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Effective Features to Classify Skin Lesions in Dermoscopic images 

 

Abstract 

Features such as shape and color are indispensable to determine whether a skin lesion is 

a melanoma or not. However, there are no fixed guidelines to define which features are 

effective and how to combine them for classification. This lack of definition impedes the 

development of the automatic analyses of dermoscopic images. In this work, a search for 

effective features was carried out using a support vector machine. Three image databases 

were used to verify the feasibility and sensitivity of the automatic classification used. The 

results showed which features had a major influence on the classification performance, 

and confirmed the need to use various types of features in this process.  

 

Keywords Skin lesion; melanoma; ABCD rule; shape features; color features; feature 

selection. 
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1. Introduction 

Dermoscopy has been widely used for the diagnosis of skin lesions. The additional details 

provided by a dermoscope, compared to the inspection by the naked-eye, contribute to a 

significant improvement in the detection rate of melanoma (Binder et al., 1995; 

Argenziano et al. 2002; Kittler et al., 2002; Heymann, 2005). However, the experience of 

the dermatologist can significantly affect the diagnostic accuracy (Binder et al., 1995; 

Kittler et al., 2002); therefore, an effective automatic computer-aided model to analyze 

dermoscopic images is urgently needed. A scheme for such a model includes three major 

steps: first, the border of the skin lesion is identified on the image under study (Ma & 

Tavares, 2016; Silveira et al., 2009); then, features are extracted based on the 

segmentation, and with these features the lesion is classified into an appropriate category.  

Many mature algorithms have been proposed for the classification step, such as support 

vector machines (SVMs) and artificial neural networks (ANNs) (Kulkarni et al., 1998; 

Hastie et al., 2009); however, their performances rely on the features from the second 

step. Unfortunately, there is no recommended set of features for detecting melanomas in 

the current literature. Although many novel features have been proposed to improve the 

classification accuracy of these algorithms, the validation is normally carried out using 

different methods with different feature sets. The use of redundant or irrelevant features 

for classification not only decreases the computational efficiency but also affects the 

performance. Moreover, in many cases, cross validation is used to test a classification 

scheme, which can present over-optimistic results since images in the same database are 

prone to have similar imaging conditions and alike structures of skin lesions. Feature 

selection algorithms have been proposed to find the significant features, especially in the 



4 
 

 

area of bioinformatics (Guyon et al., 2002; Saeys, Inza, & Larranaga, 2007). Nevertheless, 

the key benefit of using such an algorithm is to reduce the dimensionality of features 

without loss of significant information (Bermingham et al., 2015). Limitations such as 

the choice of the evaluation metric and image database can affect the decision of whether 

a feature should be kept or not.  

In this work, effective features are explored without focusing on factors such as the 

accuracy of segmentation, the choice of the classification algorithm, and the 

representativeness of the training set. Three dermoscopic image databases were used in 

this study and the feasibility of automatic analysis on dermoscopic images was 

investigated based on the inter-database validation. This article is structured as follows: 

in the next section, the features selected for classification are introduced; then, in Section 

3, the experiments are described and the results are presented and discussed; in the last 

section, the conclusions and perspectives for future work are pointed out.  

2. Features 

The ABCD rule or ABCDE rule (Friedman, Rigel, & Kopf, 1985) is a clinical guideline 

to determine whether a skin lesion is a melanoma or a common nevus (Abbasi, Shaw, & 

Rigel, 2004; Friedman et al., 1985). This evaluation criteria is composed of the 

asymmetry of the lesion region (A), the geometric properties of the lesion border (B), the 

color of the skin lesion (C), the diameter of the lesion region (D), and the 

elevation/evolution of the skin lesion (E). The E rule requires follow-up inspections, and 

the other four criteria can be grouped into two categories: measures that reflect the 

geometric properties of a skin lesion (A, B, and D rules), and measures that are related 

with the lightness and chromatic information (C rule). The ABCD rule requires a 
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subjective evaluation of the different aspects of a skin lesion; hence, in order to automize 

the process in an expert system, these rules need to be quantified.  

2.1 Shape features 

To measure the shape of a skin lesion, the following six features were adopted to reflect 

the B and D rules: perimeter of the lesion; area of the lesion; perimeter to area ratio; aspect 

ratio - defined as the width divided by height of the minimum rectangle that bounds the 

lesion region; extent ratio - defined as the area of the lesion region divided by the area of 

the minimum bounding rectangle; and solidity ratio - defined as the area of skin lesion 

divided by the area of the convex hull of the lesion boundary (Haidekker, 2010; Olsen, 

2011). The first two measures describe the size of the skin lesion, while the remaining 

ones indicate its regularity. Besides these commonly used features, the total variation of 

the lesion border is adopted as the seventh feature to represent the smoothness: 

𝑉 = 𝜅 𝑑𝑠& ,          (1) 

where the lesion border 𝐶  is parameterized as 𝑢 𝑠 , and 𝜅 = ∇ ∙ ∇+
∇+

 is the mean 

curvature with ∇ denoting the divergence operator.  

For the symmetry property - A rule, an ideal measure should be irrelevant to the position, 

size and orientation of the contour. Invariant image moments are well suited to these 

requirements (Flusser & Suk, 2006), and Hu’s invariant set has been shown to be effective 

in various applications of image analysis (Hu, 1962; Flusser & Suk, 2006). Therefore, the 

seven image moments in Hu’s invariant set were selected as the eighth to the fourteenth 

shape features for classification.  
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2.2 Color features 

Although the appearance of a skin lesion can vary considerably, information concerning 

its color is always the main visual feature distinguishing it from the neighboring skin. The 

changes of pigment inside a skin lesion are important for both segmentation and 

classification steps. An ideal color feature should capture the differences between a 

melanoma and a non-melanoma nevus. Additionally, the imaging conditions can 

appreciably affect the appearance of a skin lesion on dermoscopic images; therefore, the 

ideal color features should be able to handle the diverse lighting conditions in different 

image databases. 

The color information of a dermoscopic image is stored as a triplet 𝑟, 𝑔, 𝑏  for each 

image pixel. The three color channels in the RGB color space are correlated and 

consequently they are hard to be used to evaluate the differences between colors. To 

overcome this problem, the CIE L*a*b* and CIE L*u*v* color spaces were adopted 

(Gonzalez and Woods, 2007). The benefit of separating lightness information from 

chromaticity can considerably decrease the distortions caused by lightness when defining 

color features. Accordingly, the first ten color features were chosen as the means and 

standard deviations of the 𝐿∗, 𝑎∗, 𝑏∗, 𝑢∗	and	𝑣∗ values of the skin lesion. In addition, given 

that 𝑎∗, 𝑏∗  and 𝑢∗, 𝑣∗  are the coordinates representing the position of a chromaticity 

in the color coordination system, the difference between a chromaticity and the mean 

chromaticity of the skin lesion is calculated as the Euclidean distances:  

𝑑8 = 𝑎∗ − 𝑎8∗ : + 𝑏∗ − 𝑏8∗ :,       (2) 

𝑑: = 𝑢∗ − 𝑢8∗ : + 𝑣∗ − 𝑣8∗ :,       (3) 
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where 𝑎8∗ , 𝑏8∗ , 𝑢8∗  and 𝑣8∗  are the means of 𝑎∗, 𝑏∗, 𝑢∗	and	𝑣∗  of the skin lesion and 

correspondingly 𝑎8∗, 𝑏8∗ 	and 𝑢8∗, 𝑣8∗  are the chromatic geometric centroids of the skin 

lesion. Then, the next four color features were defined as the mean and standard deviation 

of 𝑑8	and	𝑑: inside the skin lesion: 𝑑8, 𝑑8_𝜎, 𝑑:, and 𝑑:_𝜎.  

Moreover, the same 14 features of the neighboring healthy skin (the means and standard 

deviations of L∗, a∗, b∗, u∗, v∗ and the means and standard deviations of the two Euclidean 

distances to the geometric color centroids of the healthy skin) next to the skin lesion were 

added to the color features; these features not only provide the information of color 

transitions from normal skin to skin lesion, but also compensate the possible inaccuracy 

of the lesion border. Also, the lightness difference and the Euclidean distance between 

the geometric centroids of healthy skin and skin lesion were adopted as three additional 

color features: 

𝑑B = 𝑎C∗ − 𝑎8∗ : + 𝑏C∗ − 𝑏8∗ :,        (4) 

𝑑D = 𝑢C∗ − 𝑢8∗ : + 𝑣C∗ − 𝑣8∗ :,        (5) 

𝑑E = 𝐿C − 𝐿8 ,         (6) 

where 𝐿C and 𝐿8 are the mean lightness of the neighboring skin and skin lesion, and 𝑎C∗ , 

bC∗ , uC∗ , and vC∗ are the means of a∗, b∗, u∗, and v∗ of  the neighboring skin. Additionally, 

color saturation was used to correlate the lightness with chromaticity:  

S =
						0										if	R + G + B = 0
	1 − LMN O,P,Q

ORPRQ B
				otherwise     ,       (7) 

and the 32nd to 35th color features were defined as the mean and standard deviation of 

the saturation of the skin lesion (𝑠8, 𝑠8_𝜎) and the neighboring skin (𝑠C, 𝑠C_𝜎), plus the 

36th feature as the ratio of the means of the two regions: 

𝑑S = 𝑠8 𝑠C.          (8) 



8 
 

 

Table 1 lists all the shape and color features used for selection. 

3. Experiments 

3.1 Training and testing 

Although an unbiased classification requires the skin lesions in the training set to be 

representative, different types of skin lesions can have large variations in shape and 

appearance, so it is difficult to define how typical a skin lesion is. Also, due to the size of 

the available image databases, a routine validation of a classifier or new feature is through 

the leave-one-out strategy. Consequently, the evaluation of the performance may be 

biased and the high sensitivity and specificity achieved with one image database may not 

hold true for another.  

In order to make the evaluation objective, three databases of dermoscopic images were 

used. Details of these databases are given in Table 2, with samples of melanoma and non-

melanoma skin lesions shown in Figure 1. As can be seen from the Figs 1a to f, the images 

were acquired under different conditions and from patients of diverse origins. In these 

databases, the skin lesions were actually classified into more accurate sub-categories; but 

for simplicity, this additional information was ignored and each skin lesion was classified 

as either melanoma or non-melanoma. The ground truth of lesion borders were provided 

in all the databases, which were manually segmented by qualified technicians. In order to 

obtain the statistics of neighboring healthy skin referred to in Section 2.2, a 10-pixel-wide 

band next to the lesion border was used; this outside band covers a moderate region that 

is sufficient to reflect the transition of healthy skin to skin lesion in the images. 

Given the sizes of the databases, we adopted the strategy to choose one database as the 

testing set and combined the other two as the training set. However, if the training set was 



9 
 

 

formed by the 1st and 2nd image databases shown in Table 2, the total number of 

melanomas (69) would not be large enough to be used for extracting the differential 

information between melanoma and non-melanoma nevi. Consequently, the classification 

would not be able to achieve a good performance on the 3rd database, particularly with 

the fact that the 3rd database contains Spitz and Reed nevi (Lyon, 2010; Yoradjian et al., 

2012). Thus, the other two cases were adopted: the combination (Comb 1) that used the 

1st and 3rd databases as the training set and the 2nd database as the testing set; and the 

combination (Comb 2) that used the 2nd and 3rd databases as the training set and the 1st 

database as the testing set. 

The next problem to solve was related to the different magnitudes of the 50 features 

chosen for classification; for example, the value of lightness ranges from 0 to 100, while 

saturation only varies from 0 to 1. A feature scaling step was necessary to balance such 

differences. Among the features to be selected, 31 were related to the L, a∗, b∗, u∗, and 

v∗ channels, and since their region-based values were already at similar intervals. These 

features were kept unchanged and then the remaining 19 features were scaled as follows: 

x =
	50 ∗ VWVXYZ

VX[\WVXYZ
,			if	xLMN ≠ xL`V

	0,																													if	xLMN = xL`V
,             (9) 

where xLMN and xL`V are the minimum and maximum values of feature x in the training 

set.  

The support vector machine was chosen for this two-class classification, due to its 

effectiveness already shown in diverse areas of studies (Chu & Wang, 2005; Filho et al., 

2015), and the radial basis function kernel was adopted for its flexibility, stability and 

general popularity (Celebi et al., 2007). Accordingly, three parameters had to be defined: 

𝐶, 𝜀, and 𝛾. Parameter 𝐶 controls the trade-off between the error of a classifier on the 
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training set and the margin between classes; parameter 𝜀 determines the accuracy of the 

approximation; and parameter 𝛾 is related to the values of feature vectors and determines 

the behaviors of kernel functions for approximation. Values of these parameters can 

appreciably affect the performance of classification; therefore, to assure a stable 

evaluation of a feature combination, the values of 𝛾, 𝐶 and 𝜀 of the SVM were fixed as 

1𝑒 − 3, 500 and 1 in the experiments.  

3.2 Pre-selection criteria 

In order to find the best combination among the 14 shape features and 36 color features 

with a training set and a testing set, an exhaustive search requiring  2EC classifications 

would have to be made. This however could lead to an unfeasibly long computation time. 

To overcome this problem, the standard deviation of a feature would not be used if the 

mean of that feature was not used; for example, if the mean of a∗ of the skin lesion (a8∗ ) 

was not used for classification then the standard deviation of a∗ of the skin lesion (a8∗_σ) 

would not be used either. This strategy was adopted because there are 15 measures with 

both their means and standard deviations chosen as the features for selection. While the 

standard deviation indicates the variations of a measure, it can also be reflected by other 

features; for example, the variation of a* channel inside the skin lesion is partly reflected 

by the mean of distance d1, This strategy decreases the total number of classification to 

2EC ∙ B
D

8E
. In addition, since chromaticity is described by two-dimensional coordinates 

in the color spaces, the following strategies were implanted: features of a∗ channel are 

bound with the features of b∗ channel; for example, if a8∗  was used, b8∗  would be used; if 

a8∗_σ was used, then b8∗_σ would be. Likewise, features of u∗ and v∗ were bound for use; 

and features related to d8 and d: were bound; and the same for dB and dD.  
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Furthermore, the following procedure was used to implement separate searches among 

the shape features and color features: In the first phase, all the color (shape) features were 

used for classification, and the combinations of shape (color) features were searched to 

find the optimal set; then, with the optimal set of shape (color) features, the combinations 

of color (shape) features were reversely searched to find the best match. With the color 

(shape) features selected from the second phase, we can again search the combinations of 

shape (color) features to find the best match. Hence, the two-phase procedure can be 

iterated, and the best performance of classification would be improved after each iteration. 

Thus, if the search is to find the best color features for a set of shape features, the number 

of classifications would be 2:B ∙ B
D

8C
; and if the searching is to find the best shape 

features for a set of color features, the number would be 28D. 

In the experiments, the performance of classification was evaluated based on three 

measures: overall accuracy (OA), which is the percentage of the skin lesions that are 

correctly classified; sensitivity of a classification (S1) that is defined as the percentage of 

correctly classified melanomas among all the melanomas; and specificity (S2), which is 

defined as the percentage of correctly classified non-melanoma nevi among all the non-

melanoma nevi. Higher values of these indices indicate a better classification.  

3.3 First phase 

Following the procedure defined above, all the shape features were used for classification 

then the search was among the combinations of color features. For Comb 1, the highest 

overall accuracy was 83.5% and was achieved by two sets of color features. Both of them 

contained the mean lightness of skin lesion (𝐿8 ), lightness difference (𝑑E ), standard 

deviation of lightness inside the skin lesion (𝐿8_𝜎), mean saturation of the skin lesion (𝑠8), 
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mean of 𝑑8 and mean of 𝑑: inside the skin lesion (𝑑8 and 𝑑:); while one set included two 

extra features: mean lightness of neighboring skin (𝐿C) and ratio of mean saturations (𝑑S). 

With all the shape features and the six mutual color features, the sensitivity was 87.5% 

and the specificity was 82.5%; while with the additional two color features, these two 

indices were 77.5% and 85.0%, respectively. The highest sensitivity achieved in this 

phase was 97.5%, but the corresponding specificity was only 40.0%, indicating that many 

non-melanoma nevi were wrongly classified as melanomas. If both sensitivity and 

specificity were considered, a ranking on the average of these two values gave the best 

combination that achieved 92.5% of sensitivity and 80.0% of specificity; the set of color 

features has 82.5% of overall accuracy and was composed of six elements: 𝐿8, 𝑠8, 𝑑8, 

𝑑:,	𝑑E and 𝑑S. However, when we performed the classification for Comb 2 with all the 

shape features and the aforementioned three sets of color features, the overall accuracy 

of classification was only 55.0%, 54.0% and 61.0%, respectively. For Comb 2, the best 

overall accuracy of classification was 72.0% with 62.1% sensitivity and 76.1% specificity, 

achieved by a set of three color features: mean of 𝑎∗ and mean of 𝑏∗ inside the skin lesion 

(𝑎8∗ and 𝑏8∗), and ratio of mean saturations (𝑑S). Similarly, if this feature set is used for 

Comb 1, the overall accuracy was only 52.5% with 45.0% of sensitivity and 54.4% of 

specificity.  

On the other hand, if all the color features were used for classification, the best results 

after searching among the combinations of shape features gave 84.5% of overall accuracy 

for Comb 1 with 60.0% of sensitivity and 90.6% of specificity, and 70% of overall 

accuracy for Comb 2 with 34.5% of sensitivity and 84.5% of specificity. Like the findings 

above, the set of shape features that achieved good results for Comb 1 did not perform 

well for Comb 2, and vice versa.  
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The results show that the sets of features that achieved the highest overall accuracy were 

not the ones with the highest sensitivity or specificity; consequently, a measure is needed 

to decide which set of features should be used in the second phase of the search. Given 

the composition of the training sets of Comb 1 and Comb 2, the total number of wrong 

classifications (WN) in the two tests was chosen as the index to rank the features. 

Accordingly, seven sets of color features (found with all the shape features) and nine sets 

of shape features (found with all the color features) were chosen for the second phase of 

the search. Table 3 lists these 16 feature sets and the indices of the corresponding 

classification; the performance of these feature sets was moderate, but more balanced.  

The minimum of WN (Wrong Number) equals 70 when all the shape features were used, 

the set of color features included: mean lightness of skin lesion (L8), lightness difference 

(dE), mean saturation of neighboring skin and skin lesion (sC and s8), mean of d8 and 

mean of d: inside the skin lesion (d8 and d:). The minimum of WN found with all the 

color features was 72, achieved by five sets of shape features. All of them contained the 

following three features: aspect ratio, smoothness of lesion border, and area of skin lesion; 

the difference between them was the choice of the Hu's seven invariant image moments. 

The frequency of occurrence (FO) of each feature appearing in the feature sets with 

𝑊𝑁 ≤ 80 and 𝑊𝑁 ≤ 90 were calculated and are illustrated in Figure 2. For the color 

features, mean lightness of skin lesion (𝐿8), mean lightness of neighboring skin (𝐿C), 

lightness difference (𝑑E), standard deviation of lightness inside the skin lesion (𝐿8_𝜎), 

mean saturation of the neighboring skin and skin lesion (𝑠C and 𝑠8), mean of 𝑑8 and mean 

of 𝑑: inside the skin lesion (𝑑8 and 𝑑:), and means of 𝑎∗, 𝑏∗, 𝑢∗	and	𝑣∗ inside the skin 

lesion (𝑎8∗, 𝑏8∗, 𝑢8∗, 𝑣8∗) were features that had high frequencies. For the shape features, 

aspect ratio, smoothness of lesion border, and area of skin lesion had the highest 



14 
 

 

frequencies. Additionally, the difference found among the frequencies of Hu’s seven 

image moments was small, which implies that the effectiveness of these moments may 

vary when paired with other features, but generally they are of equal importance.  

3.4 Second phase 

This phase included 16,384 classifications for each of the seven sets of color features 

indicated in Table 3, and 472,392 classifications for each of the nine sets of shape features. 

With the color features fixed, the optimal set of shape features found in this phase 

improved the performance for both Comb 1 and Comb 2. For example, for the first set of 

color features in Table 3, the optimal set of shape features achieved 78.0% of overall 

accuracy for Comb 2; and for the second set of color features referred to in Table 3, the 

highest overall accuracy for Comb 1 increased to 90.5% with 92.5% of sensitivity and 

90.0% of specificity. Table 4 lists the best matches of shape and color features found in 

this phase.  

Like in the first phase, the effective shape features were different for each of the seven 

sets of color features. Figure 3 shows the FO of each shape feature in the feature sets 

whose WN ≤ 50, 60, 70, 80, 90, and Figure 4 illustrates the FO of each color feature 

based on the results for the nine sets of shape features. Aspect ratio, smoothness of lesion 

border, and area of the lesion region were the three shape features that always had high 

frequencies, especially among the feature sets with overall accuracy above 80.0%. This 

agrees with the finding of the first phase and indicates that these three shape features are 

effective and have a large influence on the performance of the classification. Figure 3 

shows that the ranking of frequencies is generally the same, and when the WN increases, 

the difference between frequencies becomes smaller since more and more combinations 
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of shape features can achieve the same lower performance. For the color features, mean 

saturation of neighboring skin and skin lesion (𝑠C and 𝑠8), mean of 𝑑8 and mean of 𝑑: 

inside the skin lesion (𝑑8 and 𝑑:), and lightness difference (𝑑E) were the ones with the 

highest frequencies, especially when the overall accuracy was greater than 80.0%. 

Similarly, the difference of frequencies among color features decreases when the WN 

increases. These five color features were also included in the ones with high frequencies 

of the first phase, which confirms their effectiveness; the missing features from the first 

phase, such as 𝐿8, 𝑎8∗ and 𝑏8∗, are the ones that directly describe the color information; this 

phenomenon was probably caused by the large variations in the appearances of skin 

lesions.  

3.5 Further selection 

Since iterating the two-phase procedure generates a no-worse result, a further search was 

carried out based on the results of the second phase. The sets of features used in this phase 

are listed in Table 4. After this search, we confirmed that most of the combinations in 

Table 4 were already the optimal matches, however, we found two extra combinations 

that were able to achieve equal performance, and are listed in Table 5; the first one is a 

set of color features that achieved the same WN as the one presented in Table 4, and the 

second one is a set of shape features with which the classification can achieve an even 

better performance. Nevertheless, another search with these two sets of features 

confirmed that the matches of shape features and color features in Table 5 were already 

the best and no further sets of features would able to achieve an equal or better 

performance. Hence, it is safe to conclude that with the search procedures performed the 

sets of features in Tables 4 and 5 were the optimal ones for classification.  
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Then, the frequencies of the shape features in the feature sets whose 𝑊𝑁 ≤

50, 60, 70, 80, 90 were calculated. In the calculation we excluded the feature sets that had 

one of the following conditions: 𝑆1 ≤ 60.0% for Comb 1, or 𝑆1 ≤ 40.0% for Comb 2, 

or 𝑆2 ≤ 70.0% for either Comb 1 or Comb 2. These exclusions guaranteed that only the 

ones that had a good performance in all the indices of classification were taken into 

account. Similarly, the frequencies of color features were calculated based on the results 

of the second phase and the extra search; the results are shown in Figs. 5 and 6. The 

images show that the shape and color features with the highest frequencies in this phase 

are in line with the findings of the first and the second phase searches; hence, the 

effectiveness of these features was once again demonstrated. 

3.6 Discussion 

Although the training set of Comb 2 contains more samples of skin lesions, the 

classification achieved a better performance for Comb 1. One possible reason is due to 

the low imaging resolution of the 1st database, which considerably affects the calculation 

of color features. However, the 2nd database contains images with incomplete profiles of 

skin lesions, and so the lesion borders on these images are inevitably inaccurate and can 

lead to wrong values of shape features. The inaccuracy of shape features and color 

features both have negative impacts on the classification; a pertinent question is which 

type of feature has the greater influence on the classification. Following up this idea, 

classification was carried out using features of just one type. The results showed that with 

only the color features, the best overall accuracy was around 83% for Comb 2, with 

sensitivity ranging from 48.3% to 72.4% and specificity from 87.3% to 97.2%, 

respectively. On the other hand, with only the shape features, the best overall accuracy 
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was about 59% with 31.0% sensitivity (also the highest value found for this index) and 

70.4% specificity, respectively. Table 6 indicates the best sets of shape features and color 

features found according to the WN. The Table shows that the minimum of WN with 

features of only one type was not much different to the minimum found using both types. 

However, the sensitivity and the specificity with both types were higher, and the 

performance of classification was more stable for different image databases. The results 

also indicated that the color features are more robust for classification, which confirms 

the fact that these features are region-based.  

The empirical search with Comb 1 and Comb 2 identified the features that are effective 

to achieve a satisfactory classification. However, it is worth pointing out that only using 

these features does not guarantee the best performance. In fact, classification using the 

five color features and three shape features that have the highest frequencies only 

achieved a moderate result with 83.0% of overall accuracy for Comb 1 and 73.0% of 

overall accuracy for Comb 2; remembering that there are features of low frequencies 

appearing in the set of features with the best performance. Nevertheless, despite this 

randomness, these eight features are most likely to achieve a good classification 

performance, and so should be prioritized in selection.  

 

4. Conclusions 

The features used in the automatic analysis of dermoscopic images have a critical 

influence on the performance of classification. However, a set of features that achieves 

good results on one database may not have an equal performance on another database, 

and a “redundant” feature may become indispensable to correctly detect a specific type 
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of skin lesion. In this work, we aimed to find the effective features for detecting 

melanomas experimentally. The three image databases used in the study were from 

different origins and acquired under diverse imaging conditions, which provides an 

objective basis for evaluation. The results obtained confirmed the effective use of both 

shape and color features and suggested the need to combine them to acquire high 

classification accuracy and robustness.   

A comprehensive study on features for classification has many practical constraints, 

because image databases from diverse studies are always different and the diagnostic 

accuracy of dermoscopy itself is not 100% even under the optimal exam conditions 

(Kittler et al., 2002). Nonetheless, the findings in our work showed that the performance 

of the automatic analysis of skin lesions in dermoscopic images is comparable to 

experienced dermatologists. Furthermore, the ABCD rule may not always be able to 

detect a small-sized melanoma or a melanoma with a regular shape and homogeneous 

color (Grin et al., 1990). In addition, there are some specific features that can be effective 

in classifying a particular type of skin lesion; for example, ridges and furrows were shown 

to be effective in detecting acral lentiginous melanoma (Iyatomi et al., 2008; Bradford et 

al., 2009; Yang et al., 2017). These subjects are challenges to be explored, and future 

work will continue to focus on solving these issues and finding more effective features. 

Acknowledgements 

This work was funded by European Regional Development Funds (ERDF), through the 

Operational Program ‘Thematic Factors of Competitiveness (COMPETE), and 

Portuguese Funds, through “Fundação para a Ciência e a Tecnologia” (FCT), under the 



19 
 

 

project: FCOMP-01-0124-FEDER-028160/PTDC/BBB-BMD/3088/2012. The first 

author also thanks FCT for the post-doc grant: SFRH/BPD/97844/2013. 

Authors gratefully acknowledge the funding of Project NORTE-01-0145-FEDER-

000022 - SciTech - Science and Technology for Competitive and Sustainable Industries, 

co-financed by “Programa Operacional Regional do Norte” (NORTE2020), through 

“Fundo Europeu de Desenvolvimento Regional” (FEDER). 

References 

Abbasi, N., Shaw, H., & Rigel, D. (2004). Early Diagnosis of Cutaneous Melanoma. 

JAMA: The Journal of Medical Association, 292, 2771–2776.  

Argenziano G., Soyer, H. P., De Giorgi, V., Piccolo, D., Carli, P., Delfino, M., Ferrari, 

A., Hofmann-Wellenhof, R., Massi, D., Mazzocchetti, G., Scalvenzi, M., & Wolf, I. 

H. (2002). Dermoscopy: a tutorial. EDRA Medical Publishing & New Media. 

Bermingham, M. L., Pong-Wong, R., Spiliopoulou, A., Hayward, C., Rudan, I., 

Campbell, H., Wright, A. F., Wilson, J. F., Agakov, F., Navarro, P., & Haley, C. S. 

(2015). Application of high-dimensional feature selection: evaluation for genomic 

prediction in man. Scientific Reports, 5, 10312.  

Binder, M., Schwarz, M., Winkler, A., Steiner, A., Kaider, A., Wolff, K., & Pehamberger, 

H. (1995). Epiluminescence microscopy. A useful tool for the diagnosis of 

pigmented skin lesions for formally trained dermatologists. Archives of 

Dermatology, 131, 286–291.  

Bradford, P. T., Goldstein, A. M., McMaster, M. L., Tucker, M. A. (2009). Acral 

lentiginous melanomaincidence and survival patterns in the United States, 1986-

2005. JAMA Dermatology, 145, 427-434. 



20 
 

 

Celebi, M. E., Kingravi, H. A., Uddin, B., Iyatomi, H., Aslandogan, Y. A., Stoecker, W. 

V., Moss, R. H. (2007). A methodological approach to the classification of 

dermoscopy images. Computerized Medical Imaging and Graphics, 31, 362-373. 

Celebi, M. E., Wen, Q., Hwang, S., Iyatomi, H., & Schaefer G. (2013) Lesion border 

detection in dermoscopy images using ensembles of thresholding methods. Skin 

Research and Technology, 19, e252-e258. 

Chu, F., & Wang, L. (2005). Applications of support vector machines to cancer 

classification with microarray data. International Journal of Neural Systems, 15, 

475-484. 

Filho, M., Ma, Z. & Tavares, J. M. R. S. (2015). A review of the quantification and 

classification of pigmented skin lesions: from dedicated to hand-held devices. 

Journal of Medical Systems, 39: 177.  

Flusser, J., & Suk, T. (2006). Rotation moment invariants for recognition of symmetric 

objects. IEEE Transactions on Image Processing, 15, 3784–3790.  

Friedman, R. J., Rigel, D. S., & Kopf,  A. W. (1985). Early detection of malignant 

melanoma: the role of physician examination and self-examination of the skin. CA: 

A Cancer Journal for Clinicians, 35, 130–151.  

Gonzalez, R. C., & Woods, R. E. (2007). Digital image processing (3rd ed.). Prentice 

Hall.  

Grin, C. M., Kopf, A. W., Welkovich, B., Bart, R. S., & Levenstein, M. J. (1990). 

Accuracy in the clinical diagnosis of malignant melanoma, Archives of 

Dermatology, 126, 763-766. 

Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. (2002). Gene selection for cancer 

classification using support vector machines. Machine Learning, 46, 389-422.    



21 
 

 

Haidekker, M. (2010). Advanced biomedical image analysis. (1st ed.) New Jersy: John 

Wiley & Sons, (Chapter 9). 

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: 

data mining, inference, and prediction. (2nd ed.). Springer Science & Business 

Media. 

Heymann, W. R. (2005). Clinical and microscopic diagnosis of melanoma. Journal of the 

American Academy of Dermatology, 52, 133–134.  

Hu, M. K. (1962). Visual Pattern Recognition by Moment Invariants. IRE Transactions 

on Information Theory, 8, 179–187.  

Iyatomi, H., Oka, H., Celebi, M. E., Ogawa, K., Argenziano, G., Soyer, H. P., Koga, H., 

& Saida, T. (2008). Computer-based classification of dermoscopy images of 

melanocytic lesions on acral volar skin. Journal of Investigative Dermatology, 128, 

2049-2054.  

Kittler, H., Pehamberger, H., Wolff, K., & Binder, M. (2002). Diagnostic accuracy of 

dermoscopy. Lancet Oncology, 3, 159–165.  

Kulkarni, S. R., Lugosi, G., & Venkatesh, S. S. (1998). Learning pattern classification-A 

survey. IEEE Transactions on Information Theory, 44, 2178–2206.  

Lyon, V. B. (2010). The Spitz Nevus: Review and Update. Clinics in Plastic Surgery, 37, 

21–33.  

Ma, Z., & Tavares, J. M. R. S. (2016). A Novel Approach to Segment Skin Lesions in 

Dermoscopic Images Based on a Deformable Model. IEEE Journal of Biomedical 

and Health Informatics, 20, 615–623.  

Mendonca, T., Ferreira, P. M., Marques, J. S., Marcal, & A. R., Rozeira, J. (2013). PH² - 

a dermoscopic image database for research and benchmarking. Conf Proc IEEE Eng 



22 
 

 

Med Biol Soc. 5437-5440. 

Olson, E. (2011). Shape factors and their use in image analysis–part 1: theory. J GXP 

Compliance, 15, 85–96. 

Saeys, Y., Inza, I., & Larranaga, P. (2007). A review of feature selection techniques in 

bioinformatics. Bioinformatics, 23, 2507–2517.  

Silveira, M., Nascimento, J. C., Marques, J. S., Marçal, A. R. S., Mendonça, T., 

Yamauchi, S., Maeda, & J., Rozeira, J. (2009). Comparison of segmentation 

methods for melanoma diagnosis in dermoscopy images. IEEE Journal on Selected 

Topics in Signal Processing, 3, 35–45.  

Yang, S., Oh B., Hahm S., Chung, K. Y., & Lee, B. U. (2017). Ridge and furrow pattern 

classification for acral lentiginous melanoma using dermoscopic images. Biomedical 

Signal Processing and Control, 32, 90-96. 

Yoradjian, A., Simoes, M. M., Enokihara, S., & Paschoal, F. M. (2012). Nevo de spitz e 

nevo de reed. Anais Brasileiros de Dermatologia, 87, 349–359.  

  



23 
 

 

FIGURE CAPTIONS 

 

Fig. 1 Examples of dermoscopic images from the three databases overlapped with the 

lesion borders (blue contours): (a) non-melanoma in the 1st database, (b) melanoma in the 

1st database, (c) non-melanoma in the 2nd database, (d) melanoma in the 2nd database, (e) 

non-melanoma in the 3rd database and (f) melanoma in the 3rd database. 

Fig. 2 Illustration of the frequencies of features based on the first search phase: (a) color 

features and (b) shape features. 

Fig. 3 Illustration of the frequencies of shape features based on the second search phase. 

Fig. 4 Illustration of the frequencies of color features based on the second search phase. 

Fig. 5 Illustration of the frequencies of shape features based on the second search phase 

and the extra searches. 

Fig. 6 Illustration of the frequencies of color features based on the second search phase 

of searching and the extra searches. 
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TABLES 

Table 1 Features for selection 

Type Number Details  

Shape features 14 
Ratio of perimeter to area of the skin lesion; smoothness of the lesion 
border; the seven Hu’s invariant image moments; perimeter of the lesion 
border; area of the skin lesion; aspect ratio; extent ratio; solidity ratio. 

Color features 36 

𝐿8, 𝑎8∗, 𝑏8∗, 𝑢8∗, 𝑣8∗, 𝐿C, 𝑎C∗ , 𝑏C∗, 𝑢C∗ , 𝑣C∗, 𝑑E, 𝑑B, 𝑑D, 𝑠8, 𝑠C, 𝑑S, 𝐿8_𝜎, 𝑎8∗_𝜎, 
𝑏8∗_𝜎, 𝑢8∗_𝜎, 𝑣8∗_𝜎, 𝐿C_𝜎, 𝑎C∗_𝜎, 𝑏C∗_𝜎, 𝑢C∗_𝜎, 𝑣C∗_𝜎, 𝑠8_𝜎, 𝑠C_𝜎, 𝑑8, 𝑑:, 𝑑w 
(the mean distance to the geometric centroid 𝑎C∗, 𝑏C∗ 	of neighboring 
healthy skin), 𝑑x (the mean distance to the geometric centroid 𝑢C∗, 𝑣C∗  
of neighboring healthy skin), 𝑑8_𝜎, 𝑑:_𝜎, 𝑑w_𝜎,  𝑑x_𝜎.  
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Table 2 Image databases used in the study 

Database Size Melanoma Origin  

1 100 29 Private clinics in US and Australia (Ma and Tavares, 2016; Celebi et al., 
2013) 

2 200 40 PH2 image database (Mendonca et al., 2013) 
3 404 105 Interactive atlas of dermoscopy (Argenziano et al. 2002) 
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Table 3 Feature sets chosen for the second search phase  

Features  WN3  Comb 1  Comb 2 
  OA3 S13 S23  OA3 S13 S23 

1000000000100110000000000000110000001  70  82.5% 70.0% 85.6%  65.0% 41.4% 74.6% 
1000000000100101000000000000110000001  74  82.5% 92.5% 80.0%  61.0% 44.8% 67.6% 
0000010000100111000000000000110000001  75  81.5% 70.0% 84.4%  62.0% 44.8% 69.0% 
1000010000100110100000000000110000001  75  81.5% 60.0% 86.9%  62.0% 51.7% 66.2% 
1111100000000110100000000010110000001  75  78.5% 25.0% 91.9%  68.0% 44.8% 77.5% 
1000000000100110100000000010110000001  76  80.0% 45.0% 88.8%  64.0% 51.7% 69.0% 
1000010000000110000000000000110000001  76  80.5% 60.0% 85.6%  63.0% 41.4% 71.8% 

010100011011002  72  84.5% 60.0% 90.6%  59.0% 34.5% 69.0% 
010100101011002  72  84.5% 60.0% 90.6%  59.0% 34.5% 69.0% 
010101001011002  72  84.5% 60.0% 90.6%  59.0% 34.5% 69.0% 
010101010011002  72  84.5% 60.0% 90.6%  59.0% 34.5% 69.0% 
010101011011002  72  84.5% 60.0% 90.6%  59.0% 34.5% 69.0% 
110111100111002  73  81.5% 57.5% 87.5%  64.0% 31.0% 77.5% 
110111101111002  73  81.5% 57.5% 87.5%  64.0% 31.0% 77.5% 
110111110111002  73  81.5% 57.5% 87.5%  64.0% 31.0% 77.5% 
110111111111002  73  81.5% 57.5% 87.5%  64.0% 31.0% 77.5% 

1 Combination of color features represented by a binary string, ‘0’ – unused and ‘1’ – used. From left to right: the sequence of 
features is listed in Table 1.  

2 Combination of shape features represented by a binary strings, ‘0’ – not used and ‘1’ – used. From left to right: the sequence of 
features is listed in Table 1. 

3 WN – Wrong number; OA – Overall accuracy; S1 – Sensitivity; S2 – Specificity. 
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Table 4 Feature sets selected for another search 

Features 
W

N 

Comb 1 Comb 2 

OA S1 S2 OA S1 S2 

1000000000100110000
000000000110000001 

011001000011102 
45 

90.0% 75.0% 93.8% 75.0% 44.8% 87.3% 
011001001011102 90.0% 75.0% 93.8% 75.0% 44.8% 87.3% 
110100011011002 90.5% 72.5% 95.0% 74.0% 44.8% 85.9% 

111100011011002 
46 

90.0% 72.5% 94.4% 74.0% 44.8% 85.9% 

111101101011002 89.5% 72.5% 93.8% 75.0% 44.8% 87.3% 

110101000011002 90.0% 67.5% 95.6% 74.0% 44.8% 85.9% 
1000000000100101000
000000000110000001 

111001001011002 45 90.0% 95.0% 88.8% 75.0% 34.5% 91.5% 
111000001011002 46 89.0% 95.0% 87.5% 76.0% 37.9% 91.5% 

010100011011002 00000000000001010000
00000010000000001 46 88.5% 67.5% 93.8% 77.0% 41.4% 91.5% 

010100101011002 00000000000000000000
00000000110011001 45 89.5% 62.5% 96.3% 76.0% 65.5% 80.3% 

010101010011002 00000000000000000000
00000000111100001 46 89.5% 62.5% 96.3% 75.0% 62.1% 80.3% 

1 Combination of color features with the sequence defined in Table 1. 
2 Combination of shape features with the sequence defined in Table 1. 
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Table 5 Feature sets selected for an extra search 

Features  WN Comb 1 Comb 2 
 OA S1 S2 OA S1 S2 

110101000011002 1000000000100110000000000000110000001  46 90.0% 67.5% 95.6% 74.0% 44.8% 85.9% 
0000000000000001000000000000110000001  88.5% 60.0% 95.6% 77.0% 65.5% 81.7% 

0000000000000101000000000010000000001 010000010011002  43 90.0% 72.5% 94.4% 77.0% 44.8% 90.1% 
010100011011002  46 88.5% 67.5% 93.8% 77.0% 41.4% 91.5% 

1 Combination of color features with the sequence defined in Table 1. 
2 Combination of shape features with the sequence defined in Table 1. 
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Table 6 Best feature sets based on the classification with features of one type  

 Shape features / Color features  Comb 1  Comb 2 
  OA S1 S2  OA S1 S2 

1 000101000110102  90.0% 65.0% 96.3%  72.0% 6.9% 98.6% 
0000010011000001000001000000000000001  86.5% 57.5% 93.8% 80.0% 31.0% 100.0% 

2 100011100110102  89.5% 60.0% 96.9% 72.0% 3.4% 100.0% 
0000011100000011000001000000000000001  87.0% 57.5% 94.4%  79.0% 37.9% 95.8% 

3 000100111110102  89.5% 70.0% 94.4%  71.0% 3.4% 98.6% 
0110010000000001000001000000000000001  90.5% 70.0% 95.6%  72.0% 10.3% 97.2% 

4 000110010110102  89.0% 70.0% 93.8%  72.0% 3.4% 100.0% 
0000011100000010000001000000000000001  87.5% 52.5% 96.3%  77.0% 27.6% 97.2% 

5 000111001011102  89.5% 55.0% 98.1%  71.0% 6.9% 97.2% 
0000010011000000000001000000000000001  87.0% 60.0% 93.8% 77.0% 20.7% 100.0% 

6 001011011101102  89.5% 55.0% 98.1% 71.0% 3.4% 98.6% 
0110010000100000000001000000110011001  88.0% 52.5% 96.9%  74.0% 37.9% 88.7% 

1 Combination of color features with the sequence defined in Table 1. 
2 Combination of shape features with the sequence defined in Table 1. 
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