
Control in Multi-Motor Electric Vehicle with a FPGA
Platform

Ricardo de Castro, Rui Esteves Araújo, Hugo Oliveira
Faculty of Engineering, University of Porto

Porto, Portugal
{sirpdc, raraujo, hugo.oliveira}@fe.up.pt

Abstract—A new FPGA based platform is presented for
controlling a Multi-Motor Electric Vehicle (EV). By exploring the
FPGA parallel processing capabilities, two induction motor
controllers, based on Field Orientation Control and Space Vector
Modulation techniques, were merged in a single and compact
chip. Implementation issues related with the limited number of
dedicated multipliers were overcome using an efficient
computational block, based on resource sharing strategy. The
developed IP Cores were carefully optimized to fit in a low cost
XC3S1000. Experimental results, obtained with a multi-motor
EV prototype, demonstrate the proper operation of the proposed
propulsion system.

Keywords: Motion control; field programmable gate arrays;
road vehicle electric propulsion; motor drives.

I. INTRODUCTION
The recent advances in FPGA (Field Programmable Gate

Array) technology have made it possible to implement digital
control algorithms in hardware solution with low costs. One of
the key issues in each of these implementations is how to
tradeoff performance and flexibility against cost. The answer to
this question is: although the accuracy and rate of computation
can be increased with a corresponding increase in cost, it is
often possible to increase the performance with a minimal
impact on cost. So, the designer can do this by making the
"correct" choices of the algorithmic organization in terms of
parallelism and timing constraints, the data paths, the module
partitions and the reuse of modules already designed. These
issues will be discussed in the context of the design and the
implementation of FPGA-based motion control IC chip. The
core of this design is a flexible multi-motor control developed
with Verilog HDL language. The design was been firstly
implemented on an industry standard FPGA provided by
Xilinx (XC3S1000), and then verified in a Multi-Motor
Electric Vehicle.

The reduced number of logic resources offered by the first
programmable logic technologies conditioned the initial
incursion of the FPGAs in electric drives applications. The
earliest FPGAs were mainly used to assist the DSPs (Digital
Signal Processors), offloading them from the low level control
layers which require reduced execution times, such as the
voltage modulation [1]. In recent years FPGAs have received
considerable improvements and began to be seen as a complete
alternative to the DSPs control systems, offering potential
benefits in the controller performance. Predictive Current
Control, Direct Torque Control and Fuzzy Logic Control are

some recent examples, well documented in the literature [2]
and [3], where the use of FPGAs has improved the quality of
controlled variables. This technology has also received
attention by some industrial manufacturers, highlighting the
AcceleratorTM [4] platform developed by International Rectifier,
oriented to control position in industrial applications, which
requires high-bandwidth control of torque and speed. This
platform subsequently has become an Application Specific
Standard Product (ASSP) [5].

Our long-term objective is the development of an efficient
multi-control chip applicable to the electric vehicle field and
able to control multi-motors propulsion systems with functions
for future driver assistance systems. The main contribution here
is to explore the FPGAs capabilities to control several motors
simultaneously. Besides traditional industrial applications, such
as multi-axis robotic manipulator arm [6] and process control
[7], electrical vehicles, with several in-wheel motors distributed
by the wheels, appear as an application that could benefit from
the FPGAs main features. Software based solutions, like DSPs,
have some difficulties to control more than 2 motors
simultaneously, a consequence of its sequential processing.
This normally leads to the distribution of various DSP (1 per
motor), increasing the cost and interconnection complexity.
The FPGAs do not have these kind of limitations, and offer
attractive features, like parallel processing, high calculation
capacity and modularity, allowing the merging, in a single
chip, of all motors controllers. Moreover, the concentration of
all functionalities in a single unit reduces the costs, and has a
potential impact on improving the system reliability [7].

Despite the excellent characteristics of FPGAs, some
implementation issues arise. If the control algorithms are
implemented without any resources restriction, the final
solution will require a FPGA with considerable logic
requirements, thus more costly. Methods for reducing the
number of critical resources, such as dedicated multipliers,
must be used so that FPGAs remain competitive. To address
this problem, the “Adequation Algorithm Architecture” (A3)
methodology has been used in the past with considerable
success [2]. In this paper, we propose a simple computational
block, obtained by the A3 method, which efficiently performs
the multiplication of a matrix by a vector. This module is
systematically reused during the development of the current
controller algorithm, which enables us to reduce the number of
dedicated multipliers. This approach proved to be essential to
control multiple motors with a single and low cost FPGA.

978-1-4244-4110-5/09/$25.00 ©2009 IEEE SIES 2009219

The remainder of this paper is organized as follows. Section
II presents a global overview of the developed propulsion
system for the electric vehicle. Section III discusses the need
for a multiplication sharing strategy in the FPGA control
system and presents implementation details, which is followed
in Sections IV by a resource and latency analysis. Experimental
results obtained with a multi-motor electric vehicle prototype
are included in Section V and Section VI provides some final
conclusions.

II. SYSTEM DESCRIPTION
The developed propulsion system, depicted in Fig. 1, aims

to control an Electric Vehicle with 2 induction motors, through
a single FPGA chip. The energy applied to the motors is
regulated by a set of DC/AC converters, supplied by
electrochemical batteries, and controlled by a XC3S1000 [8].
The most important modules in the FPGA are the two Motor
Controllers (MC), one for the right motor and the other for the
left motor, coded in Verilog and running in parallel. Each MC
is responsible for tracking the torque demanded by the driver,
manipulating the PWM (Pulse Width Modulation) signals
applied to the inverters. The MC algorithms are based on the
well known indirect Field Orientation Control technique [10],
containing a current loop control, a Space Vector PWM
(SVPWM) generator, and modules for sensors interface, like
encoders and analog to digital converters. The current loop
control represents the innermost control loop of the whole
system and is performed with a digital proportional-integral
(PI) current controller. The motor currents are digitalized by an

analog to digital converter and sent to the FPGA through a high
speed serial link. The final stage of AC motor control is
commanding the power semiconductors to get the desired
voltage and frequency. Due to high performance and its ease of
implementation using digital logic, the Space Vector
Modulation (SVM) has been a preferred PWM technique for
the propulsion system. To perform tasks that do not need high
speed, such as communications with supervision units, and data
logger functions, a picoBlaze soft processor was included,
using the logic primitive of the FPGA. For preliminary tests, a
uniform torque distribution strategy has been used, with both
MC receiving the same torque reference (Tleft = Tright), defined
by the throttle position. This simple strategy emulates the basic
features of a single axis mechanical open differential, widely
used in conventional vehicles.

III. MOTOR CONTROLLER

A. Principles of Operation
Despite the benefits resulting from the use of FPGAs on multi-
motor control applications, some implementation issues arise
due to the limitation of computational resources in FPGA. The
multiplication operation is often used in control algorithms,
and dedicated multipliers are valuable and limited resources in
FPGAs. In Fig. 2 the main blocks used in each MC are
presented, highlighting the multiplication operations
performed by the indirect Field Orientation Control (IFOC)
and SVPWM methods [10]. The MC starts by applying the
Clarke and Park transformation (5 multiplications) to the

Figure 1. Architecture of propulsion control chip, implemented on a FPGA.

SIES 2009220

stator currents ia, ib in order to translate them to a coordinate
system which rotates in synchronism with the rotor flux
vector.

These currents are regulated independently by two linear PI
controllers (4 multiplications), the iq controller for torque and id
controller for rotor flux, generating the stator voltage reference
in Cartesian coordinates (md, mq) which are converted to the
polar representation (|m|,θdq) using the CORDIC (COordinate
Rotation DIgital Computer [9]) algorithm (1 multiplication
used in output compensation). The final step is the
transformation of the voltage reference vector to the stationary
reference frame (|m|, θ) and apply it to the SVPWM to generate
the pulses to be sent to the inverter (4 multiplications).
Additional modules for field-weakening operation (2
multiplications), slip calculation (2 multiplication) and encoder
angle (θenc) normalization (1 multiplication) are also included
in the MC. Counting all the multiplication operations, each MC
needs 19 multipliers, or 38 multipliers for the 2 MC
instantiated in the FPGA.

If a dedicated multiplier is used for each multiplication, the
cheaper and smaller FPGAs (see Table I) do not meet the
minimum computational requirements. For example, the
XC3S1000 only has 24 multipliers, when 38 were needed to
implement the 2 MCs. Furthermore, the use of FPGAs with
more than 38 multipliers significantly inflate the cost of the
solution (Virtex XC4VLX25) or unnecessarily increase the
number of pins and the complexity of the package (XC3S2000
or XC3SD1800A), raising the printed circuit board cost.

To overcome this limitation, a multipliers sharing strategy
was used, which can reduce the number of dedicated
multipliers in the FPGA, and therefore the cost. This approach
introduces a small latency in the execution of the algorithm, but
tolerable since the execution rate of the MC is not very high.
Normally, in electric traction applications, the current levels

are very considerable (in our prototype, 120A are normally
applied to the motor), which impose limits in the maximum
switching frequency to restrain the semiconductors energy
dissipation. This switching frequency, typically below 20 kHz,
constitutes the minimum execution rate of the MC. Since the
FPGA main clock is equal to 50MHz, the MC algorithm can
handle a maximum of 2500 latency cycles (equivalent to 1/20k
= 50us) introduced by the multiplier sharing strategy (and other
latencies).

In the following sections it will be presented the details of
the resource sharing strategy, which allows us to reduce the
number of dedicated multipliers from 19 to 11 and use a simple
and low cost XC3S1000 to simultaneously control 2 induction
motors.

B. Matrix multiplication - ALUMatrix2x2

TABLE I. MAIN RESOURCES AND SMALLER PACKAGES TYPE
AVAILABLE IN THE SPARTAN 3 [8],SPARTAN 3A-DSP AND VIRTEX 4

FAMILIES.

Spartan
Family

Num.
Slices

Dedicated
Multipliers

Smaller
Package

Num.
Pins

XC3S400 3584 16 TQG 144

XC3S1000 7680 24 FTG 256

XC3S1500 13312 32 FGG 320

XC3S2000 20480 40 FGG 456

XC3S4000 27648 96 FGG 676

XC3SD1800A 16640 84 CSG 484

XC4VLX15 6144 32 SFG 363

XC4VLX25 10752 48 SFG 363

Figure 2. Main mathematical operations carry out by the Motor Controller (MC) algorithm, based on IFOC and SVPWM.

SIES 2009221

Some of the computing blocks of the MC, as the Clarke and
Park transformation and PI controllers, can be formulated in a
matrix representation. The implementation of these modules
can be significantly simplified if an efficient computation
module is available to perform multiplication of matrices by
vectors. To take advantage of this fact, a dedicated
computational module, designated as ALUMatrix2x2, has been
developed, which performs the multiplication of a matrix, with
2 rows and two columns (2x2), by vector with 2 elements:

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

=

2

1

2221

1211

2

1

x
x

aa
aa

y
y

Axy
 (1)

Normally this operation requires 4 multiplications and 2
sums. The ALUMatrix2x2 module only uses 1 multiplier,
instead of 4. This is achieved by multiplexing the multiplier
inputs, inserting a set of auxiliary registers to store
intermediary results and including a finite state machine (FSM)
to manage the calculations (see Fig. 3). Details about the FSM
operation are omitted but can be easily inferred: acknowledge
new data (signal nd), selects a11 and x1 signals, multiply, store
multiplication result in the temporary register (ldtmp), selects
inputs a12 and x2, multiply, perform sum, store output y1, and
so on. In total, 15 latency cycles are introduced by the
multiplier sharing strategy.

Since this computational block is reused in various MC
modules, the bitwidth of the multiplier is adjustable by the
parameter NBITS, to allow different quantization levels. For
instance, the Clark and Park transformations and the PIs use
fixed point (signed) format, with 18 bits (see Fig. 4), while the
SVPWM module (see Fig. 5) only uses 13 bits.

C. Park and Clarke Transformation

The Clarke transform, in its matrix form, is given by:

 ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

b

a

i
i

i
i

3231
01

β

α
 (2)

and the Park transform:

() ()
() () ⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡

β

α

θθ
θθ

i
i

i
i

q

d

cossin
sincos

 (3)

The transformations (2) and (3) can be efficiently
implemented reusing the ALUMatrix2x2 module (see Fig. 4a),
presented in the previous section. The transformation (3) also
requires the determination of trigonometric functions, which
are obtained through two ROM tables. Note that the reuse of
the matrix multiplication block, with resources sharing, reduces
the number of dedicated multipliers from 5 to only 2, and
introduces a 30 cycles latency (1.2% of 50us), perfectly
acceptable given the minimum execution rate of the MC.

D. PI Control
The regulation of iq and id currents is done by two PI

controllers, which, in its discrete formulation, can be
represented by the following relationship:

[]
[]

[]
[]⎥⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
+
+

ke
kx

KK
T

ky
kx

pi

s1
1
1

 (4)

Figure 3. ALUMatrix Module: multiplication of a 2x2 matrix by a vector

using a single dedicated multiplier.

a)

b)

Figure 4. a) Clark and Park transformation; b) Proportional and Integral
Controller, based on the ALUMatrix module (all variables have fix point
(signed) format, represented by the notation Qx.y - x bits for the integer

part and y bits for the fraction part).

SIES 2009222

where e[k] is the error between the reference and the current
measurement, x[k] can be interpreted as the integral of the
error, y[k] is the output, Ki is the integral gain, Kp is the
proportional gain and Ts corresponds to the update rate of the
discrete system.

The PI control, like the transformations, can benefit from
the use of the ALUMatrix module to decrease the number of
computational resources in the FPGA (see Fig.4b). The error
e[k] is calculated by subtracting the reference from the
measure, (4) is implemented through the ALUMatrix2x2 block,
two limitation blocks restrain the integration error and the
output and a clock signal defines the update rate. Thus, the
number of dedicated multipliers for the 2 PIs is reduced from 4
to only 2, introducing 15 cycles of latency.

E. SVPWM
The Space Vector PWM, is one of the main techniques

used to control three phase inverters, allowing a 15% increase
in the linear zone of operation and a low current distortion,
compared with carrier-based modulation techniques [10], and
was the modulation method used in this work. The module
receives the normalized voltage vector reference, defined in
polar coordinates (m, θ), and generates six PWM signals to be
applied to the power semiconductors. The modulus of the
normalized voltage vector is normally defined as modulation
index, given by:

dc

m

V

v
m

π
2

1= (5)

where v1m is the fundamental output voltage and Vdc is the DC
Bus voltage. The three-phase inverter is capable of generating
8 voltage combinations (100, 110, 010, 011, 001, 101, 000 and
111 where 1 represents that the top switch is on and lower
switch is off, and 0 mean the opposite) . These 8 vectors, 6
active and 2 null vectors, form a hexagon on the stationary
reference frame and can be defined as:

⎪⎩

⎪
⎨
⎧

=

==
−

7 0 0

6,...,1
32

)1(
3

,, n

n,em
nj

n

ππ
 (6)

The principle behind the SVPWM is based on the
modulation of adjacent space vector for each sector. For
instance, if the voltage vector reference lies in the first sector,
during a switching period of time the inverter must apply the
vector m1 and m2 during t1 and t2 and m0 and m7 during t0 and t7
times. A more detailed description of the SVPWM techniques
can be found on reference [10].

The detailed view of SVPWM implementation is presented
on Fig. 5. To simplify the calculations, only the formulas valid
in the first sector are implemented. The identification of the
sector (1 to 6) in which the voltage vector lies is
straightforward because the voltage angle (θ) is known and the

sector can be easily detected, comparing the angle of the
voltage vector with the 6 sector limits:

⎪
⎪
⎩

⎪
⎪
⎨

⎧

≤<

≤<
≤<

=

ºθº

n

360300 , 6
...

12060º , 2
º600º , 1

θ
θ

 (7)

Next, an equivalent first sector voltage vector (m1s, θ1s) is
calculated, rotating the input vector to the first sector, which is
performed subtracting the original voltage angle by (n-1)*60
degrees, and maintaining the voltage modulus:

 () º60 1 1

1

−=
=

n
mm

s

s

θθ
 (8)

Note that, because the voltage vector is in polar
coordinates, both the sector identification and voltage rotation
are much simpler to perform than if the voltage vector was

Figure 5. SVPWM implementation diagram (top); SVPWM simulation
results, with fixed modulation index (m=0.5) and variable theta (bottom).

SIES 2009223

defined in the Cartesian coordinates. With the voltage vector in
the first sector, the times t1, t2 and t0, which defines the “on
time” of the 2 active voltage vectors and the zero voltage, are
calculated with the help of a simple trigonometric relationships,
valid for the first sector:

 ()
()
() 2/

sin
º60s

32

2170

12

11

1

ttTtt
t

int

Tm

s

s

s

ss

−−==
=

−=

=

θη
θη

π
η

 (9)

Like the previous modules, (9) was obtained using a
multiplication sharing strategy, which enables us to reduce the
use of dedicated multipliers from 4 to only 1, for each SVPWM
instantiation. The trigonometric function was implemented
with one ROM (Read Only Memory) table, with the address
bus specifying the sine angle, and the data bus returning the
function result. The t1, t2 and t0 times must be transformed in
duty cycles to be applied to each arm in the inverter. The duty
cycles, which depends on the ti times, but also on the voltage
vector sector, are stored in the Compare Registers (CRi), which
are obtained by multiplying the timer vector [t1 t2 t0]T by a
matrix Mi, depend on the sector in which the vector voltage
lies (see [10] for Mi definition). Because the coefficients of the
Mi matrix are restricted to zeros and ones, this multiplication
can be efficiently implemented with 6 conditional sums. Before
generating the PWM signals, the CRi registers are shaped with
a pulse elimination method [11], dropping pulses less than a
minimum width (2 times the inverter deadtimes) to ensure the
proper operation of the inverter when high modulation indexes
are used. The final step in the SVPWM is comparing the CRi
registers with a triangular wave, generated with an Up/Down
counter, and apply the dead-times to the PWM signals.

In Fig. 5 some simulations results for this module are
presented. It can be seen the evolution of the CR1 register for a
fixed value of the voltage vector module m (defined as |V*|)
and a variation from 0 to 4π in the vector angle θ (defined as
theta). In the zoom box it is shown a fragment of the triangular
wave, operating at 10 kHz, and the output PWM signals, which
demonstrates the correct operation of the developed SVPWM.
These simulation results were obtained with the ModelSim
program, which provides a useful environment to develop test-
benches and conduct several tests to validate the correct
function of the developed modules.

One final word for the coordinates system used in the
SVPWM. Most SVPWM implementations represent the
voltage vector in the Cartesian coordinates (mα, mβ , in
stationary frame). In this work, we choose to formulate the
SVPWM in the polar coordinates(m, θ) to be easier to evolve
in the near future to an hybrid PWM method, like the one
proposed by Malinowski [12], to reduce the switches’ losses of
the power converter.

F. Other modules
The Cartesian coordinates (md, mq) manipulated by the

linear PI controllers, must be converted to a polar
representation (|m|,θdq) to be compatible with the SVPWM
input format (see Fig. 2). This operation was carried out
efficiently using a CORDIC algorithm, available from Xilinx
[13], calculating the module and angle of the vector (md, mq) in
20 cycles.

The slip calculation, field weakening and angle
normalization are implemented the same way as depicted in
Fig. 2. The multiplier sharing strategy was not applied to these
modules, because the reduction of multipliers obtained in the
transformations, PIs and SVPWM modules was enough to
reach our objective: include 2 MC in the XC3S1000.
Nevertheless, in the future, these modules could also benefit
from the multiplier sharing strategy.

TABLE II. RESOURCE UTILIZATION OF THE MAIN IP CORES

Type Module Slices Mul. BRAM FMax
(MHz)

Motor
Control
(MC)

Curr.Control
(2*ALUPI +

Rect2Polar + …)
1012 6 1 92

SVPWM 316 1 1 86
TClarke +

TPark 212 2 1 78

Field
Weakening 59 2 1 125

ADC Interface 47 190
Encoder
Counter 37 134

(Note: Design Tool: ISE WebPack 8.2.03i, Family: Spartan 3, Speed Grade: -5)

TABLE III. RESOURCE UTILIZATION OF THE XC3S1000 FPGA

Module Num.
Instances Slices Mult.

Motor Control (MC) 2 3366
(44%)

22
(92%)

Others 1 1365
(17%) 0

Total (%) 4731
(61%)

22
(92%)

(Note: Design Tool: ISE WebPack 8.2.03i, Family: Spartan 3, Speed Grade: -5)

Figure 6. Latency introduced by the MC sub-modules (the main clock in
the FPGA has a frequency of 50MHz, thus 2500cyces = 50us = 1/20kHz)

SIES 2009224

IV. LATENCY AND RESOURCE USAGE ANALYSIS

A. Latency Analysis
Figure 6 shows the latency cycles introduced by the MC

sub-modules. Before beginning the mathematical calculations,
the MC must acquire the motor currents. Since the used FPGA
does not have an internal ADC, the current measurement is
done through ADCs (TI ADS7818) external to the FPGA and
its value transmitted by a high-speed serial protocol. This
acquisition process presents 250 latency cycles and represents
the largest delay in the MC (73% of the total time). The MC
computational blocks (Clark and Park transformation, PIs and
SVPWM), introduces a latency of just 90 cycles. In total, the
MC control cycles is performed in less than 340 cycles (6.8us),
representing 14% of 2500 cycles associated with the MC
minimum execution rate (20kHz). These results show that the
latency introduced by the multiplication sharing strategy does
not have a significant impact in the total execution time of the
MC. Thus, there is some margin to implement more aggressive
resource sharing methods to reduce the number of multiplier
(and the FPGA cost). Moreover, albeit the MC modules have
been specifically developed for electric traction applications,
with the 20 kHz update rate limit, the low value of latency
permits a significant increase in the execution rate (up to 147
kHz). This allows the MC modules to be reused in other
industrial applications, where the demand for a high-bandwidth

control of torque and speed are much higher. Figure 6 also
shows the parallel processing capabilities of FPGA, which
allows multiple MC to run simultaneously, independently and
without compromising the performance of other modules.

B. Resource Usage Analysis
Table II presents the resources utilization of the main sub-

modules that compose the MC. An important factor that
contributes for the resources usage is the variables resolution:
the transformations and the PI Controller modules use fixed
point arithmetic with 18 bits resolution (12 for the integer part
and 6 bits for the fraction part) and the CORDIC and the
SVPWM use 13 bits resolution. Note that, due to the multiplier
sharing strategy adopted in this work, the total number of
dedicated multipliers for each MC is reduced from 19 to only
11.

Table III shows the summary of the total resources
utilization in the XC3S1000 FPGA used in this work. The two
Motor Controllers instantiated in FPGA require 44% of the
slices and 92% of the dedicated multipliers available on the
chip. Although there are a considerable number of slices
available, the low number of free multipliers prevents the
inclusion of additional MC, which presents a restriction for
future improvements. For instance, if an additional in-wheel
motor is included in the vehicle, an FPGA with a greater

a) b)
Figure 7. Multi-Motor Electric Vehicle prototype: a) chassis overview, with 2 AC induction motor coupled to the front wheels; b) FPGA Control platform based

on a XC3S1000.

SIES 2009225

number of multipliers (or a more aggressive sharing strategy)
must be applied to allow further instantiations of MC in the
chip.

In addition to the MC, there are also others modules to
perform auxiliary functions such as datalogger, RS232
communications with the supervisory unit, electronic
protections, etc., which consume 17% of the FPGA area.

V. EXPERIMENTAL RESULTS
The Faculty of Engineering of the University of Porto, in

cooperation with some Portuguese firms, and under financial
support of FCT (Foundation for Science and Technology),
developed a multi-motor electric vehicle, named uCar (Fig. 7).
In the context of this research a conventional MicroCar, Virgo
model, was transformed in a multi-motor electric vehicle,
composed with two, low voltage, 2.2kW three-phase cage
induction motors (26V, Δ, 63A and 1410 rpm), coupled to the
front wheels, and a set of four 12V lead acid batteries (105Ah)
in a series configuration. To control the 2 DC/AC converters a
single FPGA XC3S1000, based on the Digilent Spartan 3
Starter Kit, has been used (Fig. 7c). The FPGA board contains
a set of useful peripherals (50MHz clock, expansion pins, Flash
and RAM memory, etc.) and was expanded with 2 additional
circuit boards. These boards contain ADCs peripherals
(TIADS7818 and TIADS7848) to digitalize analog signals,
such as currents, voltage, throttle signal, etc., which are
essential for the control algorithms and for the 3.3V/5.0V and
5.0V/3.3V logic converters.

Preliminary experimental results, demonstrating the basic
operation of the MCs, were acquired with the FPGA embedded
datalogger, which records the evolution of mechanical
variables (motor speed), energy source status (voltage and
current) and the FOC controller variables (iq, id, motor slip, and
modulation index m) throughout the test. In Fig. 8a it can be
seen the motor controller performance during a straight line
test. During the initial acceleration the driver requests
maximum torque and the currents iq and id are maintained in

their maximum values, producing an acceleration of 2.2km/h/s.
When the EV reaches 18km/h the motor voltage saturates at
83% and id current (“flux” current) is reduced to allow the
vehicle to operate in the constant power zone. During this
period each motor consumes, approximately, 2.5kW. After
reaching 30km/h the driver requests a reduction in the vehicle
speed and a negative iq current (“torque” current) is applied to
produce regenerative braking, converting 500W from kinetic to
electrical energy (Fig. 8b), emphasizing one of the most
promising features in EV: energy recovering during braking.

VI. CONCLUSIONS
In this paper, we explored the FPGAs parallel processing

power to control two motors applied to an electric vehicle. The
IFOC and SVPWM algorithms, used on the electric motor's
control, need a considerable amount of multiplications. To
reduce the number of dedicated multipliers on the FPGA, it
was implemented a resources sharing strategy built on an
efficient computational block for the multiplication of a 2x2
matrix by a vector. This strategy made it possible to reduce the
number of multipliers from 38 to only 22, which allowed the
use of a simple XC3S1000 FPGA to control 2 three-phase
induction motors. The experimental results show the correct
functioning of the proposed system.

The presented propulsion only looks at the motor control
layer, but in future works we want to include additional layers
of control on the FPGA, such as traction control, active torque
distribution and stability control, to improve the multi-motor
electric vehicle's security and handling.

REFERENCES

[1] Y.Y. Tzou and H.J. Hsu, “FPGA Realization of Space-Vector PWM
Control IC for Three-Phase PWM Inverters”, IEEE Transactions on
Power Electronics, Vol. 12, No. 6, 1997

[2] M. Naouar, E. Monmasson, A. Naassani, I. Slama-Belkhodja and N.
Patin, “FPGA-Based Current Controllers for AC Machine Drives – A

855 860 865 870 875 880

-20

-10

0

10

20

30

40

50

60

70

80

s

iq(A)
speed(km/h)
id(A)
fslip(Hz)
m(%)

ACC FW REG

a) Motor Controller Results.

855 860 865 870 875 880
-20

-10

0

10

20

30

40

50

60

70

s

V
dc

(A)

I
dc

(A)

10*Power(kW)

ACC FW REG

b) Batteries Performance

Figure 8. Experimental results during acceleration, field weakening and regenerative braking during a straight line manoeuvre (only results from the left motor
are depicted, right motor has similar performance).

SIES 2009226

Review”, IEEE Transactions on Industrial Electronics, Vol. 54, No.4,
2007

[3] E. Monmasson and M.N. Cirstea, “FPGA Design Methodology for
Industrial Control Systems—A Review”, IEEE Transactions on
Industrial Electronics, Vol. 54, No.4, 2007

[4] “Accelerator Drive Design Platform - IRACS201 datasheet”,
International Rectifier, 2003

[5] T. Takahashi and J. Goetz, “Implementation of complete AC servo
control in a low cost FPGA and subsequent ASSP conversion”,
Nineteenth Annual IEEE Applied Power Electronics Conference and
Exposition, 2004

[6] J. U. Cho, Q. N. Le and J. W. Jeon, “An FPGA-Based Multiple-Axis
Motion Control Chip”, IEEE Transactions on Industrial Electronics, Vol.
56, No. 3, 2009

[7] K. Tazi, E. Monmasson and J.P. Louis, “Description of an entirely
reconfigurable architecture dedicated to the current vector control of a

set of AC machines”, The 25th Annual Conference of the IEEE
Industrial Electronics Society, 1999.

[8] “Spartan 3 FPGA Family –Complete Datasheet”, XILINX, June, 2008
[9] Ray Andraka, “A survey of CORDIC algorithms for FPGAs”,

ACM/SIGDA 6th International Symposium on Field Programmable
Gate Arrays, Feb. 1998

[10] M.P. Kazmierkowski, R. Krishnan and F. Blaabjerg, “Control in Power
Electronics – Selected Problems”, Academic Press, 2002

[11] A.M. Hava, R.J. Kerkman and T.A.Lipo, “Carrier-based PWM-VSI
overmodulation strategies: analysis, comparison and design”, IEEE
Transactions on Power Electronics, Vol. 13, No. 4, 1998

[12] M. Malinowski, “Adaptive modulator for three-phase PWM
rectifier/inverter”. In Proc. EPE-PEMC Conf. Kosice, 2000

[13] “CORDIC v3.0 Data Sheet”, Xilinx, April, 2005

SIES 2009227

