namely the dimension d and
the constant density ⌦d, from the values of � and µ, which can estimated by fitting
the empirical d.f. of BM with the GEV model,

9.1.3
Inference Procedures for the Block Maxima Approach

We present here some methods used for the inference of the GEV distribution pa-
rameters describing the extremes of a time series. Our goal is to provide the basic
information needed to understand how the methods used may be adapted to the ob-
servables extracted from the orbits of dynamical systems. We study the sequence
of maxima obtained by subdividing the available data Xj , 1  j  s � 1 into
k � 1 bins of equal size n � 1, and extract the maximum Mj from each bin,
1  j  k. We point the reader to the problem that given a time series of length
s, many choices are possible for constructing the bins and selecting their maxima,
boiling down to di�erent combinations of values of n k such that s = nk. The se-
lection of suitable candidates for true extremes requires choosing large values for n,
while the need for achieving a robust statistical fit requires choosing large values for
k, so that a compromise needs to be found in all practical circumstances and the ro-
bustness of the results of the inference procedure must be accurately tested [3]. The
results discussed in remark 9.1.1 provide prescriptions on what we should obtain for
the best estimates of µ, �, and ⇠ as a function of n.

Several approaches have been proposed for estimating the parameters of the GEV
distribution. We present here a brief summary and refer instead to [112] and to [3]
for comprehensive descriptions.

We first focus on the Maximum Likelihood Estimation (MLE), which is most com-
monly implemented in the software packages currently used for the analysis of ex-
tremes as default choice, and then on the L-moment procedure - based on the com-
putation of specific moments of the distribution of maxima and versatile enough to
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be implemented also by non expert programmers. The MLE procedure relies on
maximizing the log likelihood function:

l(µ,�, ⇠) =
k
Y

j=1

log(fGEV (Mj ;µ,�, ⇠)) (9.1.12)

where
fGEV (x;µ,�, ⇠) =

d

dx
GEV⇠

✓

x� µ

�

◆

.

Using Eq. 3.1.4, the log likelihood function can be rewritten as:

�m log(�)�
✓

1 +

1

⇠

◆ k
X

j=1

(

log



1 + ⇠

✓

Mj � µ

�

◆�

�


1 + ⇠

✓

Mj � µ

�

◆�� 1

⇠

)

(9.1.13)

if ⇠ 6= 0, and as:

�m log(�)�
k
X

j=1

⇢✓

Mj � µ

�

◆

� exp



�
✓

Mj � µ

�

◆��

(9.1.14)

if ⇠ = 0.
We can obtain a profile likelihood of µ, ⇠ or � by setting the other two parameters

to their maximum likelihood estimates µ̃, ˜⇠, �̃ in Eqs. 9.1.13 or 9.1.14. For example,
to compute the profile likelihood for the parameter ⇠, we can construct the graph:

(x, y) = (⇠, l(µ̃, �̃, ⇠)). (9.1.15)

The intersections of the horizontal line with the profile likelihood graph allows for
estimating a confidence interval:

y =

˜⇠ � 0.5q
0.95, (9.1.16)

where q
0.95 is the 95% quantile of the �2 distribution with 1 degree of freedom.

In the source code provided along with the book (see Appendix A), the functions
used for the GEV model inference via MLE give as output the 95% confidence in-
tervals for the estimates of the parameters.

Whenever the probability density function is not absolutely continuous, the max-
imum likelihood estimation may fail as the minimization procedure based on the
derivatives of the d.f. is not well defined when the density presents singularities
causing unexpected divergences of the parameters. In these cases is better to rely
on a L-moment estimation based upon the computation of integrals rather than upon
the solution of a variational problem. The L-moment are analogous to ordinary mo-
ments, but are computed from linear combinations of the data values, arranged in an
increasing order. For a random variable Xi, the r-th population L-moment is:

�r = r�1

r�1

X

p=0

(�1)

p

 

r � 1

p

!

E[Xr�p:r], (9.1.17)
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where Xp:q denotes the pth order statistics - pth largest value - in an independent
sample of size q from the distribution of X and E[] denotes the expected value. In
particular, the first four population L-moment are

�
1

= E[X] (9.1.18)

�
2

= (E[X
2:2

]� E[X
1:2

])/2 (9.1.19)

�
3

= (E[X
3:3

]� 2E[X
2:3

] + E[X
1:3

])/3 (9.1.20)

�
4

= (E[X
4:4

]� 3E[X
3:4

] + 3E[X
2:4

]� E[X
1:4

])/4. (9.1.21)

�
1

is conventionally referred to as mean, L-mean or L-location and �
2

as L-scale.
It has been shown that asymptotic approximations to sampling distributions are better
for L-moment than for ordinary moments [114]. Moreover, the estimation provided
in the i.i.d. case and the associated uncertainties are comparable to the MLE method.
Whenever we have used this inference, we have computed confidence intervals using
dispersion indicators of an ensemble of realizations of a particular map. In fact, when
the data are correlated, the usual bootstrap procedure based on a reshu�ing of the
sample fails in giving reliable parameters uncertainty estimation due to the loss of
information about the dependency structure of the data.

9.2
The Peaks Over Threshold Approach

As mentioned before in the book, the POT method consists in choosing a threshold
value T and considering as extremes all the observations above the threshold. It is
widely used in hydrological applications, since rivers and lakes clearly present banks
whose height can be taken as a threshold. In the same way, in financial applications
is common to use the POT approach and set critical values (associated to specific
risk scenarios) as thresholds.

We have discussed in detail in Sect. 8.2.1 how to construct and interpret the POT
method for distance observables. We remind the reader that, when considering the
family of observables gi(dist(x, ⇣)), i = 1, 2, 3, the selection of the threshold T
corresponds exactly to a specific choice of a radius r⇤ such that all extremes belong to
the intersection of the balls Bg�

1i(T )

(⇣) with the attractor of the system. Therefore,
when studying extreme events, we are sampling the invariant measure in the vicinity
of ⇣ with the desired precision as defined by the value of r⇤. In Fig. 9.2, this is
schematically depicted by showing how three di�erent threshold values TA, TB , TC

correspond to three specific radii.
It is immediate to see that by choosing the POT approach instead of the BM ap-

proach we lose some information about the dynamics of the system, because we re-
strict ourselves to a purely geometrical criterion for selecting extremes, based on
belonging to the ball of radius r⇤ centred on ⇣ .
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Figure 9.2 A schematic representation of the POT approach for the observable g

i

.

9.2.0.1 Inference Procedures for the Peaks Over Threshold Approach
Similarly to the BM method, we construct a MLE of the parameters of the GPD by
maximizing the log likelihood function:

l(µ,�, ⇠) =
k
Y

j=1

log(fGPD(yj ; ⇠,�)) (9.2.1)

where fGPD(x; ⇠,�) is defined in Eq. 8.2.21. Using Eq. 3.1.8, we obtain:

log l(�, ⇠) = �n log ��(1�⇠)⌃k
j=1

yj , yj = �⇠�1

log(1�⇠(Xj�T )/�),(9.2.2)

where we assume that k observations Xj are beyond the threshold T . Giving a well-
defined meaning to the maxima of the log likelihood function is not always entirely
trivial. The previous expression may be made arbitrary large by taking ⇠ > 1 and
�/⇠ close to max(Xi). The maximum likelihood estimators are taken to be ¯⇠ and �̄,
which yield a local maximum of log l [275]. For k < 1/2 a local maximum is well
defined and the asymptotic variance for the estimators can be written as:

L · V ar



�̄
¯⇠

�

⇠


2�2

(1� ⇠) �(1� ⇠)
�(1� ⇠) (1� ⇠)2

�

, ⇠ < 1/2. (9.2.3)

The explicit expression for ⇠ > 1/2 is more problematic, but we can avoid to con-
sider this range of parameter values by making specific choices for the exponent
appearing in the definition of the g

2

functions.
The inference based on the L-moment procedure follows exactly the set-up already

described for the GEV distribution. As we have already said for the MLE, if ⇠ > 1/2,
the inference becomes problematic as the L-scale �

2

is not defined anymore. The
exact expression of the parameters as a function of the L-moment are presented in
[114].
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9.3
Numerical Experiments: Maps Having Lebesgue Invariant Measure

We begin our journey on numerical investigations of the relationship between ex-
tremes and geometry of the attractor of the underlying system by focusing on maps
possessing invariant measures proportional to Lebesgue. We mostly focus on the BM
method and related GEV results, and then compare the findings with what obtained
using the POT method.

Recalling remark 9.1.1, and keeping in mind that the total length of the time series
is defined as s = n · k and is constant, we can express the asymptotic values of the
GEV normalising sequences and, correspondingly, of the best GEV estimates for �,
µ, and ⇠ as a function of k for the three types of g distance observables discussed in
Sect. 9.1.1 as follows:

• For g
1

-type observables:

� =

1

d
µ = C

1

+

1

d
log(n) = C

2

� 1

d
log(k) ⇠ = 0, (9.3.1)

where C
1

and C
2

is a positive constant.
• For g

2

-type observables:

� / n1/(↵d) / k�1/(↵d) µ / n1/(↵d) / k�1/(↵d) ⇠ =
1

↵d
(9.3.2)

• For g
3

-type observables:

� / n�1/(↵d) / k1/(↵d) µ = C ⇠ = � 1

↵d
(9.3.3)

where x / y indicates that x/y is a constant.

Figure 9.3 Left: g1 observable empirical histogram and fitted GEV pdf. Right: g1
observable empirical cdf and fitted GEV cdf. Logistic map, n = 10

4, m = 10

4

In order to provide a numerical test of our results, we consider a one-dimensional
and a two dimensional map. The one dimensional map considered here is a Bernoulli
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shift map defined on S1 and already introduced in the general form Eq. 4.2.1:

f(x) = qx mod 1, q = 3 (9.3.4)

Note that one should avoid studying numerically the doubling map obtained setting
q = 2 in Eq. 4.2.1, because, as a result of the binary representation of numbers in
computers, all orbits converge to 0 when performing long trajectories, regardless of
the initial condition. The considered two dimensional map is the Arnold’s cat map
defined on the 2-torus T2, which we have already presented in Eq. 6.6.1:

f(x, y) = (2x+ y, x+ y) mod T2 (9.3.5)

An extensive description of the properties of these maps can be found in [276] and
[277]. In this book, we have discussed the Bernoulli shift map in example 4.2.1
(albeit for the case q = 2), and the Arnold cat map in Sect. 6.6.1.

For each map we run a long simulation starting from a given initial condition x
0

.
From the trajectory we compute the sequence of observables g

1

, g
2

, g
3

with respect
to a point ⇣ randomly chosen according to the invariant measure. We then divide the
time series of length s into k bins each containing n = s/k observations. Then, we
test the degree of agreement between the empirical distribution of the maxima and
the GEV distribution GEV⇠((x� µ)/�) using the MLE method.

All the numerical analysis contained in this work has been performed using MAT-
LAB© Statistics Toolbox function gevfit. These functions return MLE of the pa-
rameters for the GEV distribution giving 95% confidence intervals for estimates. As
in every fitting procedure, it is necessary to test the a posteriori goodness of fit. We
anticipate that in every case considered, fitted distributions passed, with maximum
confidence interval, the Kolmogorov-Smirnov test described in [278]. For illustration
purposes, we present in figure 9.3 an empirical pdf and d.f. with the corresponding
best GEV fits.

Once s is set to a given value (in our case s = 10

7), the numerical simulations
allow us to explore two limiting cases of great interest in applications where the
statistical inference is intrinsically problematic:

1) k is small (n is large), so that we extract only few maxima, each corresponding to
a very good candidate for being a truly extreme event.

2) n is small (k is large), so that we extract many maxima but most of those will not
be, in fact, soft extremes.

In case 1), we have only few data - of high quality - to fit our statistical models,
whereas in case 2) we have many data but the sampling may be polluted by the inclu-
sion of data not really corresponding to genuine extreme events. In general, we have
that in order to obtain a reliable fit for a distribution with p parameters we need 10

p

independent data [45] so that we expect that the fit procedure gives reliable results
for k � kmin ⇠ 10

3. As the value of n determines to which extent the extracted bin
maximum is representative of an extreme, below a certain value nmin our selection
procedure will be unavoidably misleading. We have no obvious theoretical argument
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to define the value of nmin. We expect to obtain good fits throughout the paramet-
ric region where both constraints on n and k are satisfied. Clearly, our flexibility
in choosing good pairs (n, k) increases with larger values of s, i.e., when we have
longer time series at hand.

For g
1

-type observables, the behaviour of the three parameters against k is pre-
sented in figure 9.4. According to Eq. 9.3.1, we expect to find ⇠ = 0. For relatively
small values of k the sample is too small to ensure a good convergence to analytical
⇠ and confidence intervals are wide. On the other hand we see deviations from the
expected value as n < 10

3, i.e., when k > 10

4. For the scale parameter a similar
behavior is achieved and deviations from expected theoretical values � = 1/2 for
the Arnold cat map and � = 1 for the Bernoulli shift map are found when k < 10

3

or n < 10

3. The location parameter µ shows a logarithm decay with k, as expected
from Eq. 9.3.1.

Figure 9.4 g1 observable, a) ⇠ VS log10(k); b) � VS log10(k); c) µ VS log10(k). Right:
Bernoulli shift map. Left: Arnold cat map. Dotted lines represent the computed confidence
intervals, gray lines represent linear fits and theoretical values.
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A linear fit of µ against log
10

(k) is shown with a gray line in figure 9.4. The
estimated angular coe�cients K⇤ agree very accurately with the theoretically pre-
dicted value of 1/d given in Eq. 9.3.1: for the Bernoulli shift map we obtain |K⇤| =
1.001± 0.001, while for Arnold cat map |K⇤| = 0.489± 0.001.

Figure 9.5 g2 observable. a) ⇠ VS log10(k); b) log10(�) VS log10(k); c) log10(µ) VS
log10(k). Right: Bernoulli shift map. Left: Arnold cat map. Dotted lines represent
computed confidence interval, gray lines represent linear fits and theoretical values.

We find that ⇠ values have best matching with theoretical ones with reliable confi-
dence interval when both n > 10

3 and k > 10

3.
In the following, without loss of generality, we discuss the main findings obtained

for g
2

-type and g
3

-type observables taking ↵ = 3 (see Sect. 9.1.1).
For a g

2

observable function we expect to have ⇠ = 1/3 for the Bernoulli shift map
and ⇠ = 1/6 for the Arnold cat map. In both cases - see Fig. 9.5a) - the best match
is obtained for n > 10

3 and k > 10

3. We can also check that µ and � parameters
follow a power law as a function of k as described in Eq. 9.3.2. In the log-log plot in
Figure 9.5b), 9.5c), we can see a very clear linear behavior. For the Bernoulli shift
map, we obtain |K⇤| = 0.330± 0.001 for µ series, |K⇤| = 0.341± 0.001 for �,
in good agreement with theoretical value of 1/3. For the Arnold cat map we expect
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Figure 9.6 g3 observable, a) ⇠ VS log10(k); b) log10(�) VS log10(k); c) log10(µ) VS
log10(k). Right: Bernoulli shift map. Left: Arnold cat map. Dotted lines represent
computed confidence interval, gray lines represent linear fits and theoretical values.

to find K⇤
= 1/6, from the experimental data we obtain |K⇤| = 0.163± 0.001 for

µ and |K⇤| = 0.164± 0.001 for �.
Finally, we consider g

3

-type observables, where we choose C = 10 and we expect
to have ⇠ = �1/3 for the Bernoulli shift map and ⇠ = �1/6 for the Arnold cat map.
In both cases, as above the best match is obtained for n > 10

3 and k > 10

3 - see
Fig. 9.6a).

The results presented in Eq. 9.3.3 suggest that in the asymptotic regime, µ is
constant, while � grows following a power law of k. As in the g

2

case we expect
that the value of the corresponding slope of the graph in the log-log plot is |K⇤| =
1/(↵d). The numerical results are shown in Figs. 9.6b), 9.6c) and are consistent
with the theoretical ones, since we find |K⇤| = 0.323 ± 0.006 for Bernoulli shift
map and |K⇤| = 0.162± 0.006 for the Arnold cat map.
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9.3.1
Maximum Likelihood vs L-moment Estimators

We want now to compare the performance of two main methods of performing GEV
statistical inference for BM described in Sec. 9.1.3. In Fig. 9.7 we show the estimates
for the shape parameters ⇠ of the two maps given in Eqs 4.2.1-?? obtained using the
MLE method (which has been used to produce the figures above in this chapter) and
the L-moment method. For both methods, we display (solid line) the mean value of
⇠ obtained by averaging the results of an ensemble of 30 realizations started from
random initial conditions, whereas the shaded regions represent cover one standard
deviation of the mean.

Figure 9.7 Shape parameters of the GEV distribution ⇠ VS total length of the series
s = NK. Solid lines represent the mean values among 30 realizations, the shaded
regions represent the standard deviation of the mean. The dotted lines are the theoretical
expected values; blue: g1, red: g2, magenta: g3. Top: MLE , bottom: L-moment. Left:
Bernoulli shift map, right: Arnold cat map.

Maxima of gi are extracted every n observations over a simulation containing s =
nk points, where k = 10

3, so that we consider simulations of varying length, as
opposed to above, where the length s is kept fixed. The value of k has been chosen,
following what discussed before, in order to follow the idea that in order to obtain a
reliable fit for a distribution with p parameters we need 10

p independent data [45].
The colors code refer to the three di�erent observables: blue is used for g

1

=

� log(dist(x, ⇣)), red for g
2

= dist(x, ⇣)�3 and magenta for g
3

= �(dist(x, ⇣))3.
The observables are computed with respect to a point ⇣ randomly chosen on the at-
tractor. The dotted lines represent the theoretical expected values discussed above.

The analysis shows that in this case the two statistical inference methods have com-
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parable convergence speed and precision.We first observe that the value of the low
threshold nmin such that the selection procedure leads to a biased parameters esti-
mation depends on the properties of the map. For both maps the confidence interval
of the estimates for the values of ⇠ includes the theoretical values already for n = 10,
which corresponds to s = 10

4. Note that, if we increase the number of maxima we
consider in order to decrease the uncertainty on the inferred parameters, we in fact
discover that our best fit is not compatible with the theory; compare the rightmost
range of Figs 9.4a), 9.5a), 9.6a), where the case s = 10

7, k = 10

5 and n = 10

2 are
considered.

9.3.2
Block Maxima vs Peaks Over Threshold Methods

Figure 9.8 Shape parameters of the GPD ⇠ VS total length of the series s = NK. Solid
lines represent the mean values among 30 realizations, the shaded regions the standard
deviation of the mean. The dotted lines represent the values predicted by the theory. blue:
g1, red: g2, magenta: g3. Top: MLE , bottom: L-moment. Left: Bernoulli shift map, right:
Arnold cArnold cat mapat map.

We repeat the analysis described in the previous section by using the POT ap-
proach. As in the previous case, we refer to [45] for the choice of the number of
maxima to be extracted, so that we choose k = 10

3. The total length of the series s
is gradually increased through the experiments, which are devised similarly to what
described in the previous section for the BM method. The results are shown in Fig.
9.8. The agreement between theory and experiments is very good - and with rather
narrow confidence intervals as compared to what reported in Fig. 9.7 - already for
very short time series NK = 10

4, due to the particular properties of the measure
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considered. In fact, for uniform densities, d(⇣) = 1 no matter the radius of the
ball considered. The POT approach allows for achieving a better convergence for
the two dimensional case with respect to the BM approach. This can be explained
by considering that in the particular case of measure having a constant density, the
choice of the radius does not really a�ect the EVLs as the same scaling properties
hold ubiquitously on the invariant measure. We remark that, as in the previous case,
no particular di�erences can be observed when the inference procedure is performed
via the MLE or the L-moment method.

9.4
Chaotic Maps with Singular Invariant Measures

In Sect. 4.2.1 we have shown that it is indeed possible to construct EVLs for the
distance observables gi’s, i = 1, 2, 3 also in the case of mixing systems possessing
a fractal invariant measure without atoms supported on the attractor ⌦. This case is
extremely relevant for a variety of applications, and, in particular, when constructing
models for nonequilibrium statistical mechanical systems [70, 71].

In particular, if one can define the local dimension d(⇣) for a point ⇣ 2 ⌦, then the
value of the shape parameters ⇠ of the GEV distribution describing the BM extremes
of the observable can be derived as follows:

• Observable g
1

(dist(x, ⇣)) = � log(dist(x, ⇣))! ⇠ = 0;
• Observable g

2

(dist(x, ⇣)) = �(dist(x, ⇣))�1/↵ ! ⇠ = 1/(↵d(⇣));
• Observable g

3

(dist(x, ⇣)) = C � (dist(x, ⇣))1/↵ ! ⇠ = �1/(↵d(⇣)).

These results are the natural extension of what discussed in Sect. 9.1.1 in the case of
systems possessing absolutely continuous invariant measure.

We wish to remind that, as discussed in Chapter 8, deriving EVLs descriptive of
the asymptotic behaviour of POT requires assuming that the mass of the ball of ra-
dius r entered in ⇣ can be approximated as µ(Br(⇣)) ⇠ f(r)rd(⇣), where f is a
slowly varying function [44]. Correspondingly, in the BM approach, in the case of
singular invariant measures it is not possible to derive the properties of the normal-
ising sequences an and bn with the same level of precision as in the case of systems
possessing Lebesgue as an invariant measures. We present below some related re-
sults.

9.4.1
Nomalizing Sequences

Case 1: g1(x) = � log(dist(x, ⇣)). Substituting Eq. 4.2.3 into Eq. 4.2.8 we
obtain that:

1� F (u) = 1� µ(g(dist(x, ⇣))  u)

= 1� µ(� log(dist(x, ⇣))  u)

= µ(dist(x, ⇣) < e�u
) = µ(Be�u

(⇣)) (9.4.1)
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where uF = 1. Following Sect. 3.1.1, we have that according to Corollary 1.6.3
in [1], for type 1 the following results hold: an = [h(�n)]�1 and bn = �n =

F�1

(1� 1

n ), where h is defined in Eq. 4.2.7. We now show how to get the limiting
value of �n; a similar proof will hold for type II and III.

Proposition 9.4.1. Let us suppose that our system verifies Assumptions 1, 2, 3, 4
given in Sect. 9.1.1 and let us consider the observable g

1

; then:

lim

n!1
log n

�n
= d(⇣).

Proof Using the definition of g
1

, we have that 1� F (�n) = µ(Be��n (⇣)) = 1

n .
Since the measure is not atomic and varies continuously with the radius, we have
necessarily that �n ! 1 when m ! 1. Now we set � > 0 and small enough;
there is n�,⇣ depending on � and on ⇣ , such that for any n � n�,⇣ we have

���n  logµ(Be��n (⇣)) + d(⇣)�n  ��n. (9.4.2)

Since log n � d(⇣)�n = �[logµ(Be��n (⇣)) + d(⇣)�n] and by using the bounds
in the previous Eq. 9.4.2 we immediately have

���n  log n� d(⇣)�n  ��n,

which proves the Proposition.
It should be clear that the previous proposition will not give us the value of �n =

bn. We have instead a rigourous limiting behavior:

�n = bn ⇠ 1

d(⇣)
log n

The values for finite n could be obtained if one knew the functional dependence of
µ(Br(⇣)) on the radius r and the center ⇣ . The same reason prevents us to get a
rigorous limiting behavior for an = [h(�n)]�1. The only rigorous statement we
can state is that h(�n) = o(�n). This follows by adapting the previous proof of the
proposition to another result (see [1]) which says that for type I observables one has
limn!1 n(1� F{�n + xh(�n)}) = e�x, for all real x: choosing x = 1 gives us
the previous domination result. In the following and again for numerical purposes
we will assume the validity of the following approximate formula

an = [h(�n)]
�1 ⇠ 1

d(⇣)
,

which follows by replacing in Eq. 9.4.1 the simple scailng law µ(Br(⇣)) ⇠ rd(⇣)
(whose relevance has been already critically discussed in Chap. 8) for r small.

Case 2: g2(x) = dist(x, ⇣)

�1/↵. In this case we have

1� F (u) = 1� µ(dist(x, ⇣)�1/↵  u)

= 1� µ(dist(x, ⇣) � u�↵
)

= µ(Bu�↵
(⇣)) (9.4.3)
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and xF = +1. Since bm = 0 we have only to compute an which is the reciprocal
of �n which is in turn defined by �n = F�1

(1 � 1/n). By adapting Proposition
9.4.1 we immediately get that

lim

n!1
log n

log �n
= ↵d(⇣)

so that we derive the approximate relation am ⇠ n�1/(↵d(⇣)).

Case 3: g3(x) = C � dist(x, ⇣)

1/↵. We have:

1� F (u) = 1� µ(C � dist(x, ⇣)1/↵  u)

= µ(B
(C�u)↵(⇣)) (9.4.4)

In this case xF = C < 1 and an = (C � �n)�1; bn = C . The previous
proposition immediately shows that limn!1 logn

�↵ log(C��n) = d(⇣), which gives

the asymptotic scaling �n ⇠ C � 1

n
1

↵d(⇣)
; an ⇠ n

1

↵d(⇣) ; bn = C .
Concluding, we derive the following prescriptions for the estimates of the param-

eters ⇠, �, and µ for given values of n or k. They mirror exactly what was given in
Eqs. 9.3.1-9.3.3, except that we have specific reference to the local dimension d(⇣).

• For g
1

-type observables:

� =

1

d(⇣)
µ = C

1

+

1

d(⇣)
log(n) = C

2

� 1

d(⇣)
log(k) ⇠ = 0,(9.4.5)

where C
1

and C
2

are positive constants.
• For g

2

-type observables:

� / n1/(↵d(⇣)) / k�1/(↵d(⇣)) µ / n1/(↵d(⇣)) / k�1/(↵d(⇣)) ⇠ =
1

↵d(⇣)
.(9.4.6)

• For g
3

-type observables:

� / n�1/(↵d(⇣)) / k1/(↵d(⇣)) µ = C ⇠ = � 1

↵d(⇣)
. (9.4.7)

9.4.2
Numerical Experiments

In general, singular measures resulting from chaotic dynamics correspond to ob-
serving at least a direction of contraction along which the relevant invariant measure
appears as a supported on a Cantor set [71]. Hence, the empirical d.f. of the distance
(with respect to ⇣ in the attractor) observables feature non trivial behaviour (lack of
smoothness) corresponding to range of distance from ⇣ where lacunae appear in the
attractor. Such lack of smoothness indeed interferes with the optimisation procedure
performed in the MLE, as the smoothness properties of the cost function are jeopar-
dized. Conversely, the L-moment procedure allows for overcoming these di�culties
since the normalization procedure carried out with this method consists in dividing
each quantity computed via L-moment by a function of the total number of data, so
that no derivatives of the d.f. are involved.
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9.4.2.1 A First Example: the Cantor Set

Figure 9.9 Empirical (blue) and fitted (red) d.f. for the extremes of the distance observable
g1 for the IFS that generates a Cantor set. Reference point ⇣ = 0.775,

In order to illustrate the additional challenges related to finding a satisfactory sta-
tistical model for extremes of distance observables for systems possessing a singular
invariant measure, we first briefly analyse the so-called middle one third Cantor set,
which can be obtained by the Iterating Function System (IFS) {f

1

, f
2

} defined as:

f
1

(x) = x/3 p < 0.5

f
2

(x) = (x+ 2)/3 p � 0.5, (9.4.8)

where x 2 [0, 1] and we set p as a random variable extracted at each time step
from a uniform distribution supported in [0, 1] so that, at each time step, we have
the same probability of iterating f

1

(x) or f
2

(x). The support of the measure is a
simple fractal, i.e. all the points ⇣ have the same non integer local dimension d(⇣) =
dH , which also agrees with the value of all of Renyi’s dimensions d

(q)’s, 8q 2 N.
Such dimension can be directly computed and its value is d

1

= log(2)/ log(3)
(see e.g. [279]). We consider the usual observables gi, i = 1, 2, 3, and we have
that the conditions Д

0

(un) and Д0
0

(un) apply for this system. First of all, we have
analyzed the empirical d.f. F (u) of the extremes for g

1

observable. An example of
the histogram and the corresponding fit to the GEV model for the observable g

1

is
shown in Fig. 9.9. The histogram is obtained by iterating the map in Eq. 9.4.8 for
s = 5 · 107 iterations, at the point ⇣ ' 0.775, by choosing n = 5000,m = 1000.
The fit is produced with the MLE procedure. The empirical d.f. contains plateaux
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Figure 9.10 IFS generating a Cantor set. Shape parameter ⇠ of the GEV (left) and of the
GPD (right) VS the total length of the series s = nk, k = 10

3 for the observables: g1
(blue), g2 (red), g3 (magenta). Solid lines represent the mean values computed over 30
realizations, the shaded regions include one standard deviation of the mean. The dotted
lines are the theoretical expected values. Top: MLE , bottom: L-moment.

which correspond to non accessible distances in correspondence of the holes of the
Cantor set.

The numerical experiments on the IFS generating the Cantor set follow exactly the
setting already described for the absolutely continuous case and they are reported in
Fig. 9.10. The convergence towards the theoretical parameter is not as good both
for the MLE and the L-moment procedure as in case where the underlying measure
is absolutely continuous, compare with Fig. 9.7. Nonetheless, what we find is en-
couraging in terms of supporting the use of GEV methods also in the case where
the invariant measure is singular. Apparently, there is not much di�erence in using
the L-moment or the MLE for estimating ⇠. However, we observed that many fits
obtained via MLE returned unreliable uncertainties range as the minimization pro-
cedure failed. This is due to the fact that the MLE procedure works on continuous
densities with a well defined maximum here not unequivocally detectable due to the
jump occurring in the d.f. Therefore in these cases we recommend the use of the L-
moment procedure which requires only the computation of integral expressions still
well defined for singular continuous d.f. Further details on the BM estimates of ⇠ for
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such a system are given in Table 9.1.
The experiments have been repeated with the POT approach and the related results

are also presented in Fig.9.10. We have observed more serious issues in finding
agreement between the numerical estimates and what the theory suggests. We find
that in many cases the estimates of ⇠ vary in a non-monotonic (actually, oscillating)
manner as longer series of size s are considered, while no convergence is found to
the theoretical value even for very high values of s. This e�ect can be explained
by observing that the discontinuities of the measure make the fit to the GPD model
very sensible to the value of the density around the chosen threshold. The fit to this
distribution is clearly less stable than with the BM method, because in this latter case
the GEV density is constrained to go to zero at ±1, so that the fitting procedure is
less perturbed by the presence of holes in the measure.

Figure 9.11 g1 observable. a) ⇠0 VS log10(k); b) � VS log10(k); c) µ VS log(k). Left:
Hénon map, Right: Lozi map. Dotted lines represent one standard deviation, red lines
represent a linear fit, green lines are theoretical values.
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9.4.2.2 The Hénon and Lozi Maps
We want to study the extremes of distance observables for the Lozi and Hénon maps,
which have already been introduced in Sect. 6.6.2 and Sect. 6.6.4, respectively. We
briefly recapitulate here some of their properties. The Hénon map, already presented
in Eq. 6.6.6, is defined as:

fa,b(x, y) = (y + 1� ax2, bx) (9.4.9)

while in the Lozi map, previously presented in Eq. 6.6.5, the term ax2 is substituted
with a|x| :

fa,b(x, y) = (y + 1� a|x|, bx) (9.4.10)

Figure 9.12 g2 observable a) ⇠0 VS log10(k); b) log10(�) VS log10(k); fc) log10(µ) VS
log10(k). Left: Hénon map, Right: Lozi map. Dotted lines represent one standard
deviation„ red lines represent a linear fit, green lines are theoretical values.

In the numerical experiments presented here, we consider the classical set of pa-
rameters a = 1.4, b = 0.3 for the Hénon map and a = 1.7 and b = 0.5 for the Lozi
map. [280] proved the existence of the SRB measure for the Lozi map, whereas for
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the Hénon map no such rigorous proof exists, even if convincing numerical results
suggest its existence [281]. Note that [196] proved the existence of an SRB measure
for the Hénon map with a di�erent set of parameters. Using the classical Young re-
sults [280] which make use of the Lyapunov exponents, we obtain an exact result for
the information dimension d

1

=

R

dµ(⇣)d(⇣) for the Lozi attractor:

d
1

' 1.40419

Instead, in the case of the Hénon attractor, we consider the numerical estimate pro-
vided by [282]:

d
1

= 1.25826± 0.00006

Figure 9.13 g3 observable. a) ⇠ VS log10(k); b) log10(�) VS log10(k); c) log10(µ) VS
log10(k). Left: Hénon map, Right: Lozi map. Dotted lines represent one standard
deviation, red lines represent a linear fit, and green lines are theoretical values.
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d1 Baker Hénon Lozi Cantor
Theor. 1.4357 1.2582 1.4042 log(2)/|log(3) ⇠ 0.6309

�(g1) 1.43± 0.03 1.21± 0.02 1.39± 0.02 0.635± 0.005

µ(g1) 1.48± 0.03 1.23± 0.02 1.40± 0.01 0.64± 0.01

⇠(g1) 1.41± 0.02 1.24± 0.02 1.41± 0.01 0.63± 0.01

�(g2) 1.39± 0.04 1.35± 0.07 1.38± 0.02 0.63± 0.01

µ(g2) 1.47± 0.02 1.24± 0.01 1.40± 0.01 0.64± 0.01

⇠(g3) 1.45± 0.02 1.28± 0.02 1.4± 0.01 0.64± 0.01

�(g3) 1.56± 0.08 1.15± 0.07 1.42± 0.01 0.64± 0.01

Table 9.1 Estimate of the information dimension d1 obtained by averaging over p = 1000

ensemble members the estimates of d(⇣) computed by taking the logarithm of Eqs.
9.4.5-9.4.7 and computing the angular coe�cient ⇠ of a linear fit of data; for Baker, Hénon,
and Lozi, maps, and the IFS generating the Cantor set. The Baker map is not discussed
in this book; see [77] for details.

Following the considerations given in the previous section, the fit of the BM to
the GEV distribution is performed using the L-moment methods. We average our
results over q = 1000 di�erent ⇣ reference points chosen on the attractor of the
system according to the invariant measure. The simulation includes s = nk = 10

7

time steps and perform our statistical analysis considering di�erent values of n and
k. We label each statistical analysis with the corresponding ⇣ and compute d

1

=

R

dµ(⇣)d(⇣) as d
1

⇠ 1/p
Pq

j=1

d(⇣j).
Our estimates for the parameters ⇠, �, and µ for the three observables gi, i =

1, 2, 3 are presented in Figs. 9.11-9.13. The plots on the left-hand side refer to the
Hénon map, while on the right-hand side the results refer to the Lozi map. When
considering ⇠, the numerical results are in agreement with the theoretical estimates.
Nevertheless, the parameters distribution have a rather range spread which indicates a
slower convergence towards the expected values in respect to what is observed for the
IFS case. The estimates for � and µ obey the predictions given in Eqs- 9.4.5-9.4.7,
even if substantial uncertainties persist.

We note that there are several ways to derive d(⇣) from the estimates of the GEV
parameters using Eqs. 9.4.5-9.4.7. We focus on the expressions of � and µ for the
g
1

observable, ⇠, µ and � for the g
2

observable, the expression of ⇠ and � for the
g
3

observable. We derive for the estimates of such parameters the corresponding
estimates of d(⇣), and then average over the set of q = 1000 chosen ⇣’s.

Results are presented in Table 9.1, where we present for each considered observ-
able and for each map the best estimate for d

1

and its uncertainty as measured by
twice the standard deviation. We also include, for reference the results obtained for
the IFS generating the Cantor set discussed before and for the Baker map [69]. A
more thorough discussion of these findings is provided in [77]. We have satisfactory
agreement with the theory. Nonetheless, substantial uncertainty persists: the rela-
tively slow convergence for these maps may be related to the di�culties experienced
computing the dimension with all box-counting methods, as shown in [281, 282]. In



Lucarini, Faranda, Freitas, Freitas, Holland, Kuna, Nicol, Todd, Vaienti: Extremes and Recurrence in Dynamical
Systems — Chap. 9 — 2016/5/16 — 19:35 — page 218

218

that case it has been proved that the number of points that are required to cover a
fixed fraction of the support of the attractor diverges faster than the number of boxes
itself for this kind of non uniform attractor. In our case the situation is similar since
we consider balls around the initial condition ⇣ .

The best result for the dimension is achieved using the parameters provided by g
1

observable, since the logarithm modulation of the distance takes into proper account
real extrema while weighting less extremely large extreme events which, within a
finite datasets context, might appear as outliers spoiling the statistics.

9.5
Analysis of the Distance and Physical Observables for the Hénon map

In this section we want to bring together the analysis of extremes of distance and
physical observables for the Hénon map given in Eq. 9.4.9, taking the point of view
of POT, so that we will mostly refer to results contained in Chap. 8, even if results
from Chap. 6 are also relevant.

We consider two sets of parameter values for which chaotic behavior is observed,
a = 1.4 b = 0.3 and a = 1.2, b = 0.3. In the first case, the largest Lyapunov
exponent �

1

⇠ 0.416 and the Kaplan-Yorke dimension is estimated as dKY =

1+�
1

/|�
2

| = 1+�
1

/| log(b)��
1

| ⇠ 1.26, where du = 1 and ds = �
1

/| log(b)�
�
1

| ⇠ 0.26. In the second case, the largest Lyapunov exponent �
1

⇠ 0.305 and the
Kaplan-Yorke dimension is estimated as dKY = 1+ �

1

/|�
2

| = 1+ �
1

/| log(b)�
�
1

| ⇠ 1.20.
Since the local dimension d(⇣) is not constant on the attractor (see discussion in

Sect. 9.4.2.2 for the first choice of the parameters), we have that these systems are not
exact dimensional. Therefore, the considered pairs of values of a and b do not belong
to the Benedicks-Carleson set of parameters, which, instead, lead to an invariant SRB
measure for the system. Moreover, this sheds doubts on the validity on the formula
given Eq. 6.11.3 (obtained using the BM point of view) and its high-dimensional
version (obtained using a POT-based approach) given in Eqs. 8.2.15 and 8.2.17 for
estimating the shape parameter for the family of physical observables given in Eq.
6.11.2 by setting ✓ = 0.

We proceed as follows for both pairs of parameters a = 1.4 b = 0.3 and a = 1.2,
b = 0.3. The initial conditions are selected in the basin of attraction of the strange
attractors. We perform long integrations (s = 10

10 iterations) and select the max-
imum value of A(x, y) = A(~x) = x, which can be obtained from the family of
observables given in Eq. 6.11.2 by setting ✓ = 0. Note that in this section we use he
bold font ~x to refer to the point (x, y). We denote such maximum as Amax, and de-
fine as ~x

0

the unique point belonging to the attractor such that A( ~x
0

) = Amax. We
then construct the observable B(~x) = �dist(~x, ~x

0

), which measures the distance
between the orbit and the point ~x

0

. As discussed in Chapter 8 and detailed in [78], the
asymptotic properties of the extremes (maxima) of the B observable allow to derive
easily the local dimension d(~x

0

). We then repeat the investigation using, instead,
the observable A(~x) = �x. In all the analyses presented below, we have chosen
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extremely high thresholds T for studying the statistical properties of the extremes of
the A and B observables, in such a way to include only about a fraction of about
10

�5 or less of the total number of points of the orbit. All the results are insensitive
to choice of T , which suggests that we are well into the asymptotic regime.
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Figure 9.14 Results of numerical simulations performed on thnon mape Hénon map with
parameters’ value a = 1.4 and b = 0.3. a) Blue curve: empirical ¯

F

T

(Z) for the observable
A = x, with A

max

= A( ~x0) ⇠ 1.2730. Black line: power law behavior deduced from the
theory. Red curve: empirical ¯

F

T

(Z) for the observable B = �dist(~x, ~x0), with
B

max

= 0. Magenta line: power law deduced from the theory. b) Same as a), for the
observable A = �x, with A

max

⇠ 1.2847 and B

max

= 0. c) Approximation to the
attractor with blow-ups of the portions of the invariant measure corresponding to the
extremes of the A observables (⌦T

Amax
regions); the vertical lines indicate the thresholds.

In both inserts, we consider A
max

� T = 10

�4. See also Fig. 8.2.

The results obtained for the Hénon system featuring a = 1.4 b = 0.3 are shown in
Fig. 9.14, where we present the complementary cumulative distribution of excesses
¯FT (Z) (see Eq. 8.2.16) for A(~x) = x (A(~x) = �x) and for the corresponding
B(~x) = �dist(~x, ~x

0

) in panel a) (panel b)). The empirical values of ¯FT (Z) for
the A and B observables are shown by the blue and red curves, respectively, and the
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power law behavior ¯FT (Z) = (1�Z/(Amax�T ))↵ given by the theory (assuming
Axiom A properties) are shown by the black and magenta lines, respectively.

The error bars on the empirical ¯FT (Z) (estimated by varying the initial conditions
of the simulation) are for almost all values of Z so small that they cannot be graph-
ically reproduced. Instead, the flat region obtained for very low values of ¯FT (Z)

results from the finiteness of the sampling and gives the baseline uncertainty. Note
that the straight lines are obtained out of the theoretical predictions, without any pro-
cedure of optimization or of fit, so that no uncertainties are involved. The empirical
and theoretical distributions obey the same normalization.

We first observe that the local dimension in the vicinity of both ~x
0

’s is extremely
close to the dKY ⇠ 1.26, as ¯FT (Z) scales to a very good approximation with an
exponent ↵ ⇠ dKY ; compare the red curves and the magenta lines. Note that, con-
sidering that the local dimension has rather large variations across the attractor of
the Hénon system, such a correspondence was not intentionally pursued. However,
these are favorable circumstances to check the theory. We find that the distributions
¯FT (Z) for the observables A(~x) = x and A(~x) = �x also obey accurately the
power law scaling with exponent ↵ ⇠ � = du/2 + ds ⇠ 0.76 given in Eq. 6.11.3
and Eqs. 8.2.15 and 8.2.17, compare the blue curves and the black lines. In panel
c) we present a simple description of the geometry of the problem, by showing an
approximation to the map’s attractor with blow-ups of the portions of the invariant
measure corresponding to the extremes of the A observables (the regions ⌦T

max in-
troduced in Fig. 8.2). Even if the geometrical properties of the regions of the attractor
around the two x

0

’s seem indeed di�erent, when zooming in, the two ⌦T
max regions

look similar. The presence of many parabolas-like smooth curves stacked according
to what looks qualitatively like a Cantor set fits with the comments and calculations
given in Chaps. 6 and 8.

In Fig. 9.15 we report the corresponding results obtained for the Hénon system
featuring a = 1.2 b = 0.3 . By looking at the empirical ¯FT (Z) of theB observables,
we note that also in this case the local dimension is close to the value of dKY ⇠
1.20 for both extremal points ~x

0

’s (compare the red curves and the magenta lines
in panels a and b). The agreement between the predicted value of the power law
scaling for the ¯FT (Z) of the A observables is not as good as in the case reported
in Fig. 9.14. The predicted scaling exponent � = du/2 + ds ⇠ 0.70 seems to
overestimate the very large extremes. Nonetheless, a power law scaling is apparent
for the empirical ¯FT (Z). Note that the bias between the theoretical and empirical
scalings is of the same sign for both the A and B observables, suggesting that also
for the A observables part of the disagreement is due to the discrepancy between the
local dimension and the Kaplan-Yorke dimension (there is a shift in the values of the
slopes). Also here, panel c) provides an approximate representation of the attractor
of the system, and, in particular of the ⌦T

max regions: by comparing it with panel c)
of Fig. 9.15, and considering that they contain the same number of points, one can
intuitively grasp that the local dimension is lower in this case.
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Figure 9.15 Same as in Fig. 9.14, but for parameters’ value a = 1.2 and b = 0.3. In this
case in a) A

max

⇠ 1.2950 and B

max

= 0, and in b) A
max

⇠ 1.0328 and B

max

= 0.

9.5.1
Remarks

We would like to emphasize that in panels a) and b) for Figs. 9.14 and 9.15, we ob-
serve deviations of the empirically obtained ¯FT (Z) from the power law behaviour, in
the form of fluctuations above and below a straight line in a log-log plot (this is quite
clear in Fig. 9.15). As discussed in Sect. 9.4.2, the presence of such modulations
across scales result from the fact that gaps are present along the stable manifold con-
taining ~x

0

, with a Cantor set-like structure. See the inserts in Figs. 9.14c) and 9.15c),
where the stable manifold (not shown) is, as opposed to the unstable manifold, not
orthogonal to the gradient of A (the x direction, in this case).

Therefore, when we integrate the density of states along the direction of the gradi-
ent of the A observable starting in ~x

0

in order to obtain µ(⌦T+Z
Amax

) and µ(⌦T
Amax

)

(see Fig. 8.2), we get a factor (Amax � T � Z)

du/2 (du = 1) coming from the
(local) paraboloidal form of the unstable manifold discussed in Sec. 8.2.3, times
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a devil’s staircase which can, on the average, be approximated by the power law
(Amax � T � Z)

ds . The same geometric arguments apply when considering inte-
grations along the spherical shells centred on ~x

0

for constructing the extreme value
laws for B observables. See also the discussion in the context of the GEV approxi-
mation to the BM statistics related to Fig. 9.9

Overall, such results suggest that it is indeed promising to use the combined statis-
tical properties of the extremes of physical and distance observables for determining
the geometry of the attractor in terms of its partial dimensions along the stable and
the unstable manifold.

9.6
Extremes as Dynamical Indicators

In the previous sections we have shown how to use extremes for deducing important
properties of the geometry of the attractor supporting the invariant measure. In other
terms extremes act as a fort of microscopes allowing us to focus on the fine structure
of the dynamics of the system. In the last example, we have shown how considering
distance and physical observables at the same time makes it possible to gather spe-
cific information on the directions of contraction and of expansion in the attractor. In
this section we would like to present some results which can clarify how observing
extremes we can learn about the qualitative properties of the dynamics of the under-
lying system, and, in particular, detecting changeovers between regular and chaotic
behaviours as a function of a control parameter.

In the context of dynamical systems theory, a large number of tools known as indi-
cators of stability have been developed for determining whether a system is regular
or chaotic. Quantities like Lyapunov exponents [283, 70, 284, 285] and the indica-
tors related to the RTS [286, 287, 288, 289] have been used for a long time for such
a task. Nevertheless, in the recent past, the need for computing stability properties
with faster algorithms and for systems with many degrees of freedom resulted in a
renewed interest in the technique and di�erent dynamical indicators have been in-
troduced. The Smaller Alignment Index (SALI) described in [290] and [291], the
Generalized Alignment Index (GALI), introduced in [292] and the Mean Exponen-
tial Growth factor of Nearby Orbits (MEGNO) discussed in [293], [294] are suitable
to analyze the properties of a single orbit. They are based on the divergence of nearby
trajectories and require in principle the knowledge of the exact dynamics. Another
class of indicators is based on the properties of the error due to the numerical round
o� and has been discussed in [244]. In this case, the focus is on illustrating the dy-
namical properties of a system by computing the divergence between two trajectories
where we choose the same initial condition but di�erent numerical precision in the
numerical integration. The so called Reversibility Error, which measures the dis-
tance between a certain initial condition and the end point of a trajectory iterated
forward and backward for the same number of time steps, gives basically the same
information.

The purpose of all these indicators is to provide a global information on the struc-
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ture of the physical measure of the system. Few of them are explicitly designed to
sample local properties. Moreover, even when this is the case, the level of zoom on
the physical measure cannot be manually set or changed. The purpose of this chapter
is to describe the geometrical and dynamical indicators derived by the extreme value
analysis of recurrences. These indicators are naturally intended to provide a local
information around the point chosen to sample recurrences. They will therefore act
as a magnifying glass on the physical measure providing di�erent levels of detail
according to the specific problems to address.

9.6.1
The Standard Map: Peaks Over Threshold Analysis

The standard map [295] is an area-preserving chaotic map defined on the bidimen-
sional torus, and it is one of the most widely-studied examples of dynamical chaos
in physics. The corresponding mechanical system is usually called a kicked rotator.
The maps is defined as follows:

f(x, y) =

✓

y � K

2⇡
sin(2⇡x), x+ y + 1

◆

mod T2 (9.6.1)

The dynamics of the map given in Eq. (9.6.1) can be regular or chaotic. For K ⌧ 1

the motion follows quasi periodic orbits for all initial conditions, whereas if K � 1

the motion turns to be chaotic and irregular. An interesting behavior is achieved when
K ⇠ 1: in this case we have coexistence of regular and chaotic motions depending
on the chosen initial conditions [296].

We perform for various values of K ranging from K = 10

�4 up to K = 10

2

an ensemble of 200 simulations, each characterised by a di�erent initial condition
⇣ randomly taken on the bidimensional torus, and we compute for each orbit the
observables gi, i = 1, 2, 3 discussed above. In particular, without loss of generality,
we choose the useful setting gi = gi(dist(f t⇣, ⇣)), i = 1, 2, 3, so that we study the
recurrence properties of the orbits in the neighbourhood of the initial condition.

In each case, the map is iterated until obtaining a statistics consisting 10

4 ex-
ceedances, where the threshold T = 7 · 10�3 and ↵ = 3. One can checkthat all the
results are indeed robust with respect to the choice of the threshold and of the value
of ↵. For each orbit, we fit the statistics of the 10

4 exceedances values of the ob-
servables to a GPD distribution, using a MLE [297] implemented in the MATLAB©
function gpdfit [298].

The results are shown in Fig. 8.2 for the inferred values of ⇠ and � and should be
compared with Eqs. (8.2.10)-(8.2.12). When K ⌧ 1, we obtain that the estimates
of ⇠ and � are compatible with a dimension d(⇣) = 1 for all the initial conditions:
we have that the ensemble spread is negligible. Similarly, for K � 1, the estimates
for ⇠ and � agree remarkably well with having a local dimension d(⇣) = 2 for all the
initial conditions. In the transition regime, which occurs for K ' 1, the ensemble
spread is much higher, because the scaling properties of the measure are di�erent
among the various initial conditions. As expected, the ensemble averages of the
parameters change monotonically from the value pertaining to the regular regime to
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Figure 9.16 GPD parameters for an ensemble of 200 initial conditions, Standard map,
di�erent values of K. a) g(⇠1) VS K, b) g(⇠2) VS K, c) g(⇠3) VS K, d) g(�1) VS K, e)
g(�2) VS K, f) g(�3) VS K. Black solid lines: averaged value. Black dotted lines:
uncertainty evaluated as one standard deviation of the ensemble. Green lines: theoretical
expected value for regular orbits. Red lines: theoretical expected value for chaotic orbits

that pertaining to the chaotic regime with increasing values of K .
Basically, this measures the fact that the so-called regular islands shrink with K .

Note that in the case of the observable g
1

, the estimate of the ⇠ is robust in all regimes,
even if, as expected, in the transition between low and high values ofK the ensemble
spread is larger.

9.6.2
The Standard Map: Block Maxima Analysis

As it should be by now clear to the reader, it is especially interesting to compare
the results of analysing extremes of observables generated by dynamical systems via
the BM and the POT methods when the applicability of the theory developed in this
book is borderline. We have above shown that the transition from regular to chaotic
dynamics of the standard map as a function of K is well captured by looking at
extremes using the POT approach. For both very large and very low values of K
the POT method works well, because its applicability is oblivious to whether the
dynamics is chaotic or regular [78]. Instead, problems emerge in the transitional
range K ⇠ 1.
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Instead, the BM approach works only if the dynamics is su�ciently mixing. There-
fore, we expect that a di�erent picture of the transition between chaotic and regular
motion appears when trying to construct GEV models for extremes across a vast
range of values of K . We then take an ensemble of 500 initial conditions centered
around (x

0

, y
0

) = (0.305, 0.7340) in a small subset of the two-dimensional torus.
Each orbit comprises of s = 10

6 iterations, so that we select k = 1000 maxima
over bins of length n = 1000 of the observables gi = gi(dist(f t⇣, ⇣)), i = 1, 2, 3
as above. We then compute the best fit of the GEV parameters for each realization,
and then averaged them over the di�erent initial conditions. We consider a range of
K spanning from K = 10

�4 up to K = 10

2.
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Figure 9.17 Standard map: GEV parameters averaged over 500 di�erent initial condition
centred on x0 = 0.305, y0 = 0.7340 VS K. a) ⇠(g1), b) ⇠(g2), c) ⇠(g3), d) �(g1).

In order to study the changeover from K ⌧ 1 to K � 1, we choose as indicators
the shape parameters for the three type observables ⇠(g

1

), ⇠(g
2

), ⇠(g
3

) and the scale
parameter for the type 1 observable �(g

1

). Looking at Eqs. 9.3.1-9.3.3, these seem
the best suited because they are related to the local dimension of the attractor d(⇣)
but do not have a dependence of m, therefore, once we are in the asymptotic regime,
the results are independent on the number of observations in each bin. The results are
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presented in Fig. 9.17. In this example we set ↵ = 3 for the g
2

and g
3

observables.
For each parameter, the averaged value is represented with a solid line whereas the
dotted lines represent one standard deviations of the ensemble. It is clear that for
K � 1 the parameters converge towards the theoretical values predicted by the
theory (we are, in fact, in a regime of mixing dynamics), whereas for K ⌧ 1,
where we have regular motions, the GEV fits simply fail, as can be assessed by a
Kolmogorov-Smirnov test [278]. As flag for this, we have that the fitted parameters
have a very large spread, which is more than five times larger with respect to the
case of the chaotic counterpart. The results are virtually unchanged if we change the
initial conditions and the value of ↵. The next step is to investigate extensively on
the attractor the properties of the extremes of the distance observables.

9.6.2.1 Using Extremes to Separate Islands of Regular Dynamics from
the Sea of Chaos
We want now to give evidence that a BM analysis of extremes of the observables
gi = gi(dist(f t⇣, ⇣)), i = 1, 2, 3 can provide a great deal of information on the
local (in the attractor) predictability of the system. We first introduce two standard
methods used for this purpose, the analysis of the divergence of orbits due to the
numerical round-o� and the reversibility error. We briefly summarize here some
definitions and suggest the reader to look into [244] for further clarifications.

Divergence of the Orbits. The arithmetic operations performed on a computer
are unavoidably a�ected by round-o�, which cause error to be propagated each time
an operation is performed. Round-o� algebraic procedures are hardware dependent,
as detailed in [243]. Suppose we are given a map f t

(x) then we will indicate with
f t
⇤(x) the correspondent numerical map both evaluated at the t-th iteration. We

define the divergence of orbits as:

�t(x) = dist(f t
S(x), f

t
D(x)), (9.6.2)

where f t
S and f t

D stand for single and double precision iterations, respectively, and
dist is a suitable metrics.

Reversibility Error. If the map is invertible we can also define the reversibility
error as

Rt(x) = dist(f�t
⇤ � f t

⇤(x), x) (9.6.3)

which is nonvanishing since the numerical inverse f�1

⇤ of the map is not exactly the
inverse of f⇤ namely f�1

⇤ � f⇤(x) 6= x. The reversibility error is easier to compute
than the divergence of orbits (if we know explicitly the inverse map) and provide
a comparable information. Both quantities grow on the average linearly if f is a
regular map together, while they grow exponentially if f has a positive Lyapunov
exponent. When computing Rt(x) we set f⇤ = fS in order to be able to compare it
with�t(x).

Let us now choose the value of K = 6.5, which corresponds to a regime where
we begin to have a good agreement between the inferred GEV parameters and what
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Figure 9.18 Predictability of the standard map (K = 6.5) for 2.5⇥ 10

5 uniformly
distributed initial conditions. Each simulation runs for s = 10

6 time steps. a) ⇠(g1), b)
⇠(g2), c) ⇠(g3), d) �(g1): We consider k = 10

3 maxima, each taken each over bins of
length n = 10

3. e) log10(Rt=100): Reversibility error computed over 100 time steps. f)
log10(�t=100): Divergence of trajectories computed over 100 time steps.

predicted by the theory in the presence of suitable mixing conditions, see Fig. 9.17.
We want to show that we can capture the main properties of the standard map with the
indicators presented above, by considering 500⇥500 = 2.5⇥10

5 initial conditions
⇣ uniformly distributed on the two-dimensional torus. We stick to the previously
mentioned values for the number of iterations s = 10

6, the number of bins k = 10

3,
and the length of the binsn = 10

3 as well as to the value of↵ = 3 for the observables
g
2

and g
3

.
Results are shown in Fig. 9.18 where we present for each ⇣ the four parameters

of GEV distribution (top and middle panels) for the extremes of gi(f t⇣, ⇣), i =

1, 2, 3, alongside the reversibility error and divergence of orbits in logarithm scale
(lower panel). The number of iterations for the round o� indicators is t = 100. The
latter indicators provide a clear-cut separation between the so-called (small) islands
of regularity and the so-called (widespread) sea of chaos, where they have very low
and very high values, respectively. The attractor of the standard map is extremely
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non-homogeneous: in the islands of regularity, the system is highly predictable, as
opposed to the the sea of chaos. Of course, if we consider higher (lower) values ofK ,
the portion of the attractor occupied by the islands of regularity shrinks (increases).

Such basic dynamical structure is well highlighted by all the indicators based on
GEV distribution. In all cases, we have that the indicators give values compatible
with a mixing dynamics taking place on an attractor with local dimension d(⇣) = 2

only in the chaotic regions. Instead, in the small regular islands we observe signifi-
cant deviations from the expected values. Additional details can be found in [76].

9.7
Extreme Value Laws for Stochastically Perturbed Systems

In Chapter 7 has been devoted to developing a mathematical framework for studying
EVLs in randomly perturbed systems, focusing on two types of stochastic pertur-
bation: additive noise and observational noise. The problem of understanding the
impact of adding noise in a system or of observing with finite accuracy its state on
the properties of its extremes is challenging and of general interest. In particular,
the theory we have developed has practical relevance in a wide range of applications
such as the analysis of the role of truncation errors for instrument with low accuracy,
the statistics of points visited sporadically in the analysis of recurrence of time se-
ries, and the possibility of computing attractor dimension by using Eq. 7.5.4, which
may serve as an alternative with respect to other well established techniques. See
discussion in [65].

Before delving into the analysis of the extremes of few specific numerical models,
let us stress an important point. Adding (su�ciently fast decorrelating) noise of
amplitude " in a system either in the dynamics or in the process of observing its
state tends to make it obey the decorrelation conditions Д

0

, Д0
0

and their variants,
thus allowing for an easier use of the probabilistic framework of EVT. The other
side of the coin is that the presence of noise tends to mask the fine structure of the
underlying deterministic dynamics below a certain scale defined by ".

We can find find a clear example of these e�ects by close inspection to the proof of
Proposition 7.5.1, where the parameter " appears in the denominator of one factor in
the r.h.s. of the term (II) at the end of the proof. This means that the convergence gets
better when " is large, which is not surprising since a large value of the perturbation
implies a more stochastic independence of the process. On the other hand, if we want
to use the form of the linear scaling parameter bn to catch the local properties of the
invariant measure µ, we need small values of ✏. Hence, A careful compromise on
the value of " between these the two regime of ephemeral and very strong noise is
necessary when we pursue e�ective numerical investigations.
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9.7.1
Additive Noise

We will analyse the e�ects of the additive noise for two one dimensional maps: the
rotation map introduced in Sec. 5.6 and defined as f(x) = x + ↵ mod 1, ↵ 2 R
and the chaotic Bernoulli shift map f(x) = qx mod 1, q 2 N, q � 2, introduced in
Sect. 4.2. These toy models are well know to have relevance for studying also higher
dimensional dynamical systems.

The rotation map has a regular dynamics and the statistics of its extremes does
not conform to the EVLs, as discussed in Sect. 5.6. Instead, in Sect. 7.2.1 we have
shown that EVLs are found as correct asymptotic model of the extremes of distance
observables for the same map if we add random perturbations in the form of additive
noise. We show below that this e�ect is practically detectable only if the intensity of
the noise " is high enough.

The Bernoulli shift map features chaotic dynamics and the presence of a random
perturbation has no e�ect on the convergence properties of the extremes of the dis-
tance observables to the EVLs nor in the estimate of the corresponding parameters.
The only exception comes from the study of the recurrence of periodic points: in
the deterministic case, the extremes obey modified EVLs with EI < 1 (see Sect.
4.2.2)1), while the so-called dichotomy between periodic points and the rest of the
attractor is washed out as soon as noise in added into the system, see Sect. 7.3.

9.7.1.1 Rotations
We first discuss the properties of the extremes of distance observables for the stochas-
tically perturbed rotation map f"! = x+↵+"!mod 1, where! is a random variable
uniformly distributed over the interval [�1, 1]. The results are displayed in Fig. 9.19
where the green lines correspond to experiments where we have chosen a bin length
n = 10

4 , whereas the blue lines refer to experiments where the chosen bin length
is n = 10

3. The red lines indicate the values of the parameters predicted by the the-
ory for a one-dimensional map satisfying the mixing conditions Д

0

and Д0
0

(which,
again, are not obeyed by the unperturbed map). We set ✏ = 10

�p to analyse the role
of the perturbations on scales ranging from values smaller than those typical for the
numerical noise up to O(1).

The solid lines display the values obtained by averaging over the 500 realisations
of the stochastic process, while the error bars indicate the standard deviation of the
sample. Finally, with the dotted lines we indicated the experiments where less than
70% of the 500 realisations produce a statistics of extremes such that the empirical
d.f. passes successfully the non-parametric Kolmogorov-Smirnov test [278] when
compared to the best GEV fit.

Even though the mathematical findings presented in Sect. 7.2.1 guarantee the ex-
istence of EVL for the rotations perturbed with an arbitrarily weak noise (in practical
terms, e.g., comparable with the round-o�), the simulations clearly show that EVLs

1) We recall that ✓ = ✓(z) = 1 � |detD(f

�p
(z)|, where z is a periodic point of prime period p, see

[49, Theorem 3].
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Figure 9.19 GEV parameters VS intensity of the noise ✏ = 10

�p for the circle rotations
perturbed map. Blue: n = 10

3, m = 10

3, Green: n = 10

4, m = 10

3. Red lines: expected
values. z ' 0.7371. From the top to the bottom: ⇠(g1), ⇠(g2), ⇠(g3),�(g1).

are obtained when considering small but finite noise amplitudes only when very long
trajectories are considered. The quality of the fit improves when larger bins are con-
sidered (compare blue and green lines in Fig.9.19). This is in agreement with the
idea that we should get EVL for infinitely small noises in the limit of infinitely long
samples. In our case, EVLs are obtained only for ✏ > 10

�4, which is still consid-
erably larger than the noise introduced by round-o� resulting from double precision,
as the round-o� procedure is equivalent to the addition to the exact map of a random
noise of order 10�7 [243, 244].

This suggests that is relatively hard to get rid of the properties of the underlying
deterministic dynamics just by adding some noise of unspecified strength and con-
sidering generically long time series: the emergence of the smoothing due to the
stochastic perturbations is indeed non-trivial when considering very local properties
of the invariant measure as we do here.

9.7.1.2 Bernoulli Shift Map
In this set of numerical experiments, we want to study the impact of random pertur-
bation on the statistics of extremes for the distance observables for the Bernoulli shift
map mentioned above. Therefore, we consider the following map:

f"⇠(x) = 3x+ "! mod1 (9.7.1)
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Figure 9.20 GEV parameters VS intensity of the noise ✏ = 10

�p for the ternary shift
perturbed map. Blue: n = 10

3, m = 10

3, Green: n = 10

4, m = 10

3. Red lines: expected
values. z ' 0.7371. From the top to the bottom: ⇠(g1), ⇠(g2), ⇠(g3),�(g1).

where ! is a stochastic variable with uniform distribution in [�1, 1]. As discussed
in Chap. 7, the stationary measure for such a map is the uniform Lebesgue measure
on the unit interval independently of the value of ".

As a first check, we want to verify that when considering a non-periodic point ⇣ ,
no di�erence should emerge between the deterministic and the randomly perturbed
system. Results are shown in Fig. 9.20. It is clear that the stochastic perturba-
tions do not introduce any changes in the type of statistical behaviour observed for a
non-periodic point z = 0.7371 and no di�erences are encountered, even when the
number of observations in each bin is increased. This is compatible with the idea
that the intrinsic chaoticity of the map overcomes the e�ect of the stochastic pertur-
bations. Summarising, extremes do not help us in this case to distinguish the e�ect
of intrinsic chaos and the e�ect of adding external noise.

As discussed above and thoroughly studied in Chap. 7, the EVLs of distance ob-
servables for systems like the Bernoulli shift map are modified whenever z is a pe-
riodic point of prime period p, so that the limit law reads as e�✓⌧ instead of the
usual e�⌧ realised for the remaining points of the attractor, where 0 < ✓ < 1 is
the EI. Hence, we study what is the level of noise such that we indeed observe the
disappearance of such a dichotomy, see Sect. 7.3.
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Figure 9.21 Extremal index ✓ VS intensity of the noise ✏ = 10

�p for the ternary shift
perturbed map. Blue: n = 10

3, m = 10

3, Green: n = 10

4, m = 10

3. Red line: theoretical
✓ for z = 0.5 of the unperturbed map.

In Fig. 9.21 we present the results for the EI obtained taking as reference point ⇣ the
periodic point z = 1/2 of prime period 1, for which ✓ = 2/3. As discussed in [79],
we cannot use the usual fitting procedure for the GEV, since it always renormalises in
such a way that the EI seems to be one. Instead, in order to observe extremal indices
di�erent from one, we have to fit the series of minimum distances to the exponential
distribution by normalising a priori the data.

The results clearly show that we are able to recognise the perturbed dynamics as the
extremal index goes to one when ✏ increases. Interestingly, the separation from the
value expected in the purely deterministic case is observed only for relatively intense
noise. Moreover, when longer time series are considered (green experiment), the
stochastic nature of the map becomes evident also for weaker perturbations. Finally,
it is clear that the numerical noise (corresponding to ✏ ' 10

�7) is definitely not
su�ciently strong for having a notable impact on the statistics of the deterministic
system.

9.7.2
Observational Noise

As a final numerical exercise, we wish to propose a simple example aimed at clarify-
ing one of the possible e�ects of having observational noise on the statistical prop-
erties of extremes. We can construct a mathematical model for studying observa-
tional noise on time series following what proposed in Sect. 7.5. We consider a
one-dimensional map describing the time evolution of the quantity of interest for
the observations. The basic idea for simulating observational noise, as explained in
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Eq. 7.5.1, boils down to considering as actual observation the sequence (yn)n2N
obtained by perturbing the deterministic orbit (fn

(x))n2N of a point x 2 M at
each time instant with uncorrelated noise with a compact support and controlling the
intensity of the noise with a parameter ". It is important to keep in mind that the
noise does not impact the orbit (it has no dynamical e�ect).

0 1 2 3 4 5 6 7
4
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12

14

16

18

p

b m

Figure 9.22 Normalizing sequence b

m

vs intensity of the noise in terms of p (we recall that
✏ = 10

�p) for the Manneville-Pomeau map (Eq. 5.5.1). We recall that the dashed
error-bars display the average of b

m

over 30 realizations and the standard deviation of the
sample. Solid lines the theoretical values. The blue, red and magenta curves respectively
refers to m = 1000, 10000, 30000, z = 0. n = 1000 for all the cases considered.

It is especially interesting to consider to study the extremes of the function �(x) =
� log(y, ⇣), where y is constructed as above and ⇣ is a certain chosen value for
our observation. Large values of � correspond to having values of the observations
very close to ⇣ . For given time series, we can say that a certain value ⇣ is highly
recurrent if there are many occurrences of high values of function �, and highly
sporadic if the opposite is true. Going back to what discussed in Chap. 1, if we make
the identification between rare and extreme, we have that highly sporadic values of
our observable correspond to extreme events. This is a rather di�erent point of view
with respect to what we have most typically proposed in this book, even if it is also
based on EVT.

In Eq. 7.5.2, we find that the normalising sequence bn for the extremes of the
function � depends on the target point ⇣ via the local density of the invariant measure
in a ball whose radius is given by the error ". Therefore, if the point ⇣ is visited with
less frequency, so that its the local density is small, one needs to go to higher values
of n in order to have a reliable statistics.
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Here we want to test that the order ofn needed to get convergence to the asymptotic
bn is lower for a highly recurrent point then for a sporadic one. As highly recurrent
point we choose z = 0 for the Pomeau-Manneville map given in Eq. 5.5.1. The
experiment consists in computing 30 realizations of the maps perturbed with obser-
vational noise. Again, we fit the maxima of the observable � to the GEV distribution
by using the L-moments procedure and compare the experimentally obtained values
for bn (equal to the fitted value of µ) to the theoretical ones stated in Proposition
7.2.4.

We report here the results for three di�erent bin lengthsm = 1000, 10000, 30000
in Fig. 9.22 for the Pomeau Manneville map. The figures show how bn varies as a
function of the noise ✏ = 10

�p, in terms of p. We observe convergence towards the
theoretical values (solid lines) for high values of ✏ (low values of p), whereas in the
limit of weak noise one must increase the bin lengths to get convergence.

The main result to be highlighted here is the better convergence of highly recurrent
points with respect to the ones visited sporadically. This important property can be
used to study time series recurrences and identify extremes as the points visited rarely
for which the convergence towards the asymptotic parameters is bad. So, we end up
with the paradoxical idea that a way to define extremes in a time series is to look
for those values such that the GEV fit of a given function (�) does not converge
given a time scale given by n. So, we can attach the quality of being extreme to an
observation given how often it recurs (its rarity) on the time scale n.

The main advantage of studying recurrence properties in this way over applying
other techniques is due to the built-in test of convergence of this method: even for
a point rarely recurrent there will be a time scale n̄ such that the fit converges. For
smaller m, we can therefore classify such a ⇣ as a sporadically recurrent point of the
orbit as explained in [80]. There, we show how to use this property to define rigorous
recurrences in long temperature records collected at several weather stations. This
application is discussed in detail Chap. 10.

In another study [299], we suggested a quantitative way to discriminate between
highly recurrent points and sporadic points of the dynamics in a rather algorithmic
way. Basically, one can assess the minimum bin length m such that the fit to one
of the EVL converges, that is the value of m such that a sporadic point becomes
a normally recurring one. For highly recurring points this typical value of m is of
order 103, whereas for quasiperiodic dynamics it can be larger than m = 10

9.
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10
Extremes as Physical Probes

The previous chapter was devoted to showing examples of how the features the EVLs
for distance observables of a dynamical system can inform on the mathematical prop-
erties of the underlying dynamics. In this chapter, we want to provide examples
of how EVT for dynamical systems can be helpful in gaining understanding on the
physical properties of the system we are studying. Building upon some the results
described in Chapter 4 and Chapter 9 and the theory relevant for the extremes of dis-
tance observables, we present a new method for proposing an alternative definition of
extreme in a temporal record of data, defined how as a rare recurrence for the specific
time scale of reference. We provide an example where such a method is applied suc-
cessfully for studying extremes in European surface temperature records. Extremes
of physical observables are instead shown to provide a new tool for studying the prop-
erties of critical transitions in complex system and predicting the critical value of the
control parameter determining the occurrence of tipping points. We first present an
example where EVT helps understanding the multi stability properties of the plane
Couette flow in the regimes around the transition to turbulence. We then apply the
method to a well-known low dimensional stochastic dynamical system developed as
toy model for studying the transition to turbulence.

10.1
Surface Temperature Extremes

We consider times series of spatially gridded daily mean surface temperature taken
from the European Climate Assessment and Dataset project database. One can find
additional information on the data and download them at http://eca.knmi.nl.
At each grid point, consider two di�erent time series: the series of daily mean tem-
peratures Tk and the series of daily mean temperature anomalies T a

k , obtained by
subtracting from Tk the best estimate of the seasonal cycle Sk. An example of Tk

and T a
k with relative histograms is presented in Fig. 10.1. The basic assumption we

are taking is that by subtracting the seasonal cycle we isolate in T a
k the chaotic and

stationary component to the variability of the time series. We assume that the influ-
ence of actual meteorological disturbances are responsible for defining the chaotic
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behaviour of the time series. The hypothesis of stationarity can, instead, directly
checked by applying, e.g., a so-called KPSS test [300].
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Figure 10.1 Top: An example of temperature series (a) and its histogram (b). Bottom: the
same for a temperature anomalies series (c) and the correspondent histogram (d). All the
plots refer to Armagh (UK) weather station.

We report the analysis of three stations chosen for their distinct climate features.
We first treat the case of the temperature records Tk.

• Armagh (UK) is situated in Northern Ireland, whose climate is influenced by the
Atlantic Ocean with moderate temperature ranges; see Fig. 10.1.

• Milan (Italy) is situated in the Po Valley, so that its climate is influenced by the
victim of the Mediterranean sea and that, at the same time, has relatively strong
continental features, due to the proximity to the Alps and the Apennines mountain
ranges.

• Vienna (Austria), which lies in a more central region of Europe and has a distinctly
continental climate .

These three locations possess rather extensive (length of 161, 246 and 156 years,
respectively) continuous daily records of temperature [301].

10.1.1
Normal, Rare and Extreme Recurrences

We show how the link between EVT and HTS can be used to study the recurrence
properties of chaotic time series and defining in a rigorous way what it is means that
an even is rare given a specific reference time scale. A key aspect is the investiga-
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tion of the properties of if and how (fast) the statistics of BM converges to the GEV
statistical model.

Our analysis is inspired by a methodology developed for Lyapunov exponents
[284]. We introduce the following algorithm aimed at defining which are the rarely
recurrent values of a time series:

1) Take a given time series Xj , j = 1, 2, . . . , s,
2) Choose an index value j and the corresponding element of the time series Xj ; this

constitutes the our reference point ⇣ (see Sect. 4.2.1);
3) Compute the series Y j

k = � log(dist(|Xk � Xj)|, k = 1, 2, . . . , s, j =

1, 2, . . . , s.
4) Divide the series Y j

k k = 1, . . . , s into K bins each containing N data (NK =

s) and extract the BM M j
p , p = 1, . . . ,K for each reference value ⇣ = Tj ,

j = 1, . . . , N .
5) Perform a GEV fit of the empirical d.f., perform a Lilliefors test [302] against the

hypothesis of Gumbel law to check whether the fit has succeeded or has failed.
The rationale for this is the following: by construction, ⇣ should be zero, and if the
best fit is not compatible with this hypothesis, we have to conclude conclude that
the BM selection procedure does not choose true extremes, the reason being that
N is too small.

• If the fit is satisfactory, one repeats the experiment for shorter and shorter bin
lengths N and finds the smallest Nmin such that, GEV fit of the BM Mj , j =

1, . . . , s/Nmin converges.
• If the fit fails, one repeats the experiment for longer and longer bin lengths N until

the value Nmin is reached, when the BM eventually selects only good candidates
for extremes and the GEV fit is successful.

Nmin defines the longest time scale over which the value Xj can be considered
as occurring rarely. We propose here the following viewpoint for defining a rare
record. Given a value ¯N , we can define which of the values of the time series Xj

j = 1, 2, . . . , s are rare according to time scales equal to ¯N or shorter. In order to
achieve this, we exploit the results given in [46, 77].

10.1.2
Analysis of the Temperature Records

Before starting our analysis, we have to consider the nontrivial problem of address-
ing the fact that such time series are truncated at p = 3 digits because of the way
the recording has been performed. As discussed by [80], a blind application of the
methodology presented above would lead to a divergent fit as the recurrence distri-
bution will appear as a collection of Dirac delta functions. In order to solve this
issue, we need to transform our time series into a time series extracted from a ficti-
tious instrument able to have very high precision (ideally, continuous) readings of the
temperature data. We can solve the problem by adding to each reading Tk a random
number extracted from uniform distribution, so that the observations are not altered
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(at the level of precision of the real instrument), but continuity is recovered. We then
redefine perform our analyses on the noisy version of the original time series. This
idea is based on the mathematical results discussed in Chapter 7 and first presented
in [65].
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Figure 10.2 Range of temperatures with convergent Gumbel fit (blue) for di�erent bin
lengths. The blue area indicates ranges of normal variability in the time scale given by the
bin length. Red dotted lines: absolute extremes of the temperature series for Armagh (a),
Milan (b) and Vienna (c). Green dotted lines: thresholds detected with the classical GPD
approach.

We follow the procedure described in Sect. 10.1.1 and perform the GEV fits using
an MLE technique, as discussed in the previous Chapter. We are then able to find for
a given value Nmin whether a certain ⇣ between the absolute recorded extremes is or
is not rarely recurrent. The results are presented in Fig 10.2 for the stations located in
Armagh (a), Milan (b), and Vienna (c). The experiments have been repeated for dif-
ferent bin lengths between 3 months and 4 years. In Fig 10.2, the blue area represents
the range of recurrent values of the reference temperature ⇣ , obtained as those whose
corresponding extremes of the Y distance observables can be fitted successfully by
a Gumbel distribution. Therefore, we can say that for each time time scale, the blue
range defines what we propose as a rigorous definition of normal variability with
respect to the time scale defined by the bin length. On the same time scale observ-
ing a fluctuation which goes beyond the blue region constitutes, instead, a genuine
extreme event. These are all located outside in the white region and correspond to
unsuccessful Gumbel fits of the time series of M j

p .
Note that for bin lengths shorter than six months, the Gumbel fit fails at any ref-

erence temperature, suggesting that below the bin length is too short for observing
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Figure 10.3 Map of the range of admissible temperature excursions for the European
region, obtained by considering the interval of temperature anomalies ⇣ such that the fit
passes the Lilliefors test. The red crosses represent the location of the stations used for
the analysis. The straight line near the right border represents the limit of the data-set.

proper recurrences near any ⇣ . The only exception is registered at Armagh where,
due to the limited seasonal temperature excursions, the convergence is achieved for
8 C < ⇣ < 12 C, already for a 3 months bin length. In general, one observes that,
when the bin length is increased, the temperature range accepted as including non
uncommon climate fluctuations (normal variability) increases. We observe that in
Milan one could define 0 C as an extreme temperature with respect to a bin length
of half a year but not when considering a bin length of 4 years. On such time scale,
0 C is indeed part of the normal variability. It is interesting to check whether the ex-
tremes found with this recurrence analysis (extremes as rare events) are related to the
minimal thresholds one would derive using a POT of the actual temperature records
(extremes as large events). These values have computed by fitting GPD distributions
and they are represented in Fig. 10.2 by green dotted lines. The threshold values
estimated with the POT approach are similar to the one obtained with our method,
although they are remarkably di�erent at Armagh station: the GPD method identi-
fies as extremes temperatures values classified as normal by the recurrences method
for bin longer than one year. The POT approach does not discriminate between ex-
treme events belonging to the same cluster - temperatures beyond the threshold in
consecutive days. In other words, this method does not carry information about the
correlation structure of the time series: any random resorting of the data would pro-
duce exactly the same threshold values. This is why thresholds appear lower than the
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one detected by our approach.
We have repeated the same analysis reported in Fig. 10.2 for the series of the

anomalies T k
a . The main advantage of using temperature anomalies consists in the

possibility of comparing the climatology of di�erent locations. Let us consider a one
year bin length: at Armagh, in a temperate, marine climate , only anomalies up to± 6
C can be considered as normal annual variability according to the described method.
In Vienna, the continental climate permits large temperature excursions so that we
find that anomalies up to ± 10 C are normal part of the annual variability. For Milan,
the range is reduced to±7C, an intermediate situation between Armagh and Vienna,
in agreement with climatic features influenced both by the both the Mediterranean
sea and by the location in the Po valley. Given a time scale, we can plot the corre-
sponding normal value of the range of variability of Ta at all the European locations
for which at least 60 years of daily data are available. Hence, we can construct a map
of Europe providing novel climatological information on variability at a given time
scale. Results obtained by selecting a bin range of 1 y are reported in Fig. 10.3. Dif-
ferent climatic regions are well highlighted: the British Isles, Brittany, Italy and the
coastal areas of the Iberic peninsula have a milder climate with a significantly lower
range of admissible temperature excursions. Very large fluctuations of temperature
are instead amicable as normal part of the yearly internal variability in continental
Europe and in mountainous areas. Note that near the central Iberic peninsula the
field is strongly influenced by a specific station, Navacerrada, which is situated at
1800 m.s.l. and features extremely large annual variability, where normal anomalies
of up to 24 C are observed.

10.2
Dynamical Properties of Physical Observables: Extremes at Tipping
Points

Let us consider a dynamical system, either deterministic or noisy, controlled by some
parameter � which, when decreased below some value �

crit

, drives it through a crit-
ical transition, which leads to a qualitative change in the dynamics. Here the word
critical has the meaning it takes, say, in environmental sciences, where the expression
tipping point is also used. In dynamical systems theory, one would speak of a saddle-
node bifurcation or some appropriate generalization of it, namely a crisis [303].1)

In high dimensional systems, critical transitions can be easily understood (as well
as portrayed in a graph) by studying how specific physical observables (e.g. energy)
experience abrupt changes when the system crosses its tipping point. Hence, EVT
enters the picture as we are interested in studying the nature of the large fluctuations
of such observables in the vicinity of a crisis.

1) In statistical physics, the present situation would correspond to a (discontinuous) first-order phase tran-
sition, e.g. a liquid-gas transition, as opposed to a (continuous) second-order phase transition, e.g. a
para-ferromagnetic transition, studied within the framework of critical phenomena, where the word
‘critical’ thus gets a di�erent meaning through the definition of critical exponents and related univer-
sality classes [304].
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As discussed in Chapter 8, on general grounds we may expect that in Axiom A-
like systems (in the sense of the chaotic hypothesis [266]) physical observables have
bounded fluctuations and that their extremes follow Weibull distributions [81, 44].
The closer we are to a crisis, the more likely is for the system to explore regions of
the phase space close to the saddle, so that there is an increasing probability that the
physical observable will have anomalous values and feature (rare) very large fluctua-
tions, much larger than the extreme fluctuations observed in the system far away from
the crisis.

The idea we wish to explore here is that as we get close to the crisis, e.g. increasing
the system’s control parameter � towards the critical value �

crit

which defines the
bifurcation, the shape parameter ⇠ describing the extremes of the physical observable
becomes larger and larger and crosses the zero value exactly when the tipping point is
reached. Therefore, studying how ⇠ depends on � might provide useful information
for reconstructing how far we are from the the critical value �

crit

.
A traditional approach in studying the fluctuations of physical observables near

tipping points is based on the idea that near the crisis fluctuations of greater amplitude
will be observed towards the state the system is doomed to fall into as� takes the value
�
crit

. The idea is then to use anomalous values of the skewness of the probability
distribution of the observable, which measures its asymmetry, as an early warning
indicator of a tipping point [305]. Such a method has good potential if the probability
distribution of the observable is approximately symmetric for � ⌧ �

crit

, but may
fail if the distribution is already skewed.

However, we can adapt this idea to the analysis of the extremes. In particular,
we show below how comparing statistics the negative and positive extremes of an
observable may be extremely e�ective for locating the critical transition. We will use
as especially instructive example the analysis of the extreme fluctuations of turbulent
kinetic energy in the plane Couette flow, refering to results contained in [75].

10.2.1
Extremes of Energy for the Plane Couette Flow

The plane Couette flow can be described as resulting from the shearing of a viscous
fluid in the space between two parallel plates in relative motion. The plates, at a
distance 2h, translate in opposite directions at a speed Uw and the flow results from
the viscous drag acting on the fluid with kinematic viscosity ⌫. The nature of the flow
regime, either laminar or turbulent, is controlled by a single parameter, the Reynolds
numberR = Uwh/⌫, which plays the role of the control parameter�mention above;
see Fig. 10.4 for a schematic representation of the flow.

The laminar flow depends linearly on the coordinate normal to the plates and is
known to remain stable against infinitesimal perturbations for all values of R, while
turbulent flow is instead observed under usual conditions whenR is su�ciently large,
typically of order 400–500, when increasing R without particular care. As R is de-
creased from high values for which the flow is turbulent, a particular regime appears
at about R

t

⇡ 415 where turbulence intensity is modulated in space [306]. When
the experimental setup is su�ciently wide, a pattern made of oblique bands, alter-
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Figure 10.4 Schematic representation of the experimental setting of a plane Couette flow.
A three-dimensional fluid with kinetic viscosity ⌫ lies between two plates of infinite
extension along y and z (not shown). The two plates are separated by a distance 2h along
y and translate in opposite direction along x at a constant speed U

w

, so that a time
dependent flow v(x,y, z, t) is established (the time and z-average of the x velocity profile
U(y) is portrayed in the figure).

natively laminar and turbulent, becomes conspicuous. Bands have a pretty well de-
fined wavelength and make a specific angle with the streamwise direction. As R is
further decreased, they break down and leave room to the laminar base flow below
R

g

⇡ 325. Experiments show that the streamwise period2)
⇤x of the band pattern

is roughly constant (⇤x ' 110h) while the spawise period ⇤z increases from about
55h close to R

t

to about 85h as R decreases and approaches R
g

[306].

Figure 10.5 Dynamical regimes of the plane Couette flow. See [307].

Whereas the turbulence self-sustainment process in wall-bounded flows is well un-
derstood [308], the mechanisms explaining band formation are still somewhat mys-
terious. The transition displays a large amount of hysteresis. A similar situation is to
be found in several other flow configurations, circular Couette flow, the Couette flow
sheared by coaxial cylinders rotating in opposite directions, plane channel, the flow
between two plates driven by a pressure gradient, as well as in Poiseuille flow in a

2) By convention, the streamwise direction is along x, the normal to the moving plates defines the y

direction, and z denotes the spanwise direction (not shown in Fig. 10.4).
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circular tube. See [309, 307] for a comprehensive review of these phenomena.

10.2.1.1 Conditions of the Numerical Experiment
The transition to turbulence in plane Couette flow has been studied numerically by
a number of authors. System sizes required to observe the oblique band regime in
Navier–Stokes DNSs are numerically quite demanding [310]. In order to reduce
the computational load, Barkley and Tuckerman performed their computations in
a cleverly chosen narrow but inclined domain [311]. The drawback is however to
freeze the orientation beforehand, forbidding any angle or orientation fluctuation. A
recent work has shown that another way to decrease computer requirements was to
accept some under-resolution of the space dependence, especially in the wall-normal
direction y [312]. All qualitative features of the transitional range are indeed well
reproduced in such a procedure, including orientations fluctuations. Quantitatively,
the price to pay appears to be a systematic downward shift of the [R

g

, R
t

] interval
as the resolution is decreased.

Figure 10.6 E�ect of changing resolution on the dynamical regimes of the plane Couette
flow. A downward shift of the [Rg, Rt] interval is found as the resolution is decreased
[312].

The results shown here are obtained using simulation performed in a domain
of constant size able to contain one pattern wavelength in each direction, i.e.
(Lx, Lz) ⌘ (⇤x ⇥ ⇤z), with Lx = 108 and Lz = 64, using The open-source
software C������F��� [313]. This size seems well adapted to the central part of
the transitional domain, i.e. slightly too wide for R ⇡ R

t

and slightly too narrow
at R ⇡ R

g

, with mild consequence on the e�ective value of these thresholds, as
guessed from a Ginzburg–Landau approach to this pattern forming problem [314].
Such finite-size e�ects [315] also account for the intermittent reentrance of feature-
less turbulence.

C������F��� is a Fourier–Chebyshev–Fourier pseudo-spectral code is dedicat-
ed to the numerical simulation of flow between parallel plates with periodic in-plane
boundary conditions. In the wall-normal direction (see Note 2), the spatial resolution
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is a function of the numberNy of Chebyshev polynomials used. The in-plane resolu-
tion depends on the numbers (Nx, Nz) of collocation points used in the evaluation
of the nonlinear terms. From the 3/2 rule applied to remove aliasing, this corre-
sponds to solutions evaluated in Fourier space using 2

3

Nx,z modes, or equivalently
to e�ective space steps �e↵x,z =

3

2

Lx,z/Nx,z . Numerical computations have been
performed using three di�erent resolutions: low (Ny = 15, Nx = Lx, Nz = 3Lz),
medium (Ny = 21, Nx = 2Lx, Nz = 6Lz), and high (Ny = 27, Nx = 3Lx,
Nz = 6Lz) for which we expect [R

g

, R
t

] ⇡ [275, 350], [300, 380], and [325, 405],
respectively; see Fig. 6 in [312].

10.2.1.2 The EVT Analysis of Turbulent Energy near the Critical
Transition
In this section we show results about the changes in the extreme value distributions of
quantity E

t

defined as the mean-square of the perturbation velocity ṽ, the di�erence
between the full velocity field v and the base flow velocity v

b

= yUw/h ex, where
ex is the unit vector in the x direction. Physically speaking, apart from a factor 1

2

,
this is the kinetic energy contained in the perturbation, which is zero in the case the
laminar flow is obtained. Here we focus on the determination of R

g

using extremes
as sketched above.

For each value of the Reynolds number, very long simulations are performed and,
once the time series of E

t

has reached a stationary state, maxima (minima) are ex-
tracted in bins of fixed block length as described in the previous section. We then fit
the maxima (minima after sign change) to the GEV distribution by using, in this case,
a MLE method, as discussed in the previous Chapter. As now clear, the choice of the
bin length m is crucial: in the asymptotic regime the value of the shape parameter
should be independent of m. We have tested that, within the confidence intervals,
this happens for m > 1000.

The shape parameter ⇠ is next analyzed as a function of the Reynolds number for
both the positive and negative extremes of the energy. A first intuition on how the
method should work comes from looking at the data series and the histograms shown
in figure 10.7, see caption for details. The series in red refers to a value of Reynolds
inside the band regime (R = 300), with fluctuations exploring a limited interval. The
series in blue, with R is fixed just above R

g

(R = 277), illustrates a clear tendency
to intermittently visit states with very low values of the energy. These events, spotted
in the green ovals, crucially contribute to a shift towards Fréchet laws since the fit to
the GEV returns a Weibull EVL when removing them from the histogram.

10.2.1.3 High Resolution
Let us start with the localization of the global stability threshold R

g

in simulations
performed at high resolution, namely Nx = 216, Ny = 27, Nz = 384. Results
are shown in Fig. 10.8 (left column) for the shape parameter (upper panel), to be
compared to the two common early warnings indicators based on the bulk statistics:
the skewness (middle panel) and the variance (lower panel). When approachingR =

322 the shape parameter for the distribution of minima changes its sign, whereas for
the maxima it remains negative in agreement with what was stated in the previous
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Figure 10.7 Perturbation Energy Et for two simulations at low resolution. Upper panel:
Et as a function of time. Lower panel: Histograms of Et in log-linear scale. Green circles
indicate extremely rare events.

sections.
It is however evident that these results need confirmation since a limited set of

Reynolds numbers has been studied and a single slightly positive value of ⇠ has been
obtained for R = 322, with error bars so large that the significance of the result
is rather limited. The variance and the skewness of the time series follow what is
expected from the statistics of global observables at a tipping point, namely a mono-
tonic trend towards larger values. Since E

t

visits lower energy states, the skewness
becomes more negative so that only the distribution of minima is a�ected. How-
ever, as noticed previously, no definite threshold value R

g

can be inferred from the
consideration of the variance and skewness curves.

10.2.1.4 Medium Resolution
Using very high resolution is computationally expensive: the cumulated amount of
CPU time required to produce series of length s = 2.5 · 105 time units was beyond
10

5 CPU hours, making it practically impossible to obtain much longer series with
the available resources. In order to support our results, we have exploited the fact
that downgrading the resolution preserves the qualitative features of the transition,
up to a shift of transitional range, as shown in Fig. 10.6 and discussed in [312]. At
medium resolution (Nx = 216, Ny = 21, Nz = 384), all time series have been
stopped at s = 2 · 105 time units. In these conditions, band breakdown was never
observed for R > 306. The results shown in Fig. 10.8 (center column) confirm
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Figure 10.8 Tipping point indicators for plane Couette flow as functions of R. Upper panel:
Shape parameter ⇠; red: maxima, blue: minima; error bars represent 95% confidence
intervals, m = 1000. Center and bottom panels: Variance and skewness of the full series,
respectively. Left: High resolution. Center: Medium resolution. Right: Low resolution.

those at high resolution, with a slightly more pronounced change of sign of the shape
parameter at R = 306 but point out the need of more and much longer series around
the global stability threshold.

10.2.1.5 Low Resolution
Further downgrading the resolution to Nx = 108, Ny = 15, Nz = 192 allowed
us to produce series lasting nearly one order of magnitude longer than above, up to
2 · 106 time units. As a matter of fact, by collecting a greater statistics of maxima,
the uncertainty on the estimation of the shape parameter could be greatly reduced,
as shown in Fig. 10.8 (right column). In view of our proposal of trying to define
R

g

using extreme value statistics, the results at low resolution look much more con-
vincing than those produced at higher resolutions since a clear monotonic variation
of the shape parameter for minima is now observed upon decreasing R. As soon as
R

g

 278, the shape parameter ⇠ describing the minima of the turbulent energy
changes sign crossing the zero value.

The estimates of R
g

determined here for the di�erent resolutions studied are not
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much di�erent from those given in [312] obtained by inspection of individual cases
without any systematic criterion and using much shorter time series.

10.2.2
Extremes for a Toy Model of Turbulence

In order to give more robustness to the link between critical transitions and change
in the sign of the shape parameter ⇠ describing the extremes of a suitably chosen
physical observable, we should investigate a computationally cheaper model where
it is easier to achieve a high-quality statistical inference. A good candidate for test-
ing the identification of the global stability threshold using methods based on GEV
parameters is a slightly modified version the model originally introduced in [316]:

dX/dt = �(µ+ u⇠(t))X + Y 2, dY/dt = �⌫Y +X �XY. (10.2.1)

Here X and Y may be related to the amplitudes involved in the self-sustaining pro-
cess of turbulence. Parameters µ and ⌫ are damping coe�cients accounting for
viscous e�ects and assumed to vary as 1/R. Non-linearities preserve the energy
E =

1

2

(X2

+Y 2

) in the same way as the advection term of the Navier–Stokes equa-
tions. Noise is here introduced in a multiplicative way via the term u⇠(t), where ⇠(t)
is a white noise and u its amplitude, as proposed by Barkley [317]. A saddle-node
bifurcation takes place at µ⌫ =

1

4

. The trivial solution X = Y = 0, corresponding
to laminar flow, competes with two nontrivial solutions on the interval µ⌫ =

⇥

0, 1

4

⇤

,
the nontrivial solution being assimilated to turbulent flow. Unlike the additive noise
considered in [318], the multiplicative noise taken here does not a�ect the trivial state
and can be understood as a fluctuating turbulent-like contribution to e�ective viscous
e�ects. Whenever the system undergoes a transition towards the laminar state, the
simulation is restarted from the stable nontrivial fixed point.

Whereas for plane Couette flow only one simulation could be performed at each
Reynolds number because of computational limitations, here we can easily produce
ensembles of realizations for a given set of parameters (⌫, µ, u), extract correspond-
ing GEV shape parameters, and average them over the realizations. We focus on the
extremes of the energy E, which provides an e�cient way for distinguishing the tur-
bulent state from the laminar. In view of locating the critical transition, we want to
relate the change of sign of the GEV parameter ⇠ with the fact that the probability of
transition between the two regimes becomes significant.

A remark is needed. Note that, as opposed the case of the plane Couette flow, the
presence of noise allows for (exceedingly rare) transitions from the laminar to the
turbulent state also far from the critical condition µ⌫ =

1

4

. This results into the
fact that, in principle, the extremes of the energy fluctuations are always Gumbel
distributed, even with a noise of extremely small amplitude. Nonetheless, the con-
vergence of the empirical data to the Gumbel is exceedingly slow, so that that at any
practical purpose, when finite (even if relatively long) time series are analysed, the
best fit will be a Weibull distribution. Instead, when we get close to the bifurcation
and the noise is strong enough, the convergence to the Gumbel distribution is very
rapid and practically detectable.
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Figure 10.9 Variation of di�erent indicators of critical transitions as functions of the noise
intensity for model (10.2.1) with µ = 1. Left: ⌫ = 0.2475. Right: ⌫ = 0.2487. Top row:
Averaged shape parameter ⇠; red: maxima, blue: minima; error bars represent the
standard deviation over the ensemble of 30 independent realizations. Second row:
Number of transitions observed (see text). Vertical lines between the two top panels point
to the critical value uc for which ⇠ = 0. Third and fourth row, respectively, averaged
variance and skewness. Note that u increases to the left and not to the right as usual.

The results of two di�erent set of simulations are shown in Figure 10.9. Here,
the control parameter � is the intensity of the noise u whereas µ and ⌫ are kept
fixed. The left plots refer to the case dt = 0.01, µ = 1, ⌫ = 0.2487, n = 10

3,
m = 10

6, whereas the right ones refer to ⌫ = 0.2475 with the other parameters left
unchanged. For each values of u, ensembles of 30 realizations has been prepared.
The upper panels show the variation with u of the shape parameter averaged over
the realizations with error bars corresponding to the standard deviation over each
ensemble. The plots in the second row display the number N

tr

of times the system
has undergone a critical transition from turbulent to laminar during the simulation
performed at given u.

In both sets of simulations, the shape parameters vary similarly to the case of the
plane Couette flow. For the distribution of extreme negative fluctuations, ⇠ crosses
zero from below whenu reaches a specific critical valueu

c

(vertical lines between the
first and second rows in Fig. 10.9), which depends on the other parameters µ and ⌫.
Instead, when looking at the distribution of the maxima of the turbulent energy, so
features are observed, as expected.
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We are confident in saying that ⇠ = 0 acts as a flag suggesting the presence of
critical transitions because when ⇠ crosses 0 and u crosses the value u

c

the number
of observed transitions N

tr

increases substantially, as can be seen by comparising
the two upper rows of Fig. 10.9.

The plots in the third and fourth row of Fig. 10.9 refer, respectively, to the variance
and the skewness of the bulk statistics of E. In contrast, these indicators, while dis-
playing the expected trends, do not show any specific feature or obvious flag allowing
us to locate the threshold.

10.3
Concluding Remarks

In this chapter we introduced some EVT-based tools of potential utility for studying
physical systems. We have shown that investigating the properties of the invariant
measure via the recurrence approach can be used to link the definition of normal
and rare events to specific time scales of the dynamics. Such a characterization is
a key problem for the mitigation of geophysical extremes. Return times of extreme
events are of crucial relevance for stakeholders in order to define suitable mitigation
and adaptation plans, e.g. in the case of the construction of specific infrastructures.
The statistical approach for the computation of return times involves the implicit
assumption of the existence of a long enough time scale such that if we estimate
the GEV or GPD shape parameter over correspondingly long (or longer) time series,
we get stable and robust results. Hence, one can compute return times for events
with an infinitesimal probability. This can be misleading for geophysical extreme
events as in some cases di�erent dynamical phenomena are relevant at di�erent time
scales. Only a dynamical based approach, as the one presented here, prevents from
the computation of biased return times. The use of all the sampled dynamical time
scales available (so that finer and finer features of the attractor are taken into account)
allow for the construction of robust return times for observed phenomena and avoid
estimates over longer time scales whose dynamics remains, by definition, unknown.

We have also shown the power of EVT in detecting phase transitions. With respect
to the commonly used indicators of the proximity of critical transitions, studying the
changeover between di�erent EVLs (in particular, from Weibull to Gumbel and then
Frechét distributions when) provide a precise threshold for the warning, linked to the
sign change of of the shape parameter of the GEV probability distribution. This is a
further motivation to extend these techniques to geophysical extremes. Interestingly,
the high sensitivity of extremes in the vicinity of tipping points suggests that observ-
ing unusual return times for extreme weather events may provide a flag signalling at
an an early stage qualitative changes of atmospheric circulation, which could hardly
be predicted by looking at the bulk of the statistics; see also [319].
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11
Conclusions

11.1
Main Concepts of This Book

This book originates from the desire to develop a common framework for many close-
ly related mathematical results and ideas linking the theory of extreme events with the
theory of dynamical systems, and to show the potential of these concepts for studying
complex systems in physical, engineering and social sciences. Such a connection is
made possible by the observation that dynamical systems generate infinitely many
random process. One can construct a random process by considering the time evolu-
tion of an observable, defined as a suitably well-behaved function of the phase space
of the dynamical system. Hence, the properties of the random process are defined
by a) features of the dynamics of the underlying system; and b) the specific choice of
the observable one is considering. It seems useful at this stage to recapitulate some
of the main concepts discussed in the book.

Using a dynamical system as generator of stochastic processes is far from trivial
when one has the goal of establishing extreme value laws (EVLs). The main di�cul-
ty emerges from the fact that extreme value theory (EVT) was originally developed
with the goal of finding the distribution function of the maximum of a set of N inde-
pendent and identically distributed random variables [38], and later extended to the
case where such random variables feature a weak - with a specific technical defini-
tion - correlation [1]. If such conditions are met, the statistical properties of extremes
defined as block maxima (BM) are asymptotically equivalent those of extremes taken
as Peaks Over Threshold (POT), where choosing a very high threshold corresponds,
conceptually, to taking the maxima over very large blocks.

By equivalent we mean the following. The statistics of BM is asymptotically de-
scribed by the Generalised Extreme Value (GEV) distribution, while the statistics
of POT is described by the Generalised Pareto Distribution (GPD). The parameters
of the two distributions are in a one-to-one correspondence, and, in particular, the
shape parameter, which determines the qualitative properties of the extremes (finite
vs infinite) is the same. In other terms, if we perform a POT analysis, we are able to
derive the information we would have obtained using a BM approach, and vice versa.
It is useful to note that this is the case even if the BM and POT approaches lead to
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selecting di�erent candidates for the extremes. In practical terms, the GPD method
is well-known to the more e�cient that the BM method when finite time series are
considered, the basic reason being that more information is retained in the procedure
[3].

The presence of long-term correlations in the stochastic variables lead to the un-
wanted result that the black maxima are correlated, and a di�erent point of view must
be taken on the problem, see, e.g., [54].

The presence of strong short-term correlations has a less serious yet relevant im-
pact on EVLs. When considering the POT method, in this case we find clusters of
extreme events, whose occurrence can be modelled as a compound Poisson process,
where a large time scale separates the occurrence of a cluster and the detailed struc-
ture of the extreme events occurring within each cluster [140]. Extremes selected as
BM are, instead, not a�ected by such short-term correlations. In this case, fitting BM
using a GEV model and POTs using a GPD model for the same time series would
lead to di�erent estimates for the the shape parameter. The equivalence between
GPD and GEV is reestablished by introducing the extremal index (EI) [128], which
is in most cases (see [320] for a counterexample) equal to the inverse of the average
size of the clusters, and to the ratio between the shape parameter estimated using the
POT and the BM methods. Declustering techniques have been introduced in order
to address these issue in the analysis of data [130, 3].

Obviously, time series of observables of dynamical system are correlated, so that
the conditions on the correlations of stochastic processes mentioned above pull back
to the properties of the dynamics of the system and to the observable whose evolution
generates the random process [73]. Having a dynamics where mixing is su�ciently
strong is the most favourable setting for constructing a dynamical theory of extremes.
Fortunately, this is, e.g., the case of Axiom A systems [70, 71], which play a central
role as useful mathematical models for high dimensional physically relevant systems
[266]. This is extremely promising for constructing a mathematical framework suit-
able for linking extremes and dynamics in physical system, thus going beyond the
usual context of statistical inference.

We are left with the important task of choosing suitable observables. A crucial step
relies on studying extremes of monotonically decreasing functions of the distance
between the orbit of a system and a point on its attractor, such that the (finite or
infinite) maximum is obtained when such distance is zero. This framework, proposed
by [72], permits a powerful connection between the recurrence properties of a system
around a chosen point of its attractor and the possibility of establishing EVLs for
the corresponding distance observables. One finds that the existence of exponential
hitting or return time statistics leads naturally to being able to derive, where the shape
parameter of the GPD or GEV distributions is determined by the functional form of
the observable.

Interestingly, if one takes the reference point to be an unstable periodic point, and
so an islet of regularity amidst chaos, clusters appears as a result of the periodicity of
the point, and the extremal index - inverse of the average cluster size - can be related
to how unstable the point is (the stronger the instability of the point, the weaker the
clustering) [49]. At practical level, this result allows one to create an approximate
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dynamical framework for interpreting the reason behind clustering of extremes in
observed time series [80].

An equally important aspect is that selecting extremes amounts to looking at the
neighbourhood of the reference point with microscope, whose lens has the proper-
ties defined by the functional form of the observable. The corresponding parameters
of the EVLs are directly related to the local geometrical properties. In particular,
the shape and location parameters are directly linked to the local dimension of the
attractor around the reference point [77, 78]. This implies that by studying the ex-
tremes of distance observables, we can learn about the local geometry of the system.
Numerical experiments confirm the feasibility of this approach and indicate how to
extract important information from the rate of convergence to the EVLs [46, 77]. If
the system is exact dimensional, as in the case of the Axiom A systems [269], the
local dimension is the same for almost every point of the attractor, and agrees with
the Hausdor� dimension, so that we are able to deduce global geometrical proper-
ties [44]. Another interesting property is that since the presence of suitable mixing
conditions lead to EVLs for the distance observables, one has that if the extremes of
distance observables do not obey EVLs, then the underling dynamics in not, roughly
speaking, chaotic. In other terms, extremes can also provide qualitative information
on the properties of the underlying dynamics [76]. An interesting example of link
between extremes and qualitative properties of the dynamics of a system is the pos-
sibility of using EVLs of suitable observables for studying tipping points in complex
system, along the lines presented in [75] for the case of plane Couette flow. In this
case, one can observe that when the approach to the critical transition between turbu-
lent and laminar states obtained by reducing the Reynolds number is accompanied by
a clear changes in the probability distribution of the tail of the energy fluctuations.
In particular, the tipping point comes together with a changeover from Weibull to
Frechét distributions in the extremes (minima, in this case) of the energy.

Distance observables are useful only for a limited class of practical problems, i.e.,
when recurrences are relevant. Nonetheless, this approach allows also for a rather
unexpected shift in the point of view. If one considers a time series, one can see ex-
tremes as rarely recurrent values. This construction can be made rigorous by choos-
ing for each value of the time series distance observables of the form described above
(i.e. such that they have a maximum when the reference value is realized), and in-
vestigating the time needed to achieve a good fit of the observables to the EVLs. If
for a value of the time series such convergence is not obtained, one can conclude that
recurrences around its value are too few, and one can conclude that we have found a
true extreme on the time scale given by the length of the time series. An interesting
application of this idea on climatological time series is proposed in [80].

In many other cases, one is interested in observables - like energy in a fluid flow -
which have a di�erent functional form. These are called physical observables [81],
and occurrence of an extreme can be geometrically related to visits of the orbit of the
evolving point in the phase space to specific regions of the attractor [44]. Making
some assumptions on the geometry of the attractor and of the isosurfaces of the ob-
servables, one obtains universal results constraining the value of the shape parameter
to be negative and to be related in a simple way to the dimension of the attractor on the
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stable and unstable directions. Therefore, a link can be drawn between the statistics
of extremes and fundamental dynamical properties of the underlying system. An im-
portant aspect is that when we consider a high dimensional chaotic system, the shape
parameter is close to zero, which is suggestive of a very general properties of observ-
ables of statistical mechanical systems. Additionally, making some hypotheses, one
can adapt Ruelle’s response theory [83, 84] in such a way to write explicit formulas
for the sensitivity of the parameters descriptive of the EVLs to perturbations to the
dynamics [44].

An especially important challenge is understanding the impact on the properties of
the extremes resulting from introducing (suitably defined) stochastic forcing to deter-
ministic dynamical systems. This is an extremely interesting mathematical question,
as it gives rise to questions such as: under which conditions on the invariant measure
and the correlations do the recurrence properties of a stochastically perturbed system
converge, in the limit of noise intensity going to zero, to those of the deterministic
system without noise? We have approached the problem using di�erent perturbative
approaches [141, 142]. The basic idea is that if the deterministic system is uniformly
hyperbolic, like in the case of contracting maps, noise has little impact, for the basic
reason that the deterministic system is already mixing enough. Moreover, the pres-
ence of noise washes out the structure of the unstable periodic orbits, which are very
important in the deterministic case, so that clusters are absent. The relatively small
impact of adding noise to a su�ciently chaotic dynamical system can also be seen
from the fact that, in general, Ruelle’s response theory suggests that centred noise has
only a second order e�ect on the statistical properties of Axiom A dynamical systems
[321]. Nonetheless, noise seems to facilitate relating the geometrical properties of
the deterministic attractor to the statistics of extremes of the distance observables by
removing some of the singular features of the SRB measure [65].

Instead, if we add noise to dynamical systems featuring regular dynamics, we
introduce the kind of decay of correlations needed for establishing suitable EVLs.
Nonetheless, in numerical simulations convergence to EVLs is very slow if the noise
is very weak, so that for practical purposes a relatively strong noise is needed to create
the necessary mixing in the trajectories of the flow [79]. Moreover, when consider-
ing distance observables, the underlying regular dynamics persists in the sense that
clustering of extremes is found. Adding noise also allows for EVLs in other systems,
for example contracting maps, whose deterministic version does not feature EVLs
[239].

Many challenges remain open when trying to link extremes, recurrence proper-
ties, and dynamics of (complex) systems. Realising such a program would greatly
improve our ability to predict extreme events, with many important impacts on a
variety of fields of science and technology. With the goal of introducing some fas-
cinating future lines of investigations, in the next sections we give to some thoughts
and preliminary results regarding the following problems:

• how to study extremes of coarse-grained observables, and how to treat extremes
in models of multiscale systems, where variability is present on a large range of
scales, and parametrization of unresolved processes are a necessary aspect of the
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modelling exercise;
• how to treat extremes in the context of non-stationary (deterministic and stochastic)

dynamics, taking into account the time-dependent measure induced by the explicit
time-dependence of the dynamics;

• how to look at systems whose attractor can be roughly described as the union of
the quasi-disjoint parts, the transitions between which are rare and erratic;

• how to study more e�ectively clusters of extremes, and how to investigate recur-
rence properties of extremes of functions where the maximizing set is not just a
point but a more complex geometrical set.

• how to approach the problem of studying the underpinning properties of spatial
and temporal correlations of extreme events in spatially extended random fields.

11.2
Extremes, Coarse Graining, and Parametrizations

In many cases, one is interested in studying spatially extended systems (like a fluid
or the climate system), and it is relevant to relate local extremes to spatially aver-
aged ones, in order to capture spatial coherence of such events. The properties of
local climate extremes depend critically on the spatial resolution of the numerical
model, and spatial averaging operations lead to nontrivial changes in the statistics
[27]. Moreover, extended large fluctuations are significant because they can require
non-trivial feedbacks and compensating behaviours in other parts of the domain.

In many practical problems, extremes are indeed spatially coherent, and the re-
lationship between such coherence properties and those of the typical fluctuations
are not obvious. In a di�erent yet complementary direction, one might be interested
in studying long-lasting large fluctuations, where persistence can be key to causing
serious impacts. A natural way to try to approach such problems starting from high-
resolution (in space and in time) fields is to perform coarse graining, and study the
resulting spatial and/or time averaged fields. More specifically, one may be interested
in studying the properties of something reading like:

Yj,k =

1

(L+ 1)(M + s1)

L/2
X

l=�L/2

M/2
X

m=�M/2

Xj+l,k+m, (11.2.1)

where the X’s are the dynamically generated stochastic variables of the high-
resolution discrete spatio-temporal field, where, e.g., the first index refers to time
and the second index to space, while the Y ’s are the coarse-grained variables. The
statistics of the X’s might or might not be identical. The perfect setting for such
investigations - both for space and temporal averages, when correlations are weak
enough, and L and M are large enough - is large deviations theory [322], which
provides powerful tools for deriving many important results in, e.g., statistical me-
chanics [323, 324].

Large deviations are well known to be able to provide information also on the typ-
ical behaviour of statistical mechanical systems, similarly to the case of extremes.
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Large deviation and extremes are both large, so it might seem straightforward to re-
late them, despite their di�erent definitions. In fact, things are more complex than
this, because extremes of averages of variables address the true tail of the distribution
of the resulting stochastic variables, whereas large deviations are aimed at describing
the most likely among the very large and very unlikely fluctuations of the averaged
variables. Therefore, extremes are more extreme than large deviations. It is not cur-
rently clear whether EVT or large deviations theory is the best approach for studying
spatially and/or temporally extended intense events, in the sense of providing results
useful for applications such as assessing risk. A detailed investigation in this direc-
tion is of great scientific and practical urgency.

The issue of coarse graining emerges also in a di�erent context, i.e. when we need
to model numerically a multiscale system. In simple terms, a multiscale system can
be written as:

˙X = fX(X) + gX(X,Y ) (11.2.2)
˙Y = fY (Y ) + gY (X,Y ) (11.2.3)

where X are the slow variables and Y are the fast variables, f represent the au-
tonomous dynamics, and g represent the couplings between the fast and slow vari-
ables. When trying to construct a numerical model for such a system, it is unavoid-
able to resort to parametrizations, i.e. to construct methods for accounting, at least
approximately, for the impact of fast processes related to Y occurring at small spatial
scales on the slow variables X , often describing large scale features of primary in-
terest. The goal is to construct an e�ective model for the slow variables only. If one
can safely assume a vast time-scale separation between the slow and the fast vari-
ables, it is possible to use averaging and homogenization methods [325, 326], which
have found extensive applications in geophysical fluid dynamics . The basic results
are that one can approximately treat the e�ect of fast modes on the slow dynamics
by adding suitably defined deterministic and stochastic (with white spectrum) forcing
terms in the evolution equations of the slow variables [327, 328]. While the use of de-
terministic, mean field parametrizations for processes like convection, which cannot
yet be captured by the relatively coarse grids of most weather and climate models is
a standard practise in geophysical fluid dynamical modelling [329, 330, 24], current-
ly weather and climate modelling centres are moving in the direction of introducing
stochastic parametrizations [331, 332], as mounting evidences suggest that they are
more e�ective than usual deterministic methods [333, 334].

It is indeed not clear to what extent such methods, which aim at being able to
describe the typical behaviour of the slow variables, perform in terms of providing
a good representation of extreme events. Recently Wouters and Lucarini [264, 265]
proposed a method for constructing parametrisations based upon the Ruelle response
theory, which bypasses the problem of assuming a vast scale separation between the
slow and fast variables. We note that the parametrizations derived according to such
theory include deterministic and stochastic (with non-white spectrum) correction to
the autonomous dynamics of the slow variables, plus a memory term, which intro-
duces non-markovian properties to the dynamics. A mathematically rigorous system-
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atisation of these results has been recently proposed in [335, 336]. Interestingly, the
method proposed in [264, 265] allows for constructing parametrizations which are
good for any observable of the slow system. Since in [44] it is shown that the statistics
of extremes can reconstucted by calculating some moments of the above-threshold
events, we are led to think that using this approach could in fact deal e�ectively also
with such non-typical fluctuations of the system.

11.3
Extremes of Non-Autonomous Dynamical Systems

In many situations of practical interest, we need to estimate the probability of oc-
currence of extremes in non-autonomous dynamical systems. Time-dependence can
be related to the presence of natural periodic phenomena, such as in the case of the
seasonal cycle when looking at hot or cold extremes of temperatures (or of energy
consumption of heating/cooling buildings), or of slow modulations to the parame-
ters of the system, as in the eponymous case of climate change. We will present two
di�erent yet related approaches for studying this problem.

Let us consider a continuous-time dynamical system ẋ = G(x, t) on a compact
manifold Y ⇢ Rd, where x(t) = �(t, t

0

)x(t
0

), with x(t = t
0

) = xin 2 Y initial
condition and �(t, t

0

) is defined for all t � t
0

with �(s, s) = 1.
The two-time evolution operator � generates a two-parameter semi-group. In the

autonomous case, the evolution operator generates a one-parameter semigroup, be-
cause of time translational invariance, so that �(t, s) = �(t � s) 8t � s. In the
non-autonomous case, in other terms, there is an absolute clock. We want to con-
sider forced and dissipative systems such that with probability one initial conditions
in the infinite past are attracted at time t towards A(t), a time-dependent family of
geometrical sets. In more formal terms, we say a family of objects [t2RA(t) in
the finite-dimensional, complete metric phase space Y is a pullback attractor for the
system ẋ = G(x, t) if the following conditions are obeyed:

• 8t, A(t) is a compact subset of Y which is covariant with the dynamics, i.e.
�(s, t)A(t) = A(s), s � t.

• 8t limt
0

!�1 dY(�(t, t0)B,A(t)) = 0 for a.e. measurable set B ⇢ Y .

where dY(P,Q) is the Hausdor� semi-distance between the P ⇢ Y and Q ⇢ Y .
We have that dY(P,Q) = supx2P dY(x,Q), with dY(x,Q) = infy2Q dY(x, y).
We have that, in general, dY(P,Q) 6= dY(Q,P ) and dYP,Q = 0 ) P ⇢ Q. In
some cases, the geometrical set A(t) support useful measures µ(dx). These can be
obtained as evolution at time t through the Ruelle-Perron-Frobenius operator [337]
of the Lebesgue measure supported on B in the infinite past, as from the conditions
above. Taking the point of view of the chaotic hypothesis, we assume that when con-
sidering su�ciently high-dimensional, chaotic and dissipative systems, at all prac-
tical levels - i.e. when one considers macroscopic observables - the corresponding
measure µt(dx) is of the SRB type. This amounts to the fact that we can construct
at all times t a meaningful (time-dependent) physics for the system. Obviously, in
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the autonomous case, and under suitable conditions - e.g. in the case of of Axiom
A system - A(t) = ⌦ is the attractor of the system (where the t� dependence is
dropped), which supports the SRB invariant measure µ(dx) discussed above.

In practical terms, when we want to construct the statistical properties of a nu-
merical model describing a non-autonomous forced and dissipative system, we often
follow - sometimes inadvertently - a protocol that mirrors precisely the definitions
given above: we start many simulations in the distant past with initial conditions
chosen according to an a-priori distribution. After a su�ciently long time, related
to the slowest time scale of the system, at each instant the statistical properties of
the ensemble of simulations do not not depend anymore on the choice of the initial
conditions.

A prominent example of this procedure is given by simulations of past and histor-
ical climate conditions performed by the modeling group working in [329, 330, 24],
where time-dependent changes in the climate forcings due to changes in greenhouse
gases, volcanic eruptions, changes in the solar irradiance and other astronomical ef-
fects are taken into account in defining the radiative forcing to the system. Note that
future climate projections are always performed using as initial conditions the final
states of simulations of historical climate conditions, so that the covariance proper-
ties of the A(t) set is maintained.

It is tempting to extend to the time-dependent case the results presented in a) Sec.
8.2 for distance observables and in b) Sec. 8.2.2 for the physical observables. One
needs to add as a caveat in case a) that it is far from obvious that the reference point
⇣ is contained in A(t) for all t.

In the case b), the probability of occurrence of an above-T-threshold event for a
given observable A(x) at a time t is the fraction of members of ensembles initialized
in the infinite past that finds itself in the region of A(t) such that A(x) > T , having
measure µt({x 2 Y : A(x) > T}). it is not clear whether one could define a
high-enough threshold T such that 8t µt(1(A(x) > T )) is small (so that we are
considering genuine extreme events) but is non-vanishing (i.e. maxA(x)|A(t) >
T ), so that one may need to suitably define a time-dependent threshold T (t). As a
straightforward example, one may consider the fact that - disregarding the e�ect of
global warming - any feasible definition of year-round extremes (cold and hot) of air
surface temperatures in a given location requires considering thresholds reflecting
the seasonal cycle. Taking into account such caveats, one can study the extremes of
distance and physical observables described above by replacing the invariant measure
µ(dx) used in Secs. 8.2 and 8.2.2 with its time dependent version µt(dx) discussed
above.

Note that in this case we cannot substitute time and ensemble averages, because
time-dependence makes individual trajectories in principle useless for inferring sta-
tistical properties. This results in a potentially enormous computational burden when
considering high-dimensional non-autonomous complex dynamical systems; see al-
so [338] for a clear discussion of these issues in a geophysical context. Additionally,
this clarifies that in this case the BM approach is not feasible, because each block
would contain, strictly speaking, information which cannot be merged together with
other blocks, as stationarity is lost.
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Such a fundamental problem can be eased in the case one considers a system where
explicit time dependence in the evolution equations is due to very slow - in compar-
ison to the time it takes for the system to describe the statistical properties of an
observable of interest - modulations of some parameters. Taking the so-called adia-
batic approximation, one assumes that the change in the properties of the extremes is
so slow in time that analyzing an individual trajectory is su�cient for capturing such
t�dependence, with time being introduced as a covariate in the statistical inference
procedure [72, 56]. One needs to underline that giving a scientific meaning to such a
- common - assumption is possible only in an intuitive, heuristic fashion. In [93] it is
shown that when di�erent time scales are present in the forcing, such picture breaks
down, because complex e�ects due to the specific protocol of the forcing appear in
the statistics of extremes.

We want now to take advantage of the response theory framework introduced in
Sec. 8.3 for addressing the problem of treating extremes in a non-autonomous setting
and provide some explicit results. Let’s now assume that we can write

ẋ = G(x, t) = G(x) + ✏X(x, t) (11.3.1)

where |✏X(x, t)| ⌧ |G(x)| 8t 2 R and 8x 2 Y . Under appropriate mild regulari-
ty conditions, it is always possible to perform a Schauder decomposition [339] that is
X(x, t) =

P1
k=1

Xk(x)Tk(t). Since we will consider only linear response proper-
ties, we restrict our analysis without loss of generality to the case where G(x, t) =
G(x)+ ✏X(x)T (t) and all formula can be extended by linearity to the general case.
Following [83, 84], it is possible to extend the response theory in such a way to
include the e�ect of the presence of time-modulations in the forcing. In general,
the corrections which are expectation value of an observable  depends explicitly
on time. One can construct corrections to the time-independent invariant measure
µ(dx) of the unforced system introduced in Eq. 8.3.1 so that

h i✏(t) = h i
0

+

1
X

j=1

✏jh i(j)
0

(t),

where h i(j)
0

(t) can be expressed as time-convolution of the Green function given
in Eq. 8.3.3 with the time modulation T (t):

h i(j)
0

(t) =
Z 1

�1
d⌧

1

. . .
Z 1

�1
d⌧nG

(j)
 

(⌧
1

, . . . , ⌧n)T (t�⌧1) . . . T (t�⌧j).(11.3.2)

Accordingly, we can construct the first order correction to the observables AT
n intro-

duced in Eq. 8.2.29 as

hAT
n i

(1)

0

(t) =
Z

d⌧G(1)

AT
n
(⌧)T (t� ⌧), (11.3.3)

where the Green functions have been introduced in Eqs. 8.3.14 and 8.3.16. Subse-
quently, we can construct the first order time-depedent corrections to the shape and
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scale parameters describing the extremes of the A observables following Eqs. 8.3.8
and 8.3.11 as follows:

⇠(1)A (t) =
Z

d⌧G(1)

⇠A
(⌧)T (t� ⌧) (11.3.4)

where, using Eq. 8.3.10, we have

G(1)

⇠A
(⌧) = ↵(1)

⇠,T,n�2,nG
(1)

AT
n�2

(⌧)+↵(1)

⇠,T,n�1,nG
(1)

AT
n�1

(⌧)+↵(1)

⇠,T,n,nG
(1)

AT
n
(⌧)(11.3.5)

and

�(1)

A (t) =
Z

d⌧G(1)

�A
(⌧)T (t� ⌧) (11.3.6)

where, using Eq. 8.3.13, we derive

G(1)

�A
(⌧) = ↵(1)

�,T,n�2,nG
(1)

AT
n�2

(⌧)+↵(1)

�,T,n�1,nG
(1)

AT
n�1

(⌧)+↵(1)

�,T,n,nG
(1)

AT
n
(⌧).(11.3.7)

See a discussion of these results in a geophysical context in [263, 102, 340]. These
results provide some explicit formulas for studying rigorously extremes in a time-
dependent setting.

We would like to point out some recent results [92, 93, 59, 94] which seem to sug-
gest that a mathematically sound treatment of time-dependent extremes in numerical
models is within reach. The authors studied a time dependent modification of the so-
called Lorenz ’84 [341] minimal model of the mid-latitude atmospheric circulation:

ẋ = �y2 � z2 � ax� aF (t) (11.3.8)
ẏ = xy � bxz � y + 1 (11.3.9)
ż = xz + bxy � z (11.3.10)

where one unit of time corresponds to 5 d = 1/73 y, and we use the classical val-
ues for the parameters a = 1/4 and b = 4. Additionally the forcing is defined as
F (t) = F

0

(t) + A sin(!t), with F
0

= 9.5, ! = 2⇡/73 (seasonal cycle), and
F
0

(t) = 9.5 if t  100 y, while F
0

(t) = 9.5� 2/(7300)(t� 7300) is t > 7300

(monotonically decreasing linear ramp starting after 100 y). In this model X repre-
sents schematically the intensity of the westerly winds, while Y and Z are related to
two modes of meridional heat transport, F is the (baroclinic) forcing, which is larger
in winter than in summer, so that a slow decreasing ramp and the seasonal cycle,
described by !, modulate F . After running a large ensemble of initial conditions,
the authors have been able to construct the pullback attractor, whose supported mea-
sure µt, after transients have died out, is a�ected by the ramp and by the periodic
forcing, as suggested by the response formulas 11.3.2. Let’s consider the observable
A(x, y, z) = z for in the year centered around t = 250y. The light grey points in
Fig. 11.1a) and b) represent extremes in winter and summer conditions, respectively.
The structure of the two attractors is clearly dissimilar and the statistics should not
be merged.
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Figure 11.1 Pullback attractor of the system 11.3.8 for a) winter and b) summer
conditions, defined by the phase of the sin in the definition of F , see Eq. 11.3.8. The grey
tone bar refers to the values of Z. The figure is a courtesy of T. Bódai. See [94] for details.

11.3.1
A note on Randomly Perturbed Dynamical Systems

When considering a random time-dependent forcing, the pullback attractor intro-
duced above becomes a random pullback attractor. While the overall construction
is similar to the deterministic case, some additional details need to be provided. In
particular, roughly speaking, one needs to construct an explicit time parametriza-
tion of the probability space defining the randomness by time, and follow the in-
dividual random trajectory. This is, in fact, the basic framework which led to the
introduction of the very concept of pullback attractor. We then consider a proba-
bility space (�,F ,P), F is a �-algebra of the measurable subsets of ⌦, and P is
a probability measure. We consider a measurable map ✓t : ⌦ ! ⌦ such that the
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classic semigroup property is obeyed, that is ✓s � ✓t = ✓s+t and ✓
0

= 1, and
such that the probability measure is conserved - a stationarity conditions ✓tP = P.
The map ✓ gives a protocol of invertible transformations of ⌦ allowing for tracking
the noise. A random evolution on Y is given by an evolution operator �(t,!)x,
where ! describes the random influence, with the so-called cocycle property, that is
 (t+s,!) = �(t, ✓s!)��(s,!). We now construct the extended space P⇥Y and
introduce the evolution operator �t : (!, x) ! (✓t!,�(t,!)x), bringing together
coherently the evolution of the point x 2 Y and the evolution of the random variable
! 2 �.

Using this definition, we have that �t is a semi-group, that is �t+s = �t � �s.
In Chapter 7 the following type of random systems is considered: let Tt be a se-

quence of identically distributed random variables taking values in the measurable
space �, where t is a continuous index such that CorP(T, T, |t� s|) vanishes su�-
ciently fast as |t� s| ! 1.

We associate to each � 2 � a measurable function ✏X(x)�t : Y ! Y , by
✏X(x)�t = ✏T�tX(x), where ✏ is a small constant 2 R, X : Y ! Y . Using
these definitions, we study:

ẋ = G(x, t) = G(x) + ✏T�tX(x) (11.3.11)

as a Langevin equation, where we take the Stratonovich convention.
In [89] attention is focussed on the trajectories of the individual ensemble members

driven by the same sequence of random variables Tt and constructed according to
the time-dependent measure. While mathematically sound, this approach seems a
bit unnatural with respect to describing reasonable experimental conditions because
we are assuming to be able to reproduce the same sequence of random events for all
initial conditions considered.

When studying the statistical properties of the system, it seems more natural to take
expectation values over the stochastic variables defining the random forcing. Along
these lines, in [321] it is shown that it is possible to study the impact of weak random
perturbations to Axiom A dynamical systems ẋ = G(x) using the response theory
approach. An interesting and general result is that if the stochastic process is cen-
tred, i.e. the expectation value of T�t vanishes, the linear response (/ ✏) vanishes for
any observable, whereas the second order response (/ ✏2) gives the leading order
of perturbation. In practice, we expect that adding a moderate noise to an Axiom
A (or Axiom A-equivalent) chaotic dynamical system will not alter significantly the
parameters ⇠ and � describing the EVT of both physical and distance observables,
because ⇠ and � can be expressed in terms of suitable observables, see Eqs. 8.2.33-
8.2.34. At a more theoretical level, this agrees with the main findings of Chapter 7
referring to mixing systems, even if the point of view on the problem is indeed di�er-
ent. The relatively weak impact of noise on the statistics of extremes for su�ciently
chaotic systems has also been observed in [92], while in [59] it is found, in funda-
mental agreement with the response theory approach, that the impact on the statistics
of extremes is enhanced when the characteristic time scale of the noise is close to the
characteristic internal time scale of the unperturbed system.

Both in the case of deterministically and random driven system, the challenge is
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to extend the encouraging results discussed in [92, 93, 59, 94] to high dimensional
chaotic systems, e.g. when studying climate models data, and find e�ective ways to
beat the curse of dimensionality, while keeping a sound mathematical approach and
physical significance in the analysis of the results.

11.4
Quasi-disconnected Attractors

We briefly wish to mention here some additional features which may appear and be
extremely relevant at finite time in practical cases, where the dynamics can deviate
from Axiom A-like when certain time scales are considered. Let’s assume that one
can, to first approximation, partition the (unique) attractor of a chaotic dynamical
system into, say, two disconnected pieces, so that the system has two time scales,
a short one related to the transitive dynamics within each of the two pieces, and a
long one corresponding to intermittent transitions from one to the other piece. This
corresponds to the scenario of quasi-intransitive dynamics proposed by Lorenz [342]
and relevant for many problems of climate dynamics. Note that such setting is similar
to that proposed in [75] when studying tipping points, where a parameter is varied
until the actual catastrophic change in the attractor structure takes place. We are
here considering the case where we are close to the tipping point, but the connection
between two regions of the attractor is only ephemeral

In this case, if we observe the system for a time scale intermediate between the
short and the long time scale, the properties of the extremes will depend only on
the properties of the visited portion of the attractor and we will observe a Weibull
distribution, as discussed here, as the dynamics is e�ectively an Axiom A system in
one of the pieces. When our observation time nears the long time scale, we might
observe extraordinary large events, corresponding to excursions directed towards the
other piece of the attractor, until an irreversible (on the short time scale) transition
takes place.

Such extraordinary events will not fit the Weibull law found on smaller time scales,
because they result from properties of the attractor, which have not been sampled
yet. Therefore, on these intermediate scales, the results proposed here will not be
valid. Instead, one may interpret such extraordinary events as Dragon Kings [343],
which will manifest as outliers spoiling the Weibull statistics and pushing the statis-
tics of extremes towards an (apparently) unphysical Frechét distribution. Observing
extremes over even longer time scales, so that the orbit visits many times both parts
of the attractor, we shall recover a Weibull law, which reflects the global properties of
the attractor. In a system with these properties, small perturbations to the dynamics
might impact substantially the long time scale discussed above, resulting in a high
sensitivity of the statistics of extremes when a fixed time window of observation is
considered.
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11.5
Clusters and Recurrence of Extremes

The convergence of Rare Event Point Processes (REPP), proved in [74, 140, 142]
can be used to obtain relevant information such as the expected time between the
occurrence of catastrophic events, or the intensity of clustering, which ultimately are
crucial for assessing risk. However, from a actuarial point of view, not only the fre-
quency of rare undesirable events is relevant for the evaluation of risk associated to
certain phenomenon. In fact, insurance companies are also interested on the severity
and impact of aggregate damage. This motivates widening the scope of the analy-
sis from counting only tthe number of exceedances (within a cluster and/or withiin
a given period of time), to, e.g., computing their aggregate impact by adding their
magnitudes, thus studying the so-called Area Over Threshold (AOT). Developing a
theory that addresses the convergence and the properties of AOT point processes for
time series arising from chaotic dynamical systems is a main goal for future perspec-
tives. The potential of application in actuarial science of such results is huge since
they could be used to model and estimate the money losses by claim payments made
by insurance companies.

As already hinted at when looking at physical observables, it seems extremely
promising to study the extremes of observables whose maximizing sets are not lim-
ited to a single point ⇣ . In trying to study more general sets, the first step would be to
consider a finite or countable number of maxima. Some work has already been done
in that direction in [139] for typical points chosen independently. Hence, a natural
question would be analyze the problem of multiple correlated maxima. One of the
interesting consequences of having such general maximising sets is the possibility of
having some new recurrence properties for extremes e�ect associated to the fact that
an orbit of the dynamical systems may enter and exit multiple times the neighbour-
hood of the maximal points, as in the case where various points of the maximising
sets belong to the same orbit (or are shadowed by it), with ensuing clustering or short
recurrence of extremes. A suitable interplay of structure of the orbits and of shape of
the maximising set of the observable might emulate a periodic behaviour leading to
clusters of exceedances. One example of that situation is observed in neuroscience,
on the records of the activity of a neuron, where the bursts or accumulated spikes
may appear in clusters.

The unfolding of such more complex options for clustering of extremes provides a
fascinating area of study between EVT and dynamical systems, as one could find new
and interesting ways to relate occurrence of extremes and properties of the dynamics.
Moreover, these short recurrence mechanisms have a great potential as a source of
examples for studying new stochastic processes in the classical EVT context, and,
on the other side, for serving as a model for several practical problems in natural,
engineering, and social sciences. We believe that through this more complex frame-
work we can also recreate di�erent clustering patterns. So far, the only pattern for
clusters of extremes we can construct and explain in detail arises dynamically from
the presence of repelling periodic points, as discussed in Chapter 4, and consists of
a sequence of decreasing exceedances observed at specific times, as imposed by the
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period of the repellor. We plan to make an exhaustive classification of the clustering
patterns and of the respective geometric/recurrence properties that cause them, in
order to be able to categorize clusters and their dynamical causes. In the case of pre-
venting structural failures, the anticipated study of the type of the clustering patterns
of a certain natural phenomenon is of crucial importance, on one side to predict the
likelihood of such failure and on, another side, to help designing the material and
structures to stand stronger against the natural causes they have to face.

11.6
Towards Spatial Extremes: Coupled Map Lattice Models

Coupled map lattice (CML) are often used to study at a qualitative level the chaotic
dynamics of spatially extended systems [344]. This includes the dynamics of spa-
tiotemporal chaos where the number of e�ective degrees of freedom diverges as the
size of the system increases. The CML approach has been proven to be e�ective in
studying systems of population dynamics, chemical reactions, convection, fluid flow
and biological networks [345]. The idea is that CML could be provide a good frame-
work for extending the application of EVT to infinite-dimensional systems, like those
described by partial di�erential equations.

As Keller suggested in [141], CML given the possibility of account for strong
and localised coupling mechanisms able to determine the possibility of observing a
broader variety of situations compatible with or producing rare and extreme events.
Several techniques presented in this book could be applied to study CML. In partic-
ular, we see as a potentially promising development the idea of using the spectral
theoretic approach based on the transfer operator and its perturbations on suitable
spaces of distributions on the lattice.

It will be fascinating to study whether GEV and/or GPD-like EVLs emerge when
studying the extremes of observables closely related to and able to account for how
di�erent (how distant, in a suitable defined metrics) two spatially separated lattice
points are at a given time. This is a change from the point of view taken in this book,
where we consider temporal recurrence. In this latter case, we have specified in
Chaps. 6 and 8, and used in Chaps. 9 and 10, that the parameters of the GEV and GP
distributions are directly linked to the local dimension around the reference point we
wish to study the recurrences of. Analyzing, instead, spatial recurrence as proposed
here, one could investigate whether the physical properties of the systems (cluster
size, percolation coe�cients [346]) can be related to the EVLs parameters. Finally
one could combine together space and time dimensions in a bivariate extreme value
theory, thus providing a solid basis for a comprehensive understanding of the spatial
and temporal correlation of extremes events in spatially extended random fields.
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A
Codes

In this appendix we present a series of Extremal Index - EI functions useful to perform
the extreme events analysis described in the previous chapters. This selection is not
a replacement of an extreme value package for the estimation of the parameter of
the GPD or the GEV distribution, but they instead provide a compact and complete
suite to compute the relevant quantities introduced for the extreme value analysis of
dynamical systems.

The first two functions extremal_FerroSegers and extremal_Sueveges
compute the extremal index ✓ introduced in Section 3.3.3 with two di�erent methods.
Both these functions are necessary to run the main function Gumbel_analysis
which computes, for a univariate time series Y , EI - the extremal index - and the
parameters of the GEV distribution for a set of points ⇣ automatically chosen in
[min(Y )max(Y )]. The function is called Gumbel_analysis because it as-
sumes that the observable chosen is of type g

1

(see Section 4.2.1), but it can be
easily modified for observables g

2

or g
3

. The function Gumbel_analysis2D
works as the previous one but it accepts as input two univariate time series Y

1

and
Y
2

, measured simultaneously.
The last script is an example of application for the Bernoulli Shift Map introduced

in Section 10.2. It performs the analysis via the previous scripts and plot the results
with respect to the points ⇣ selected. By changing the definition of the map is possible
to study all one-dimensional dynamical systems.

A.1
Extremal index

The following two functions compute the extremal index introduced in Chapter 3
with the methods of Ferro-Segers [131] and Süveges [347]. They take as input a
univariate time series Y and a quantile p. The output is the value ✓ of EI.
function [theta]=extremal_FerroSegers(Y,p)

% This function computes the extremal index theta by using the
% method proposed by Ferro-Segers (Ferro, C. A. T., and
% J. Segers (2003), Inference for clusters of extremes,
% J. R. Stat. Soc., Ser. B, 65, 545-556.).
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% INPUTS:
% -Y: a vector containing a univariate time series
% -p: a quantile value
% OUTPUTS:
% -theta: the estimate of the extrimal index.

% Extract the threshold u corresponding to the quantile p
u=quantile(Y, p);

% Compute the exceedances
Si=find(Y>u);

% Compute the cluster lengths
Ti=diff(Si);

% Compute the total number of clusters
N=length(Ti);

% Use the Ferro-Segers formula to extract theta
theta=2.*(sum(Ti-1)).^2./(N.*sum((Ti-1).*(Ti-2)));
end

%%%%%%%%%%%%%%
%%%%%%%%%%%%%%
%%%%%%%%%%%%%%
%%%%%%%%%%%%%%
%%%%%%%%%%%%%%

function [theta]=extremal_Sueveges(Y,p)

% This function computes the extremal index theta by using the
% method proposed % by Sueveges, M. (2007).
% Likelihood estimation of the extremal index. Extremes, 10, 41-55.

% INPUTS:
% -Y: a vector containing a univariate time series
% -p: a quantile value
% OUTPUTS:
% -theta: the estimate of the extrimal index.

% Extract the threshold u corresponding to the quantile p
u=quantile(Y, p);
q=1-p;

% Compute the exceedances
Li=find(Y>u);

% Compute the cluster lengths
Ti=diff(Li);
Si=Ti-1;
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% Compute the total number of clusters longer than one
Nc=length(find(Si>0));

% Compute the total number of clusters
N=length(Ti);

% Use the Sueveges formula to extract theta
theta=(sum(q.*Si)+N+Nc- sqrt( (sum(q.*Si) +N+Nc).^2 ...
-8*Nc*sum(q.*Si)) )./(2*sum(q.*Si));

end

A.2
Recurrences - Extreme Value Analysis

The following two functions perform an extreme value analysis for recurrences pre-
sented in Chapter 9 of a univariate time series Y (or bivariate Y

1

, Y
2

for the second
function). Y can be a orbit of a dynamical systems or a series of observations sam-
pled at intervals �t. the method selects as much ⇣-points between min(Y ) and
max(Y ) as much specified by the variable num_fich, and compute the observ-
able g

1

(i, t) = � log(dist(Y (t), ⇣(i))) returning – for each i – the L-moment of
the GEV shape parameter ⇠(i), the scale parameter �(i) and the location parameter
µ(i). It also computes the extremal index EI with the methods of Sueveges ✓

1

(i) and
Ferro-Segers ✓

2

(i), according the quantile specified as p.

function [theta1 theta2 Zeta Csi Sigma Mu]=Gumbel_analysis(Y, num_fich, p)

% This function performs the extreme value analysis for recurrences
% of a univariate time series Y. The method selects as much Zeta
% points between min(Y) and max(Y) as much specified by the variable
% num_fich, and compute the observable g1(i,t)=-log(dist(Y(t), Zeta(i)))
% returning for each of them the MLE of the GEV shape parameter Csi,
% the scale parameter Sigma and the location parameter Mu.
% It also computes the extremal index with the methods of Sueveges
% (theta1)% and Ferro-Segers (theta2),
% according the quantile specified as p.

% INPUTS:
% -Y: a vector containing a univariate time series
% -num_fich: the number of points desired as output
% -p: a quantile value

% OUTPUTS:
% -theta1: a vector containing the estimates of the extremal index
% by using the Sueveges methodology
% -theta2: a vector containing the estimates of the extremal index
% by using the Ferro-Segers methodology
% -Zeta: vector of reference points for the series Y
% -Csi: a vector containing the estimates of the shape parameter
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% for the GEV distribution via MLE techniques
% -Sigma: a vector containing the estimates of the scale parameter
% for the GEV distribution via MLE techniques
% -Mu: a vector containing the estimates of the location parameter
% for the GEV distribution via MLE techniques

% Initial check and error messages
if num_fich <3

warning(’Number of points must be = or greater than 3’)
end
if p < 0.5

warning(’ple too small to obtain reliable estimates on theta’)
end
if length(Y) < 10000

warning(’Series too short to perform a reliable analysis’)
end

% Definition of the points zeta, as maxima and minima
Zeta=ones(1,num_fich);
for i=1:num_fich
Zeta(i)=min(Y)+ (i)*(abs(max(Y)-min(Y)))/num_fich;

% Definition of the bin length m and the number of maxima n.
% It can be changed according the needs. Here the number of data
% is taken as the square root of the total length of the series and the
% bin length is adjusted accordingly.

s=length(Y);
n=fix(sqrt(s)/2);
m=fix(s/n)-2;

clear dmin
init=1;
logdista=-log(abs(Y-Zeta(i)));

% Computation of the extremal index according to the two methods
[theta1(i)]=extremal_Sueveges(logdista,p);
[theta2(i)]=extremal_FerroSegers(logdista,p);

% Loop to extract the observable g1
for j=1:n-init

ddmin(j)=min((abs(Y(((j+init-1)*m+1):(j+init)*m)-Zeta(i))));
dmin(j)=-log(ddmin(j));

end

% Eclusions outliers up to nout, here nout=1. Can be changed
% according to your needs

nout=1;
dminS=sort(dmin);
clear dmin
dmin=dminS(nout+1:end-nout);

% Fit the GEV distribution via the Matlab function gevfit
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[tpar tpari]=gevfit(dmin);
Csi(i)=tpar(1);
Sigma(i)=tpar(2);
Mu(i)=tpar(3);

end
end

The function Gumbel_analysis2D is similar to the previous function, but ac-
cepts as input two time series Y

1

and Y
2

. It assumed that the two sets of measure-
ments are taken simultaneously.

function [theta1 theta2 Zeta1 Zeta2 Csi Sigma Mu ...
]=Gumbel_analysis2D(Y1, Y2, num_fich, m, p)

% This function performs the extreme value analysis for recurrences
% of a bivariate time series Y1, Y2. The method selects as much Zeta
% points between min(Y) and max(Y) as much specified by the variable
% num_fich, and compute the observable
% g1(i,t)=-log(dist(Y(t), Zeta(i)))
% returning for each of them the MLE of the GEV shape parameter Csi,
% the scale parameter Sigma and the location parameter Mu.
% It also computes the extremal index with the methods of Sueveges
% (theta1)% and Ferro-Segers (theta2),
% according the quantile specified as p.

% INPUTS:
% -Y1: a vector containing a univariate time series
% -Y2: a vector containing a univariate time series
% -num_fich: the number of points desired as output
% -p: a quantile value

% OUTPUTS:
% -theta1: a matrix containing the estimates of the extremal index
% by using the Sueveges methodology
% -theta2: a matrix containing the estimates of the extremal index
% by using the Ferro-Segers methodology
% -Zeta1: vector of reference points for the series Y1
% -Zeta2: vector of reference points for the series Y2
% -Csi: a matrix containing the estimates of the shape parameter
% for the GEV distribution via MLE techniques
% -Sigma: a matrix containing the estimates of the scale parameter
% for the GEV distribution via MLE techniques
% -Mu: a matrix containing the estimates of the location parameter
% for the GEV distribution via MLE techniques

% Initial check and error messages
if num_fich <3

warning(’Number of points must be = or greater than 3’)
end
if p < 0.5

warning(’ple too small to obtain reliable estimates on theta’)
end
if length(Y1) < 10000
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warning(’Series too short to perform a reliable analysis’)
end

% Definition of the points zeta, as maxima and minima
Zeta1=ones(1,num_fich);
Zeta2=ones(1,num_fich);
for i=1:num_fich
for j=1:num_fich
Zeta1(i)=min(Y1)+ (i)*(abs(max(Y1)-min(Y1)))/num_fich;
Zeta2(j)=min(Y2)+ (j)*(abs(max(Y2)-min(Y2)))/num_fich;

% Definition of the bin length m and the number of maxima n.
% It can be changed according the needs. Here the number of data
% is taken as the square root of the total length of the series and
% bin length is adjusted accordingly.

s=length(Y1);
n=fix(s./m)-1;

clear dmin
init=1;
logdista=-log(sqrt( (1./std(Y1)).*(Y1-Zeta1(i)).^2 +...
(1./std(Y2)).*(Y2-Zeta2(j)).^2));

% Computation of the extremal index according to the two methods
[theta1(i,j)]=extremal_Sueveges(logdista,p);
[theta2(i,j)]=extremal_FerroSegers(logdista,p);

% Loop to extract the observable g1
for k=1:n

ddmin(k)=...
min(sqrt( (1./std(Y1)).*(Y1(((k+init-1)*m+1):(k+init)*m)-...
Zeta1(i)).^2 +...
(1./std(Y2)).*(Y2(((k+init-1)*m+1):(k+init)*m)-Zeta2(j)).^2));
dmin(k)=-log(ddmin(k));

end

% Eclusions outliers up to nout, here nout=1. Can be changed
% according to your needs

nout=1;
dminS=sort(dmin);
clear dmin
dmin=dminS(nout+1:end-nout);

% Fit the GEV distribution via the Matlab function gevfit
[tpar tpari]=gevfit(dmin);

Csi(i,j)=tpar(1);
Sigma(i,j)=tpar(2);
Mu(i,j)=tpar(3);

end
end
end
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A.3
Sample Program

This sample program uses the previous functions to compute the recurrences - ex-
treme value analysis for the Bernoulli Shift map 3x mod 1, and can be easily adapted
to the study one dimensional dynamical systems.

% This sample program compute the recurrences for the Bernoulli Shift
% map 3x mod 1 and plot the results of the parameter estimation.

% I: Compute of the orbit of 100000 iteration for the Bernoulli map 3x mod 1
Npoints=100000;

% x stores the orbit
x= ones(1, Npoints);

% Initial condition (irrational or rational gives different results)
% here we set to irrational as a random number between 0 and 1

x(1)=rand;

% Computation of the map
for i=2:Npoints

x(i)=mod(3*x(i-1),1);
end

% II: Gumbel analysis
num_fich=100;
p=0.95

[theta1 theta2 Zeta Csi Sigma Mu]=Gumbel_analysis(x, num_fich, p);

%III: figures
figure(101)

subplot(2,2,1)
plot(Zeta,theta1)
xlabel(’\zeta’)
ylabel(’\theta’)

subplot(2,2,2)
plot(Zeta,Csi)
xlabel(’\zeta’)
ylabel(’\csi’)

subplot(2,2,3)
plot(Zeta,Csi)
xlabel(’\zeta’)
ylabel(’\sigma’)

subplot(2,2,4)
plot(Zeta,Csi)
xlabel(’\zeta’)
ylabel(’\mu’)
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