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Abstract: In this paper we view a classical periodic state space system as
a behavioral system and compare the property of state-reconstructibility with
behavioral reconstructibility. It turns out that, like it happens for the time-
invariant case, the behavioral reconstructibility of a periodic state space system is
equivalent to its complete state-reconstructibility.
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1. INTRODUCTION

The behavioral approach to dynamical systems,
introduced by Jan C. Willems in the eighties
(Willems, 1989; Willems, 1991), views a system es-
sentially as a set of admissible trajectories, known
as the system behavior, where no distinction is
made a priori between input and output variables.
Similar to what happens for “classical” systems,
such as, for instance, state space systems, sev-
eral structural properties have been defined and
characterized for behaviors. Of particular interest
among them are the properties of observability
and reconstructibility (Willems, 1989; Willems,
1991; Polderman and Willems, 1998; Valcher and
Willems, 1999b; Valcher and Willems, 1999a).

If the system variable w is partitioned into two
sub-variables w1 and w2, the fact that one of
them, say, w2, is observable from the other one
(w1) corresponds to the possibility of obtain-
ing full information on w2 from the knowledge

of w1. According to the definitions given in
(Willems, 1989; Willems, 1991; Polderman and
Willems, 1998), for linear time-invariant systems
this amounts to say that whenever the whole tra-
jectory w1 is null, the same happens for the whole
trajectory w2.

On the other hand, the property of recon-
structibility corresponds, roughly speaking, to the
possibility of recovering some of the system var-
iables from the other ones, but with some delay.
More concretely, according to the definition given
in (Valcher and Willems, 1999a) for linear time-
invariant systems over the nonnegative discrete
time-axis, w2 is said to be reconstructible from
w1 if whenever the trajectory w1 is null, i.e.,
w1 (k) = 0, k ≥ 0, w2 becomes null after some
finite time δ, i.e. , w2 (k) = 0, k ≥ δ.

In (Aleixo and Rocha, 2007; Aleixo, 2008), the
notion of reconstructibility was extended for linear
time-invariant systems over Z, allowing to con-



clude that a time-invariant state space system is
completely state-reconstructible, in the classical
sense, (Urbano, 1987), if and only if it is recon-
structible in the behavioral sense.

The aim of this paper is to investigate whether
this result has, or not, extension for the case of
periodic systems.

2. BACKGROUND

2.1 Behavioral P -periodic systems

In the behavioral framework a dynamical system
Σ is defined as a triple Σ=(T, W,B), with T⊆R

as the time set, W as the signal space and B⊆W
T

as the behavior. Here we focus on the discrete-
time case, that is, T = Z, assuming furthermore
that our signal space is W=R

q with q ∈ N.

Let the λ-shift

σλ : (Rq)
Z
→ (Rq)

Z
,

be defined by
(
σλw

)
(k) :=w (k+λ).

Whereas the behavior of a time-invariant system
is characterized by its invariance under the time
shift, that is,

σB=B,

periodic behaviors, with period P , are character-
ized by their invariance with respect to the P -shift
(P ∈ N), as stated in the next definition.

Definition 1. (Kuijper and Willems, 1997) A sys-
tem Σ is said to be P -periodic (with P ∈ N) if its
behavior B satisfies σP

B=B.

According to (Kuijper and Willems, 1997), a be-
havior B is a σP -invariant linear closed subspace
of (Rq)

Z
(in the topology of point-wise conver-

gence) if and only if it has a representation of the
type
(
Rt

(
σ, σ−1

)
w

)
(Pk+t)=0, t=0, . . . , P−1, (1)

k∈Z,

where Rt ∈ R
gt×q

[
ξ, ξ−1

]
is the Laurent poly-

nomial matrix at instant t in the indeterminate
ξ. Remark that the Laurent-polynomial matrices
Rt need not have the same number of rows (in
fact we could even have some gt equal to zero,
meaning that the corresponding matrix Rt would
be void and no restrictions were imposed at the
time instants Pk+ t). Note that (1) can also be
written as

(
R

(
σ, σ−1

)
w

)
(Pk)=0, k ∈ Z, (2)

where

R
(
ξ, ξ−1

)
:=








R0

(
ξ, ξ−1

)

ξR1

(
ξ, ξ−1

)

...

ξP−1RP−1

(
ξ, ξ−1

)







∈R

g×q
[
ξ, ξ−1

]
,

with g :=
∑P−1

t=0 gt. Analogously to the time-
invariant case, although with some abuse of lan-
guage, we refer to (2) as a P -periodic kernel rep-
resentation (P -PKR).

In order to study the desired property of recon-
structibility, we shall consider that the system
variable w is partitioned as (w1, w2), where w1

is the observed variable and w2 is the variable
about which information is sought. In this case,
the corresponding behavior description (2) will be
written as

(
R2

(
σ, σ−1

)
w2

)
(Pk)

=
(
R1

(
σ, σ−1

)
w1

)
(Pk) , k∈Z, (3)

where Ri ∈ R
g×qi

[
ξ, ξ−1

]
, g :=

∑P−1
t=0 gt, i =

1, 2, i.e., are obtained by means of a suitable
partition (and, if necessary, rearrangement) of the
columns of R. We will denote representation (3)
by (R2, R1).

By decomposing matrices R2 and R1 as, see
(Aleixo et al., 2006),

Ri

(
ξ, ξ−1

)
=RL

i

(
ξP , ξ−P

)
ΩP,qi

(ξ) , i=1, 2,

we may write down relation (3) as
(
RL

2

(
σP , σ−P

)
ΩP,q2

(σ)w2

)
(Pk)

=
(
RL

1

(
σP , σ−P

)
ΩP,q1

(σ)w1

)
(Pk) , k∈Z. (4)

Defining the lifted trajectories

(Lwi) (k)=






wi (Pk)
...

wi (Pk + P − 1)




 , i=1, 2,

see (Kuijper and Willems, 1997; Aleixo et al.,
2005), and noting that LσP = σL, (4) may be
written as

(
RL

2

(
σ, σ−1

)
(Lw2)

)
(k)

=
(
RL

1

(
σ, σ−1

)
(Lw1)

)
(k) , k∈Z. (5)

Thus the time-invariant behavior LB, defined
by {Lw, w∈B} and known as lifted behavior, is
equal to the set of trajectories
{

(Lw1, Lw2)∈
(
R

Pq1

)Z

×
(
R

Pq2

)Z

| (5) holds
}

.

In (Aleixo, 2008) several results are obtained con-
cerning the characterization of the behavioral re-
constructibility of B based on the reconstructibil-
ity of LB. Results concerning the property of be-
havioral reconstructibility for the time-invariant
case can be found in (Aleixo and Rocha, 2007;
Aleixo, 2008).

In order to investigate the connection between
behavioral and state-reconstructibility in the pe-
riodic case, we first formalize the definition of
behavioral reconstructibility.



Definition 2. (Behavioral reconstructibility) Let

B ⊂ (Rq)
Z
' (Rq1×R

q2)
Z

be a behavior whose
system variable w is partitioned as w = (w1, w2).
Given δ ≥ 0, we say that w2 is δ-reconstructible
from w1 if
{

w1

∣
∣
∣
[k0,+∞)

≡0

}

⇒

{

w2

∣
∣
∣
[k0+δ,+∞)

≡0

}

, ∀k0∈Z.

Moreover, w2 is said to be reconstructible from w1

if it is δ-reconstructible from w1 for some δ ≥ 0.

From here on, whenever in a dynamical system,
w2 is reconstructible from w1, we simply say that
B is reconstructible w.r.t. w2.

The relationship between the reconstructibility of
a periodic behavior and of its lifted version is given
by the following result.

Theorem 3. (Aleixo, 2008) Let Σ=(Z,Rq1×R
q2,B)

be a P -periodic system whose system variable w

is partitioned as w = (w1, w2). Suppose that the
system is described by (3). Then the following are
equivalent:

i) B is reconstructible w.r.t. w2;

ii) LB is reconstructible w.r.t. Lw2;

iii) rankRL
2

(
λ, λ−1

)
=Pq2, ∀λ∈C\{0}.

2.2 Periodic state space systems

The classical state space approach to P -periodic
systems takes as starting point a description of
the form:







(σx) (k)=A (k) x (k) + B (k) u (k)

k∈Z,

y (k)=C (k) x (k) + D (k) u (k)

(6)

where the matrices A(k) ∈ R
n×n, B(k) ∈ R

n×m,
C(k) ∈ R

p×n and D(k) ∈ R
p×m are periodic

functions of k with period P , x is the state
variable and u and y are the input and output,
respectively. To go into further detail we refer the
reader to for instance, (Urbano, 1987; Hernández
and Urbano, 1987; Bittanti and Colaneri, 2000).

The property of state-reconstructibility is there
defined as follows:

Definition 4. (State-reconstructibility).

i) A state x1 ∈ R
n is called unreconstructible

(at time k1) if for all k0 ≤ k1, there exists
x0 = x (k0)∈R

n such that

y (k) = C (k) φA (k, k0) x0 =0, k∈ [k0, k1−1] ,

with x1 = x (k1);

ii) The system (6) is called completely state-
reconstructible at time k1 if the only state
x1 that is unreconstructible is the zero state,
i.e., x1 = 0 ∈ R

n. If this happens for all
k1 ∈ Z, (6) is simply called completely state-
reconstructible.

Here we shall focus on complete state-reconstruc-
tibility for periodic systems.

Since, as will be seen in the sequel, the charac-
terization of this property is based on results for
time-invariant systems, we quickly review some
relevant facts about the state-reconstructibility of
such systems. For this purpose, let (A,B,C,D) be
a time-invariant state space system. Then,

Theorem 5. The following conditions are equiva-
lent:

i) (A,B,C,D) is completely state-reconstructi-
ble;

ii) rank

[

λIn − A

C

]

= n, ∀λ ∈ C\{0};

iii) ker










C

CA

...

CAn−1










⊂ ker An.

In (Urbano, 1987) and (Hernández and Urbano,
1987) an invariant dynamical decomposition as-
sociated with the P -periodic state system de-
scription (6) is introduced allowing an one-to-one
correspondence between a P -periodic state space
system and P time-invariant state space systems.

Definition 6. (Urbano, 1987) Let Σs be the P -
periodic state space system described by (6). The
P time-invariant systems Σt, t = 0, . . . , P−1, are
defined as






(σxt) (k)=Atxt (k) + Btut (k)

k∈Z,

yt (k)=Ctxt (k) + Dtut (k)

where

At := φA (t+P, t) (7)

Ct :=
[

(C (t))
T

(C (t+1) φA (t+1, t))
T

· · · (C (t+P−1) φA (t+P−1, t))
T
]T

(8)

and

φA (k, k0) := A (k−1) A (k−2) · · ·A (k0)

φA (k0, k0) := In,

is the well known state transition matrix for (6).



In (Urbano, 1987) several results are obtained
concerning the characterization of the state-re-
constructibility of Σs based on the state-recon-
structibility of each Σt and known results for the
time-invariant case. In particular, the following
theorem is relevant for our purposes.

Theorem 7. (Urbano, 1987) The P -periodic state
space system Σs is completely state-reconstructi-
ble if and only if all the P time-invariant systems
Σt are completely state-reconstructible.

3. BEHAVIORAL RECONSTRUCTIBILITY
OF PERIODIC STATE SPACE SYSTEMS

In this section we view a periodic state space
system as a periodic behavioral system, study its
reconstructibility in behavioral terms and relate
this property to the classical property of state-
reconstructibility.

Note that the state space description (6) can
be regarded as a particular case of (1). Indeed,

letting w :=
[
uT yT

]T
and v := x, and due to the

periodicity of matrices A (·), B (·), C (·) and D (·),
the state space description (6) can be written as

(
Rt

(
σ, σ−1

)
w

)
(Pk+t)

=
(
Mt

(
σ, σ−1

)
v
)
(Pk+t) , t=0, . . . , P−1, k∈Z,

with

Rt

(
ξ, ξ−1

)
=

[

B (t) 0

−D (t) Ip

]

and

Mt

(
ξ, ξ−1

)
=

[

ξIn − A (t)

C (t)

]

,

or still

(
R

(
σ, σ−1

)
w

)
(Pk)

=
(
M

(
σ, σ−1

)
v
)
(Pk) , k∈Z, (9)

with R
(
ξ, ξ−1

)
and M

(
ξ, ξ−1

)
given by

















B (0) 0

−D (0) Ip

ξB (1) 0

−ξD (1) ξIp

..

.
..
.

ξP−1B (P − 1) 0

−ξP−1D (P − 1) ξP−1Ip

















and

















ξIn − A (0)

C (0)

ξ (ξIn − A (1))

ξC (1)

.

.

.

ξP−1 (ξIn − A (P − 1))

ξP−1C (P − 1)

















,

respectively.

Consequently, if B is the behavior formed by the
(w, v)-trajectories that satisfy (9) (i.e., if B is the
behavior of the P -periodic state space system (9)),
the corresponding lifted behavior LB is described
by:

(
RL

(
σ, σ−1

)
(Lw)

)
(k)

=
(
ML

(
σ, σ−1

)
(Lv)

)
(k) , k∈Z,

where ML
(
ξ, ξ−1

)
∈ R

(n+p)P×nP
[
ξ, ξ−1

]
is equal

to
















−A (0) In · · · 0

C (0) 0 · · · 0

0 −A (1) · · · 0

0 C (1) · · · 0

.

..
.
..

. . .
.
..

ξIn 0 · · · −A (P − 1)

0 0 · · · C (P − 1)

















.

Taking Theorem 3 into account we conclude that
B is reconstructible w.r.t. x if and only if

rankML
(
λ, λ−1

)
= nP, ∀λ∈C\{0} .

For the sake of simplicity, we now consider that
P =2, but our reasonings also apply to the general
case. We then have

ML
(
ξ, ξ−1

)
=









−A (0) In

C (0) 0

ξIn −A (1)

0 C (1)









.

By performing the block-column operation C1 ←
C1+C2A (0), where Cj is the jth block-column of
ML, we obtain the following matrix










0 In

C (0) 0

ξIn − A (1)A (0) −A (1)

C (1)A (0) C (1)










. (10)

Clearly the rank of the original ML matrix coin-
cides with the rank of matrix (10) and, therefore,



∀λ ∈ C, rankML
(
λ, λ−1

)
= n

+ rank






λIn − A (1)A (0)

C (0)

C (1) A (0)




 = n

+ rank

[

λIn − A0

C0

]

,

with A0, C0 as in (7), (8), respectively, that is,

A0 = A (1)A (0)

C0 =

[

C (0)

C (1)A (0)

]

.

Therefore B is behaviorally reconstructible w.r.t.
x if and only if

rank

[

λIn − A0

C0

]

= n, ∀λ ∈ C\{0} .

Suppose now that for some λ∗ ∈ C\{0},

rank

[

λ∗In − A0

C0

]

< n.

This means that there exists 0 6= v∗ ∈ R
n×1 such

that
[

λ∗In − A0

C0

]

v∗ = 0,

i.e.,





λ∗In − A (1)A (0)

C (0)

C (1) A (0)




 v∗ = 0.

This is equivalent to

(λ∗In − A (1)A (0)) v∗ = 0; 1 (11)

C (0) v∗ = 0; (12)

C (1)A (0) v∗ = 0. (13)

Consequently, the product
[

λ∗In − A1

C1

]

A (0) v∗,

where

A1 = A (0)A (1)

C1 =

[

C (1)

C (0)A (1)

]

,

is given by:

1 v∗ is an eigenvector of A (1) A (0) associated to the

eigenvalue λ∗.






λ∗In − A (0) A (1)

C (1)

C (0)A (1)




 A (0) v∗

=













A (0)λ∗v∗ − A (0) A (1)A (0) v∗

C (1) A (0) v∗

︸ ︷︷ ︸

=0, by (13)

C (0) A (1)A (0) v∗

︸ ︷︷ ︸

=λ∗v∗, by (11)













=













A (0) (λ∗v∗ − A (1)A (0) v∗)
︸ ︷︷ ︸

=0, by (11)

0

λ∗ C (0) v∗

︸ ︷︷ ︸

=0, by (12)













= 0.

Since A (0) v∗ 6= 0 (otherwise v∗ would be an
eigenvector of A (0) associated to the eigenvalue
zero, which is not the case since we have assumed
that λ∗ 6=0), we conclude that also

rank

[

λ∗In − A1

C1

]

< n.

Taking into account that this procedure can be
reversed, this yields that

{

rank

[

λIn − A0

C0

]

= n, ∀λ ∈ C\{0}

}

⇔

{

rank

[

λIn − A1

C1

]

= n, ∀λ ∈ C\{0}

}

.

Noting that this reasoning can be easily extended
to the general P -periodic case, we obtain the next
result.

Theorem 8. Let Σ be a P -periodic state space
system, described as in (6), and let Σt =
(At, Bt, Ct,Dt) be the P time-invariant systems
obtained by the invariant dynamical decomposi-
tion, described in Definition 6. Then the following
conditions are equivalent:

i) The behavior B of Σ is behaviorally recon-
structible with respect to x;

ii) rank

[

λIn − At

Ct

]

= n, ∀λ ∈ C\{0} , for at

least one t in {0, . . . , P − 1};

iii) rank

[

λIn − At

Ct

]

= n, ∀λ ∈ C\{0} , for all

t in {0, . . . , P − 1}.

Combining Theorems 5, 7 and 8, we immediately
conclude that:



Theorem 9. The behavior B of a P -periodic state
space system Σ is (behaviorally) reconstructible
with respect to x if and only if Σ is completely
state-reconstructible.

Note that, by Theorems 9 and 8, one may con-
clude that the complete state-reconstructibility of
a periodic state space system Σs is equivalent to
the state-reconstructibility of at least one of the
P time-invariant systems Σt, thus obtaining an
alternative characterization to the one given by
Theorem 7.

4. CONCLUSION

In this paper we considered behavioral periodic
systems and studied the property of behavioral
reconstructibility, comparing it with the property
of state-reconstructibility defined in the context
of classical periodic state space systems. It turns
out that the two properties are equivalent, as
happens with their dual properties of behavioral
controllability and state-space controllability. Our
results also give a new insight into the property
of state-reconstructibility.
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