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Abstract— The high level of uncertainty of the dynamic
response of patients subject to anaesthesia motivates the use
of adaptive control methods. This paper proposes an approach
based on Switched Multiple Model Adaptive Control (SMMAC)
to tackle this problem in what concerns the control of the
neuromuscular blockade level. It is shown how to design
the different elements of the SMMAC controller, enhancing
the importance of the observer polynomial, that is shown to
be instrumental to stabilize the loop. Clinical results using
atracurium as blocking agent are reported, thereby illustrating
the application of the proposed approach in actual clinical
practice.

Index Terms— Anaesthesia, Neuromuscular Blockade, Com-
puter Control, Adaptive Control, Biomedicine, control applica-
tions.

I. INTRODUCTION

Feedback control for drug dosing in clinical pharma-
cology is receiving increasing attention [1], [2]. Besides
circumventing the tedious, imprecise and sometimes low
performance procedures associated to open-loop control,
feedback control can also significantly advance the medical
understanding of the effects of pharmacology agents and
anesthetics and provide progress in drug delivery systems.
Significant examples [1] are provided by the closed-loop
control of the cardiovascular function and automated anaes-
thesia. During surgical procedures patients are usually under
general anaesthesia, defined as the lack of response and
recall to noxious stimuli, reflected in loss of conscience,
pain insensitivity and muscle paralysis. Several approaches
to the neuromuscular blockade control problem as well as
an introduction to this issue can be seen in [3], [6], [4] [7]
and [5]. Muscle relaxant drugs are frequently given during
surgical operations. The non-depolarizing types of muscle
relaxant act by blocking the neuromuscular transmission
(NMT), thereby producing muscle paralysis. The level of
muscle relaxation is measured from an evoked EMG at
the hand by electrical stimulation of the adductor policies
muscle to supra-maximal train-of-four stimulation of the
ulnar nerve. In a clinical environment the measurement of
the neuromuscular blockade level corresponds to the first
single response (T1%) calibrated by a reference twitch,
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obtained by defining a supra-maximal stimulation current.
This measuring process is prone to the occurrence of outliers,
a problem dealt with in [8]. The control of the neuromuscular
blockade provides a good illustration of the main features and
inherent constraints associated with the control of physiolog-
ical variables. It is characterized by a very high degree of
uncertainty in the dynamics of the system due both to inter-
patient variability as well as time variations. This suggests
that multiple-models based control techniques would provide
a suitable solution [9]–[11]. Such a scheme (incorporating
several modifications in order to accommodate the specific
characteristics of the problem) has been developed in [12],
using multiple controllers constructed from a bank of models
which replicate the observed variability of the dynamic
responses to the muscle relaxant [13]. In [14] restriction
techniques (controller localization) relying on a robustness
condition have been proposed. These techniques yield good
results but suffer from the major drawback of assuming a
strong assumption on the plant dynamics.

The main contribution of this paper consists in providing
guidelines for designing the Switched Multiple Model Adap-
tive Control algorithm for neuromuscular blockade using
atracurium, and to validate them with actual clinical cases.
A special emphasis is placed in the selection of the observer
dynamics, for which guidelines for the selection of the
characteristic polynomial are provided.

The paper is organized as follows: after the introduction
which motivates and formulates in general terms the problem
to be solved, the model for neuromuscular blockade is
described in section 2. The switching multiple model control
algorithm used is described in section 3. Section 4 describes
results, both simulations and clinical trials. Finally, section
5 draws conclusions.

II. NEUROMUSCULAR BLOCKADE MODEL

In order to design the bank of local controllers upon which
the switched multiple model algorithm relies. Furthermore,
this model reveals the structure of the system to control,
thereby providing insight on design options.

The dynamic response of the neuromuscular blockade for
atracurium may be modelled as shown in Figure 1 [7],
[13]. A linear pharmacokinetic model (block 1 of Figure 1),
described by the following linear system of state equations















ẋ1(t) = −λ1x1(t) + a1u(t)

ẋ2(t) = −λ2x2(t) + a2u(t)

cp(t) =
∑2

i=1
xi(t),

(1)
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Fig. 1. Block diagram of the neuromuscular blockade model.

relates the drug infusion rate u(t) [µg kg−1 min−1] with
the plasma concentration cp(t) [µg ml−1], where xi (i =
1, 2) are state variables (implicitly defined by (1)) and ai

[kg ml−1], λi [min−1] (i = 1, 2) are patient dependent pa-
rameters. The physiological basis of the model described by
equation (1) consists of assuming two plasma compartments
(central and peripheric) both communicating with each other.
A linear second order model (blocks 2 and 3 of Figure 1),
described by the cascade of two first order systems, written
as

ċ(t) = −λc(t) + λcp(t) (2)

and
ċe(t) = −1/τce(t) + 1/τc(t), (3)

is assumed to relate cp(t) with the concentration in the effect
compartment, ce(t) [µg ml−1]. Here, c(t) is an intermediate
variable and λ [min−1], τ [min] are patient dependent
parameters. It is remarked that standard models developed
for atracurium [?], [15] do not consider the block 3. As
shown in [13], the inclusion of the extra delay associated to
τ allows a better replication of the observed experimental
responses. Finally the pharmacodynamic effect, that relates
ce(t) to the induced pharmacodynamic response, r(t) [%],
may be modelled by the Hill equation [15](block 4 of Figure
1),

r(t) = 100Cγ
50/(Cγ

50 + cγ
e (t)), (4)

where the parameters C50 [µg ml−1] and γ (adimensional)
are also patient-dependent. The variable r(t), normalized
between 0 and 100, measures the level of the neuromuscular
blockade, 0 corresponding to full paralysis and 100 to full
muscular activity.

III. SWITCHING CONTROL

In recent years adaptive control approaches based on su-
pervisory switching control have been proposed to deal with
systems presenting high level of uncertainty. This section de-
scribes the basic structure of switching control and presents
two different solutions to overcome robustness issues related
to the implementation of such a control scheme. It is assumed
that a discretization procedure has taken place, and hence
from now on the variable t represents discrete time instants.

A. Basic structure

The basic structure of a supervisor based switched multiple
model controller is seen in Figure 2, as described in [9],
[10], [14]. In Figure 2, y denotes the sensor measure, ref
denotes the reference, ec the control error and P the plant
to be controlled. A bank of controllers Cj , j = 1, ..., N is

designed to match the plant models Mj . This set of models is
assumed to “cover” all the possibilities of the actual plant P .
In order to select at each time which controller best matches
P , the principle according to which the best model perfor-
mance implies the best controller performance is applied.
One possibility for evaluating the model performance is to
compare the output yj of each model Mj with the process
output y. Another possibility is to construct estimators Ej

based on each of the models Mj , see subsection III-C.

In either case an error ej is produced, which is measured
through a performance index (PI) πj , j = 1, ..., N, computed
by low pass filtering according to

πj(t + 1) = λππj(t) + (1 − λπ)ej(t), (5)

where t is discrete time and λπ is a parameter to adjust. The
switching logic block SL selects the index σ of the controller
to apply to the plant. This selection is given by the value of
j corresponding to the least value of πj , but ensuring that,
once a controller is applied to the plant, it remains so for a
minimum amount of time τD. This is the so called “dwell
time” condition, which prevents high frequency commuta-
tion among controllers and prevents instabilities that could
occur due to too fast switching [9]. An integrator common
to all blocks ensures bumpless transfer between different
controllers [9]

(

discrete control transfer function Cj(z) =
C̄j(z) z∆t

z−1
, ∆t sampling time

)

. Outlier removal is per-
formed with a Bayesian filter, according to the techniques
described in [8].
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Fig. 2. Switched multiple model control strategy.
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B. Local controller design

Each controller Cj in the bank of local controllers has a
PID structure with the integrator separated, parameterized as

v(t) =kp

(

1

Ti

+
z − 1

z∆t
+ Td

(

z − 1

z∆t

)2
)

ec(t), (6)

u(t) =
z∆t

z − 1
v(t). (7)

The gains kp, Ti and Td are designed according to a
dominant-pole placement rule [16] by applying the expres-
sions:

n =b1w1 − b2w2 + ζa2w2,

a =
a2 − a1 + ζb2

αn
,

b =
b2w1 − b1w2 − ζa2w1

αw1w2n
,

Ti = −
a

2

√

a2

4
− b, (8)

c = − ζa2 + b2 − b1,

d =(a2 + ζb2)

(

w2αTi −
1

w2Ti

)

,

e = − a1

(

w1αTi −
1

w1Ti

)

,

kp =
ζ

c + d + e
, (9)

Td =αTi, (10)

where G(jwi) = ai + jbi, i = 1, 2 are two points of the
plant Nyquist curve, ζ is the damping ratio and α is a

priori fixed. Typical points of the Nyquist curve are those
which correspond to the plant phase frequencies −180◦ and
a value close, but inferior to it, and a common value for α
is α = 4. The above method for designing PIDs proves to
be an adequate one, even for non-minimum phase plants and
provides a step response with little overshoot.

C. Observer Dynamics

As done in [9], the estimate ŷj(t) of y(t) is made by
including an observer polynomial.

Let each model Mj be represented by the ARX model

Aj(q
−1)yj(t) = Bj(q

−1)u(t) + ēj(t), (11)

in which

Aj(q
−1) =1 +

∑na

i=1
aj,iq

−i, (12)

Bj(q
−1) =

∑nb

i=1
bj,iq

−i (13)

are polynomials in the unit delay operator q−1, with Aj

monic and Bj of fixed degrees na and nb respectively, for
all j = 1, ..., N . In order to associate to (11) a state space
model, define (nb > 1)

s(t) =

[yj(t) . . . yj(t − na + 1) u(t − 1) . . . u(t − nb + 1)]T .
(14)

For nb = 1, s(t) = [yj(t) . . . yj(t−na +1)]. In the case of
an ARX model, i.e. when the disturbance acting on (11) is
white noise, s(t) is a (nonminimal) state associated to (11),
whose evolution is described by the state-space model

s(t + 1) = Φjs(t) + Γju(t) + Gē(t + 1)
yj(t) = Hs(t)

(15)

in which

Φj =
[

−aj,1 . . . −aj,na bj,2 . . . bj,nb
Ina−1 0na−1×1 0na−1×nb−2 0na−1×1

0 . . . 0 0 . . . 0

0 0nb−2×1 Inb−2 0nb−2×1

]

(16)
Γj = [bj,1 01×na−1 1 01×nb−2]

T , (17)

with the “1” in Γj in the na+1th position (nb > 1) and G =
[1 01×na+nb−2]

T ,H = [1 01×na+nb−2]. The pair (Φj , Γj)
is reachable and (H, Φj) is reconstructible (the state can be
obtained from past data) but not observable (the state cannot
be recovered from future data). The advantage of using this
type of state consists in the fact that it readily provides
a shared state realization, i.e., a state-space realization in
which the state is common to all models Mj/Ej in Figure
2. Consider now the problem of designing a state observer
to (15) or equivalently, a prediction to (11). For that sake
add Aoyj(t)−Ajyj(t) to both sides of (11) to conclude that
the model may be represented by

yj(t) = (Ao − Aj)
1

Ao

yj(t) +
Bj

Ao

u(t) +
1

Ao

ēj(t), (18)

where Ao(q
−1) = 1 +

∑na

i=1
ao,iq

−i is a stable monic
polynomial with the same degree as the Aj’s, which will
hereafter be referred as the “observer polynomial”. Define
an estimator Ej for the plant by

ŷj(t) = (Ao − Aj)
1

Ao

y(t) +
Bj

Ao

u(t). (19)

The idea behind this is that if the process model would
coincide with Mj , y would coincide with yj . Therefore

y(t) − ŷj(t) = yj(t) − ŷj(t) =
1

Ao

ēj(t) (20)

and the estimate ŷj would be asymptotically accurate pro-
vided that Ao is chosen to be Hurwitz. Indeed, the tracking
error is a low pass filtering of the disturbances. If a dead-
beat ("fast") observer is selected (all the roots of Ao at the
origin) no filtering occurs. As confirmed by the experiments
below, a much better choice consists in making the observer
dynamics much slower, by selecting the roots of Ao in the
real segment between 0 and 1, but away from 0.

D. State space interpretation

The estimator (19) can be interpreted in terms of a state
observer as follows. Define

η(t) =
1

Ao(q−1)
y(t), (21)

ν(t) =
1

Ao(q−1)
u(t). (22)
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With the state defined by

xη(t) = [η(t) η(t − 1) . . . η(t − na + 1)]
T

, (23)

the state-space realization of (21) is seen to be

xη(t) = Φ̄oxη(t − 1) + Γ̄oy(t), (24)

where

Φ̄o =

[

−ao,1 −ao,2 . . . −ao,na

Ina−1 0na−1×1

]

, (25)

Γ̄o = [1 01×na−1]
T . (26)

For (22), a similar reasoning holds. The state defined by

xν(t) = [ν(t) ν(t − 1) . . . ν(t − na + 1)]
T (27)

yields

xν(t) = Φ̄oxν(t − 1) + Γ̄ou(t). (28)

In turn, defining the state of the reconstructor as

sf (t) =
[

xη(t)T xν(t)T
]T

, (29)

equation (24) together with (28) yield

sf (t) = Φosf (t − 1) + Γoyy(t) + Γouu(t), (30)

in which

Φo =

[

Φ̄o 0na×na

0na×na
Φ̄o

]

, (31)

Γoy =
[

Γ̄T
o 01×na

]T
, (32)

Γou =
[

01×na
Γ̄T

o

]T
. (33)

From (19)

ŷj(t) = Hj,osf (t − 1) (34)

with Hj,o given by

Hj,o = [ao,1 − aj,1 . . . ao,na − aj,na bj,1 . . . bj,nb
01×na−nb

]
(35)

The vector sf (t) corresponds to a filtering of s(t) by the
observer dynamics. This dynamics may be chosen in order to
provide the controller with robustness properties with respect
to un-modelled plant dynamics. A possibility consists in
choosing a dead-beat observer, in which case ao,i = 0 for
i = 1, . . . , n and s(t) is exactly recovered after n steps.
However, as already mentioned, the dead-beat observer is an
inconvenient choice in the case of neuromuscular blockade
where the possible dynamics are such that this may lead to
a wrong selection of the best local controller.

IV. RESULTS

To achieve a high level of neuromuscular blockade in a
short time, a bolus of atracurium is always administered
in the beginning of a surgery. After the administration of
the bolus, the level of the muscular blockade increases
very quickly (the variable r, that measures muscular activity
decreases), and full muscle paralysis is induced in a few
minutes. Following that initial period, the control objective
is to follow a specific reference profile with a final target
value ref ≡ ref0. The value of the reference profile is
initially fixed at a low level (typically 2.5%) during the first
30 minutes. It is then gradually increased to the final value
(typically 10%). A bank of N=100 non-linear dynamic mod-
els Mj , j = 1, . . . , N with the same structure as described
in section II was generated using the probabilistic model for
atracurium [13]. Furthermore, for each Mj , a controller Cj

was tuned using the dominant-pole placement rule described
in subsection III-B. This provides a controller bank which
covers a wide range of behaviors.

A number of simulations are shown hereafter which illus-
trate the results obtained with switching control.

A. Base line examples

In this set of simulations, a base line is established and
the observer polynomial is selected with all the roots at
the origin (no filtering). Figure 3 illustrates the results for
P = M69, where the pair (M69, C69) has been removed from
the model-controller bank. As seen in Figure 3 the resulting
behavior is poor.
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Fig. 3. Results obtained for P = M69 with all the roots of the observer
polynomial selected at the origin (no filtering).

B. Observer dynamics effect

If the roots of the observer polynomial are chosen to be
stable and real but not at the origin, the performance clearly
improves as expected. Two examples may be seen in Figures
4 and 5 with roots of Ao at {0.85, 0.85, 0.85, 0.85} and
{0.92, 0.92, 0.92, 0.92} respectively.

WeA01.3

2544



0 50 100 150 200 250
0

5

10

15

20
r(

t)
 %

Model 69

r
ref

0 50 100 150 200 250
0

5

10

15

20

25

u
(t

) 
µ

g
 k

g
−

1
 m

in
−

1

0 50 100 150 200 250
−8

−6

−4

−2

0

2

Time (minutes)

e
c
=

re
f−

r

0 50 100 150 200 250
0

20

40

60

80

100

Time (minutes)

S
w

it
c
h

in
g

 S
ig

n
a

l

44

Fig. 4. Results obtained for P = M69 with observer dynamics where the
roots of Ao are {0.85, 0.85, 0.85, 0.85}.
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Fig. 5. Results obtained for P = M69 with observer dynamics where the
roots of Ao are {0.92, 0.92, 0.92, 0.92}.

An extensive simulation study using each model of the
bank for mimicking the real plant P was conducted. This
study, based on the mean square tracking error (MSE) and
initial overshoot value, proved the superior performance of
the controller designed when Ao roots ro

i ∈ [0.65, 0.95] , i =
1, . . . , na = 4 (order of the neuromuscular blockade model).
All roots of Ao were made equal. Figure 6 shows the MSE
as a function of the roots ro

i of the observer polynomial Ao

for the worst case observed, i.e., for P = M69.

C. Clinical results

The clinical test of the above algorithm was performed as
part of a study to evaluate and compare the performance of
different control strategies, including SMMAC, approved by
the Ethics Committee of Hospital Geral de Santo António
(Porto, Portugal). In this framework, patients with health
features levels I to IV according to the American Society
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Fig. 6. Mean square error (MSE) for P = M69 as a function of the roots
ro
i of the observer polynomial Ao. The upper right corner shows a zoom

of the MSE for 0.65 ≤ ro
i ≤ 0.95.

of Anesthesiology (ASA) have undergone elective surgery
with automatic control of neuromuscular blockade.

Anesthesia was induced with intravenous fentanyl and
propofol. After calibration of the NMT module [17] of
the Datex AS/3 Anaesthesia Monitor, a 500 µg kg−1min−1

bolus of atracurium was administered. Anesthesia was main-
tained with AIR or N2O/O2, propofol infusion or sevoflurane

and fentanyl as needed. Atracurium (1mg/ml) was delivered
by a computer controlled syringe driver (B|Braun Perfusor
compact S) [18]. The controller is implemented in a portable
battery operated computer that receives the muscle relaxation
level signal via the RS 232C port, from the Datex AS/3 and
updates the diffusion rate delivered by the pump with a sam-
pling rate of 20 s. The control algorithms were programmed
in C-code, automatically generated from MATLAB code.

Figure 7 provides a view of a patient in the operating
room with the set-up for automatic neuromuscular blockade
control (NMB). The NMB sensor is seen on the left hand
of the patient. The syringe is seen mounted on the computer
controller drive (left of the picture, of green color) as well
as the portable computer (on the right).

Figures 8 and 9 show clinical results with observer dy-
namics where the roots of Ao are {0.85, 0.85, 0.85, 0.85}
and {0.92, 0.92, 0.92, 0.92} respectively. The last situation
(with the observer roots at 0, 92) has clearly a superior
performance, both in tracking the reference and in reducing
the fluctuations of the manipulated variable. Again this
illustrates the advantage of a slower observer.

V. CONCLUSIONS

The control of neuromuscular blockade during anaesthesia,
through the continuous infusion of a muscle relaxant, is
characterized by a very high degree of uncertainty in the
dynamics of the system, due both to inter-patient variability
as well as time variations. In order to deal with these features
adaptation methods using multiple model based switching
control was used. The selection of the observer dynamics was
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Fig. 7. A view of a patient in the operating room with the set-up for
automatic neuromuscular blockade control.
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Fig. 8. Clinical results obtained with observer dynamics where the roots
of Ao are {0.85, 0.85, 0.85, 0.85}.

shown to be a crucial issue for achieving good performance
and even stabilizing the loop. As expected from theory, fast
observers yield oscillating behaviors and may even lead to
wrong a selection of the local controller. Another important
aspect is the way local controllers are designed which reflects
in the overall performance of SMMAC. In this paper, the
local controllers are PIDs tuned according to a dominant pole
placement rule. The clinical results confirmed the simulations
and present a good performance. The algorithm was able to
stabilize the patient dynamics without imposing any a priori

restrictions on the bank of models/controllers.
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