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Abstract

Automatic biometric identification based on fingerprints
is still one of the most reliable identification method in crim-
inal and forensic applications. A critical step in fingerprint
analysis without human intervention is to automatically and
reliably extract singular points from the input fingerprint
images. These singular points (cores and deltas) not only
represent the characteristics of local ridge patterns but also
determine the topological structure (i.e., fingerprint type)
and largely influence the orientation field. Poincaré Index-
based methods are one of the most common for singular
points detection. However, these methods usually result in
many spurious detections. Therefore, we propose an en-
hanced version of the method presented by Zhou et al. [13]
that introduced a feature called DORIC to improve the de-
tection. Our principal contribution lies in the adoption of a
smoothed orientation field and in the formulation of a new
algorithm to analyze the DORIC feature. Experimental re-
sults show that the proposed algorithm is accurate and ro-
bust, giving better results than the best reported results so
far, with improvements in the range of 5% to 7%.

1. Introduction
Fingerprint images are directionally oriented patterns

formed by ridges and valleys that can be captured from a
finger with a multitude of sensors, particularly, capacitive,
optical, thermal sweeping and ultrasonic. Fingerprints are
unique to each individual and have long been widely used
as a biometric identification tool [10]. The singular points -
cores and deltas - are the most important topological global
characteristics of a fingerprint [12]. The singular point area
is defined as a region where the ridge curvature is higher
than normal and where the direction of the ridge changes
rapidly.

These singular points can constitute a powerful basis for
the classification of fingerprint types [5], as well as for fin-
gerprint alignment and orientation field modeling [4, 11].

Several methods for detecting and analyzing singular
points in fingerprint images have been devised [1, 7].

However, the most widely used tool for singularity ex-
traction is the Poincaré Index, since it is relatively simple to
compute and robust to image rotation. The first application
of Poincaré indices to fingerprint images was presented by
Kawagoe and Tojo [7].

Poincaré Index-based methods consider the discontinu-
ous orientation distribution around singular points, by com-
puting the sum of the orientation changes along a closed
circle around a point to judge whether it is a singular point.
However, many spurious detections usually arise, deriving
from low quality images, scars, smudges, etc. that ex-
hibit orientation patterns closely resembling a true singu-
lar point. Even after postprocessing, many of these spuri-
ous detections still remain since only local information is
used. Therefore, to accurately distinguish the genuine sin-
gular points, global discriminative information should be
used in the detection process.

In order to address these problems we adopt the fol-
lowing strategy: 1) to calculate the Poincaré Index using a
smoothed orientation field, in order to reduce the number of
spurious points detected; 2) remove some spurious points,
regarding some core-delta topological constraints, with the
use of postprocessing steps; and 3) to use a recent feature
called DORIC (Differences of the ORIentation values along
a Circle) [13], which provides more discriminative informa-
tion that can be further used to remove remaining spurious
points.

Experimental results showed that the proposed algorithm
is accurate and robust for a wide variety of fingerprint types.
Compared with previous research, we achieved better detec-
tion results with this new method.

The rest of this paper is organized as follows: Section
2 provides an insight into the mathematical background of
the Poincaré Index and describes in detail the several parts
of the proposed algorithm. In Section 3 the principal re-
sults are presented as well as a comparison between the
state-of-the-art and the proposed algorithm. These results
are analyzed and discussed in Section 4 and, finally, some
conclusions are presented.

1
978-1-4244-5496-9/09/$25.00 ©2009 IEEE 157



2. Methods
In this section the methods used in the devised strategy

for the detection of singular points in fingerprint images will
be presented.

2.1. Poincare Index mathematical background

A singularity can be defined as a local region of the fin-
gerprint where the ridge pattern has special properties mak-
ing it visually prominent. To identify the principal singular
points on a fingerprint, i. e. cores and deltas, a Poincaré
Index based method can be used.

In Figure 1 it is presented the vector field and the
Poincaré Index of three typical patterns.

Figure 1: Three typical vector field patterns. a) No singu-
larity, I(γ) = 0. b) Circle (Core), I(γ) = 1. c) Saddle
(Delta), I(γ) = −1.

A core is defined by a turning point of an inner-most
ridge and a delta is a place where two ridges running side-
by-side diverge. Using the Poincaré Index, a value of +1
can be assigned to a core, a value of −1 to a delta and 0 to
a non-singularity.

Let us consider V (x, y) = Φx(x, y) + i · Φy(x, y),
where V (x, y) is a continuous 2D vector field, Φx(x, y)
and Φy(x, y) are its real and imaginary components, respec-
tively. The Poincaré Index I(γ) of V (x, y) along closed
path γ can be computed by:

I(γ) =
1

2 · π

∫
(x,y)∈γ

dφ(x, y), (1)

where φ(x, y) represents the angle on each (x, y) point of
the vector field along γ and φ(x, y) ∈ [0, 2π[. Usually, the
integration is taken counterclockwise.

2.2. Proposed algorithm

In Figure 2 it can be seen the algorithm’s block dia-
gram. In the following subsections its principal steps are
described.

2.2.1 Normalization

In this step the input image is normalized in order to have
a specific mean and standard deviation. The main purpose
of this step is the contrast enhancement to reduce the vari-
ations of the gray-level values along ridges and valleys, to

Figure 2: Proposed algorithm flowchart.

facilitate the next processing steps, particularly the orienta-
tion field computation.

Let I be a gray-level image and I(x, y) the pixel value
at the (x, y) position. µ denotes the estimated mean and σ
the estimated standard deviation of I . The normalization
procedure is applied to the image pixels using the following
equation [2]:

In(x, y) =

 µn +
√

σn(I(x,y)−µ)2

σ , if I(x, y) > µ

µn −
√

σn(I(x,y)−µ)2

σ , otherwise,
(2)

where In(x, y) represents the value for each normalized
gray-level pixel, and µn and σn the desired normalized
mean and standard deviation values, respectively.

2.2.2 Effective region detection

In order to reduce the size of the region to be processed and,
consequently, the computational time, an effective region
detection algorithm was implemented. Within this algo-
rithm, as usual in image processing, the normalized image
was broken into blocks of size (Bz×Bz), and the mean and
the standard deviation of each block were evaluated. If the
standard deviation was above a threshold tσ it was deemed
part of the fingerprint.

In this process some morphological operators were also
included, such as, erosion and flood-fill. The erosion was
applied in first place in order to create a ”safety zone”, pre-
venting the posterior occurrence of spurious detections on
the borders of the fingerprints.
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2.2.3 Smoothed orientation field

The orientation image represents an intrinsic property of the
fingerprint images and defines invariant orientation regions
for ridges and valleys in a local neighborhood. Many meth-
ods were devised for the computation of the orientation field
and many are supported by the fact that fingerprints can be
seen as an oriented texture [6, 7]. In this work, we chose
to compute the orientation field using a least mean square
orientation estimation [3] (see equation (3)).

θ(x, y) =
1
2
· tan−1


W∑

x=1

W∑
y=1

Ψ1(x, y)

W∑
x=1

W∑
y=1

Ψ2(x, y)

 (3)

Ψ1(x, y) = 2 ·Gx(x, y) ·Gy(x, y)
Ψ2(x, y) = G2

x(x, y)−G2
y(x, y),

where θ(x, y) is the least square estimate of the local ridge
orientation at the block with size W ×W , centered at pixel
(x, y). Gx(x, y) and Gy(x, y) represent the gradient along
the x and y directions, respectively.

Due to the presence of noise, corrupted ridge and val-
ley structures in the input image, the estimated local ridge
orientation, θ(x, y), may not always be correct. Since lo-
cal ridge orientation varies slowly in a local neighborhood
where no singular points appear, a low-pass filter can be
used to modify the incorrect local ridge orientation. In order
to smooth the initial orientation field a Gaussian filter was
implemented with size Gz and standard deviation equal to
σg [2, 13].

After the computation of the orientation field for each
pixel, the vector field V (x, y) can be computed using the
following equation:

V (x, y) = cos(2 · θ(x, y)) + i · sin(2 · θ(x, y)), (4)

In Figure 3 it can be seen some results for the computa-
tion of the orientation image and respective non-smoothed
and smoothed orientation fields and vector field.

2.2.4 Singularity detection using the Poincaré Index

The pixels can be defined as cores, deltas or non-
singularities depending on their Poincaré Index values.

The Poincaré Index method can usually detect nearly all
true singular points, when it is computed in a small region,
but this can also lead to the detection of too many spurious
points. If the detection is made into a very large region, true
singular points could be missed. To increase the correct
detection rate and reduce the detection of spurious points it

(a) Orientation image
[0, 2π[.

(b) Non-smoothed orien-
tation field.

(c) Smoothed orientation
field.

(d) Vector field.

Figure 3: Orientation image (a) and respective orientation
fields (non-smoothed (b) and smoothed (c)) and vector field
(d).

is necessary to establish a compromise in the choice of the
optimal region size.

For the computation of the Poincaré Index value (IP ), a
circle, with a specific radius (rp) and Np points, is centered
in each pixel of the fingerprint effective region. Then, the
Poincaré Index is computed as the sum of the differences
between the orientations of two consecutive points in the
circle (oi+1 and oi), as stated in the following equation, be-
ing that a counterclockwise direction is assumed:

IP =
1
π

N−1∑
i=1

f(oi+1 − oi) =
1
π

N−1∑
i=1

f(δoi), (5)

where oN = o1, oi ∈ [0, π[, and f is defined as:

f(x) =

 −x, |x| ≤ π
2

π − x, x > π
2

π + x, x < −π
2

(6)

Figure 4 presents the output image after the Poincaré In-
dex method step.

2.2.5 Feature postprocessing

After the singular points detection using the Poincaré In-
dex, as previously stated, some spurious points may still
remain. In order to reduce the amount of possibly false de-
tected points a postprocessing step was introduced.
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(a) Normalized image with
fingerprint.

(b) Poincaré Index image.

Figure 4: Detection of the singular points in image (a) using
the Poincaré Index. The cores are represented in red while
the deltas are represented in blue.

In the first place, if two or more singular points of the
same type, cores or deltas, are close to each other, within
a certain distance (d), they become to be represented by a
centroid. The second postprocessing step, determines if a
core and delta are too close to each other. If they are closer
than a certain distance (ds) both points are removed.

During the experimental tests, we noticed that these steps
were rarely used. This is supported by the use of the
smoothed orientation field, and, therefore, they will only
be needed in very particular occasions, for instance, when
in the presence of low-quality images, or fingerprints with
scars, which introduce strong ”artifacts” to the orientation
field. If no smoothing is applied, this postprocessing phase
reveals itself to be very important in the removal of spurious
points.

2.2.6 DORIC feature

In order to remove spurious detections while preserving a
good detection rate, Zhou et al. [13] proposed a novel fea-
ture extended from the Poincaré Index, which can be used to
verify the trueness of each detection after using the Poincaré
Index and the postprocessing algorithms.

The Poincaré Index is the sum of δoi and it does not de-
scribe completely a singular point. When there are creases,
scars, or smudges in the fingerprint images, the Poincaré
Index will result in the detection of spurious singular points
that even after the postprocessing are not removed.

Similar to the Poincaré Index method, the DORIC fea-
ture is computed along a closed circle, centered in each of
the detected singular points, with a specific radius (rd) and
Nd points.

The novel feature, called DORIC, consists of all the δoi,
and, therefore, it can describe the singular points more com-
pletely. Since the orientation field is defined in [0, π[, the
DORIC feature will exhibit one positive pulse, with height
near π, for a core and a negative pulse, with height near
−π, for a delta. Although the noise around the true sin-
gular points may alter the curves a little, it can be clearly

distinguished the difference between true and spurious sin-
gular points. Two DORIC features of true singular points
are illustrated in Figure 5.

(a) DORIC feature for a true
delta.

(b) DORIC feature for a true
core.

Figure 5: DORIC features of two true singular points.
After the postprocessing phase, there is only one singular

point for any fairly large region. Thus, it is more adequate
to compute the DORIC features along a large circle. This
enables the use of a higher number of points in the circle
which will cause the DORIC feature curves to become more
continuous and much easier to analyze.

Finally, to classify the remaining singular points as true
or spurious points, the following algorithm was devised:

Algorithm 1 Pseudo code algorithm to classify the remain-
ing singular points as true or spurious points.

for each of the remaining singular points (P1, P2, ...) do
DORIC(Pk) = [δo1, δo2, δo3, ..., δoN−1];
if ∃!i ∈ [1, N − 1], that |δoi| ∼= π AND ¬∃ j 6= i, j ∈ [1, N −
1], that |δoj | > π/6 then

keep Pk

else
remove Pk

end if
end for

3. Experimental results
The proposed method was tested on four public

databases (FVC02 DB1 and DB2 [8] and FVC04 DB1 and
DB2 [9]) and one database created by the authors. Each
FVC database has 80 images, relative to 10 fingers and 8
prints of each finger. The database created by the authors
consists of 70 images, corresponding to 1 image of each fin-
ger from 7 individuals. These images were acquired with an
optical sensor (Microsoft Fingerprint Reader - model 1033)
without any special effort on image quality and cleaning
procedures.

For the validation of the detection results, the authors in-
dependently analyzed each image and registered the occur-
rence of cores and deltas. If there was some disagreement
between their decisions, a joint decision would be made.

For the results presented, the detection rate is defined
as the ratio of truly detected singular points to all ground
truth singular points. The miss rate is defined as the ratio of
the number of missed singular points to the number of all
ground truth singular points. The false alarm rate is defined
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as the number of falsely detected singular points versus the
number of all ground truth singular points. If all singular
points are detected and there are no spurious singular points
in a fingerprint, the fingerprint is said to be ”correctly” de-
tected [13].

During the implementation phases, all the parameters
were experimentally tuned using the FVC02 DB1 as a
”training” set. The most adequate values found are pre-
sented in TABLE 1.

Method Parameter V alue

Normalization
mean µn 0
stdev σn 1

Effec. region detect.
block size Bz 16

stdev threshold tσ 0.3

Smoothed orient. field
block size W 10

Gaussian stdev σg 10
Gauss. block size Gz 60

Sing. points detection
radius rp 5

number points Np 8

Feat. postprocess.
dist. core− core d 16

dist. delta− delta d 16
dist. core− delta ds 20

DORICfeature
radius rd 10

number points Nd 50

Table 1: Values of the parameters used in the algorithm.

When possible, the obtained results were compared to
those exhibited by Zhou et al. [13], as they state their work
presented better results than the best reported ones.

In Table 2, 3, 4 and 5, the obtained results are presented
(all values are in percentage).

Proposed Zhou′s [13]

Cores
Detection rate 100 95.78

Miss rate 0 4.22
False alarm rate 1.25 2.27

Deltas
Detection rate 97.50 96.98

Miss rate 2.50 3.02
False alarm rate 1.25 9.97

Fingerprint precision 95.00 88.88

Table 2: Comparison results of different detection algo-
rithms on FVC02’s DB1.

Proposed Zhou′s [13]

Cores
Detection rate 98.75 95.51

Miss rate 1.25 4.49
False alarm rate 7.50 8.45

Deltas
Detection rate 95.00 90.88

Miss rate 5.00 9.12
False alarm rate 1.25 12.54

Fingerprint precision 86.25 81.25

Table 3: Comparison results of different detection algo-
rithms on FVC02’s DB2.

DB1 DB2

Cores
Detection rate 100 90.00

Miss rate 0 10.00
False alarm rate 3.75 17.50

Deltas
Detection rate 96.25 97.50

Miss rate 3.75 2.50
False alarm rate 1.25 8.75

Fingerprint precision 92.50 67.50

Table 4: Results with the proposed algorithm on FVC04’s
DB1 and DB2.

Cores
Detection rate 95.71

Miss rate 4.29
False alarm rate 5.71

Deltas
Detection rate 97.14

Miss rate 2.86
False alarm rate 2.86

Fingerprint precision 84.29

Table 5: Results with the proposed algorithm on the au-
thors’ database.

Some images of the results obtained with the proposed
algorithm are presented in Figure 6.

(a) (b)

(c) (d)

Figure 6: Results obtained with the proposed algorithm for
different types of fingerprint images and topologies.

The results were obtained with MATLAB R© with an
Intel R© CoreTM2 Duo CPU @2.50GHz and 3GB of
RAM . In average the processing time was approximately
10 seconds for each fingerprint image with sizes ranging
from 296× 560 to 640× 480, depending on the database.

4. Analysis and discussion
From the analysis of Figure 6, it can be seen that our al-

gorithm behaves well for a wide variety of images and fin-
gerprint types, even in the presence of scars (Figure 6(a)),
rotations (Figure 6(b) and 6(c)) and low-quality images
(Figure 6(d)).

However, there are some cases where the algorithm fails.
For instance, in Figure 7(a) it is missing one delta. This can
be justified by the fact that the Poincaré Index calculation
did not have revealed any singularity where expected (see
Figure 7(b).

In Figure 8(a), we can see one spurious delta that was
not removed by the proposed algorithm. Its DORIC feature
can be seen in Figure 8(b) and it can be seen that it closely
resembles the trace of a true delta, therefore, it was not pos-
sible for the proposed algorithm to remove it.
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(a) Detected singular
points marked on the
fingerprint image.

(b) Poincaré Index im-
age.

Figure 7: Missed detection of a singular point (Delta) by
the Poincaré Index. The blue square marks the expected
location of the missed delta.

(a) Detected singular
points marked on the
fingerprint image.

(b) DORIC feature of the spu-
rious delta.

Figure 8: One example of a spurious delta that was not re-
moved with the use of the DORIC feature. The blue square
identifies the over detected delta.

From the results of Table 2 and 3 it can be stated that,
relatively to the FVC02 databases, the proposed algorithm
promoted the achievement of better results than those pre-
sented by Zhou et al. [13]. Relatively to the results obtained
for the remaining databases (see Table 4 and 5), it can be
said that the results were also very good.

5. Conclusion
This work presented a new method for the detection of

singular points in fingerprint images. The proposed algo-
rithm has two fundamental parts: 1) detection of singular-
ities using the Poincaré Index on a smoothed orientation
field, which contributed since the beginning to the reduc-
tion of the number of spurious points detected; and 2) use
the DORIC feature to improve the discriminative ability of
the Poincaré Index-based detection.

From the analysis of the obtained results we can state
that the main causes of errors are deltas and cores located
in the fingerprints’ borders, as well as low-quality images,
scars, creases, smudges, etc. that will lead to the obtention
of erroneous orientation fields, which are crucial to the de-
tection of the singular points.

As a future improvement, some of the parameters, par-
ticularly those referring to distances, could be adaptively
set. One possible approach would be to detect the width
of ridges and valleys and, therefore, proportionally set the

parameters. Despite this has not been done yet, the pro-
posed algorithm was able to provide very good results for
a wide variety of fingerprint types and images, when com-
pared with other approaches recently published.
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