





NEPTUS – A FRAMEWORK TO SUPPORT A MISSION LIFE CYCLE




José Pinto, Paulo Sousa Dias, Rui Gonçalves, E. Marques,

Gil M. Gonçalves, João Borges Sousa, F. Lobo Pereira

{zepinto,pdias,rjpg,edrdo,gil,jtasso,flp}@fe.up.pt




LSTS – Underwater Systems and Technology Laboratory

Faculdade de Engenharia da Universidade do Porto

Rua Dr. Roberto Frias s/n

4200-465 Porto, Portugal








Abstract: This paper presents the mixed initiative infrastructure that is being developed

and used at the Underwater Systems and Technology Laboratory to plan and control

missions of cooperating teams of heterogeneous vehicles. The system is composed by

various modular components that can be adapted to serve different mission objectives and

various forms of operation. This paper also documents how the system has been validated

in various test missions that were executed exclusively with this software infrastructure.

The system is now evolving to support new mission concepts and added requisites like

simulation services and live data publication techniques. Copyright © 2006 IFAC


Keywords: Command and Control Systems, Systems Engineering, Communication

Networks, Autonomous vehicles.










1. INTRODUCTION


Various ongoing projects at Underwater Systems and

Technology Laboratory (USTL) deal with different

types of autonomous and semi-autonomous vehicles.

Our final objective is the creation of a networked

system of vehicles, sensors and human operators that

cooperate with one another by planning sequences of

actions that allow them to achieve one or various

shared goals (Sousa et al., 2003).

We are currently working with two autonomous

underwater vehicles (AUV), two remotely operated

vehicles (ROV) and a wireless sensor networks

(WSN) technologysystem. Our collaboration with

other institutions, like LSA1 and the Portuguese Air

Force, also adds autonomous surface vehicles (ASV)

and unmanned air vehicles (UAV) to this list.

Using The use of different kinds of vehicles,

belonging to different institutions, certainly leads to

various communication protocols, different

specialized human operators and multiple integration

problems.

1 Autonomous Systems Laboratory, Porto’s

Engineering Institute (IPP, ISEP)

Having In order to deal with this problem, s in hands,

USTL researchers are developing (and testing in real-

world missions) a software infrastructure that

abstracts concepts like vehicles, consoles, operators,

plans, missions and communication protocols in a

way that allows the rapid definition of abstract

missions which can be executed by the various USTL

and non-USTL vehicles. The system is composed by

the Neptus framework (Dias et al., 2005; Neptus,

2006) and the Seaware publish/subscribe

communication layer (Marques et al., 2006).

The Neptus framework is made up ofcomprises

various software modules like an environmental map

editor, a mission planner (plan editor), configurable

operator consoles (composed by various visual

components), 2D and 3D world state viewers, inter-

component communications and mission revision.

TUsed together, these modules allow theenable the

definition of abstract missions by planning individual

vehicle plans and by specifying environmental maps

(Dias et al., 2006a, b). The abstract missions are

translated into the vehicles’ native languages using a

translation service based on eXtensible Stylesheet

Language Transformations (XSLT) technology.

While a vehicle is executing one of the generated

missions, its actions can be monitored and/or

controlled by multiple operator consoles

simultaneously using the Seaware communication

layer.

The Seaware communication layer is a pub-

lish/subscribe system that is used to communicate

transparently to any node that is registered in the

network. Nodes can either be vehicles that publish

sensorial data and receive operator commands or

consoles that subscribe the vehicles’ data while

publishing operator commands.

Since the system is being developed to support real-

world missions it has been thoroughly tested not only

in its feasibility but also in its efficiency and

interoperability. Without such system, various past

missions certainly wouldn’t have been feasible.

This paper is organized as follows. In section two,

related projects are evaluated for its relevance with

our system and their solution to similar problems. On

section three, the overall system architecture is

presented along with various possible operational

scenarios. The communications infrastructure is

documented in section four and the possibility to

easily define new operational consoles is explained in

section five. In section six, we show the results of

various test missions that were executed using this

infrastructure exclusively. Finally, ion section seven,

we present some conclusions and possible future

developments.



2. RELATED WORK


Typically, software applications that support robotic

vehicles operations take the form of operational

consoles. There are several examples of this type of

applications, being one example the Remus AUV

(Hydroid Inc. 2006) console. This console is able to

display vehicle trajectories and provides the ability of

defining new missions, but no support is given in

communications with other devices or vehicles.

NPS AUV Workbench (Lee 2004), from Naval

Postgraduate School, is capable of managing various

vehicles in a cooperative manner. All mission

visualization and definition is ensured by 2D and 3D

(VRML) visualizations which can be monitored in a

standard web browser. With this system it is very

easy to replay missions or to do mission rehearsals.

Although AUV workbench was designed for use with

multiple vehicles it does not allow cooperative

missions using hybrid systems concepts. On-going

projects at USTL require vehicle interactions in the

context of hybrid systems (Dias et al., 2006a). The

main target is to design a framework that allows

cooperative mission planning and visualization.

Another project that is trying to create a

communications infrastructure for robotic operations

is PLAYER (Gerkey et al., 2001). This project

provides a server where relaying all data from

existing systems (robots, operators, sensing devices

…), thus enabling is relayed . The objective is to

share the entire world state to be shared among the

existing systems. Some systems send data as

publishers and others (subscribers) get notifications of

topic updates. STAGE is being developed in parallel

to provide means for visualization of the entire world

state.




3. SYSTEM OVERVIEW


The Neptus Framework is composed by various

existing applications and modular software

components that can be merged by developers to

rapidly build new Neptus applications.

Some of the most relevant modules are the Map

Editor, Mission Planner, Mission Processor,

Configurable Console(s), Variable Tree, Renderer2D,

Renderer3D and various other Visual Components.

For inter-console and vehicle communication, the

Seaware publish/subscribe system is used.

FollowingNext, the roles of various Neptus modules

are explained, how they are (re)used across different

applications and how these applications can be

applied for planning and monitoring real-world

missions.

The Mission Map Editor (MME) component is a GIS-

like application that allows the creation of three

dimensional environmental maps, storing these maps

as an XML file. One or more of these maps can later

be included in an abstract mission, helping

considerably in the planning and execution phases.

Additionally, the environmental maps are might be

sent to vehicles when they know are ablehow to

handle this type of information.

The Mission Planner (MP) module is a toptop-level

application that can be used to define the various

components of a mission that is to be executed by one

or more vehicles in the future.

The result of using the MP application is a XML file

that holds an abstract definition of the mission plan. A

mission plan is composed by environmental maps

(links to other XML files), individual plans (a graph

with nodes representing maneuvers and transition

conditions between them) and additional data like

local information and checklists of required material

or initial tests.

The Mission Processor (MProc) module knows how

to translate mission files (XML) to the different

supported vehicles’ native formats. This module can

though thus be used to generate a vehicle-specific

mission file which is then sent to the vehicle for

execution.

After a vehicle starts executing a mission, its state can

be monitored by using a generic console that shows

all information that flows on the network or a specific

console that matches the type of vehicle or mission.

Specialized consoles can be defined by using the

Configurable Console (CC) module. This module is

composed by an empty window that serves as a

canvas for adding various visual components. The

visual components can be connected to a specific

variable that may might be available on the network

like the vehicle’s orientation, vehicle’s and position,

motor RPMs, etc. At the end, a XML file with all the

performed configurations is saved, allowing future

reuse.

A Variable Tree (VT) module exists in every console

to store the incoming network data and provide a

generic access to these values. This module stores the

variables in a tree structure, triggering events in every

affected branch whenever a value is updated. This

simple scheme allows the easy definition of system

alerts by defining scripts that run whenever a variable

or a variable domain is updated.

To visualize the entire world state, Renderer

components are connected to the VT module.

Currently, there exists a two dimensional (R2D) and a

three dimensional renderer (R3D) that can be used

simultaneously. The later is extremely useful in ROV

operations when inspecting underwater structures but,

on the other hand, the R2D module is also useful for

missions that take place over a large area.

Additionally, R2D is used also for map edition,

allowing the user to interact with the existing objects

(images, geometries, paths, marks …).

After executing a mission, the received data can be

later revised by using the Mission Review and

Analysis (MRA) application. This application can

replay the vehicle’s actions and display various

graphical representations of the sensors data.

An overview of a possible operation scenario, where

multiple consoles interact with more than one vehicle

using the same communication infrastructure is

represented in Fig. 1Fig. 1.

Fig. 1. Possible operational scenario

4. COMMUNICATION INFRASTRUCTURE


To facilitate the integration of this system in several

classes of vehicles, though thus minimizing the

problems of proprietary formats, we adopted XML

for most of the stored information. There areOne of

the several advantages of this optionin its us eis like

the possibility to define a grammar for validating

every loaded file. Once we have a grammar , we can

also say tospecify potential users the exact file format

we are expecting from potential users. XML can also

be filtered and transformed into different formats like

text, HTML or any kind of mission format of some

existing vehicle.

This is exactly what we do for each vehicle that

isconsidered added in Neptus. When we add a

vehicle, we must provide the list of its feasible

maneuvers that it is capable of doing (in an XML

format), and, in addition, a XSLT stylesheet giving

the transformation rules from the XML to the

vehicle’s mission language.

XML serves as the base for all data transfers, storage

and manipulation in Neptus. We also use XML to

define the messaging between Neptus components

and external ones. There is a base set already defined,

but the extension of this set is very easy.

To addIn order to include a new type of messages to

in Neptus all that haswhat needs to be done is the

addition ofto add some a few lines to a XML file.

That file has constains the definition of all messages

that will be able to be read by Neptus. We have a

fixed message header and the body can be composed

by several fields from the set of several provided

types (Table 1Table 1).

Table 1 Native types

Type Length (in bytes)

int8, int16, int32 (all signed) 1, 2, 4

uint8, uint16, uint32 (all

unsigned)

1, 2, 4

fp32, fp64 (floating point) 4, 8

Rawdatarawdata, plaintext

(first 2 bytes indicates the

length)

minimum 2 and

maximum 2 + 216

(65537)

Fig. 2Fig. 2 shows an example of a message

definition that could be used to communicate the

motor state of a pseudo-vehicle. The message has an

Id, a name, and some fields. The only thing we must

attend is that the message Id must be unique to all the

components using Neptus messaging.

<message id="3" name="Motor" abbrev="Motor">
 <field name="Identification Number" abbrev="id"
 type="uint8_t" />
 <field name="Pulse Width Modulation" abbrev="pwm"

 type="fp64_t" unit="%"/>

 <field name="Tension" abbrev="u" type="fp32_t" unit="V"/>
 <field name="Current" abbrev="i" type="fp64_t" unit="A"/>

 <field name="Rotations per minute" abbrev="rpm"

 type="fp32_t" unit="rpm"/>
 <field name="Temperature" abbrev="temp" type="fp32_t"

 unit="ºC"/>

 <field name="State" abbrev="state" type="uint8_t"/>

</message>

Fig. 2. Message example

The messaging platform that is used is Seaware

(Marques et al., 2006), which provides communica-

tion between Neptus and vehicles in the networked

environment. Seaware is a publish/subscribe based

middleware, which serves IP-based Wi-Fi/Ethernet or

underwater acoustic modem communication setups.

The publish/subscribe mechanism allows dynamic

pairing of peers in the network according to named

message types, known as topics. Within Neptus, each

vehicle console defines a set of published topics and

another of subscribed topics corresponding to the

various message exchanges for control of one or more

vehicles.

For IP-based communications, integrating new

components in the run-time network environment is

transparent; Seaware provides that support through a

Real-Time Publish-Subscribe (RTPS) protocol back-

end, with built-in support for dynamic coupling of

peers addressed by topic. It is possible to have distinct

Neptus instances interfacing with the same vehicle,

with possible generalization to many-to-many

(consoles/vehicles) communication.

 5. CONFIGURABLE CONSOLES


With the increased variety of vehicles, and its sensors,

to be monitored and controlled, it became obvious the

necessity to create one application where it would be

possible to build and configure consoles. To achieve

this goal, the communications process had to be

reformulated and one an event communication

system, internal to Neptus, was demandingrequired.

The internal Neptus event communication system is

based on a tree structure, where nodes indicate the

subject of data values that are in the leafs (Fig. 3Fig.

3). Neptus visual components can become listeners of

a single variable (tree leaf) or a defined variable

domain (tree branch). Whenever a message arrives

from Seaware, its data is stored into the tree at the

right branch according to the XML definition of that

message. In tThis way, all visual components

listeners are informed of incoming network

middleware data. In a similar way, output data (like

joystick) is sent to middleware by Neptus console

components through the variable tree. Even between

Neptus local components can be applied event

communications using Tthe variable tree system can

also be used for event communication between

Neptus local components..

WithHaving an inter-component communication

system and several visual components in place, the

creation of a visual builder application for creatingto

generate specialized consoles ,i was the next logic

natural step.

There are two important state modes in the Neptus

generic console builder application: Editing mode,

and Operational mode. In editing mode, the palette of

available components (compass panel, renderer panel,

RPM panel, video panel …) becomes visible, offering

the user the possibility to add and place components

freely inside console main panel. To configure and

connect the panels to the variable tree system, the

user can alter the component properties using a dialog

box, in editing mode. When all components are ready,

correctly placed and connected to the system variable

tree, the user can change to operational mode where

the components become fixed in the console and start

to respond to user interaction (mouse clicks, key

presses …).

Fig. 3. Neptus Variable Tree used to centralize

information related to one system (Isurus AUV in

this case)

Currently, every vehicle present, or configured, in

Neptus has its own specialized console; it is so

mainly for commodity. By opening a mission file in

Neptus, it is possible to access the matching

specialized operational consoles. For instance, when a

mission includes a plan for the vehicle Isurus, it is

possible to open a TrackerConsole (acoustic tracking

of the vehicle) or an IsurusConsole (a console that

receives the Isurus state over Wi-Fi). All these

consoles are based in the base operational console

that receives all network data and presents using a

R2D and R3D components. The base console builder

is able to respond to a variety of operational

scenarios, even monitor and control several systems

simultaneously, as shown in Fig. 4Fig. 4.

Fig. 4. Possible operation scenarios allowed by

Neptus Console Builder

The architecture behind the configurable consoles is

simple to use, not only for final users but also for

developers. Neptus, as an application framework, can

be used to create new visual components (besides the

large amount of existing ones) to be added in

operational consoles. New visual components must be

able to implement some important interfaces, defined

by Neptus. Besides variable tree communication

interfaces there are other important interfaces to be

considered. For instance, the visual components can

be extended for scripting, which uses the variable tree

repository information, by endowing a specific

interface with scripting support. With this scripting

interface, components can run JavaScript code that

accesses the variable tree system. The script will run

whenever some variable of the tree system it uses is

updated. The “component developer” only has to

process the script’s return value and message. This

kind of capabilities, easy to implement using Neptus

framework, makes visual components extremely

configurable to the final user.

Alarms, in Neptus base console builder, its are

another subject topic that requires some special

attention to simplify components implementation and

final user usability. In summary, alarms work as a

tree graph where the root node is the console itself.

The alarms, messages and sates, generated by any

alarm, travel the alarm graph structure with destiny to

the root (console), being displayed in the state bar

LED and error messages window (Fig. 5Fig. 5).

Fig. 5. ROVV- KOS Console and the represented

alarm graph.

All the alarm nodes automatically set their state by

maximizing the levels of their children recursively.

As a result, the root console alarm LED shows the

major error occurred in some component (Fig. 6Fig.

6). The user can find the origin of alarm error by

opening the alarms window and following the visual

components that indicated failure.

Conjugating By conjugating alarm and scripting

interfaces we have a complete, flexible and organized

way to treat malfunctions at mission execution time.

Neptus Console Builder demonstrates to be complete

enough for responding to the needs of existing

systems in USTL and its abstract base architecture is

prepared to be reused in consoles for other types of

systems (vehicles).

Fig. 6. One Console Alarm graph example with an

RPM error message path

6. SYSTEM VALIDATION


The development of Neptus is being closely followed

by real world tests. They were the drivinge force for

the startup of the first Neptus prototype and continue

to validate the recent developments. There were

several tests made during the development of this

framework but let us focus on several that serve as

validation tests.

The first vehicle that used Neptus was the ROV-IES

(Fig. 7Fig. 7). Here was the first debut of Neptus in

which it was possible to draw a map, plan a mission

visually, generate the mission file and see its

execution. The results were very encouraging because

it passed the real-time test of real-time following of a

mission and contributedreduce significantly to the

reduction of the mission errors in the mission. The

mission was the inspection of an underwater pipeline

in Douro River in POporto. Because the water is not

always very clear, a good visual aid is very important

because ofdue to the lack of visual landmarks.

The first tests in generation of mission files through

XSLT were very good but the real test came with the

Isurus AUV (Fig. 7Fig. 7). Here, because the mission

file is a text file very closely resembling REMUS

mission files, errors are very likely to happen,

especially on site changes. With the visual maps and

visual aids in the planning of mission, the errors are

were reduced to almost to zero. The tests were made

in a Portuguese Nautical Center in Montemor-O-

Velho near Coimbra. There, the tests were so good

that in fact planners stop editing mission files by hand

at all. One Another improvement was the tracker

console which allowed tracking the vehicle’s

movement in order to see if the plan is being followed

without errors.

Then, we had the test of tests in the Portuguese Navy

and NATO Exercise Swordfish in May 2006. We

have simultaneously demonstrated Neptus, Isurus

AUV, Roaz ASV (Fig. 7Fig. 7) and Wireless Sensor

Networks, with data being collected and distributed to

the various consoles and, at the same time, publishing

live data to the Internet. Overall, the results were

very positive.

Fig. 7. Isurus (top right), ROV-IES (top left) and

Roaz vehicles

7. CONCLUSIONS AND FUTURE WORK


The Neptus framework has given various proofs of its

practical utility and extensibility in the past. The

modularity of its various components has greatly

contributed for the success of this software

infrastructure. The task of creating new specialized

applications by simple reutilization of existing

components is very appreciated by all developers.

The communications infrastructure that Neptus uses

has also given proofs for its extensibility. Currently

Neptus is being used to plan and control conjoint

operations of ROVs, AUVs, ASVs, UAVs and

WSNs. Despite these systems having different

operating systems (QNX, Linux, TinyOS) and

different communication means (Wi-Fi, wired

Ethernet, acoustic modems, ZigBee …) all these

systems, they can all be connected to Neptus ant their

data is transparently shared across the connected

consoles.

The possibility to define an abstract mission and then

translate thea resulting XML by using XSLT is also a

much appreciated feature because, without touching

the Neptus code, support for different vehicles can be

added. In the same manner, the ability to define

operating consoles visually is of extreme importance

to anyone trying to use Neptus to interact with a

different vehicle in a possibly different operational

scenario.

Currently, Neptus lacks the possibility to define

logical conditions for the plans’ state transitions. This

functionality will be added, allowing operators to

define transitions based on the environmental

conditions (variablesdata existent available in the

network). This will add extra flexibility like, for

instance, the possibility to execute a maneuver only

when a vehicle is nearby or when a sensor network

reports a certain average value.

A simulation service is also being developed to

support operator training and validation of mission

specifications. Currently, the only supported vehicle

is one of our ROVs (ROV-IES) but this service will

be developed in the same fashion as Neptus, allowing

the simple inclusion of different vehicles.

In the future, the data flowing in the network will also

be logged to a central database. This database can

then be accessed by the MRA application for mission

revision or through a web page that displayings the

data being gathered by any vehicle using Neptus in

some anywhere place ofin the world.

ACKNOWLEDGMENTS

This research has been partly supported by AdI

(Agência de Inovação) under projects PISCIS and

KOS. Paulo Sousa Dias would like to thank the

financial support of FCT (Fundação para a Ciência e

Tecnologia) in his work.


REFERENCES


Dias, Paulo Sousa, R. Gomes, J. Pinto, , S. L. Fraga,

G. M. Gonçalves, J. B. Sousa and F. Lobo

Pereira (2005), Neptus – A framework to support

multiple vehicle operation. In: Today's

technology for a sustainable future, OCEANS

Europe 2005, Brest, France, June 20-23.

Dias, Paulo Sousa, R. Gomes, J. Pinto, G. M.

Gonçalves, J. B. Sousa and F. Lobo Pereira

(2006a), Mission Planning and Specification in

the Neptus Framework. In: Humanitarian

Robotics, ICRA 2006 IEEE International

Conference on Robotics and Automation,

Orlando, Florida, USA, May 15-19.

Dias, Paulo Sousa, J. Pinto, G. M. Gonçalves, R.

Gonçalves, J. B. Sousa and F. Lobo Pereira

(2006b), Mission Review and Analysis. In:

Fusion 2006 The 9th International Conference on

Information Fusion, Florence, Italy, July 10-13.

Gerkey, B. P., R. T. Vaughan, K. Støy, A. Howard,

G.S. Sukhatme, R. J. Matarić (2001). Most

Valuable Player: A Robot Device Server for

Distributed Control. In Proceedings of the

Second International Workshop on Infrastructure

for Agent, MAS and scalable MAS, Montreal,

Canada, May 29

Hydroid Inc., <http://www.hydroidinc.com/> (Jul,

2006)

Marques, E.R.B., G.M. Gonçalves and J.B. Sousa

(2006). Seaware: a publish/subscribe middleware

for networked vehicle systems. To appear in: 7th

Conference on Manoeuvring and Control of

Marine Craft (MCMC’2006), Lisbon, Portugal,

from September 20-22.

Neptus, <http://whale.fe.up.pt/neptus> (Jul, 2006)

Lee, C. S. (2004), NPS AUV Workbench:

Collaborative Environment for Autonomous

Underwater Vehicles (AUV) Mission Planning

and 3D Visualization. MSc Thesis, Naval

Postgraduate School, Monterey, U.S.A., March

2004

Sousa, J. B., F. Lobo Pereira, P. F. Souto, L.

Madureira and E. P. Silva (2003). Distributed

sensor and vehicle networked systems for

environmental applications. In Biologi Italiani, n.

8, pp 57-60

