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Abstract. This paper describes the work for a real impletagan of an active damping
system to reduce harmonic vibrations in a planemfeaphysical model with 3 degrees-of-
freedom. For this purpose, it is suggested theafsan active mass damper commanded
by a derivate controller which has the effect afreasing the modal damping coefficients
in correspondence with a specific gain value. Téustrol gain, as well as the system
stability, was evaluated using the root-locus taghe. The efficiency of the proposed
control system to achieve pre-defined damping satias verified experimentally, by
analyzing the free decay responses of the systder &king excited at resonant
frequencies.

1 INTRODUCTION

Many Civil Engineering structures have vibratiorolplems in terms of serviceability
limit states due to several transient or periodinainic loads, e.g., footbridges subjected
to pedestrians actions, road and railway bridgested by traffic loads and tall building
exposed to wind loads.

In these situations, the implementation of congydtems can improve the structural
performance by reducing the vibration levels toegtable values, defined for each case.
To achieve this, several control devices can beal useapply forces to the structure,
calculated by a specific control algorithm.

This study is addressed to practical cases wheeedgmamic system response is
dominated by the contribution of the harmonic vilba of some modes of the structure.
In these situations, the amplitude of the respasstrongly influenced by the respective
damping ratios, meaning that an appropriate corgtidtegy should be able to increase
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these damping ratios to predefined values capabl&eep the maximum structural
response bellow certain limits.

The derivate control, also known as direct velod¢agdback control, associated with
root locus techniques constitutes a good strateglydan be used for this purpose, since it
has the ability to add damping to the structurelevproviding necessary robustness to the
control systerh In fact, when some control schemes using colketgtairs of actuators
and sensors are used, this strategy leads to unmoradly stable control systems and
avoids spillover errors due to unmodeled highegdiency modes. However, when an
active mass damper (AMD) is used with this strajetpe control system is no longer
unconditionally stable and it may destabilize, jwattarly for high gain3

In this context, the objective of this work is tmplement an active control system to
increase the damping ratios in a 3DOF plane framgsipal model. To achieve this goal,
an AMD was installed in the top floor of the mod#ie control force being calculated
based on the derivate control law.

To verify the proposed control system efficienclge tmodel is excited by several
harmonic loads induced by a small shaking table, the system response is analyzed in
terms of the damping ratios achieved, as well asctintrol system stability.

2 DYNAMIC MODELING OF MECHANICAL SYSTEMS

2.1 Equations of motion

Consider the system indicated in the Figure 1 whegresents a 2-DOF shear building
structure composed by the massesconnected through 2 levels of columns with total
stiffnessk and 2 linear viscous dampers with damping constasubjected to the time
dependent forceflg andfs.
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Figure 1: 2-DOF shear building structure and thepeetive free body diagrams
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The free body diagrams of the 2 masses of the syatlw to establish the following
equations of motion

My + % + (¥ — %)+ kg + k(3 = %p) = fy
My — (% = %) — k(X = X2) = T (1)

These equations can be written in the matrix form
m O Xl + 2c —-c¢ 5(1 + 2k -k X _ fl (2)
0 m Xz -C C 5(2 -k k X2 B f2

MX + Cx + Kx = f (3)

or simply

whereM, C andK are the mass, damping and stiffness matricesectisely, %, x and x
are the accelerations, velocities and displacemesttors, and is the loads vector.

In the general case of @DOF structure, the system af coupled second order
differential equations (3) can be alternatively aédsed, under the assumption of
proportional damping, by a set of independent differential equations by means of a
transformation of the physical coordinate® modal coordinatesaccording tb

X =®z (4)

where @ is the modal matrix which contains the vectorghan vibrations modes of the
structureg, e ,..., ¢,. These vibrations modes are in correspondence tivth undamped

natural circular frequencies of the system,w,...,w,, and verify the well-known

orthogonality conditions.
The substitution of eq.(4) into eq.(3) and the &mtion of the orthogonality
relationships leads to the following independefffiedential equations

Mz +6z tkz = fi ()
with the notations
m=g'Mg;c=dCq;k=¢dKg (6)
mi, ¢ and ki are the modal mass, modal damping coefficient aradlal stiffness in
correspondence with th& vibration mode of the structure.
2.2 System Transfer Functions

Taking the Laplace transform of both sides of €g.é2ter setting initial conditions to
zero, one obtairs

ms? +2cs+2k  —-cs—k X1(8)| _ | Fi(s)
= (7)
-cs—k ms? +cs+k || X2(9) Fa(s)
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Solving this system of equations in order to ob&ifs) andXy(s), yields

ms +cs+k cs+k
X(s) = Fi(s) + Fo(9)
! m?s? +3cms’ + (c2 + 3km)s2 +2cks+k? ! m?s? +3cms’ + (c2 + 3km)s2 +2cks+k? 2
(8)
cs+k ms? + 2cs+ 2k
Xo(s) =

Fi(s) + Fa(s)
m?s? +3cms’ + (c2 + 3km)s2 + 2cks+ k? ! m?s* +3cms’ + (c2 + 3km)s2 +2cks+ k2 2

Each system input-output relation is in corresportgewith a transfer function that
establishes, in the Laplace variable domain, therdenistic relationship between that
input and output. In general, for a MIMO systemhtinputs andg outputs there are a
total of pxqg transfer functions which can be grouped in a snglatrix called transfer
function matrix.

In the example of the structure of Fig.1, there @ve inputs and two outputs which
mean that there are four transfer functio@sy(s), Gi12(S), G21(s) and Gzx(s), with the
corresponding transfer function matrix

G(S):{Gll(s) G12(3):| (9)
Gai(s) G22(s)
More specifically, these transfer functions cardeéned as follows
_ X1(9) - X9
T 9 a9 =0" P2V TR R =0
(10)
_ Xa(9) - Xa(9)
S0 L9 =0 %20 T E 9 |R9 =0

Combining eq.(10) with eq.(8), one can obtain thiéofving transfer function matrix

ms? +cs+k cstk
G(s) = m?s? +3cms + (c2 + 3km)s2 +2cks+k? m?s*+3cms + (c2 + 3km)s2 + 2cks+ k2 (11)
cs+k ms” + 2cs+ 2k

m?s* +3cms’ + (c2 + 3km)s2 +2cks+k?  m?s* +3cms + (c2 + 3km)s2 +2cks+ k2

In the general case ofraDOF structure, the transfer function matrix candi¢ained
directly using the system matriceis C andk, according to

G(s) = [M52 +Cs+ K]_l 201

If the system has several degrees-of-freedom, thedyacal determination of the
system transfer functions can be very laboriousgi€iq.(12). In this case, these transfer
functions can be alternatively obtained using theat decomposition method mentioned
in the previous section. With this technique, ip@ssible to define a simplified model of
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the system, considering only the contribution oé thirst n vibrations modes of the
structure. The corresponding transfer function masrthen given by

n T
69 =) —— 24 5 (13)
imLM(s” +2{jws+a))

where « is the undamped natural circular frequency of ithevibration mode of the
structure, ¢ is the respective mode shape vector, andand ¢, =¢ /2m« are the
corresponding modal mass and modal damping ragpectively.

2.3 Analysis of system poles and zeros

One of the most significant advantages of definengystem model by its transfer
functions using Laplace transform is that it allowsdevelop graphical techniques for
predicting the system performance without actualbving the system of differential
equations. In fact, the analysis of these transfer functiaews to obtain the location of
the poles and zeros of the system, which givesaefit information about the quality of
the system response to several kind of inputs.

The typical form of a transfer function of the systis

G(s)=a (5= 2) (14)

[1(s-p)
where a is a real constant, ang and z are the poles and the zeros of the transfer
function, respectively.

The poles are the values of the Laplace transfommiabsle, s, for which the
denominator of the transfer function becomes zditwese poles are related with the
natural frequencies and damping ratios of the sysi&ecause any transfer function of the
system reflects the system properties, all theesystransfer functions have necessarily
the same denominator. In an ordinary underdampadtctste, each natural frequency
frequencyw; and damping coefficien{; are in correspondence with a pair of poles,
according t4

P =it £ jay1-G% = ~Gia  jay, (15)

where wq; denotes the corresponding damped circular frequeRigure 2 represents
graphically, in thes-plane, the location of poles given by the previegsation.

It can be readily seen that, if the system poles @otted in a figure, qualitative
information about that system can be immediatelyyasted by just observing the poles
location. For example, if the poles are locatedh@ imaginary axis that means that the
system has no damping. On the other hand, if tHespare far way from the imaginary
axis, the system is damped.
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Figure 2: Pole diagram for an underdamped system

On the other hand, the zeros are the values ot #ipdace transform variables, for
which the numerator of the transfer function becsmero. In an ordinary structure, the
zeros of the transfer function are related with ¢ieitation frequencies which minimize
the response at the degree-of-freedom where thgonss is measured. In structural
dynamics, these frequencies are called anti-resmndrequencies. In contrast to the
poles, the zeros may be different for the seveeaisfer functions of the structure.

2.4 Systems with collocated and non-collocated a@tor and sensor

In a structure, if the actuator and sensor argtjpmed at the same point, it is said
that the system is collocated, otherwise the sysgsenon-collocated. Figure 3 represents
the pole and zero plot of a system transfer fumctidhere the actuator and sensor are
collocated and non-collocated (only the upper haElfcomplex plane is represented
because this diagram is symmetric with respecheoreal axis). In the collocated case,
the transfer function has alternating imaginaryegahnd zeros. This doesn’t happen in the
non-collocated case. As discussed in the next aextithe alternating pole and zero
property is very important in the area of contrgétems, because it guaranties stability
robustness in a wide class of single-input singlgsat (SISO) systems

« m « m
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Figure 3: Pole and zero plots for a system wéthdpllocated and (b) non-collocated actuator/senso
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3 DESIGN OF CONTROL SYSTEMS BY THE ROOT-LOCUS METHO D

3.1 Close-loop and Open-loop transfer functions

Consider the block diagram indicated in Figure 4ol represents a close-loop
negative feedback system. The outpis) is fed back into the systef@(s) after being
multiplied byH(s).

F(s) +f2\ (9 X(9)

ﬁX(s)H ® T

Figure 4: Block diagram of a close-loop negafiwedback system

The overall transfer function that relates the lagpl transform of the input and output
of the compensated system is known as the closgglttansfer function and is givenby

X( _ G

(16)
F(s) 1+H(s)G(s)

The productH(s)G(s) is known as the open-loop transfer function.sltobvious that
the choice of the compensatd(s) is important to define the behavior of the cotlied
system. In fact, its response is influenced by ltdeation of the poles and zeros of the
close-loop transfer function, which are conditiondy the type of the chosen
compensator. It is now clear that an ideal compwmsshould be able to modify the poles
and zeros location in such way that its values lmacome in correspondence with select
system response parameters.

3.2 System compensation with derivate control

One type of compensator that can be used in systantrol is the derivate control.
This compensator is a particularization of the roijpn-integral-derivate (PID) control
when only the derivate component is considered. déevate control, also known as
velocity feedback control, adds damping into thstssn and thus provides stabifity

This compensator generates a control force whigireportional to the derivate of the
system response, i.e., the system velocity. Thecefachieved is similar to attaching a
viscous damper to a structure. The transfer functibsuch compensator is

H(s) =ks (17)
wherek is a real constant arglis the Laplace transform variable. Thevalue is related

with the ratio of velocity applied to the systemhiah is in correspondence with the
damping coefficient of the equivalent damper memeid before.
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3.3 Root-locus analysis

As mentioned before, the poles of a transfer fumcidf a second order system are
related with the respective natural frequencies @amping ratios, which gives sufficient
information about the quality of the system resgons several kinds of inputs. This
concept is the basis of the root-locus diagram o€oatrolled system, because the
knowledge of the poles of the closed-loop transterction provides information about
how the original system is modified with the comtaction.

The root-locus is the locus of the poles (or thetsof the denominator) of the closed-
loop transfer function 1gH(s)G(s) when the real positive parametgrcalled gain, varies
from zero to infinity. The modification of the gaiassociated with the compensator
changes the poles location of the system to otbsitipns in such a way that a path can
be drawn corresponding to several levels of gain.

Figure 5 represents the upper half of the root$oplot of a controlled structure like
the one represented in Figure 1, where the systgmtioutput refers to the same point
(i.e., the actuator and sensor are collocated)cantpensator is a derivate controller.
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Figure 5: Root-locus diagram for collocated derévabntrol

This graphical method is a powerful tool in the lgges and design of control systems,
because the modification of the poles location eduby a gain adjustment suggests
which value of gain should be chosen to meet soyaeB) response specifications.

The sketch the root-locus diagram can be very éasgme rules are observed. For
example, the close-loop poles of the system gom® fihe open-loop poles to the open-
loop zeros as the gain increases from zero toitgfin

The root-locus method has another useful advant&gause it allows to analyze the
system stability when using different compensatamtrol schemes or gain levels. In
stability analysis, it is demanded that the clasepl poles remain at the left side of the
imaginary axis because it guaranties positive dagm all vibration frequencies.
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3.4 Collocated versus non-collocated control

In section 2.4 it was seen that when the actuatat sensor are collocated the
respective transfer function has alternating imagjrpoles and zeros. It doesn’t happen
in the non-collocated case. The location of poled zeros and the relation between their
positions is very important when studying a contysten.

Figure 6 represents a typical aspect of the uppHrrbot-locus diagram of a controlled
structure with several degrees-of-freedom, for tbellocated and non-collocated
sensor/actuator case. The compensator is a deroaatwoller which has the effect of
adding a zero in the open-loop transfer functioepfesented at the origin of the
real/imaginary axis).

im

im
X—’/
< o
stableCD unstable stable X__> unstable
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Figure 6: Root-locus diagram for (a) collocated &nyinon-collocated derivate control

As said before, the close-loop poles of the cotegtbkystem go from the open-loop
poles to the open-loop zeros as the gain incre@eas zero to infinity. Any pointP of a
specific trajectory of the root-locus diagram vieifthe following equatich

9=nZZ:D(s+zi)—iD(s+ pj) = (2k +1) x180° (18)
i=1 i=1

wherek = 0, +1, +2, £3...,n, is the number of zerosy, is the number of poles and
O(s+z) and O(s+ p;) are the angles of the vectors drawn from the zarabthe poles,

respectively, to poinP. This equation can be used to define departureaandal angles
of the several branches from poles to the zeros.

When collocated control is used, the departurdesngf the close-loop poles are all in
the same way. As a result, several nice stabilizoups are generated, which reveals a
good performance of this type of control. In faeten if the system parameters have
some level of uncertainty, the root-locus keeps shene general shape and remains
entirely within the left half complex plane. Sucbntrol system is said to be robust with
respect to stabilify

In contrast, the non-collocated control scheme esugole-zero flipping and the
alternating property is no longer verified. In tltgse, the departure angles have different
ways and the system becomes unstable for a smiall fathis situation, it is desirable
that the system has some damping (because it nibegsoles to the left side) in order to
archive a larger gain margin.
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3.5 Control system using an active mass damper

One of the most widely known actuator system foplaation of control forces in a
structure is the active mass damper (AMD). Thisicegenerates internal inertial forces
in the system without having any external connexicAlthough this actuation system
may be desirable in many practical situations, satesign issues must be carefully
observed

The first important aspect is that the AMD doestotrespond to a collocated control
scheme. In fact, although the actuator is positioirethe same location as the control
point, the force generated with this device is ggapht two different locations. Figure 7
represents an example of the application of an AkéDa single degree-of-freedom
structure. In this case, the control force is clted in correspondence with the structure
responsex;, but is applied as a pair of forces at the degoddseedom corresponding to
X1 andxXa.

This non-collocated control system is potentialhstable because the close-loop poles
may be located at the right side of the imaginadig @f the complex plane, particularly
when high gains are used.

To better understand this problem, let's considegemeral structure with several
degrees-of-freedom. In Figure 8a it is represernted root-locus diagram of a control
system composed by an AMD with low frequency arghtdamping, positioned at the top
of a 3-DOF shear building structure. The controlnpas in correspondence with the
actuator location and the compensator is a derivatéroller.

The root-locus represents the path of the close-lmales locations as the gain varies
from zero to infinity. In this case, the departamggles of the poles corresponding to the
vibrations modes of the structure are directed he keft side and the corresponding
branches describe stable loops. In contrast, theeeloop pole corresponding to the AMD
mode, departs to the right side, in the directidrihe unstable region of the complex
plane. As the gain increases, the damping coeffisiof the vibration modes of the
structure also increase and the damping coefficodrnihe vibration mode of the AMD
decreases. For a specific gain value, thmsecloop pole of théAMD intercepts the

E— QR
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Figure 7: 1-DOF structure with an active mass dampe
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imaginary axis defining the maximum gain valggax from which the control system
gets unstable. This value of gain is very importa@tause not only defines the gain that
causes system instability, but also establishesrtaeimum modal damping coefficients
achievable with this control scheme.

One important conclusion about the AMD propertias aow be understood. In order
to get a larger gain margin before instability, tAMD should have a high level of
damping, because the path that the respective -bbogepole has to go through until it
crosses the imaginary axis, is longer as the dagnpirthis device increases.

Oma> im im

3rd mode <* 3rd mode<§
stable unstable stable unstable

gmax

2nd mode@ 2nd modeq

Omax AMD mode )é_>
1st mode Omax 1st mode
//F_:__> AMD mode 7

< > € >

(a) re (b) re
Figure 8: Root-locus diagram of a controlled stametusing an AMD with (a) low and (b) high frequgnc

From Figure 8a, it is clear that if the naturalguency of the AMD is lower than all
the natural frequencies of the original structuhe system stability is dependent on the
control device properties and, as the gain increafiee original structure gets more
damped. This is a good procedure, because thetokgeaf the control is achieved, which
is to reduce the behavior of the original structioyancreasing its damping. However, the
damping of the device decreases which may leadhm anotion of it mass. This is not
preoccupant because the active mass works as &itgammass and, as long as it
displacement keeps in an acceptable margin (avwpidhocks with the physical
boundaries) it doesn’t affect the performance efgstructure control.

On the other hand, if the natural frequency of AMD is greater than the first natural
frequency of the original structure, a zero-polpgding is observed in the intermediate
frequencies of the structure (see Figure 8b). Tikiglisastrous because the damping
coefficients of the modes with frequencies below ttequency of the AMD decreases as
the gain increases. As a consequence, in the ooosldiagram the close-loop poles of
these modes have branches with departure anglestekr to the unstable region and the
AMD branch describes a stable trajectory. If theudure is lightly damped, it is
necessary just a small gain to get the system hlesbyy one of these modes.

As a conclusion, it should be focused that an iceddD used to control a structure
should have high damping in order to get a larggn gnargin and get a more damped
structure, and should have a natural frequencyvbelee first natural frequency of the
original structure to avoid instability of the lomebration modes.

11
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4 CHARACTERIZATION OF THE EXPERIMENTAL CONTROL SYST EM

4.1 Model and equipment description

After understanding the theoretical concepts almwt to control a structure using the
root-locus method, in order to modify the structuparameters to meet some system
response specifications, it was conducted a replémentation of a control system with
the objective of reducing harmonic vibrations iplane frame physical model. For this
purpose, it was developed a model of a shear mglditructure with 3 floors and an
active mass damper to control vibrations, both shawFigures 9a and 9b.

The physical model is composed by 3 rigid iron negassonnected to each other and to
the base through aluminum columns. The total mdseach level including the iron
mass, the mass of the aluminum connections, the wiahe sensor and the mass of each
half part of the support columns isy=15.16kg, m,=15.16kg and mz=12.76kg,
corresponding to the®1 2'* and 3° floors, respectively. The aluminum columns have
400mm of height, 120mm of width and 7mm of thicksneand are clamped at each level
and at the base. The aluminum modulus of elasticé#ty evaluated at about 60Gpa.

e
e

Figure 9: (a) General view of the experimental pdty) detail of the AMD

‘\f‘s;:

Figure 10: (a) Detail of an accelerometer (b) dedhithe shaking table

12
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In order to excite the system with harmonic loatig, physical model was fixed on a
shaking table composed by a sliding platform coteddo an electromagnetic shaker
powered by a current amplifier (see Figure 10b)e Tdtal mass mobilized at the base of
the model including the platform mass of the shgkiable, the moving mass of the
electromagnetic shaker, the support mass of theeimdlde mass of the sensor and the
mass of each half part of the support colummnsys40.51kg.

To control vibrations in the physical model, ariiha® mass damper was installed at
the top level. This device is composed by an ac#89kg mass, which slides with low
friction through 2 circular metallic threads contegt to the AMD body which has total
mass of 2.65kg (see Figure 9b). The active massnsected to a small electromagnetic
shaker which is responsible to apply inertial ferdeetween the active mass and the
structure. The vein of this electromagnetic shakas a spring of stiffnesds=3840N/m
causing a damped harmonic movement of the activasmden left in free vibration.

The system response was continuously measuredawdblerometers positioned at the
base of the model, at each floor and at the actiges of the AMD (see Figure 10a). The
force developed between the active mass of the Aid the top level was also measured
with a small load cell. The current generated le/ghaking table shaker and by the AMD
shaker was observed too, in order to determinaddite applied with these devices.

All the transducers mentioned before, as well as ¢lectromagnetic shakers, were
operated by a digital computer using LabVIEW™ paykasoftware, helped by an
acquisition board which performs the signal analagfal conversion. A Fourier analyzer
was also used in the identification of the modabp@eters of the structure.

The mass and stiffness matrices of the physicalahade indicated bellow, which
were calculated observing the data mentioned beford are in correspondence with the
degrees-of-freedom showed in the figure. These ioestrwere used in the analytical
calculations indicated in the next sections.

(A =EN o> X4

= = > %3 4051 0 0 0 0]
0 1516 O 0 0
M=l 0 0 1516 O 0 | kg
L N %, 0 0 0 1541 0
| 0 0 0 0 289
[ 7450 -7450 O 0 0 |
= =l o> X —-7450 14900 -7450 0 0
K= 0 -7450 14900 -7450 0 | KN/m
0 0 -7450 7834 -384
0 0 0 -384 384 |

| | ——
Sy

Figure 11: Identification of structure degrees-fddom and corresponding mass and stiffness matrice
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4.2 ldentification of the modal parameters of the gstem

In order to identify the modal properties of thestgyn, in particular, natural
frequencies, mode shapes and damping coefficieéiésmodel was subjected to several
tests and the experimental values were compareu tivé analytical ones obtained from
the numerical model defined in the previous sectwith the exception of the damping
coefficients which can only be encountered via expental results).

The natural frequencies of the system were evaluatgh the help of a Fourier
analyzer which allows to estimate the frequencyoese functions (FRFs) of a system.
The FRFs are a particularization of the transfercfions of the system when the Laplace
variable is substituted bg=jw. These functions characterize the system steatg-st
response when subjected to harmonic excitatiorgityng the magnitude of the relation
between output/input amplitudes and the respegthase shift.

In the case of the plane frame physical model,RR€&s can be evaluated by relating
the input force applied at the base of the modelthey shaking table and the output
accelerations measured at the several degrees®ddm. For this purpose, it was
stipulated a frequency range from 0 to 25Hz andas$ considered the average of 5 FRFs
estimates. Each FRF has an acquisition time of Wsch means that the frequency
resolution archived is 0.0625Hz.

Figure 12 shows the magnitude of the FRF obtaingdting the input force at the base
of the model and the output acceleration at theftogr. The natural frequencies of the
system are clearly identified by the peaks on theply and their values, as well as the
analytical ones, are listed in Table 1.

1

0.1

FRF amplitude (m/s2/N)

0 5 10 15 20 25
Frequency (Hz)

Figure 12: FRF relating the input force at the bakthe model and the output acceleration at tipeflmor

Frequency Identified Calculated

(Hz) (Hz)
1 5.50 5.45
2 7.35 7.35
3 15.50 14.60
4 22.50 22.25

Table 1: Identified versus analytical natural freqaies

14
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The method used to identify the vibration mode ssagvas simply exciting the
structure at resonant frequencies at the baseeoitbdel using the shaking table, and
measuring the amplitude and phase lag of the sysésponse at the several degrees-of-
freedom. When the structure is subject to an harmdarce with a frequency of
excitation equal to a natural frequency of the eyst the contribution of the other
vibration modes are negligible when compared whi tesonant mode.

Figure 13 shows the graphical representation ofrtioele shapes in correspondence
with the natural frequencies indicated in Tabletlcan be observed a good agreement
between the identified and calculated mode shapethé same manner that it was
observed with the natural frequencies. This medas$ the analytical model represents
accurately the system properties in terms of masdsséiffness.

1st mode 2nd mode 3rd mode 4th mode
4 4

—e— Experimental

—a— Analytical

0

Figure 13: Identified versus analytical mode shapes

To characterize completely the system parametergag necessary to evaluate the
damping properties of the system. One way to de tansist in exciting the physical
model with an harmonic force of frequency equaaty of those that were identified as a
natural frequency of the system. By suddenly stogphe excitation, it is possible to
measure the free vibration response and estimatee$pective damping coefficient, by
analyzing the free decay response envelope, giyehéequatiohy =Ae “*!, whereA is a
real positive constant.

This procedure was adopted to estimate the modapday coefficients of the several
vibration modes of the physical model. The resoliained are showed in Figure 14, in
terms of the graphical representation of the systesponse at the indicated degree-of-
freedom, as well as the equation of the respedtes decay envelope.

The study of this equation, applied to differentssef time intervals, allows to
conclude that the modal damping coefficients valighsly with the displacements
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amplitude. For this reason, their values were esti@oh in an intermediate range of the
structure response, corresponding approximatelyatanean value of the damping
coefficient. Table 2 summarizes the results obthimecorrespondence with the different
vibrations modes.
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Figure 14: Free vibration responses and the estighdécay envelopes

Mode Identified Modal damping
frequency (Hz) coefficient (%)
1 5.50 3.20
2 7.35 1.80
3 15.50 0.35
4 22.50 0.22

Table 2: Identified modal damping coefficients

Based on the modal damping coefficients evaluatibrs, possible to define the damping
matrix of the system using the superposition of el@hmping matricés resulting

[ 3530 -374 -1147 -1611 - 399
-374 782 -094 -191 -123
C=|-1147 -094 1023 291 -073| kg/s
-1611 -191 291 1500 011
| -399 -123 -073 011 585
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5 IMPLEMENTATION OF THE CONTROL SYSTEM

5.1 Description of the control system

The objective of the control system is to reduce tibration levels of the physical
model, when it is excited with harmonic loads. Whke frequency of excitation is equal
to any of the natural frequencies of the structiiee, when resonance occurs, the system
may experiment large amplitude motion, dependingtloe damping coefficient of the
respective vibration mode. Therefore, an approeri@ntrol strategy should be able to
manipulate the damping in the system, causing aifsggnt reduction in the structural
response.

When resonance occurs, the amplitude of the dynagstem response is obtained by
multiplying the static response by I/2which suggests that, if the static response is
known, the damping coefficient should be chosewriher to keep the dynamic response
bellow certain pre-defined limits.

As seen before, the modification of the charastas of the structure in terms of the
modal damping coefficients can be obtained usinga@ive mass damper commanded by
a derivate controller. The definition of the contgains can be studied using the root-
locus method which also allows to evaluate theesysstability.

An important issue that must be initially considkrie the location of the actuator
system. The main rule is that the actuator showlidb® positioned at a point where the
significant vibrating modes have reduced modal conents.

Using the control scheme just described, a reatrobsystem was implemented in the
plane frame physical model, composed by an AMD tpmséd at the top floor, to reduce
the vibrations caused by an harmonic excitationiegy the shaking table. The system
response at the top floor is continuously measwissdg an accelerometer connected to a
signal conditioner, which performs the conversidritee accelerations into velocities by
integrating the signal of the transducer. At eathet instant, the control force is
calculated by multiplying the value of the velocity a pre-defined gaig, and applied to
the structure by the AMD shaker connected to tlspeetive current amplifier.

The block diagram of this close-loop control systesnmrepresented in Figure 15. The
transfer functionG(s) was obtained directly from the system charactiessdescribed in
previous section, relating the system input/ouggduhe top floor (DOF no.3).

F(s) GE = 0.0655+0.268 +139% +4791 +6.46E6 +1.59E7 9PHF+2.99E6 +16 X(s)
+ S%5.065+2.79E8 +1.21E5 +2.2088 +7.4$E8 +5.18F9UIELS +3.41EH +6.4286 +1]0

H(s) =gs

Figure 15: Block diagram of the closed-loop consydtem
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5.2 Root-locus design

The root-locus diagram of this control system @esented in Figure 16. This plot shows
clearly the advantages of this powerful methodahee even if no previous information were
available, looking at this diagram it is possilWarhmediately conclude thaf the system has
four natural frequencies slightly damped because dpen-loop poles are close to the
imaginary axis; i() the system is unstable for high gains becaudbissituation there are
close-loop poles in the unstable regioii;) there is a small gain margin until instability is
reached because the AMD has relatively low damping; when gain increases from zero,
the damping coefficients of the vibration mode® alxrease, despite the natural frequencies
remain approximately the same.
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Figure 16: Root-locus diagram of plane frame cdlgdoby an AMD

The choice of the control gain affects simultandoadl the close-loop poles locations,
which means that it is not possible to select tharacteristics of each vibration mode
individually. For this reason, when root-locus nuethis used, it must be selected the
dominant close-loop pole as the one that contrfouteore significantly to the system
response. The gain is adjusted to move this pokertwre convenient position, conditioning
the locations of the other poles. In the case eftesent plane frame physical model, when
the gain increases, all the modal damping coefftsiancrease in correspondence with a
specific gain value, which is fixed when the targese-loop pole reaches the desired location
in correspondence with a pre-defined damping ooefii.

As said before, the AMD developed for this expeseerhas relatively low damping
(Grmp=3.2%) due to construction issues, which limits #fféciency of this control system.
However, even in this case it is possible to sigaiftly increase the damping coefficients of
the structure to maximum values according to theimam achievable gain g=82, until
instability occurs. If this gain is selected, tHese-loop poles move to the locations marked
with small dots in the root-locus diagram, whick ar correspondence with the new damping
coefficients listed in Table 3.
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Gi (%) forg=0 ¢ (%) forg=82

Mode (without control)  (control withgmay)
1 3.20 -
2 1.80 7.09
3 0.35 1.44
4 0.22 0.44

Table 3: Calculated modal damping coefficientsdontrol gaingg=0 andg=0,,,,=82

5.3 Experimental results

In order to experimentally verify the efficiency tie described control system, the
damping coefficients of the physical model wereleated after switching on the AMD
with an intermediate gaig=60. In these circumstances, the model was exaitighl an
harmonic load with a frequency in correspondendd wie identified natural frequencies
of the system and, after stopping the excitatitwe, free decay response was recorded in
order to evaluate the respective modal damping fiobefit. The results obtained are
represented in Figure 17 and are summarized ineTdplwhere the experimental values
are also compared with the analytical ones.

System instability was also verified when the cohtrain exceeds its maximum value,
by introducing a clearly unstable gagx150. As expected, the noise in the sensors was
sufficient to excite the system which became unstdly the uncontrolled harmonic
vibration of the structure with the frequency o€ tAMD vibration mode. This situation is
cIearIy predicted by the analysis of the root- Ioduaagram plotted in Figure 16.
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Figure 17: Free vibration responses and the estidndécay envelopes for a control gg#60
and system response for a unstable control gaib@=1
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Mode Identified Calculated
(%) (%)
1 - 0.83
2 6.05 5.72
3 1.26 1.15
4 0.42 0.38

Table 4: Identified versus calculated modal dampiagfficients for a control gaig=60

6 CONLUSIONS

This document describes a laboratorial implemeatatif an active damping system to
reduce vibrations in a 3-DOF physical model sulgdcto harmonic vibrations. When
resonance occurs, the amplitude of the structuabuohic response is strongly influenced
by the damping coefficient of the respective vilmatmode. This means that a good
control strategy should be able to increase thepilagnin the system in order to keep its
response below certain limits.

For this purpose, it can be used an AMD commandgdabDerivate controller,
resulting in a control system that applies an iaéforce proportional to the velocity at
the control point. However, the use of an AMD cdmges a non-collocated
sensor/actuator scheme, causing system instalpiditticularly for high gains. The root-
locus diagram is a powerful method that allows grialy the system stability as well as
designing the control gain necessary to reach ssimetural properties, particularly in
terms of damping coefficients.

In order to experimentally verify the efficiency tiis control system, the physical
model was subjected to resonant harmonic loadsiepgly a shaking table, and the
several modal damping coefficients were evaluatedralyzing the respective free decay
envelopes. It was observed a good agreement betesgeerimental and analytical results
corresponding to a significant increase of the dagpratios of the system with a
consequent important reduction on its harmonic sasp.
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