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1. INTRODUCTION

The behavioral approach to dynamical systems, intro-
duced by J.C.Willems in the eighties (Willems, 1989;
Willems, 1991), views a system essentially as a set
of admissible trajectories, known as the systembe-
havior, where no distinction is made a priori between
input and output variables. Similar to what happens
for “classical” systems, such as, for instance, state
space systems, several structural properties have been
defined and characterized for behaviors. Of particular
interest among them are the properties of observa-
bility and reconstructibility (Willems, 1989; Willems,
1991; Polderman and Willems, 1998; Valcher and
Willems, 1999b; Valcher and Willems, 1999a).

If the system variablew is partitioned into two sub-
variablesw1 andw2, the fact that one of them, say,
w2, is observablefrom the other one (w1) corre-
sponds to the possibility of obtaining full information
on w2 from the knowledge ofw1. According to the
definitions given in (Willems, 1989; Willems, 1991;
Polderman and Willems, 1998), for linear systems this
amounts to say that whenever the whole trajectoryw1

is null, the same happens for the whole trajectoryw2.

On the other hand, the property of reconstructibility
corresponds, roughly speaking, to the possibility of

recovering some of the system variables from the
other ones, but with some delay. More concretely,
according to the definitions given in (Valcher and
Willems, 1999a) for linear time-invariant systems over
the nonnegative discrete time-axis,w2 is said to be
reconstructible fromw1 if whenever the trajectoryw1

is null, i.e.,w1 (k) = 0, k ≥ 0, w2 becomes null after
some finite timeδ, i.e. ,w2 (k) = 0, k ≥ δ.

As happens for the case of state space systems, both
these properties can be characterized by means of
(column) rank conditions on certain matrices.

One of the aims of this paper is to extend the notion
of reconstructibility for systems overZ. This leads to a
definition of observability which differs from the orig-
inal observability definition given in (Willems, 1989;
Willems, 1991; Polderman and Willems, 1998), but
can as well be viewed as a generalization of the defi-
nition adopted for systems over the nonnegative time-
axisZ+. In order to make a distinction, we shall refer
to our observability notion as forward-observability,
whereas the definition in (Willems, 1989; Willems,
1991; Polderman and Willems, 1998) will be called
simply observability or Willems-observability. The
characterizations of the newly defined properties are
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similar to the ones obtained in (Valcher and Willems,
1999a) for the nonnegative time-axis case.

In Section 2 we introduce some preliminary no-
tions and facts about behaviors. Section 3 is devoted
to the definition of reconstructibility and forward-
observability. These properties are compared with the
existing behavioral ones and characterized in terms
of the matrices that are used in the corresponding
behavior description. Moreover, an application to the
case of (classical) state space systems is presented.
Conclusions are drawn in Section 4.

2. PRELIMINARIES

In this paper, in the framework of the behavioral ap-
proach, we deal with the class of discrete-time sys-
tems withkernel behaviors, more concretely, systems
Σ = (T, W,B) that are defined over the whole dis-
crete time-axisT = Z, with vector-valued variable
taking values inW = R

q, for someq ∈ N, and whose
set of admissible trajectories is a behaviorB given
by the kernel of a matrix polynomial shift operator
R

(
σ, σ−1

)
. Here,R•×q is a Laurent-polynomial ma-

trix of the form

R−Mξ−M + · · · + R0 + · · · + RNξN

with N,M ∈ Z+, and σ±1 denotes the back-
ward/forward shift defined by

(
σ±1w

)
(k) = w (k ± 1) , k∈Z.

Thus

B = kerR
(
σ, σ−1

)

:=
{
w ∈ (Rq)

Z
: R

(
σ, σ−1

)
w = 0

}
,

i.e., the trajectoriesw ∈ B are the elements of(Rq)
Z

(the space ofRq-value sequences overZ) which con-
stitute the solution set of a linear constant coefficient
matrix difference equation

R−Mw (k − M)+· · ·+R−1w (k − 1)+R0w (k)

+R1w (k + 1)+· · ·+RNw (k + N) = 0,∀k∈Z.

From now on, unless otherwise specified, the term
behaviorwill exclusively refer to discrete-time kernel
behaviors overZ. Note that in particular kernel behav-
iors are linear, time-invariant (i.e.,σ (B) = B), and
complete. The completeness of a behaviorB means
that it is possible to check whether a trajectoryw ∈

(Rq)
Z belongs toB, by checking what happens in the

setI of finite intervals ofZ. More concretely:B is
said to be complete if

(
∀I ∈ I, w

∣∣∣
I
∈ B

∣∣∣
I

)
⇔ w ∈ B. (1)

For linear time-invariant systems, the completeness of
B is equivalent to say thatB is a closed subspace of
(Rq)

Z, in the topology of pointwise convergence.

In order to study the desired properties of reconstruc-
tibility and observability, we shall consider that the
system variablew is partitioned as(w1,w2), where
w1 is the observed variable andw2 is the variable
about which information is sought. In this case, the
corresponding behavior description

R
(
σ, σ−1

)
w = 0

will be written as

R2

(
σ, σ−1

)
w2 = R1

(
σ, σ−1

)
w1, (2)

by means of a suitable partition (and, if necessary,
rearrangement) of the columns ofR.

3. RECONSTRUCTIBILITY AND
FORWARD-OBSERVABILITY

We start by formalizing the proposed definitions for
reconstructibility and observability. Since it is clear
that we work over the discrete time-axisZ, for sim-
plicity we use the interval notation to represent dis-
crete intervals and write, for instance,[k1, k2] instead
of [k1, k2] ∩ Z.

Definition 1. Let B ⊂ (Rq)
Z be a behavior whose

system variablew is partitioned asw = (w1,w2).
Givenδ ≥ 0, we say thatw2 is δ-reconstructiblefrom
w1 if
(
w1

∣∣∣
[k0,+∞)

≡ 0⇒w2

∣∣∣
[k0+δ,+∞)

≡ 0

)
, ∀k0∈Z. (3)

Moreover,w2 is said to bereconstructiblefrom w1

if it is δ-reconstructible fromw1 for someδ ≥ 0. In
particular,w2 is said to beforward-observablefrom
w1 if it is 0-reconstructible fromw1, i.e., if
(
w1

∣∣∣
[k0,+∞)

≡ 0⇒w2

∣∣∣
[k0,+∞)

≡ 0

)
, ∀k0∈Z. (4)

3

Example 2.Consider a systemΣ =
(
Z, R2,B

)
with

variables(w1,w2), whose behaviorB is described by

σw2 = w1,

i.e.,
w2 (k) = w1 (k − 1) , ∀k∈Z.

Clearlyw2 is 1-reconstructible fromw1, since

w1 (k) = 0, k ≥ k0

implies

w2 (k) = w1 (k − 1) = 0, k ≥ k0 + 1.

It is also simple to see thatw2 is not forward-
observable fromw1. Indeed, ifw1 (−1) = 1 and
w1 (k) = 0 for k 6= −1, we have thatw2 (0) = 1
andw2 (k) = 0 for k 6= 0. Thus

w1

∣∣∣
[0,+∞)

= 0, but w2

∣∣∣
[0,+∞)

6= 0.

Howeverw1 is forward-observable fromw2, as the
reader can easily check. 3
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Note that, due to time-invariance, theδ-reconstructi-
bility condition (3) in Definition 1 can be replaced by

w1

∣∣∣
[0,+∞)

≡ 0⇒w2

∣∣∣
[δ,+∞)

≡ 0,

whereas the forward-observability condition (4) can
be replaced by

w1

∣∣∣
[0,+∞)

≡ 0⇒w2

∣∣∣
[0,+∞)

≡ 0.

This agrees with the definitions of reconstructibil-
ity and observability given in (Valcher and Willems,
1999a), for discrete-time systems overZ+, but not
with the definition of observability given in (Willems,
1991), according to whichw2 is said to be observable
from w1 if

(w1 (k)=0, ∀k ∈ Z) ⇒ (w2 (k)=0, ∀k∈Z) . (5)

In fact, as we next prove, when applied to systems over
Z, Willems’s observability condition coincides rather
with our reconstructibility property.

Proposition 3.Let B ⊂ (Rq)
Z be a behavior whose

system variablew is partitioned asw = (w1,w2).
Thenw2 is Willems-observablefromw1 if and only if
it is reconstructiblefrom w1, for someδ > 0.

Proof. Assume thatw2 is not reconstructible from
w1. Then there exists a trajectoryw′ = (w′

1,w
′
2) ∈

B such that

w′
1

∣∣∣
[0,+∞)

= 0 and ∀δ > 0, w′
2

∣∣∣
[δ,+∞)

6= 0.

Consider a sequence of trajectories
(
w̃i

)
i∈N

con-
structed in the following way: letN1 ∈ N be the
smallest positive integer such thatw′

2 (N1) 6= 0. De-
fine

w̃1 :=
σN1w′

w′
2 (N1)

.

For each integeri > 1 let Ni be the smallest integer
greater thanNi−1, such thatw′

2 (Ni) 6= 0 and define

w̃i :=
σNiw′

w′
2 (Ni)

.

Note that all the trajectories̃wi in this sequence satisfy

w̃i
1

∣∣∣
[−Ni,+∞)

≡ 0 and w̃i
2 (0) = 1.

Taking this into account together with the complete-
ness ofB, it is not difficult to conclude that

(
w̃i

)
i∈N

converges to a trajectorỹw ∈ B such that̃w1 ≡ 0 and
w̃2 is nonzero (sincẽw2 (0) = 1). This means thatw2

is not Willems-observable fromw1. Hence Willems-
observability implies reconstructibility.

Assume now thatw2 is reconstructible fromw1, for
someδ > 0. Consider a trajectory(w′

1,w
′
2) ∈ B with

w′
1

∣∣∣
Z

= 0. In particular,

w′
1

∣∣∣
[k0,+∞)

≡ 0, ∀k0 ∈ Z,

and therefore, there existsδ > 0 such that

w′
2

∣∣∣
[k0+δ,+∞)

≡ 0, ∀k0 ∈ Z.

This clearly implies thatw′
2

∣∣∣
Z

≡ 0, allowing to con-

clude that reconstructibility implies Willems-observ-
ability. 2

3.1 Reconstructibility and forward-observability
characterization

In this subsection we characterize reconstructibility
and forward-observability by means of rank condi-
tions. Given Proposition 3, reconstructibility condi-
tions could be obtained from the characterization of
Willems-observability. However, we chose to present
here a direct proof, in order to give more insight.

Let R
[
ξ, ξ−1

]
andR [ξ] denote respectively the rings

of Laurent-polynomials and of polynomials in the
indeterminateξ. Let furtherR`×m [ξ] /R

`×m
[
ξ, ξ−1

]

denote the set of̀ × m matrices with entries in
R [ξ] /R

[
ξ, ξ−1

]
.

Theorem 4.Consider the dynamical systemΣ =
(Z, Rq1+q2 ,B) described by

B :=
{

(w1,w2)∈
(
R

q1+q2
)Z

|
(
P

(
σ, σ−1

)
w2

)
(k)

=
(
Q

(
σ, σ−1

)
w1

)
(k) , k∈Z

}
,

with P
(
ξ, ξ−1

)
∈ R

g×q2

[
ξ, ξ−1

]
, Q

(
ξ, ξ−1

)
∈

R
g×q1

[
ξ, ξ−1

]
. Then

(i) w2 is reconstructible fromw1 if and only if

rankP
(
λ, λ−1

)
= q2, ∀λ ∈ C\ {0} , (6)

or, equivalently, if and only ifP
(
ξ, ξ−1

)
is a

right-prime matrix overR
[
ξ, ξ−1

]
;

(ii) w2 is forward-observable fromw1 if and only
if there existP̃ (ξ) ∈ R

g×q2 [ξ] and Q̃ (ξ) ∈

R
g×q1 [ξ] s.t. B is described byP̃ (σ)w2 =

Q̃ (σ)w1, with

rank P̃ (λ) = q2, ∀λ ∈ C, (7)

i.e., withP̃ (ξ) right-prime overR [ξ].

Proof. For the equivalence between the rank and
primeness conditions we refer to (Kučera, 1991).

(i) Assume that (6) holds, i.e., thatP
(
ξ, ξ−1

)
is

right-prime (overR
[
ξ, ξ−1

]
). Then, there ex-

ists a matrix U
(
ξ, ξ−1

)
∈ R

g×g
[
ξ, ξ−1

]
,

which is unimodular overR
[
ξ, ξ−1

]
, such that

(Polderman and Willems, 1998),

U
(
ξ, ξ−1

)
P

(
ξ, ξ−1

)
=

[
Iq2

0

]
.

Thus (leaving outσ andσ−1 in the notation, for
simplicity),
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Pw2 = Qw1 ⇔ UPw2 = UQw1

⇔

[
Iq2

0

]
w2 =

[
Q1

Q2

]
w1

⇔ Q2w1 = 0 andw2 = Q1w1,

with UQ conformably partitioned as

U
(
ξ, ξ−1

)
Q

(
ξ, ξ−1

)
=

[
Q1

(
ξ, ξ−1

)

Q2

(
ξ, ξ−1

)
]

.

Let

Q1

(
ξ, ξ−1

)
= Q−M

1 ξ−M+· · ·+Q0
1+· · ·+QN

1 ξN ,

with N,M ∈ Z+. Applying σM to both sides of
the equalityw2 = Q1w1, we obtain

(
σMw2

)
(k) =

(
Q̃1 (σ)w1

)
(k) , k∈Z,

allowing us to conclude that

w1

∣∣∣
[k0,+∞)

= 0 ⇒ w2

∣∣∣
[k0+M,+∞)

= 0,

i.e., w2 is M -reconstructible, and hence recon-
structible, fromw1.

Suppose now that (6) does not hold. Then,
P

(
ξ, ξ−1

)
is not right-prime (overR

[
ξ, ξ−1

]
),

implying that there exists a trajectoryw∗
2 ∈

kerP
(
σ, σ−1

)
, which is nonzero (Polderman

and Willems, 1998). This trajectory is such that
w∗ = (w∗

1 ≡ 0,w∗
2) ∈ B. If w2 were recon-

structible fromw1, this would imply that

w∗
2

∣∣∣
[k∗,+∞)

≡ 0, ∀k∗∈Z,

and, consequently,w∗
2 would be null in the

whole time-axisZ, which is a contradiction.
Therefore, if the rank condition (6) does not
hold, w2 is not reconstructible fromw1, or, in
other words, the reconstructibility ofw2 from
w1 implies that (6) holds.

(ii) Suppose now that there exist̃P andQ̃ such that
B is described by

(
P̃ (σ)w2

)
(k) =

(
Q̃ (σ)w1

)
(k) , k∈Z,

with P̃ (ξ) satisfying (7) and hence right-prime
overR [ξ]. Then, there exists an unimodular ma-
trix (over R [ξ]) U (ξ) such that (Polderman and
Willems, 1998),

U (ξ) P̃ (ξ) =

[
Iq2

0

]
.

Thus

P̃w2 = Q̃w1 ⇔ UP̃w2 = UQ̃w1

⇔

[
Iq2

0

]
w2 =

[
Q̃1

Q̃2

]
w1

⇔ Q̃2w1 = 0 andw2 = Q̃1w1,

with UQ̃ conformably partitioned as

U (ξ) Q̃ (ξ) =

[
Q̃1 (ξ)

Q̃2 (ξ)

]
.

Thus, ifw1 (k) = 0 for k ∈ [k0,+∞), then
(
Q̃1 (σ)w1

)
(k) = 0, for k ∈ [k0,+∞)

and hence

w2 (k) = 0, for k ∈ [k0,+∞) ,

which allows to conclude thatw2 is forward-
observable fromw1.

Assume now thatw2 is forward-observable from
w1 and let

(
P̂ (σ)w2

)
(k) =

(
Q̂ (σ)w1

)
(k) , k∈Z,

be a representation ofB. Consider a trajectory
(w1,w2) ∈ B such thatw1 ≡ 0. Then, by the
forward-observability ofB, this implies that

∀k0 ∈ Z, w2 (k) = 0, k ≥ k0,

or, in other words,w2 ≡ 0. This means that
ker P̂ (σ) = {0}, which is equivalent to say that

rank P̂ (λ) = const, ∀λ ∈ C\ {0} ,

i.e., P̂ (ξ) is right-prime overR
[
ξ, ξ−1

]
. Note

that this also follows immediately from the
previous item and from noticing that forward-
observability implies reconstructibility. Let now
U (ξ) andV (ξ) be unimodular matrices (over
R [ξ]) that bringP̂ into its Smith form, i.e.,

UP̂V =




ξ`1

. . .
ξ`q2

0




=:

[
Ξ

0

]
.

Then,

P̂w2 = Q̂w1 ⇔ UP̂w2 = UQ̂w1

⇔

[
Ξ

0

]
V−1w2 =

[
Q̂1

Q̂2

]
w1,

which is equivalent to

Q̂2w1 = 0 and w2 = VΞ−1Q̂1w1,

with UQ̂ conformably partitioned as

U (ξ) Q̂ (ξ) =

[
Q̂1 (ξ)

Q̂2 (ξ)

]
.

Thus,B is also described by
(
P̃ (σ)w2

)
(k) =

(
Q̃ (σ)w1

)
(k) ,

with P̃, Q̃ defined by

P̃ (ξ) :=

[
Iq2

0

]

Q̃ (ξ) =

[
Q̃1 (ξ)

Q̃2 (ξ)

]
:=

[
V (ξ)Ξ−1(ξ) Q̂1 (ξ)

Q̂2 (ξ)

]
.

Now, using the forward-observability property, it
is clear that the matrix̃Q1 := VΞ−1Q̂1 cannot
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have terms inξ−1. MoreoverP̃ (ξ) has constant
column rank overC. This shows that there exists
a representation ofB with the desired properties.

2

The observability condition (5) for behaviors overZ,
described by

P
(
σ, σ−1

)
w2 = Q

(
σ, σ−1

)
w1,

is equivalent to the rank condition

rankP
(
λ, λ−1

)
= q2, ∀λ ∈ C\ {0} ,

see (Willems, 1991, Theorem VI.2). This coincides
with the condition (6) in Theorem 4(i), thus leading
to the same conclusion as Proposition 3, i.e., Willems-
observability is equivalent to our notion of reconstruc-
tibility, rather than to forward-observability.

Note that the definition of observability, given in
(Valcher and Willems, 1999a), for systems overZ+

can be regarded as an adaptation of Willems’s defini-
tion (5), since it means that ifw1 is the null trajectory
(i.e., is zero over the time-axisZ+), then the same
happens forw2. However, that notion can also be
seen as an adaptation of our definition of forward-
observability.

The situation is summarized in the following table

T

Property Z Z+

Forward-observability (C1) (C1)

Willems-observability (C2) (C1)

Reconstructibility (C3)⇔(C2) (C3)

where the conditions (C1), (C2) and (C3) are as fol-
lows:

(C1) w1

∣∣∣
Z+

= 0 ⇒ w2

∣∣∣
Z+

= 0;

(C2) w1

∣∣∣
Z

= 0 ⇒ w2

∣∣∣
Z

= 0;

(C3) ∃δ > 0 s.t.w1

∣∣∣
Z+

= 0 ⇒ w2

∣∣∣
[δ,+∞)

= 0.

3.2 Behavioral reconstructibility and observability of
state space systems

Consider a behaviorB consisting of the set of
(x,u,y)-trajectories of ann-dimensional linear and
time-invariant state space model, withm inputs andp
outputs

{
(σx) (k)=Ax (k) + Bu (k)

k ∈ Z.
y (k)=Cx (k) + Du (k)

(8)

Assuming, as usual, that the input-output variables
(u,y) can be measured and the statex is not available,

it is convenient for analysis purposes to rewrite the
previous equations as

[
σIn − A

C

]
x =

[
B 0

−D Ip

] [
u

y

]
.

Clearly, by Theorem 4,x is reconstructible from
(u,y) if and only if

rank

[
λIn − A

C

]
= n, ∀λ ∈ C\ {0} .

This coincides with the well-known (re)constructibility
rank condition for state space systems overZ+,
(Kučera, 1991), and amounts to say that ifλ ∈ C is
an unobservable mode of(C,A), thenλ = 0.

Taking into account that all the observable modes
can be shifted to zero, and minding the results in
(Antsaklis and Michel, 2006), the following proposi-
tion is obtained.

Proposition 5.Consider the behaviorB (overZ) de-
scribed by the state space equations (8). Then, the
following conditions are equivalent:

(1) x is reconstructible from(u,y);

(2) If λ ∈ C is an unobservable mode of(C,A), then
λ = 0;

(3) There existsL ∈ R
n×p such thatA + LC is

nilpotent;

(4) There exists a deadbeat observer.

3

Contrary to what happens with reconstructibility,
the characterization of forward-observability for state
space systems overZ does not coincide with the ob-
servability condition for systems overZ+, (Kučera,
1991),

rank

[
λIn − A

C

]
= n, ∀λ ∈ C.

This is illustrated in the following example.

Example 6.Consider the a state space system with no
inputs, statex = [x1, x2]

T and outputy, described by
{

(σx) (k)=Ax (k)
k ∈ Z,

y (k)=Cx (k)

with

A =

[
0 0
0 1

]
, C =

[
0 1

]
.

It turns out that the statex is forward-observable from
the outputy, since the system trajectories satisfyx1 =
0 andx2 = y. However

[
λI2 − A

C

]

has a rank drop forλ = 0. Nevertheless, the descrip-
tion
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


1 0
0 σ − 1
0 1




︸ ︷︷ ︸
P̃(σ)

x =




0
0
1


 y

is such that

rank P̃(λ) = 2, ∀λ ∈ C,

satisfying thus the condition of Theorem 4(ii). 3

Thus, forward-observability cannot be directly charac-
terized in terms of the unobservable modes of(C,A).
However, the following result can be proved.

Proposition 7.Consider the behaviorB (overZ) de-
scribed by the state space equations (8). Thenx is
forward-observable from(u,y) if and only if there
exists a suitable change of variablex̄ (k) = Sx (k),
whereS is an invertiblen × n matrix, such that




σx̄1 = A1x̄1 + B1u

x̄2 = 0 (x̄1, x̄2) = x̄

y = C1x̄1,

with (C1,A1) observable. 3

4. CONCLUSIONS

In this paper, we have introduced and character-
ized the properties of reconstructibility and forward-
observability for systems overZ. A comparison was
made with the existing results in the behavioral setting
as well as in the classical state space framework. It
turned out that our reconstructibility property is equiv-
alent to Willems-observability. Moreover, for the case
of state space systems (overZ), the characterization
of reconstructibility coincides with the well-known re-
constructibility condition for systems overZ+. How-
ever the characterization of forward-observability is
different from the observability condition for state
space systems overZ+.

ACKNOWLEDGMENTS

This work is partially supported by the Fundação
Portuguesa para a Ciência e Tecnologia (FCT) via the
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