
1 

IMPLEMENTATION OF AN ACTIVE DAMPING SYSTEM TO 
REDUCE HARMONIC VIBRATIONS IN A 3DOF PHYSICAL MODEL   

Carlos Moutinho*, Álvaro Cunha* and Elsa Caetano*  

*  Faculty of Engineering of University of Porto (FEUP) 
R. Dr. Roberto Frias, 4200-465 Porto, Portugal 

e-mail: moutinho@fe.up.pt, web page: http://www.fe.up.pt/vibest/ 
 

Keywords: Active damping, active mass damper, root-locus design  
 

Abstract. This paper describes the work for a real implementation of an active damping 
system to reduce harmonic vibrations in a plane frame physical model with 3 degrees-of-
freedom. For this purpose, it is suggested the use of an active mass damper commanded 
by a derivate controller which has the effect of increasing the modal damping coefficients 
in correspondence with a specific gain value. This control gain, as well as the system 
stability, was evaluated using the root-locus technique. The efficiency of the proposed 
control system to achieve pre-defined damping ratios was verified experimentally, by 
analyzing the free decay responses of the system after being excited at resonant 
frequencies.   

1 INTRODUCTION 

Many Civil Engineering structures have vibration problems in terms of serviceability 
limit states due to several transient or periodic dynamic loads, e.g., footbridges subjected 
to pedestrians actions, road and railway bridges excited by traffic loads and tall building 
exposed to wind loads. 

In these situations, the implementation of control systems can improve the structural 
performance by reducing the vibration levels to acceptable values, defined for each case. 
To achieve this, several control devices can be used to apply forces to the structure, 
calculated by a specific control algorithm. 

This study is addressed to practical cases where the dynamic system response is 
dominated by the contribution of the harmonic vibration of some modes of the structure. 
In these situations, the amplitude of the response is strongly influenced by the respective 
damping ratios, meaning that an appropriate control strategy should be able to increase 
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these damping ratios to predefined values capable to keep the maximum structural 
response bellow certain limits. 

The derivate control, also known as direct velocity feedback control, associated with 
root locus techniques constitutes a good strategy that can be used for this purpose, since it 
has the ability to add damping to the structure while providing necessary robustness to the 
control system2. In fact, when some control schemes using collocated pairs of actuators 
and sensors are used, this strategy leads to unconditionally stable control systems and 
avoids spillover errors due to unmodeled higher frequency modes. However, when an 
active mass damper (AMD) is used with this strategy, the control system is no longer 
unconditionally stable and it may destabilize, particularly for high gains5. 

In this context, the objective of this work is to implement an active control system to 
increase the damping ratios in a 3DOF plane frame physical model. To achieve this goal, 
an AMD was installed in the top floor of the model, the control force being calculated 
based on the derivate control law.   

To verify the proposed control system efficiency, the model is excited by several 
harmonic loads induced by a small shaking table, and the system response is analyzed in 
terms of the damping ratios achieved, as well as the control system stability. 

2 DYNAMIC MODELING OF MECHANICAL SYSTEMS 

2.1 Equations of motion 

Consider the system indicated in the Figure 1 which represents a 2-DOF shear building 
structure composed by the masses m, connected through 2 levels of columns with total 
stiffness k and 2 linear viscous dampers with damping constant c, subjected to the time 
dependent forces f1 and f2. 

 
Figure 1: 2-DOF shear building structure and the respective free body diagrams 
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The free body diagrams of the 2 masses of the system allow to establish the following 
equations of motion 

( ) ( ) 12112111 fxxkkxxxcxcxm =−++−++ &&&&&  
( ) ( ) 221212 fxxkxxcxm =−−−− &&&&                                             (1) 

These equations can be written in the matrix form 
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or simply 

fKxxCxM =++ &&&                                                       (3) 

where M, C and K are the mass, damping and stiffness matrices, respectively, x&& , x&  and x  
are the accelerations, velocities and displacements vectors, and f is the loads vector. 
   In the general case of a n-DOF structure, the system of n coupled second order 
differential equations (3) can be alternatively described, under the assumption of 
proportional damping, by a set of n independent differential equations by means of a 
transformation of the physical coordinates x to modal coordinates z according to1 

zx Φ=                                                                (4) 

where Φ  is the modal matrix which contains the vectors of the n vibrations modes of the 
structure 1φ , 2φ ,…, nφ . These vibrations modes are in correspondence with the n undamped 
natural circular frequencies of the system 1ω , 2ω ,…, nω , and verify the well-known 
orthogonality conditions.  

The substitution of eq.(4) into eq.(3) and the application of the orthogonality 
relationships leads to the following independent differential equations    

iiiiiii fzkzczm =++ &&&                                                      (5) 

with the notations 

i
T
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T
ii Kk φφ=                                         (6) 

mi, ci and ki are the modal mass, modal damping coefficient and modal stiffness in 
correspondence with the i th vibration mode of the structure. 

2.2 System Transfer Functions 

Taking the Laplace transform of both sides of eq.(2), after setting initial conditions to 
zero, one obtains3 
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Solving this system of equations in order to obtain X1(s) and X2(s), yields  
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Each system input-output relation is in correspondence with a transfer function that 
establishes, in the Laplace variable domain, the deterministic relationship between that 
input and output. In general, for a MIMO system with p inputs and q outputs there are a 
total of p×q transfer functions which can be grouped in a single matrix called transfer 
function matrix. 

In the example of the structure of Fig.1, there are two inputs and two outputs which 
mean that there are four transfer functions, G11(s), G12(s), G21(s) and G22(s), with the 
corresponding transfer function matrix  
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More specifically, these transfer functions can be defined as follows 
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Combining eq.(10) with eq.(8), one can obtain the following transfer function matrix  
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In the general case of a n-DOF structure, the transfer function matrix can be obtained 
directly using the system matrices M, C and K, according to 

[ ] 12)(
−

++= KCsMssG                                                  (12) 

If the system has several degrees-of-freedom, the analytical determination of the 
system transfer functions can be very laborious using eq.(12). In this case, these transfer 
functions can be alternatively obtained using the modal decomposition method mentioned 
in the previous section. With this technique, it is possible to define a simplified model of 
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the system, considering only the contribution of the first n vibrations modes of the 
structure. The corresponding transfer function matrix is then given by 
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where iω  is the undamped natural circular frequency of the i th vibration mode of the 
structure, iφ  is the respective mode shape vector, and mi and iiii mc ωζ 2/=  are the 
corresponding modal mass and modal damping ratio, respectively. 

2.3 Analysis of system poles and zeros 

One of the most significant advantages of defining a system model by its transfer 
functions using Laplace transform is that it allows to develop graphical techniques for 
predicting the system performance without actually solving the system of differential 
equations4. In fact, the analysis of these transfer functions allows to obtain the location of 
the poles and zeros of the system, which gives sufficient information about the quality of 
the system response to several kind of inputs.  

The typical form of a transfer function of the system is 
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where a is a real constant, and pi and zi are the poles and the zeros of the transfer 
function, respectively.  

The poles are the values of the Laplace transform variable, s, for which the 
denominator of the transfer function becomes zero. These poles are related with the 
natural frequencies and damping ratios of the system. Because any transfer function of the 
system reflects the system properties, all the system transfer functions have necessarily 
the same denominator. In an ordinary underdamped structure, each natural frequency 
frequency ωi and damping coefficient ζi are in correspondence with a pair of poles, 
according to4 

idiiiiiii jjp ,
21 ωωζζωωζ ±−=−±−=                                      (15) 

where ωd,i denotes the corresponding damped circular frequency. Figure 2 represents 
graphically, in the s-plane, the location of poles given by the previous equation. 

It can be readily seen that, if the system poles are plotted in a figure, qualitative 
information about that system can be immediately extracted by just observing the poles 
location. For example, if the poles are located in the imaginary axis that means that the 
system has no damping. On the other hand, if the poles are far way from the imaginary 
axis, the system is damped. 
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  Figure 2: Pole diagram for an underdamped system 

On the other hand, the zeros are the values of the Laplace transform variable, s, for 
which the numerator of the transfer function becomes zero. In an ordinary structure, the 
zeros of the transfer function are related with the excitation frequencies which minimize 
the response at the degree-of-freedom where the response is measured. In structural 
dynamics, these frequencies are called anti-resonance frequencies. In contrast to the 
poles, the zeros may be different for the several transfer functions of the structure. 

2.4 Systems with collocated and non-collocated actuator and sensor 

  In a structure, if the actuator and sensor are positioned at the same point, it is said 
that the system is collocated, otherwise the system is non-collocated. Figure 3 represents 
the pole and zero plot of a system transfer function where the actuator and sensor are 
collocated and non-collocated (only the upper half of complex plane is represented 
because this diagram is symmetric with respect to the real axis). In the collocated case, 
the transfer function has alternating imaginary poles and zeros. This doesn’t happen in the 
non-collocated case. As discussed in the next sections, the alternating pole and zero 
property is very important in the area of control systems, because it guaranties stability 
robustness in a wide class of single-input single-output (SISO) systems2.  

 

  Figure 3: Pole and zero plots for a system with (a) collocated and (b) non-collocated actuator/sensor 
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3 DESIGN OF CONTROL SYSTEMS BY THE ROOT-LOCUS METHO D  

3.1 Close-loop and Open-loop transfer functions 

Consider the block diagram indicated in Figure 4, which represents a close-loop 
negative feedback system. The output X(s) is fed back into the system G(s) after being 
multiplied by H(s). 

 

  Figure 4: Block diagram of a close-loop negative feedback system 

The overall transfer function that relates the Laplace transform of the input and output 
of the compensated system is known as the closed-loop transfer function and is given by4   
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The product H(s)G(s) is known as the open-loop transfer function. It is obvious that 
the choice of the compensator H(s) is important to define the behavior of the controlled 
system. In fact, its response is influenced by the location of the poles and zeros of the 
close-loop transfer function, which are conditioned by the type of the chosen 
compensator. It is now clear that an ideal compensator should be able to modify the poles 
and zeros location in such way that its values can become in correspondence with select 
system response parameters.   

3.2 System compensation with derivate control  

One type of compensator that can be used in system control is the derivate control. 
This compensator is a particularization of the proportion-integral-derivate (PID) control 
when only the derivate component is considered. The derivate control, also known as 
velocity feedback control, adds damping into the system and thus provides stability2. 

This compensator generates a control force which is proportional to the derivate of the 
system response, i.e., the system velocity. The effect achieved is similar to attaching a 
viscous damper to a structure. The transfer function of such compensator is 

kssH =)(                                                           (17)  

where k is a real constant and s is the Laplace transform variable. The k value is related 
with the ratio of velocity applied to the system, which is in correspondence with the 
damping coefficient of the equivalent damper mentioned before.   
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3.3 Root-locus analysis  

As mentioned before, the poles of a transfer function of a second order system are 
related with the respective natural frequencies and damping ratios, which gives sufficient 
information about the quality of the system response to several kinds of inputs. This 
concept is the basis of the root-locus diagram of a controlled system, because the 
knowledge of the poles of the closed-loop transfer function provides information about 
how the original system is modified with the control action. 

The root-locus is the locus of the poles (or the roots of the denominator) of the closed-
loop transfer function 1+gH(s)G(s) when the real positive parameter g, called gain, varies 
from zero to infinity. The modification of the gain associated with the compensator 
changes the poles location of the system to other positions in such a way that a path can 
be drawn corresponding to several levels of gain.   

Figure 5 represents the upper half of the root-locus plot of a controlled structure like 
the one represented in Figure 1, where the system input-output refers to the same point 
(i.e., the actuator and sensor are collocated) and compensator is a derivate controller.  
 

 
 

Figure 5: Root-locus diagram for collocated derivate control 

This graphical method is a powerful tool in the analysis and design of control systems, 
because the modification of the poles location caused by a gain adjustment suggests 
which value of gain should be chosen to meet some system response specifications. 

The sketch the root-locus diagram can be very easy if some rules are observed. For 
example, the close-loop poles of the system goes from the open-loop poles to the open-
loop zeros as the gain increases from zero to infinity4. 

The root-locus method has another useful advantage because it allows to analyze the 
system stability when using different compensators, control schemes or gain levels. In 
stability analysis, it is demanded that the close-loop poles remain at the left side of the 
imaginary axis because it guaranties positive damping in all vibration frequencies. 
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3.4 Collocated versus non-collocated control  

In section 2.4 it was seen that when the actuator and sensor are collocated the 
respective transfer function has alternating imaginary poles and zeros. It doesn’t happen 
in the non-collocated case. The location of poles and zeros and the relation between their 
positions is very important when studying a control system2. 

Figure 6 represents a typical aspect of the upper half root-locus diagram of a controlled 
structure with several degrees-of-freedom, for the collocated and non-collocated 
sensor/actuator case. The compensator is a derivate controller which has the effect of 
adding a zero in the open-loop transfer function (represented at the origin of the 
real/imaginary axis). 

 
Figure 6: Root-locus diagram for (a) collocated and (b) non-collocated derivate control 

As said before, the close-loop poles of the controlled system go from the open-loop 
poles to the open-loop zeros as the gain increases from zero to infinity. Any point P of a 
specific trajectory of the root-locus diagram verifies the following equation4  
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where k = 0, ±1, ±2, ±3…, nz is the number of zeros, np is the number of poles and 
)( izs+∠  and )( jps+∠  are the angles of the vectors drawn from the zeros and the poles, 

respectively, to point P. This equation can be used to define departure and arrival angles 
of the several branches from poles to the zeros. 

 When collocated control is used, the departure angles of the close-loop poles are all in 
the same way. As a result, several nice stabilizing loops are generated, which reveals a 
good performance of this type of control. In fact, even if the system parameters have 
some level of uncertainty, the root-locus keeps the same general shape and remains 
entirely within the left half complex plane. Such control system is said to be robust with 
respect to stability2. 

In contrast, the non-collocated control scheme causes pole-zero flipping and the 
alternating property is no longer verified. In this case, the departure angles have different 
ways and the system becomes unstable for a small gain. In this situation, it is desirable 
that the system has some damping (because it moves the poles to the left side) in order to 
archive a larger gain margin. 
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3.5 Control system using an active mass damper 

One of the most widely known actuator system for application of control forces in a 
structure is the active mass damper (AMD). This device generates internal inertial forces 
in the system without having any external connections. Although this actuation system 
may be desirable in many practical situations, some design issues must be carefully 
observed5. 

The first important aspect is that the AMD doesn’t correspond to a collocated control 
scheme. In fact, although the actuator is positioned in the same location as the control 
point, the force generated with this device is applied at two different locations. Figure 7 
represents an example of the application of an AMD to a single degree-of-freedom 
structure. In this case, the control force is calculated in correspondence with the structure 
response x1, but is applied as a pair of forces at the degrees-of-freedom corresponding to 
x1 and x2. 

This non-collocated control system is potentially unstable because the close-loop poles 
may be located at the right side of the imaginary axis of the complex plane, particularly 
when high gains are used.    

To better understand this problem, let’s consider a general structure with several 
degrees-of-freedom. In Figure 8a it is represented the root-locus diagram of a control 
system composed by an AMD with low frequency and high damping, positioned at the top 
of a 3-DOF shear building structure. The control point is in correspondence with the 
actuator location and the compensator is a derivate controller. 

The root-locus represents the path of the close-loop poles locations as the gain varies 
from zero to infinity. In this case, the departure angles of the poles corresponding to the 
vibrations modes of the structure are directed to the left side and the corresponding 
branches describe stable loops. In contrast, the close-loop pole corresponding to the AMD 
mode, departs to the right side, in the direction of the unstable region of the complex 
plane. As the gain increases, the damping coefficients of the vibration modes of the 
structure also increase and the damping coefficient of the vibration mode of the AMD 
decreases.  For  a  specific  gain  value,  the  close-loop  pole of  the     AMD  intercepts  the  
 

 
Figure 7: 1-DOF structure with an active mass damper 
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imaginary axis defining the maximum gain value, gmax, from which the control system 
gets unstable. This value of gain is very important because not only defines the gain that 
causes system instability, but also establishes the maximum modal damping coefficients 
achievable with this control scheme. 

One important conclusion about the AMD properties can now be understood. In order 
to get a larger gain margin before instability, the AMD should have a high level of 
damping, because the path that the respective close-loop pole has to go through until it 
crosses the imaginary axis, is longer as the damping of this device increases.       
 

 
Figure 8: Root-locus diagram of a controlled structure using an AMD with (a) low and (b) high frequency 

From Figure 8a, it is clear that if the natural frequency of the AMD is lower than all 
the natural frequencies of the original structure, the system stability is dependent on the 
control device properties and, as the gain increases, the original structure gets more 
damped. This is a good procedure, because the objective of the control is achieved, which 
is to reduce the behavior of the original structure by increasing its damping. However, the 
damping of the device decreases which may lead to a big motion of it mass. This is not 
preoccupant because the active mass works as a parasite mass and, as long as it 
displacement keeps in an acceptable margin (avoiding shocks with the physical 
boundaries) it doesn’t affect the performance of the structure control. 

On the other hand, if the natural frequency of the AMD is greater than the first natural 
frequency of the original structure, a zero-pole flipping is observed in the intermediate 
frequencies of the structure (see Figure 8b). This is disastrous because the damping 
coefficients of the modes with frequencies below the frequency of the AMD decreases as 
the gain increases. As a consequence, in the root-locus diagram the close-loop poles of 
these modes have branches with departure angles directed to the unstable region and the 
AMD branch describes a stable trajectory. If the structure is lightly damped, it is 
necessary just a small gain to get the system unstable by one of these modes. 

As a conclusion, it should be focused that an ideal AMD used to control a structure 
should have high damping in order to get a larger gain margin and get a more damped 
structure, and should have a natural frequency below the first natural frequency of the 
original structure to avoid instability of the lower vibration modes.  
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4 CHARACTERIZATION OF THE EXPERIMENTAL CONTROL SYST EM 

4.1 Model and equipment description  

After understanding the theoretical concepts about how to control a structure using the 
root-locus method, in order to modify the structural parameters to meet some system 
response specifications, it was conducted a real implementation of a control system with 
the objective of reducing harmonic vibrations in a plane frame physical model. For this 
purpose, it was developed a model of a shear building structure with 3 floors and an 
active mass damper to control vibrations, both shown in Figures 9a and 9b. 

The physical model is composed by 3 rigid iron masses connected to each other and to 
the base through aluminum columns. The total mass of each level including the iron 
mass, the mass of the aluminum connections, the mass of the sensor and the mass of each 
half part of the support columns is m1=15.16kg, m2=15.16kg and m3=12.76kg, 
corresponding to the 1st, 2nd and 3rd floors, respectively. The aluminum columns have 
400mm of height, 120mm of width and 7mm of thickness, and are clamped at each level 
and at the base. The aluminum modulus of elasticity was evaluated at about 60Gpa. 

 

               
Figure 9: (a) General view of the experimental setup (b) detail of the AMD 

               

Figure 10: (a) Detail of an accelerometer (b) detail of the shaking table 
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In order to excite the system with harmonic loads, the physical model was fixed on a 
shaking table composed by a sliding platform connected to an electromagnetic shaker 
powered by a current amplifier (see Figure 10b). The total mass mobilized at the base of 
the model including the platform mass of the shaking table, the moving mass of the 
electromagnetic shaker, the support mass of the model, the mass of the sensor and the 
mass of each half part of the support columns is m0=40.51kg. 

 To control vibrations in the physical model, an active mass damper was installed at 
the top level. This device is composed by an active 2.89kg mass, which slides with low 
friction through 2 circular metallic threads connected to the AMD body which has total 
mass of 2.65kg (see Figure 9b). The active mass is connected to a small electromagnetic 
shaker which is responsible to apply inertial forces between the active mass and the 
structure. The vein of this electromagnetic shaker has a spring of stiffness k=3840N/m 
causing a damped harmonic movement of the active mass when left in free vibration. 

The system response was continuously measured with accelerometers positioned at the 
base of the model, at each floor and at the active mass of the AMD (see Figure 10a). The 
force developed between the active mass of the AMD and the top level was also measured 
with a small load cell. The current generated by the shaking table shaker and by the AMD 
shaker was observed too, in order to determinate the force applied with these devices. 

All the transducers mentioned before, as well as the electromagnetic shakers, were 
operated by a digital computer using LabVIEW™ package software, helped by an 
acquisition board which performs the signal analog/digital conversion. A Fourier analyzer 
was also used in the identification of the modal parameters of the structure. 

The mass and stiffness matrices of the physical model are indicated bellow, which 
were calculated observing the data mentioned before, and are in correspondence with the 
degrees-of-freedom showed in the figure. These matrices were used in the analytical 
calculations indicated in the next sections. 

        

Figure 11: Identification of structure degrees-of-freedom and corresponding mass and stiffness matrices 
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4.2 Identification of the modal parameters of the system 

In order to identify the modal properties of the system, in particular, natural 
frequencies, mode shapes and damping coefficients, the model was subjected to several 
tests and the experimental values were compared with the analytical ones obtained from 
the numerical model defined in the previous section (with the exception of the damping 
coefficients which can only be encountered via experimental results). 

The natural frequencies of the system were evaluated with the help of a Fourier 
analyzer which allows to estimate the frequency response functions (FRFs) of a system. 
The FRFs are a particularization of the transfer functions of the system when the Laplace 
variable is substituted by s=jω. These functions characterize the system steady-state 
response when subjected to harmonic excitation, by giving the magnitude of the relation 
between output/input amplitudes and the respective phase shift. 

In the case of the plane frame physical model, the FRFs can be evaluated by relating 
the input force applied at the base of the model by the shaking table and the output 
accelerations measured at the several degrees-of-freedom. For this purpose, it was 
stipulated a frequency range from 0 to 25Hz and it was considered the average of 5 FRFs 
estimates. Each FRF has an acquisition time of 16s, which means that the frequency 
resolution archived is 0.0625Hz.          

Figure 12 shows the magnitude of the FRF obtained, relating the input force at the base 
of the model and the output acceleration at the top floor. The natural frequencies of the 
system are clearly identified by the peaks on the graph and their values, as well as the 
analytical ones, are listed in Table 1. 
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Figure 12: FRF relating the input force at the base of the model and the output acceleration at the top floor 

Frequency Identified 
(Hz) 

Calculated 
(Hz) 

1 5.50 5.45 
2 7.35 7.35 
3 15.50 14.60 
4 22.50 22.25 

Table 1: Identified versus analytical natural frequencies 
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The method used to identify the vibration mode shapes was simply exciting the 
structure at resonant frequencies at the base of the model using the shaking table, and 
measuring the amplitude and phase lag of the system response at the several degrees-of-
freedom. When the structure is subject to an harmonic force with a frequency of 
excitation equal to a natural frequency of the system, the contribution of the other 
vibration modes are negligible when compared with the resonant mode. 

Figure 13 shows the graphical representation of the mode shapes in correspondence 
with the natural frequencies indicated in Table 1. It can be observed a good agreement 
between the identified and calculated mode shapes in the same manner that it was 
observed with the natural frequencies. This means that the analytical model represents 
accurately the system properties in terms of mass and stiffness. 

 1st mode

0

1

2

3

4

 

2nd mode

0

1

2

3

4

 

3rd mode

0

2

3

4

1

 

4th mode

1

3

4

0

2

 

 
 
 
 
 

Experimental

Analytical

 

                                 Figure 13: Identified versus analytical mode shapes 
 
To characterize completely the system parameters it was necessary to evaluate the 

damping properties of the system. One way to do this consist in exciting the physical 
model with an harmonic force of frequency equal to any of those that were identified as a 
natural frequency of the system. By suddenly stopping the excitation, it is possible to 
measure the free vibration response and estimate the respective damping coefficient, by 
analyzing the free decay response envelope, given by the equation1 y =Ae–ζωt, where A is a 
real positive constant. 

This procedure was adopted to estimate the modal damping coefficients of the several 
vibration modes of the physical model. The results obtained are showed in Figure 14, in 
terms of the graphical representation of the system response at the indicated degree-of-
freedom, as well as the equation of the respective free decay envelope. 

The study of this equation, applied to different sets of time intervals, allows to 
conclude that the modal damping coefficients vary slightly with the displacements 
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amplitude. For this reason, their values were estimated in an intermediate range of the 
structure response, corresponding approximately to a mean value of the damping 
coefficient. Table 2 summarizes the results obtained in correspondence with the different 
vibrations modes. 
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Figure 14: Free vibration responses and the estimated decay envelopes  

Mode Identified 
frequency (Hz) 

Modal damping 
coefficient (%) 

1 5.50 3.20 
2 7.35 1.80 
3 15.50 0.35 
4 22.50 0.22 

Table 2: Identified modal damping coefficients 

Based on the modal damping coefficients evaluation, it is possible to define the damping 
matrix of the system using the superposition of modal damping matrices1, resulting  
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5 IMPLEMENTATION OF THE CONTROL SYSTEM 

5.1 Description of the control system  

The objective of the control system is to reduce the vibration levels of the physical 
model, when it is excited with harmonic loads. When the frequency of excitation is equal 
to any of the natural frequencies of the structure, i.e., when resonance occurs, the system 
may experiment large amplitude motion, depending on the damping coefficient of the 
respective vibration mode. Therefore, an appropriate control strategy should be able to 
manipulate the damping in the system, causing a significant reduction in the structural 
response. 

When resonance occurs, the amplitude of the dynamic system response is obtained by 
multiplying the static response by 1/2ζ, which suggests that, if the static response is 
known, the damping coefficient should be chosen in order to keep the dynamic response 
bellow certain pre-defined limits. 

 As seen before, the modification of the characteristics of the structure in terms of the 
modal damping coefficients can be obtained using an active mass damper commanded by 
a derivate controller. The definition of the control gains can be studied using the root-
locus method which also allows to evaluate the system stability. 

An important issue that must be initially considered is the location of the actuator 
system. The main rule is that the actuator should not be positioned at a point where the 
significant vibrating modes have reduced modal components. 

Using the control scheme just described, a real control system was implemented in the 
plane frame physical model, composed by an AMD positioned at the top floor, to reduce 
the vibrations caused by an harmonic excitation applied by the shaking table. The system 
response at the top floor is continuously measured using an accelerometer connected to a 
signal conditioner, which performs the conversion of the accelerations into velocities by 
integrating the signal of the transducer. At each time instant, the control force is 
calculated by multiplying the value of the velocity by a pre-defined gain g, and applied to 
the structure by the AMD shaker connected to the respective current amplifier.  

The block diagram of this close-loop control system is represented in Figure 15. The 
transfer function G(s) was obtained directly from the system characteristics described in 
previous section, relating the system input/output at the top floor (DOF no.3).  

 
Figure 15: Block diagram of the closed-loop control system 
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5.2 Root-locus design  

The root-locus diagram of this control system is represented in Figure 16. This plot shows 
clearly the advantages of this powerful method, because even if no previous information were 
available, looking at this diagram it is possible to immediately conclude that (i) the system has 
four natural frequencies slightly damped because the open-loop poles are close to the 
imaginary axis; (ii ) the system is unstable for high gains because in this situation there are 
close-loop poles in the unstable region; (iii ) there is a small gain margin until instability is 
reached because the AMD has relatively low damping; (iv)  when gain increases from zero, 
the damping coefficients of the vibration modes also increase, despite the natural frequencies 
remain approximately the same. 
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Figure 16: Root-locus diagram of plane frame controlled by an AMD  

The choice of the control gain affects simultaneously all the close-loop poles locations, 
which means that it is not possible to select the characteristics of each vibration mode 
individually. For this reason, when root-locus method is used, it must be selected the 
dominant close-loop pole as the one that contributes more significantly to the system 
response. The gain is adjusted to move this pole to a more convenient position, conditioning 
the locations of the other poles. In the case of the present plane frame physical model, when 
the gain increases, all the modal damping coefficients increase in correspondence with a 
specific gain value, which is fixed when the target close-loop pole reaches the desired location 
in correspondence with a pre-defined damping coefficient.  

As said before, the AMD developed for this experience has relatively low damping 
(ζTMD≈3.2%) due to construction issues, which limits the efficiency of this control system. 
However, even in this case it is possible to significantly increase the damping coefficients of 
the structure to maximum values according to the maximum achievable gain g=82, until 
instability occurs. If this gain is selected, the close-loop poles move to the locations marked 
with small dots in the root-locus diagram, which are in correspondence with the new damping 
coefficients listed in Table 3.  
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Mode 

ζi (%) for g=0  
(without control) 

ζi (%) for g=82  
(control with gmax) 

1 3.20 - 
2 1.80 7.09 
3 0.35 1.44 
4 0.22 0.44 

Table 3: Calculated modal damping coefficients for control gains g=0 and g=gmax=82 

5.3 Experimental results  

In order to experimentally verify the efficiency of the described control system, the 
damping coefficients of the physical model were evaluated after switching on the AMD 
with an intermediate gain g=60. In these circumstances, the model was excited with an 
harmonic load with a frequency in correspondence with the identified natural frequencies 
of the system and, after stopping the excitation, the free decay response was recorded in 
order to evaluate the respective modal damping coefficient. The results obtained are 
represented in Figure 17 and are summarized in Table 4, where the experimental values 
are also compared with the analytical ones. 

System instability was also verified when the control gain exceeds its maximum value, 
by introducing a clearly unstable gain g=150. As expected, the noise in the sensors was 
sufficient to excite the system which became unstable by the uncontrolled harmonic 
vibration of the structure with the frequency of the AMD vibration mode. This situation is 
clearly predicted by the analysis of the root-locus diagram plotted in Figure 16. 
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Figure 17: Free vibration responses and the estimated decay envelopes for a control gain g=60  

and system response for a unstable control gain g=150  
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Mode Identified 
(%) 

Calculated 
(%) 

1 - 0.83 
2 6.05 5.72 
3 1.26 1.15 
4 0.42 0.38 

Table 4: Identified versus calculated modal damping coefficients for a control gain g=60 

6 CONLUSIONS 

This document describes a laboratorial implementation of an active damping system to 
reduce vibrations in a 3-DOF physical model subjected to harmonic vibrations. When 
resonance occurs, the amplitude of the structural dynamic response is strongly influenced 
by the damping coefficient of the respective vibration mode. This means that a good 
control strategy should be able to increase the damping in the system in order to keep its 
response below certain limits. 

For this purpose, it can be used an AMD commanded by a Derivate controller, 
resulting in a control system that applies an inertial force proportional to the velocity at 
the control point. However, the use of an AMD constitutes a non-collocated 
sensor/actuator scheme, causing system instability particularly for high gains. The root-
locus diagram is a powerful method that allows analyzing the system stability as well as 
designing the control gain necessary to reach some structural properties, particularly in 
terms of damping coefficients. 

In order to experimentally verify the efficiency of this control system, the physical 
model was subjected to resonant harmonic loads applied by a shaking table, and the 
several modal damping coefficients were evaluated by analyzing the respective free decay 
envelopes.  It was observed a good agreement between experimental and analytical results 
corresponding to a significant increase of the damping ratios of the system with a 
consequent important reduction on its harmonic response.  
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