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Abstract: This paper presents the mixed initiative infrastructure that is being developed 

and used at the Underwater Systems and Technology Laboratory to plan and control 

missions of cooperating teams of heterogeneous vehicles. The system is composed by 

various modular components that can be adapted to serve different mission objectives and 

various forms of operation. This paper also documents how the system has been validated 

in various test missions that were executed exclusively with this software infrastructure. 

The system is now evolving to support new mission concepts and added requisites like 

simulation services and live data publication techniques. Copyright © 2006 IFAC 
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1. INTRODUCTION  


Various ongoing projects at Underwater Systems and 

Technology Laboratory (USTL) deal with different 

types of autonomous and semi-autonomous vehicles.  

Our final objective is the creation of a networked 

system of vehicles, sensors and human operators that 

cooperate with one another by planning sequences of 

actions that allow them to achieve one or various 

shared goals (Sousa et al., 2003). 

 

We are currently working with two autonomous 

underwater vehicles (AUV), two remotely operated 

vehicles (ROV) and a wireless sensor networks 

(WSN) technologysystem. Our collaboration with 

other institutions, like LSA1 and the Portuguese Air 

Force, also adds autonomous surface vehicles (ASV) 

and unmanned air vehicles (UAV) to this list. 

 

Using The use of different kinds of vehicles, 

belonging to different institutions, certainly leads to 

various communication protocols, different 

specialized human operators and multiple integration 

problems. 

                                                 
1 Autonomous Systems Laboratory, Porto’s 

Engineering Institute (IPP, ISEP) 

Having In order to deal with this problem, s in hands, 

USTL researchers are developing (and testing in real-

world missions) a software infrastructure that 

abstracts concepts like vehicles, consoles, operators, 

plans, missions and communication protocols in a 

way that allows the rapid definition of abstract 

missions which can be executed by the various USTL 

and non-USTL vehicles. The system is composed by 

the Neptus framework (Dias et al., 2005; Neptus, 

2006) and the Seaware publish/subscribe 

communication layer (Marques et al., 2006). 

 

The Neptus framework is made up ofcomprises 

various software modules like an environmental map 

editor, a mission planner (plan editor), configurable 

operator consoles (composed by various visual 

components), 2D and 3D world state  viewers, inter-

component communications and mission revision. 

TUsed together, these modules allow theenable the 

definition of abstract missions by planning individual 

vehicle plans and by specifying environmental maps 

(Dias et al., 2006a, b). The abstract missions are 

translated into the vehicles’ native languages using a 

translation service based on eXtensible Stylesheet 

Language Transformations (XSLT) technology. 

While a vehicle is executing one of the generated 

missions, its actions can be monitored and/or 

controlled by multiple operator consoles 



 

     

simultaneously using the Seaware communication 

layer. 

 

The Seaware communication layer is a pub-

lish/subscribe system that is used to communicate 

transparently to any node that is registered in the 

network. Nodes can either be vehicles that publish 

sensorial data and receive operator commands or 

consoles that subscribe the vehicles’ data while 

publishing operator commands. 

 

Since the system is being developed to support real-

world missions it has been thoroughly tested not only 

in its feasibility but also in its efficiency and 

interoperability. Without such system, various past 

missions certainly wouldn’t have been feasible. 

 

This paper is organized as follows. In section two, 

related projects are evaluated for its relevance with 

our system and their solution to similar problems. On 

section three, the overall system architecture is 

presented along with various possible operational 

scenarios. The communications infrastructure is 

documented in section four and the possibility to 

easily define new operational consoles is explained in 

section five. In section six, we show the results of 

various test missions that were executed using this 

infrastructure exclusively. Finally, ion section seven, 

we present some conclusions and possible future 

developments.  
 



2. RELATED WORK 


Typically, software applications that support robotic 

vehicles operations take the form of operational 

consoles. There are several examples of this type of 

applications, being one example the Remus AUV 

(Hydroid Inc. 2006) console. This console is able to 

display vehicle trajectories and provides the ability of 

defining new missions, but no support is given in 

communications with other devices or vehicles.  

 

NPS AUV Workbench (Lee 2004), from Naval 

Postgraduate School, is capable of managing various 

vehicles in a cooperative manner. All mission 

visualization and definition is ensured by 2D and 3D 

(VRML) visualizations which can be monitored in a 

standard web browser. With this system it is very 

easy to replay missions or to do mission rehearsals. 

 

Although AUV workbench was designed for use with 

multiple vehicles it does not allow cooperative 

missions using hybrid systems concepts. On-going 

projects at USTL require vehicle interactions in the 

context of hybrid systems (Dias et al., 2006a). The 

main target is to design a framework that allows 

cooperative mission planning and visualization. 

 

Another project that is trying to create a 

communications infrastructure for robotic operations 

is PLAYER (Gerkey et al., 2001). This project 

provides a server where relaying all data from 

existing systems (robots, operators, sensing devices  

…), thus enabling is relayed . The objective is to 

share the entire world state to be shared among the 

existing systems. Some systems send data as 

publishers and others (subscribers) get notifications of 

topic updates. STAGE is being developed in parallel 

to provide means for visualization of the entire world 

state. 




3. SYSTEM OVERVIEW 


The Neptus Framework is composed by various 

existing applications and modular software 

components that can be merged by developers to 

rapidly build new Neptus applications. 

 

Some of the most relevant modules are the Map 

Editor, Mission Planner, Mission Processor, 

Configurable Console(s), Variable Tree, Renderer2D, 

Renderer3D and various other Visual Components. 

For inter-console and vehicle communication, the 

Seaware publish/subscribe system is used. 

FollowingNext, the roles of various Neptus modules 

are explained, how they are (re)used across different 

applications and how these applications can be 

applied for planning and monitoring real-world 

missions. 

 

The Mission Map Editor (MME) component is a GIS-

like application that allows the creation of three 

dimensional environmental maps, storing these maps 

as an XML file. One or more of these maps can later 

be included in an abstract mission, helping 

considerably in the planning and execution phases. 

Additionally, the environmental maps are might be 

sent to vehicles when they know are ablehow to 

handle this type of information. 

 

The Mission Planner (MP) module is a toptop-level 

application that can be used to define the various 

components of a mission that is to be executed by one 

or more vehicles in the future. 

 

The result of using the MP application is a XML file 

that holds an abstract definition of the mission plan. A 

mission plan is composed by environmental maps 

(links to other XML files), individual plans (a graph 

with nodes representing maneuvers and transition 

conditions between them) and additional data like 

local information and checklists of required material 

or initial tests. 

 

The Mission Processor (MProc) module knows how 

to translate mission files (XML) to the different 

supported vehicles’ native formats. This module can 

though thus be used to generate a vehicle-specific 

mission file which is then sent to the vehicle for 

execution. 

 

After a vehicle starts executing a mission, its state can 

be monitored by using a generic console that shows 

all information that flows on the network or a specific 

console that matches the type of vehicle or mission. 

 



 

     

Specialized consoles can be defined by using the 

Configurable Console (CC) module. This module is 

composed by an empty window that serves as a 

canvas for adding various visual components. The 

visual components can be connected to a specific 

variable that may might be available on the network 

like the vehicle’s orientation, vehicle’s and position, 

motor RPMs, etc. At the end, a XML file with all the 

performed configurations is saved, allowing future 

reuse. 

 

A Variable Tree (VT) module exists in every console 

to store the incoming network data and provide a 

generic access to these values. This module stores the 

variables in a tree structure, triggering events in every 

affected branch whenever a value is updated. This 

simple scheme allows the easy definition of system 

alerts by defining scripts that run whenever a variable 

or a variable domain is updated. 

 

To visualize the entire world state, Renderer 

components are connected to the VT module. 

Currently, there exists a two dimensional (R2D) and a 

three dimensional renderer (R3D) that can be used 

simultaneously. The later is extremely useful in ROV 

operations when inspecting underwater structures but, 

on the other hand, the R2D module is also useful for 

missions that take place over a large area. 

Additionally, R2D is used also for map edition, 

allowing the user to interact with the existing objects 

(images, geometries, paths, marks …). 

 

After executing a mission, the received data can be 

later revised by using the Mission Review and 

Analysis (MRA) application. This application can 

replay the vehicle’s actions and display various 

graphical representations of the sensors data. 

 

An overview of a possible operation scenario, where 

multiple consoles interact with more than one vehicle 

using the same communication infrastructure is 

represented in Fig. 1Fig. 1. 

 

 
Fig. 1. Possible operational scenario 

 

 

4. COMMUNICATION INFRASTRUCTURE 


To facilitate the integration of this system in several 

classes of vehicles, though thus minimizing the 

problems of proprietary formats, we adopted XML 

for most of the stored information. There areOne of 

the several advantages of this optionin its us eis  like 

the possibility to define a grammar for validating 

every loaded file. Once we have a grammar , we can 

also say tospecify potential users the exact file format 

we are expecting from potential users. XML can also 

be filtered and transformed into different formats like 

text, HTML or any kind of mission format of some 

existing vehicle. 

 

This is exactly what we do for each vehicle that 

isconsidered  added in Neptus. When we add a 

vehicle, we must provide the list of its feasible 

maneuvers that it is capable of doing (in an XML 

format), and, in addition, a XSLT stylesheet giving 

the transformation rules from the XML to the 

vehicle’s mission language. 

 

XML serves as the base for all data transfers, storage 

and manipulation in Neptus. We also use XML to 

define the messaging between Neptus components 

and external ones. There is a base set already defined, 

but the extension of this set is very easy.  

 

To addIn order to include a new type of messages to 

in Neptus all that haswhat needs to be done is the 

addition ofto add some a few lines to a XML file. 

That file has constains the definition of all messages 

that will be able to be read by Neptus. We have a 

fixed message header and the body can be composed 

by several fields from the set of several provided 

types (Table 1Table 1). 

 

Table 1 Native types 

 

Type Length (in bytes) 

int8, int16, int32 (all signed) 1, 2, 4 

uint8, uint16, uint32 (all 

unsigned) 

1, 2, 4 

fp32, fp64 (floating point) 4, 8 

Rawdatarawdata, plaintext 

(first 2 bytes indicates the 

length) 

minimum 2 and 

maximum 2 + 216 

(65537) 

 

Fig. 2Fig. 2 shows an example of a message 

definition that could be used to communicate the 

motor state of a pseudo-vehicle. The message has an 

Id, a name, and some fields. The only thing we must 

attend is that the message Id must be unique to all the 

components using Neptus messaging. 

 



 

     

<message id="3" name="Motor" abbrev="Motor"> 
 <field name="Identification Number" abbrev="id"   
  type="uint8_t" /> 
 <field name="Pulse Width Modulation" abbrev="pwm"  

  type="fp64_t" unit="%"/> 

 <field name="Tension" abbrev="u" type="fp32_t" unit="V"/> 
 <field name="Current" abbrev="i" type="fp64_t" unit="A"/> 

 <field name="Rotations per minute" abbrev="rpm"  

  type="fp32_t" unit="rpm"/> 
 <field name="Temperature" abbrev="temp" type="fp32_t"  

  unit="ºC"/> 

 <field name="State" abbrev="state" type="uint8_t"/> 

</message> 

Fig. 2. Message example 

 

The messaging platform that is used is Seaware 

(Marques et al., 2006), which provides communica-

tion between Neptus and vehicles in the networked 

environment. Seaware is a  publish/subscribe based 

middleware, which serves IP-based Wi-Fi/Ethernet or 

underwater acoustic modem communication setups. 

 

The publish/subscribe mechanism allows dynamic 

pairing of peers in the network according to named 

message types, known as topics. Within Neptus, each 

vehicle console defines a set of published topics and 

another of subscribed topics corresponding to the 

various message exchanges for control of one or more 

vehicles. 

 

For IP-based communications, integrating new 

components in the run-time network environment is 

transparent; Seaware provides that support through a 

Real-Time Publish-Subscribe (RTPS) protocol back-

end, with built-in support for dynamic coupling of 

peers addressed by topic. It is possible to have distinct 

Neptus instances interfacing with the same vehicle, 

with possible generalization to many-to-many 

(consoles/vehicles) communication.   

 

 

 5. CONFIGURABLE CONSOLES 


With the increased variety of vehicles, and its sensors, 

to be monitored and controlled, it became obvious the 

necessity to create one application where it would be 

possible to build and configure consoles. To achieve 

this goal, the communications process had to be 

reformulated and one an event communication 

system, internal to Neptus, was demandingrequired. 

 

The internal Neptus event communication system is 

based on a tree structure, where nodes indicate the 

subject of data values that are in the  leafs (Fig. 3Fig. 

3). Neptus visual components can become listeners of 

a single variable (tree leaf) or a defined variable 

domain (tree branch). Whenever a message arrives 

from Seaware,  its data is stored into the tree at the 

right branch according to the XML definition of that 

message. In tThis way, all visual components 

listeners are informed of incoming network 

middleware data.  In a similar way, output data (like 

joystick) is sent to middleware by Neptus console 

components through the variable tree.  Even between 

Neptus local components can be applied event 

communications using Tthe variable tree system can 

also be used for event communication between 

Neptus local components.. 

 

WithHaving an inter-component communication 

system and several visual components in place, the 

creation of a visual builder application for creatingto 

generate  specialized consoles ,i was the next logic 

natural step.  

 

 

 

There are two important state modes in the Neptus 

generic console builder application: Editing mode, 

and Operational mode. In editing mode, the palette of 

available components (compass panel, renderer panel, 

RPM panel, video panel …) becomes visible, offering 

the user the possibility to add and place components 

freely inside console main panel. To configure and 

connect the panels to the variable tree system, the 

user can alter the component properties using a dialog 

box, in editing mode. When all components are ready, 

correctly placed and connected to the system variable 

tree, the user can change to operational mode where 

the components become fixed in the console and start 

to respond to user interaction (mouse clicks, key 

presses …).  

 

 
Fig. 3. Neptus Variable Tree used to centralize 

information related to one system (Isurus AUV in 

this case) 

 

 

Currently, every vehicle present, or configured, in 

Neptus has its own specialized console; it is so 

mainly for commodity. By opening a mission file in 

Neptus, it is possible to access the matching 

specialized operational consoles. For instance, when a 

mission includes a plan for the vehicle Isurus, it is 

possible to open a TrackerConsole (acoustic tracking 

of the vehicle) or an IsurusConsole (a console that 

receives the Isurus state over Wi-Fi). All these 

consoles are based in the base operational console 

that receives all network data and presents using a 

R2D and R3D components. The base console builder 

is able to respond to a variety of operational 

scenarios, even monitor and control several systems 

simultaneously, as shown in Fig. 4Fig. 4.  

 

 



 

     

 
Fig. 4. Possible operation scenarios allowed by 

Neptus Console Builder 

 

The architecture behind the configurable consoles is 

simple to use, not only for final users but also for 

developers. Neptus, as an application framework, can 

be used to create new visual components (besides the 

large amount of existing ones) to be added in 

operational consoles. New visual components must be 

able to implement some important interfaces, defined 

by Neptus. Besides variable tree communication 

interfaces there are other important interfaces to be 

considered. For instance, the visual components can 

be extended for scripting, which uses the variable tree 

repository information, by endowing a specific 

interface with scripting support. With this scripting 

interface, components can run JavaScript code that 

accesses the variable tree system. The script will run 

whenever some variable of the tree system it uses is 

updated. The “component developer” only has to 

process the script’s return value and message.  This 

kind of capabilities, easy to implement using Neptus 

framework, makes visual components extremely 

configurable to the final user.  

 

Alarms, in  Neptus base console builder, its are 

another subject topic that requires some special 

attention to simplify components implementation and 

final user usability. In summary, alarms work as a 

tree graph where the root node is the console itself. 

The alarms, messages and sates, generated by any 

alarm, travel the alarm graph structure with destiny to 

the root (console), being displayed in the state bar 

LED and error messages window (Fig. 5Fig. 5). 

 

 
Fig. 5. ROVV-  KOS Console and the represented 

alarm graph. 

 

All the alarm nodes automatically set their state by 

maximizing the levels of their children recursively. 

As a result, the root console alarm LED shows the 

major error occurred in some component (Fig. 6Fig. 

6). The user can find the origin of alarm error by 

opening the alarms window and following the visual 

components that indicated failure.  

Conjugating By conjugating alarm and scripting 

interfaces we have a complete, flexible and organized 

way to treat malfunctions at mission execution time.  

Neptus Console Builder demonstrates to be complete 

enough for responding to the needs of existing 

systems in USTL and its abstract base architecture is 

prepared to be reused in consoles for other types of 

systems (vehicles).  

 

 

 
Fig. 6. One Console Alarm graph example with an 

RPM error message path 

 

 

6. SYSTEM VALIDATION 


The development of Neptus is being closely followed 

by real world tests. They were the drivinge force for 

the startup of the first Neptus prototype and continue 

to validate the recent developments. There were 

several tests made during the development of this 

framework but let us focus on several that serve as 

validation tests. 

 

The first vehicle that used Neptus was the ROV-IES 

(Fig. 7Fig. 7). Here was the first debut of Neptus in 

which it was possible to draw a map, plan a mission 



 

     

visually, generate the mission file and see its 

execution. The results were very encouraging because 

it passed the real-time test of real-time following of a 

mission and contributedreduce significantly to the 

reduction of the mission errors in the mission. The 

mission was the inspection of an underwater pipeline 

in Douro River in POporto. Because the water is not 

always very clear, a good visual aid is very important 

because ofdue to the lack of visual landmarks. 

 

The first tests in generation of mission files through 

XSLT were very good but the real test came with the 

Isurus AUV (Fig. 7Fig. 7). Here, because the mission 

file is a text file very closely resembling REMUS 

mission files, errors are very likely to happen, 

especially on site changes. With the visual maps and 

visual aids in the planning of mission, the errors are 

were reduced  to almost to zero. The tests were made 

in a Portuguese Nautical Center in Montemor-O-

Velho near Coimbra. There, the tests were so good 

that in fact planners stop editing mission files by hand 

at all. One Another improvement was the tracker 

console which allowed tracking the vehicle’s 

movement in order to see if the plan is being followed 

without errors. 

 

Then, we had the test of tests in the Portuguese Navy 

and NATO Exercise Swordfish in May 2006. We 

have simultaneously demonstrated Neptus, Isurus 

AUV, Roaz ASV (Fig. 7Fig. 7) and Wireless Sensor 

Networks, with data being collected and distributed to 

the various consoles and, at the same time, publishing 

live data to the Internet. Overall, the  results were 

very positive. 

 

 
Fig. 7. Isurus (top right), ROV-IES (top left) and 

Roaz vehicles 

 

 

7. CONCLUSIONS AND FUTURE WORK  


The Neptus framework has given various proofs of its 

practical utility and extensibility in the past. The 

modularity of its various components has greatly 

contributed for the success of this software 

infrastructure. The task of creating new specialized 

applications by simple reutilization of existing 

components is very appreciated by all developers. 

 

The communications infrastructure that Neptus uses 

has also given proofs for its extensibility. Currently 

Neptus is being used to plan and control conjoint 

operations of ROVs, AUVs, ASVs, UAVs and 

WSNs. Despite these systems having different 

operating systems (QNX, Linux, TinyOS) and 

different communication means (Wi-Fi, wired 

Ethernet, acoustic modems, ZigBee …) all these 

systems, they can  all be connected to Neptus ant their 

data is transparently shared across the connected 

consoles. 

 

The possibility to define an abstract mission and then 

translate thea resulting XML by using XSLT is also a 

much appreciated feature because, without touching 

the Neptus code, support for different vehicles can be 

added. In the same manner, the ability to define 

operating consoles visually is of extreme importance 

to anyone trying to use Neptus to interact with a 

different vehicle in a possibly different operational 

scenario. 

 

Currently, Neptus lacks the possibility to define 

logical conditions for the plans’ state transitions. This 

functionality will be added, allowing operators to 

define transitions based on the environmental 

conditions (variablesdata existent available in the 

network). This will add extra flexibility like, for 

instance, the possibility to execute a maneuver only 

when a vehicle is nearby or when a sensor network 

reports a certain average value. 

A simulation service is also being developed to 

support operator training and validation of mission 

specifications. Currently, the only supported vehicle 

is one of our ROVs (ROV-IES) but this service will 

be developed in the same fashion as Neptus, allowing 

the simple inclusion of different vehicles. 

 

In the future, the data flowing in the network will also 

be logged to a central database. This database can 

then be accessed by the MRA application for mission 

revision or through a web page that displayings the 

data being gathered by any vehicle using Neptus in 

some anywhere place ofin the world. 
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