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1. INTRODUCTION recovering some of the system variables from the
other ones, but with some delay. More concretely,

The behavioral approach to dynamical systems, intro-according to the definitions given in (Valcher and
duced by J.C.Willems in the eighties (Willems, 1989; Willems, 199%) for linear time-invariant systems over
Willems, 1991), views a system essentially as a setthe nonnegative discrete time-axis; is said to be
of admissible trajectories, known as the systee reconstructible fronw if whenever the trajectory,
havior, where no distinction is made a priori between is null,i.e.,w; (k) = 0, k > 0, w becomes null after
input and output variables. Similar to what happens some finite timej, i.e. ,ws (k) =0, k > 4.
for “classical” systems, such as, for instance, state
space systems, several structural properties have beeﬁS happens f(_)r the case of state space systems, both
defined and characterized for behaviors. Of particulart ese properties can be charact_erlzed_by means  of
interest among them are the properties of observa—(C°|umn) rank conditions on certain matrices.
bility and reconstructibility (Willems, 1989; Willems, One of the aims of this paper is to extend the notion
1991; Polderman and Willems, 1998; Valcher and of reconstructibility for systems ovét. This leads to a
Willems, 199%; Valcher and Willems, 1999). definition of observability which differs from the orig-
inal observability definition given in (Willems, 1989;
Willems, 1991; Polderman and Willems, 1998), but
can as well be viewed as a generalization of the defi-
nition adopted for systems over the nonnegative time-
axisZ.. In order to make a distinction, we shall refer
to our observability notion as forward-observability,
whereas the definition in (Willems, 1989; Willems,
1991; Polderman and Willems, 1998) will be called
simply observability or Willems-observability. The
characterizations of the newly defined properties are

If the system variablev is partitioned into two sub-
variablesw; andws, the fact that one of them, say,
wy, is observablefrom the other onew;) corre-
sponds to the possibility of obtaining full information
on w, from the knowledge ofv;. According to the
definitions given in (Willems, 1989; Willems, 1991,
Polderman and Willems, 1998), for linear systems this
amounts to say that whenever the whole trajectory

is null, the same happens for the whole trajecteny

On the other hand, the property of reconstructibility
corresponds, roughly speaking, to the possibility of
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similar to the ones obtained in (Valcher and Willems,
199%) for the nonnegative time-axis case.

In Section 2 we introduce some preliminary no-

tions and facts about behaviors. Section 3 is devoted
to the definition of reconstructibility and forward-

observability. These properties are compared with the
existing behavioral ones and characterized in terms
of the matrices that are used in the corresponding
behavior description. Moreover, an application to the

case of (classical) state space systems is presented.

Conclusions are drawn in Section 4.

2. PRELIMINARIES

In this paper, in the framework of the behavioral ap-
proach, we deal with the class of discrete-time sys-
tems withkernel behaviorsmore concretely, systems
¥ = (T, W,B) that are defined over the whole dis-
crete time-axisT = Z, with vector-valued variable
taking values iW = RY, for somey € N, and whose
set of admissible trajectories is a behavidrgiven

by the kernel of a matrix polynomial shift operator
R (0,07!). Here,R®**? is a Laurent-polynomial ma-
trix of the form

R MMy R4+ RVEN
with N,M € Z,, and o*!' denotes the back-
ward/forward shift defined by
(c*'w) (k) =w(k+1), keZ.
Thus
B =kerR (O’, 0*1)

{W € (R)”:R (o, 07 w= O} ,

i.e., the trajectoriesy € B are the elements ¢fR?)”
(the space oR?-value sequences ov&l) which con-
stitute the solution set of a linear constant coefficient
matrix difference equation

R Mw(k— M)+ +R'w(k— 1)+RW (k)
+R'w (k+ 1)+ -+R w (k+ N) = 0,Vk € Z.

ie.,
From now on, unless otherwise specified, the term

behaviorwill exclusively refer to discrete-time kernel
behaviors oveZ.. Note that in particular kernel behav-
iors are linear, time-invariant (i.es, (%8) = B), and
complete. The completeness of a beha®means
that it is possible to check whether a trajectevyc
(Rq)Z belongs tdB, by checking what happens in the
setJ of finite intervals ofZ. More concretely?B is
said to be complete if

(VIGJ, w] E‘B‘ )@we%. )
I I

For linear time-invariant systems, the completeness of

B is equivalent to say thaB is a closed subspace of

(IR{‘J)Z, in the topology of pointwise convergence.
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In order to study the desired properties of reconstruc-
tibility and observability, we shall consider that the
system variablew is partitioned agw;, ws), where

w is the observed variable ansl, is the variable
about which information is sought. In this case, the
corresponding behavior description

R (U, 071) w=20
will be written as
R (O’,U_l) wy = Ry (O',U_l) w1, (2)

by means of a suitable partition (and, if necessary,
rearrangement) of the columns®Bf

3. RECONSTRUCTIBILITY AND
FORWARD-OBSERVABILITY

We start by formalizing the proposed definitions for
reconstructibility and observability. Since it is clear
that we work over the discrete time-axfs for sim-
plicity we use the interval notation to represent dis-
crete intervals and write, for instandé; , k2] instead

of [kl, ]432] N Z.

Definition 1. Let B C (R%)” be a behavior whose
system variablew is partitioned asw = (wy, wa).
Givend > 0, we say thatw, is §-reconstructibldrom
W1 if

(v

Moreover,w, is said to bereconstructiblefrom w
if it is d-reconstructible fromw; for somed > 0. In
particular,w, is said to beforward-observabldrom
w ifitis 0-reconstructible fronw, i.e., if

<W1 _ 0) VkoeZ. (4)
[k:07+oo)

&
Example 2.Consider a systel = (Z,R?,B) with
variablegw1, ws), whose behavio® is described by

[ko,+00)

Wo =
[ko+0,400)

0), Vko€EZ. (3)

W3

[’%H‘OO):

OW3 = Wi,

wo (k) =wy(k—1), VkeZ.
Clearlyws is 1-reconstructible fronw,, since
w1 (k)=0, k>ko
implies
wo(k)=wi(k—1)=0, k>ko+1
It is also simple to see thawv, is not forward-
observable fromw;. Indeed, ifw; (—1) = 1 and

wi (k) = 0for k # —1, we have thaww, (0) = 1
andw, (k) = 0for k # 0. Thus
Wi
[0,400)

Howeverw, is forward-observable fromv,, as the
reader can easily check. <&

= O7 but Wy 7é 0.
[0,+00)
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Note that, due to time-invariance, thhereconstructi-

bility condition (3) in Definition 1 can be replaced by W2 [ko+6,400) =0, Vho €Z.
wl‘ = 0:>w2‘ =0, This clearly implies thatv), , = 0, allowing to con-
0,400 §,4+00 CLers . . .
0:to0) [ + : . clude that reconstructibility implies Willems-observ-
whereas the forward-observability condition (4) can ability. 0
be replaced by
W1 ‘ =0 W2’ =0.
[0,+00) [0,+00)

) ] o 3.1 Reconstructibility and forward-observability
This agrees with the definitions of reconstructibil- ~haracterization

ity and observability given in (Valcher and Willems,

199%), for discrete-time systems ové,, but not |4 this subsection we characterize reconstructibility
with the definition of observability given in (Willems, 5,4 forward-observability by means of rank condi-
1991), according to whickv; is said to be observable  {ions. Given Proposition 3, reconstructibility condi-

from w if tions could be obtained from the characterization of
(w1 (k)=0, Yk € Z) = (wo (k)=0, Yk€Z). (5) Willems-observability. However, we chose to present
here a direct proof, in order to give more insight.

In fact, as we next prove, when applied to systems over -1 ; ;
. ) e T 2 etR [¢,£7] andR [¢] denote respectively the rings
Z, Willems's observability condition coincides rather . Laurent-polynomials and of polynomials in the

with our reconstructibility property. indeterminate. Let furtherR®>™ [¢] /RO™ [¢, €71

. 7 ) denote the set of x m matrices with entries in
Proposition 3.Let B8 C (R?)” be a behavior whose R[] /R [¢,671].

system variablew is partitioned asw = (wq, ws).

Thenw,, is Willems-observabléfom w if and only if Theorem 4.Consider the dynamical systed —

it is reconstructiblerom w, for somed > 0. (Z,R9:+2 93) described by

Proof. Assume thatw, is not reconstructible from ‘B::{(wl W)€ (Rq1+q2)Z| (P (0,07 1) wa) (k)

w1. Then there exists a trajectow’ = (w},w}) € ’ ) 7

% such that =(Q(o, 07 )wy) (k), keZ},
w o 0 and Vé >0, wj - );é 0. with P (¢,¢71) e Ro*® [¢,671], Q(¢,¢7) €

4 R9*@ [¢,£71]. Then
Consider a sequence of trajectori¢&’). . con-

structed in the following way: lefV; € N be the (i) wx is reconstructible fronw, if and only if

;s_mallest positive integer such that, (N;) # 0. De- rankP (A, A7) = ¢go, VA€ C\{0}, (6)
ine
ol oNw! or, equivalently, if and only ifP ({,{71) is a
wh(Ny)' right-prime matrix oveRR [¢,£71];
For each integei > 1 let N; be the smallest integer i _ .
greater tharV;_, such thaw?, (N;) # 0 and define (i) wy is forward-observable fromv; if and only
N if there existP (¢§) € R9*2[¢] and Q (&) €
, oNiw > _ ~
W= — AL R9*4 [¢] s.t. B is described byP (o) wy =
wj (Vi) Q (o) w1, with
Note that all the trajectories® in this sequence satisfy ~
4 . rank P (\) = ¢q2, VA€ C, 7
wi =0 and wj(0)=1. ) o~ . ]
[—Ni,+00) i.e., withP () right-prime overR [¢].
Taking this into account together with the complete-
ness ofB, it is not difficult to conclude thafw?) . Proof. For the equivalence between the rank and
converges to a trajectofy € B suchthatv; = 0and  Primeness conditions we refer to (&&ra, 1991).
Wo IS nonzero (sincev, (0) = 1). This means thaw, (i) Assume that (6) holds, i.e., th& (&,¢1) is

is not Willems-observable fromv;. Hence Willems-

ight-pri R [£,£€71]). Then, th -
observability implies reconstructibility. fight-prime (over [5’5 D en, mere ex

ists a matrix U (£,¢671) € R9*9[¢,¢71],

Assume now thatvs is reconstructible fronw,, for which is unimodular oveR [¢,£71], such that
somed > 0. Consider a trajectorfw’, w}) € 9B with (Polderman and Willems, 1998),
W) .= 0. In particular, L L I,
- -1\ _ 2
vee Pt = ).
Wll =0, Vkqy€Z,
[ko,+00) Thus (leaving outr ando~! in the notation, for

and therefore, there exisis> 0 such that simplicity),
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Pwy = Qw; & UPwy = UQw,
- [3]=[3)-
< Qow; = 0andwy = Qywy,
with UQ conformably partitioned as
-1
U , -1 , -1 |:Q1(§7§_):|
Let
Qi (6671 = Qe M+ Qi+ +QTeY,
with N, M € Z.. Applying o™ to both sides of
the equalityw, = Q;w;, we obtain
(¥ ws) (k) = (Qu (0) w1 (k) ke,
allowing us to conclude that

=0= wy
[ko,+0o0) [ko+M,+00)
i.e., wy is M-reconstructible, and hence recon-
structible, fromw.

W1

)

Suppose now that (6) does not hold. Then,
P (¢,£71) is not right-prime (oveR [¢,¢71]),
implying that there exists a trajectony’ €
ker P (0,071), which is nonzero (Polderman
and Willems, 1998). This trajectory is such that
w* = (wj =0,w3) € B. If wy were recon-
structible fromw, this would imply that

*
W

=0, Vk*eZ,
[k*,+00)

and, consequentlyw; would be null in the
whole time-axisZ, which is a contradiction.
Therefore, if the rank condition (6) does not
hold, w, is not reconstructible fromwy, or, in
other words, the reconstructibility ofy from
w implies that (6) holds.

(i) Suppose now that there exiBtandQ such that

9B is described by
(P(o)yw2) (k) = (Qe)w1) (k) kEZ,
with P (&) satisfying (7) and hence right-prime
overR [¢]. Then, there exists an unimodular ma-
trix (overR [¢]) U (£) such that (Polderman and
Willems, 1998),
~ I

vere -]
Thus
f)WQ = QWl =4 Uf)WQ = UQWl

III2 _ Ql
@[5 w- [@21“
& Quw = 0andwy = Quwy,

with UQ conformably partitioned as

U Q) = [%2221
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Thus, ifwy (k) = 0 for k € [ko, +00), then
(cfz1 (0) wl) (k) = 0, for k € [ko, +00)

and hence
wa (k) =0,

which allows to conclude thatv, is forward-
observable fronw;.

for k € [ko, +00),

Assume now thaiv, is forward-observable from
wi and let

(13 (o) WQ) (k) = (Q (o) w1> k), keZ,

be a representation @. Consider a trajectory
(w1, wso) € % such thatw; = 0. Then, by the
forward-observability of3, this implies that

Vko € Z, Wo (k) =0, k> ko,

or, [1 other words,w, = 0. This means that
ker P (o) = {0}, which is equivalent to say that

rank P (A) =const VA e C\ {0},

i.e., P(¢) is right-prime overR [€,671]. Note
that this also follows immediately from the
previous item and from noticing that forward-
observability implies reconstructibility. Let now
U (£) and'V (£) be unimodular matrices (over
R [¢]) that bringP into its Smith form, i.e.,

Then,
f)WQ = le = UﬁWQ = UQWl

o [%1 Viw, = [8;1 Wi,

which is equivalent to
Q2W1 =0 and Wo = VE_1Q1W17

with UQ conformably partitioned as

U(©Q ) = [%Eg]

Thus,*B is also described by
(P@)w2) () = (Qo)wi) (k).
with P, Q defined by

Pe= |y

Q: (¢) Q2 (¢)

Now, using the forward-observability property, it
is clear that the matriQ; := VE-1Q; cannot

Q&) = [91 (5)] - [V@)Ej(g)czl (5)] .
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have terms it —1. MoreoverP (£) has constant it iS convenient for analysis purposes to rewrite the
column rank ove€. This shows that there exists Previous equations as

arepresentation & with the desired properties. {aln _ A} [ B o ] [u]
O C | -DL ||y
The observability condition (5) for behaviors ougy ~ Clearly, by Theorem 4x is reconstructible from
described by (u,y) if and only if
P(oo ) w=Q (o0 wi, ranke | MG A = ey,
is equivalent to the rank condition ] o ] o
. This coincides with the well-known (re)constructibility
rank P (A, A1) = g2, VA € C\ {0}, rank condition for state space systems oy,

see (Willems, 1991, Theorem VI.2). This coincides (KuCera, 1991), and amounts to say thakit C is
with the condition (6) in Theorem 4(i), thus leading &N unobservable mode (€, A), then\ = 0.

to the same conclusion as Proposition 3, i.e., Willems- Taking into account that all the observable modes
observability is equivalent to our notion of reconstruc- can pe shifted to zero, and minding the results in
tibility, rather than to forward-observability. (Antsaklis and Michel, 2006), the following proposi-

Note that the definition of observability, given in tion is obtained.

(Valcher and Willems, 199, for systems over. . B ) )

can be regarded as an adaptation of Willems’s defini- Proposition 5. Consider the behavidB (overZ) de-

tion (5), since it means that i, is the null trajectory ~ SCribed by the state space equations (8). Then, the
(i.e., is zero over the time-axi&. ), then the same following conditions are equivalent:

happens forw,. However, that notion can also be (1) x is reconstructible fronfu, y)
seen as an adaptation of our definition of forward-

observability. (2) If A € Cis an unobservable mode @&, A), then
A=0;
The situation is summarized in the following table
(3) There existd. € R™*P such thatA + LC is
nilpotent;
T
(4) There exists a deadbeat observer.
Property Z Zy o
Forward-observability (C1) (C1)
Willems-observability (C2) (C1) Contrary to _vvhgt happens with recoq;tructibility,
o the characterization of forward-observability for state
Reconstructibility (C31(C2) (C3) space systems ové& does not coincide with the ob-
servability condition for systems ovéf,, (KucCera,
1991),
where the conditions (C1), (C2) and (C3) are as fol- )
lows: rank {)\I"C_ A} =n, VieC.
(C1) wy =0=wy =0;

This is illustrated in the following example.
(CZ) WI‘Z =0= WQ‘Z =0;

Example 6.Consider the a state space system with no

(C3) 30 > 0s.t.wy 2, ~ 0= W2’[57+OO) =0. inputs, statex = [x1, z5]” and outputy, described by
(ox) (k)=Ax (k)
kelZ,
{ y (k) =Cx (k)

3.2 Behavioral reconstructibility and observability of

state space systems with
| | B A:{OO}, c=[o1].

Consider a behaviofB consisting of the set of 01

(x,u,y)-trajectories of am-dimensional linear and |t turns out that the stateis forward-observable from

time-invariant state space model, withinputs and>  the outputy, since the system trajectories satisfy=

outputs 0 andz, = y. However

(ox) (k)=Ax (k) + Bu (k) AL — A
{ y(=Cx(k) + Du(t) "<& ©® [ c ]

Assuming, as usual, that the input-output variables has a rank drop foh = 0. Nevertheless, the descrip-
(u,y) can be measured and the stais not available,  tion
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1 0
0 o—1
0 1
| —

P(o)

X =

= o O

is such that
rank P(\) =2, VA eC,

satisfying thus the condition of Theorem 4(ii). <

Thus, forward-observability cannot be directly charac-
terized in terms of the unobservable modes@fA ).
However, the following result can be proved.

Proposition 7. Consider the behavidB (overZ) de-
scribed by the state space equations (8). Tkes
forward-observable fronfu,y) if and only if there
exists a suitable change of variabi€k) = Sx (k),
whereS is an invertiblen x n matrix, such that

ox; = Aix;+Bju
Xo = 0 ()‘(1,5(2) =X
y = GCixy,
with (Cq, A) observable. O

4. CONCLUSIONS

In this paper, we have introduced and character-
ized the properties of reconstructibility and forward-
observability for systems ovet. A comparison was
made with the existing results in the behavioral setting
as well as in the classical state space framework. It
turned out that our reconstructibility property is equiv-
alent to Willems-observability. Moreover, for the case
of state space systems (ov&), the characterization
of reconstructibility coincides with the well-known re-
constructibility condition for systems ovér, . How-
ever the characterization of forward-observability is
different from the observability condition for state
space systems ovér, .
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