
An Approach to Simulate Autonomous Vehicles in

Urban Traffic Scenarios

Miguel C. Figueiredo, Rosaldo J. F. Rossetti, Member, IEEE, Rodrigo A. M. Braga, Luis Paulo Reis

Department of Informatics Engineering

Artificial Intelligence and Computer Science Lab.

Faculty of Engineering, University of Porto

Rua Dr. Roberto Frias S/N, 4200-465 Porto, Portugal

{ee01193, rossetti, rodrigo.braga, lpreis}@fe.up.pt

Abstract—The most common cause of traffic accidents is

arguably the driver error due to lack of attention. And it is

very unlikely this is going to change soon thanks to

increasingly cell-phone usage, in-car entertainment systems,

and naturally the more frequent traffic jams in highly

populated areas. Autonomous vehicles, such as driverless cars,

are a promising approach to decrease traffic accidents, as well

as congestions. To test this approach, simulations are a safer,

more efficient, and cheaper way than live testing. This paper

presents an approach to implement a simulator to test such

vehicles. It includes a study of the state of the art in driverless

car simulation and discusses on the specific objectives that this

particular simulator aims to achieve in order to aid testing the

interactions of multiple driverless cars in urban networks.

Microscopic traffic simulation; autonomous driving;

autonomous vehicles; autonomous agents; multi-agent systems.

I. INTRODUCTION

Autonomous vehicles are one of the possible solutions to
our most common cause of traffic accidents: drivers’ error
due to lack of attention. According to several different
studies, such as the one by L. C. Davis in 2004 [1], driverless
cars will substantially decrease traffic accidents and traffic
jams even if there is just a few of them driving among
regular cars.

In the latest years, with computer technology advancing
fast, simulation began to be used more regularly for this kind
of projects. Simulations are safer, more efficient, and
cheaper than live testing on real vehicles. They also allow
testing more scenarios than those that would be possible with
real world testing, as well as testing dangerous situations to
involve humans. Therefore, testing complex systems in
virtual worlds is the ideal solution to validate code quickly,
with more possibilities, cheaply and with minimum risk.

Our main purpose with the present work is to specify a
realistic simulator to aid the analysis of both autonomous and
semi-assisted driving on networks of vehicular traffic,
preferably in urban areas. We intend to include in the
conceptualization of our platform as much functionality as
possible, such as definition and calibration of sensors and
actuators in vehicles, realistic representation of vehicle
kinetics, 2D/3D visualization of simulation models,
parameters and outputs, interaction between vehicles such as

car-following, lane-changing, ramp-metering, and
intersection-crossing models, integration with an agent-based
microscopic traffic simulator, and support tools for editing
and visualizing simulation models.

The remaining part of this paper is organized as follows.
As existing robotic simulators are not fully appropriate when
it comes to simulating driverless cars in scenarios with
intense traffic, some further assumptions must be taken into
consideration, as we will discuss in the following section.
The approach herein presented aims to enhance an existing
platform to overcome such drawbacks. Section three will
explain the details of the software architecture for the
proposed approach. Finally, in section four we will draw
conclusions on this preliminary work and discuss on further
developments and potentials for future research.

II. STATE OF THE ART

A. Types of Simulators

Simulators that are related to the study of traffic and
autonomous vehicles are currently distinguished into two
types: large scale traffic simulators, and small scale robotic
simulators. In the former case, large scale traffic simulators
are used to represent traffic flow over very large and/or
complex road networks. In these simulators the movement of
each car is so simplified that it is not possible to distinguish
between human drivers and robot drivers. This is also due to
the behavior of drivers, which is simplified as well, in order
to allow simulations of thousands of vehicles to be run in a
computer with reasonable resources, and within a reasonable
timeframe. One example of such simulators is the MAS-T

2
er

Lab’s microscopic traffic simulator [2].

However, it should be noted that these simulators are not
detailed enough to simulate autonomous cars when it comes
to their kinematic behavior, sensors and actuators operation,
interaction with surroundings, and so on. The physics in
these simulators are over-simplified to the point that the
movement of cars that are changing lanes is not continuous.
In other words, a car is either in lane x or lane y. There is no
state where a car is partially occupying both lanes, as if it
were moving along the horizontal marks dividing adjacent
lanes.

In order to simulate and test the performance of a
driverless car, a more detailed simulator is required though,
such as a small scale robotic simulator. A lot of sensor and
actuator details is needed if we want to know how will a car
throttle, break, and steer while reacting to various stimuli and
obstacles ranging from walls and other cars, to people,
animals, sidewalks, and so forth. Collision detection is also
required, so as it is possible to verify whether the driverless
car is malfunctioning to the point of causing an accident. We
might want to know which of the sensors are detecting (or
not) each obstacle, and try to identify errors in its design
(both hardware and software) from the tests. A large scale
traffic simulator cannot provide us with such details.

A look has been taken at the DARPA Urban Challenge
teams and what tools they used to simulate their cars before
live-testing [3, 4, 5, 6, 7, 8, 9, 10]. To be successful in such a
competition, the use of a simulator is basically unavoidable.
Overcoming safety concerns and strict time constraints is a
must here then. And testing in the virtual world is the ideal
solution to validate code quickly and with minimum risk.
The teams were also able to test situations too dangerous to
involve humans and test more scenarios than it would have
been possible in the real world. Simulation was used to find
obvious problems with their software, but this was always
followed by testing on the vehicle, as well.

B. Characterization of Robotics Simulators

These are some features used as a means to compare the
different robotic simulators. Some of which are more
important than others, depending on the field and interest of
study. Below we comment on the ones that are more or less
useful when it comes to testing driverless cars.

3D visual simulation is important. Some simulators run
full 3D physical simulations. The calculations become much
more complex and resource-consuming, but this results in a
more realistic interpretation of the model. Simulators
featuring 3D visualization allow the user to observe and
better understand the events happening in the simulation by
animating detailed 3D graphics and models to represent the
different elements of the simulation. On the other hand,
handling large scale traffic volumes is also a requirement.
These simulators are able to manage large amounts of
elements with very simple behaviors and physics in order to
reproduce large-scale phenomena in a reasonable timeframe
and using reasonable computer resources. Multi-agent
simulation then has been adopted, allowing some simulators
to have multiple and independent autonomous agents
interacting in the same simulation. The reason for these
simulations can be simply to test how agents react to one
another, but they also enable testing either cooperative or
competitive behaviors.

Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) communications have equally become an imperative
technology in today’s transportation systems. Simulators that
can simulate communications between agents will allow for
messages to be exchanged between agents, and may simulate
physical restrictions like the broadcasting radius of a certain
robot. Also, collision detection is a very basic feature that is
implemented in almost every simulator available. Because
the point is to test for anomalies and undesirable events, and

a collision is the most common of such events,
independently of the field of study, this is also an imperative
feature.

As for sensors, simulators that are able to calculate
random noise at the outputs of sensors will allow for more
realistic testing of the decision making mechanisms that need
to deal with the flawed nature of real sensors. Failure
simulation is another feature that will help testing whether
robots are fail-safe or fault-tolerant. This is the case when the
simulator has the ability to corrupt, or completely suppress,
the information coming from sensors to the agents, or from
the agents to actuators. Also, sensors can be affected by the
environment. Indeed, harsh weather conditions and
hazardous terrains can affect sensors in various ways, for
example, fog or darkness affecting the visibility of an optical
camera, or intense weather causing echoes in laser scanners.
Simulators might include these factors in the calculation of
sensor values then. Similarly, the environment can also
affect vehicles’ physical behavior. Weather and ground
conditions can affect the performance and control of vehicles
in various ways, for example, loose gravel, rain, or snow
making roads more slippery.

It is also important to consider that sensors can behave
differently and be used for a wide range of purposes. We
discuss on a few of them next. For instance, a GPS receiver
is able to determine vehicles’ current location, time, and
velocity, thanks to the precise microwave signals transmitted
by a constellation of between 24 and 32 Medium Earth Orbit
satellites. Luminosity sensors used to simply detect the
amount of light, being useful for knowing whether a car
needs to turn the lights on (e.g. due to the nightfall or
tunnels). Optical cameras, of many different types, send a
stream of images for the robot to analyze things like
movement flow, colors, and so on. Infra-red cameras are
essentially the same as a normal optical camera, except that
it detects light in the infra-red spectrum instead of the human
visible spectrum, and thus are also known as night-vision
cameras. Laser scanners (LIDAR), on the other hand, emit a
laser that is constantly changing its angle, while listening to
the laser reflections. This results in an array of points where
the laser hit a target and got reflected. This happens as fast as
12.5 times per second in a typical one. If used correctly, it
can measure the distance, size, shape and speed of multiple
obstacles several times per second. Ultrasound sensors are
typically used to measure short distances in a wide angle,
whereas infrared ones are used to measure short distances in
a sharp angle. An inertial measurement sensor is the main
component of inertial guidance systems used in air-, space-,
and watercrafts. It works by sensing motion (including the
type, rate, and direction of that motion) using a combination
of accelerometers and gyroscopes. The data collected from
these sensors allows a computer to track a craft’s position,
using a method known as dead reckoning. Radars emit either
microwaves or radio waves that are reflected by the target
and detected by a receiver, typically in the same location as
the transmitter. Although the signal returned is usually very
weak, the signal can be amplified. This enables radars to
detect objects at ranges where other emissions, such as sound
or visible light, would be too weak to detect. Finally, the
simple speed sensors that exist in every car, connected to the
speedometer, let drivers know the instant speed. They are

usually based on watching how many times the wheels of a
car complete a revolution in a given period of time.

C. Today’s Robotics Simulators

We now compare the features of different robotic
simulators, such as those presented in [11, 12, 13]. Some
teams that participated in the DARPA Urban Challenge 2007
will also be compared, both in terms of their simulators’
features and sensors their cars had been equipped with. A
generic game engine with typical features will be compared
as well, since with some modifications game engines are
functional enough to allow real-time simulation of real
applications. USARSim is an example of a simulator that
was implemented by modifying a game engine, namely
Unreal Engine, developed by Epic Games enterprise [14].

Thus, we want to compare game engines with generic
robotic simulators and with simulators used by DARPA
Urban Challenge’s teams, as presented in Table 1. Also, a
concise comparison of sensors used by teams’ driverless cars
is presented in Table 2. To the best of our effort, detailed
information about the different simulators that each team
used was hard to find, and so some of these features are
marked as not determined, at the time of writing this paper.

TABLE I. FEATURES OF TODAY’S ROBOTIC SIMULATORS

Table Legend:

x – Yes

m – Yes (considering

modifications known to have

been already made)

x? – Could not be verified, and

the information was not found,

but assumed as being a positive

? – Could not be determined at

the time of writing this paper

blank – No

Simulator features

3
D

 s
im

u
la

ti
o

n

3
D

 v
is

u
al

iz
at

io
n

L
ar

g
e

sc
al

e
tr

af
fi

c

M
u
lt

i
A

g
en

t
si

m
u

la
ti

o
n

V
2

V
 /

 V
2

I
co

m
m

u
n

ic
at

io
n

C
o
ll

is
io

n
 d

et
ec

ti
o

n

S
en

so
r

n
o
is

e

F
ai

lu
re

 s
im

u
la

ti
o
n

E
n
v

ir
o

n
m

en
t

af
fe

ct
in

g
 s

en
so

rs

E
n
v

ir
o

n
m

en
t

af
fe

ct
in

g
 p

h
y

si
cs

Game engines

Generic x x x x x x

DARPA Teams’ simulators

1st place - “Boss” x? x? x?

2nd place - “Junior” x? x? x?

3rd place - “Odin” x? x? x?

“Talos” x? x? x?

“Little Ben” x? x? x?

“Skynet” x?

PAVE (Princeton’s team) x? x? x?

Generic robot simulators

Ms Robotics Studio x x x ? x

Webots x x x ? x

Ciber-Rato x m x x

USARSim x x x

ÜberSim (Robot Soccer) x x

EyeSim (Robot Soccer) x x x x

It is important to remember, at this point, that large scale
traffic simulators are insufficient when it comes to
simulation detail. They lack all features mentioned in the

previous section, except for that of large scale traffic (and, in
some cases, 3D visualization), so they were not included in
Table 1. And since they do not simulate sensors at all, they
were not included in Table 2 either.

The observation of Table 1 reveals that most simulators
nowadays lack important features for the simulation of
autonomous vehicles. Robotic simulators do not seem to
simulate large scale traffic or pedestrians. However, we want
to simulate how a driverless car responds to crowded areas,
or traffic jams. As V2V/V2I communications are important,
we want to simulate how effective these communications can
be between vehicles and the road network infrastructure, as
well as how can they improve operations. Different sensors,
as well as their behavior and associated noise characteristics
must be also accounted for. Similarly to sensors, actuators
can fail and for some reason stop working properly.
Therefore, sensors and actuators tolerance to faults must be
modeled as well.

Some of the teams that participated in the DARPA Urban
Challenge implemented their own simulators, while others
used already existing ones. Some of their own simulators had
very practical features that are worth mentioning, as
summarized in [3]. For instance, the simulator used by
Princeton’s team allowed the user to test their code in the
simulator and then transfer it to the vehicle without the need
of recompiling it. MIT’s simulator could play back data
recorded in real life test runs, but the simulated obstacles
reflected perfect data during those recorded runs, something
that actual sensors did not obtain during real life test runs.
CarOLO also used their simulator to test new software
implementations before adding them to the vehicle, as well
as confirming bugs found during real world tests. That is
something that previous teams also did. On the other hand,
further development of this simulator has yielded a version
in which multiple instances of their autonomous vehicle
could be operated. In doing this, their software could learn
efficient driving behavior in an environment in which
multiple traffic vehicles may exist. Additionally, different
versions of code could be run from the same starting point,
running the same mission file, in order to compare their
performances. Tartan’s simulator also had the ability to add
virtual obstacles to a real world environment during testing.
Therefore, the vehicle was led to think there were obstacles
within its path, causing avoidance strategies to be executed,
even though there were none actually. All the
aforementioned features are very time-saving when
simulating and testing, and most of them were not easy to
implement. They were developed for these simulators
because time was the most important factor during the
DARPA Urban Challenge, since the teams only had a few
hours to update and validate their code between events.

In Table 2, we compare which sensors are simulated by
the generic robot simulators, as well as the sensors equipped
in DARPA’s driverless cars. After a quick observation, it is
possible to notice that generic car game engines are not good
enough because they are simply not sensor-based, and they
also lack some important simulation features such as the
ability to use multiple autonomous agents, V2V/V2I
communication, and represent sensors noise. Without
profound modifications they lack exactly what real projects,

such as DARPA Teams’, need to simulate how cars will
behave before testing them in real scenarios.

TABLE II. SENSORS SIMULATED IN TODAY’S ROBOTIC SIMULATORS

Table Legend:

x – Yes

m – Yes (considering

modifications known to have

been already made)

x? – Could not be verified, and

the information was not found,

but assumed as being a positive

? – Could not be determined at

the time of writing this paper

blank – No

Simulator Sensors

G
P

S

L
u

m
in

o
si

ty

O
p

ti
ca

l
ca

m
ar

a

In
fr

a-
re

d
 c

am
er

a

L
as

er
sc

an
n
er

 (
L

ID
A

R
)

U
lt

ra
so

u
n
d

In
fr

ar
ed

In
er

ti
al

 M
ea

su
re

m
en

t

R
ad

ar

S
p

ee
d

DARPA Teams’ simulators

1st place - “Boss” x x x x x

2nd place - “Junior” x x x x x x

3rd place - “Odin” x x x x x

“Talos” x x x x

“Little Ben” x x x x

“Skynet” x x x x

PAVE (Princeton’s team) x x x

Generic robot simulators

Ms Robotics Studio x ?

Webots x x x x x x ?

Ciber-Rato x x ?

USARSim x x ?

ÜberSim (Robot Soccer) ?

EyeSim (Robot Soccer) x x ?

D. Limits and Specialization of Simulators

Even after so much effort in the development of
simulation environments, we are still far away from having
an ideal simulator. The more features they tend to have and
the more realistic they tend to be, the more resources they
need to perform their calculations in a reasonable period of
time. But simulation will not help much if it is
oversimplified. In other words, we need a trade-off between
the realism of a simulation, and the simplicity of its
calculations. There are lots of things that we would love to
be able to simulate, but the sheer amount of processing
power those would require are simply too exacerbated.
Therefore, it is also important to take into consideration
limits and handicaps of simulators and modeling
methodologies.

Care must be taken with quantities. When we are talking
about large amounts of characteristics and elements within a
simulation, they better be simple. Very frequently, it is
necessary to perform both complex and simple calculations
repetitively. However, complex calculations tend to be
avoided most of the time. For such an example, let us look at
a large scale traffic simulator. The behavior of those
thousands of vehicles is simplified to the point the simulator
is able to make thousands of calculations almost instantly.
That is because the decisions are simple, and their physics
and movement are kept very simple as well. On the other
hand, imagine if each one of these cars were aware of its
environment through individual sensors, affected by
generated noise, and all these cars went through complex

decision-making algorithms in order to send commands to
their actuators, as well. At this point then, the simulation
should have to calculate the next step based on what the
actuators were ordered to do. If one multiplies all these
details by a thousand cars, it would take days to simulate just
a few seconds (if not less) of such a large scale scenario.

Nonetheless, it is very easy for a normal computer to
simulate a few of these driverless cars in real time. So, the
most obvious solution is to try and have more detail where it
matters and less detail where it does not, depending on the
specialization of the simulator. This means, in the case of
this project, that we might try and have some detailed cars,
with detailed decision-making mechanisms and a more
detailed physics simulation to model the driverless entities,
and surround them with a crowd of less detailed objects, with
their very own simple simulation model.

As for 3D simulation, it becomes a bit of a problem here,
specially if one is adding a third dimension to the terrain.
That is because in this case, there are a whole lot more
calculations involving those thousands of cars, to account for
the extra dimension in their dynamics. For highway systems
and most road networks, the changes in elevation are
relatively small. Therefore, the simulated results are similar
even without a 3D simulation. But with some cities and road
networks, there are very drastic elevation changes. A 3D
simulation is very important in these cases because it must
be taken into account that sensors cannot always look around
corners, or down hills. The vehicle performance is affected
by the third dimension as well. It needs more power to climb
uphill and, more importantly, it needs to break sooner and
harder if it is going downhill. Weather conditions such as
rain and snow also affect the way the vehicle performs. Dirt,
loose gravel, and other different ground surfaces can also be
simulated to test the vehicle’s control system. Again, a
normal computer can simulate effects like these for a few
cars, but not for thousands.

A good example of something that would be very hard to
realistically implement in a simulation is GPS signal loss.
The satellite signal can be occluded by pretty much anything
that is big enough and in the way, such as buildings or trees.
Realistic simulation of such a blockage would require
simulation of the satellites and their orbits. The line of sight
between the GPS receiver and the satellites would need to be
tested to see whether there was a signal loss or not. One can
go as far as considering signal reflections off large buildings.
But all these details would take a tremendous amount of
processing power, and a lot of effort to implement. A trade-
off between the effort and the results is essential then. We
can try and simulate GPS signal loss in various ways, from
simple random time intervals, to specify areas in the map
where the GPS signal would be lost. As long as the result is
that the GPS receiver looses the signal every once in a while,
we get a simulator that can test the vehicle’s ability to
roughly predict its position even if it temporarily looses the
GPS signal.

There is also a good example of something that was very
hard to simulate a few years back and now, with some
developments in computer technology, has become easy on
processing needs. That is the example of vision based
sensors. Vision algorithms used to be tested by simulating

the markings on the roads, but the results differed a lot from
real life, where there are shadows from objects that might be
out of the picture, atmospheric conditions such as fog,
storms, or even direct sunlight. Vision algorithms can now
be tested more realistically because 3D rendering has
evolved a lot lately. Now it is very common to have
applications (any common video-game) that has a 3D engine
implementing all these features, and can render them all in
real time with a reasonably cheap computer. It is a matter of
streaming the result video output into a virtual camera
instead of streaming it into a monitor screen. This way it
would be possible to emulate a camera receiving a video that
features photorealistic weather effects [14].

Then, an ideal simulator would have to be
indistinguishable from the real world. That might only be
accomplished in a utopian future. But we can take what
exists and adapt it to our necessities when it comes to
simulation, by trying and re-balancing the capabilities of the
simulator.

III. THE PROPOSED APPROACH

A. Software Architecture

Our approach is based on the simulator architecture
depicted in Fig. 1, where the different modules of the project
are represented. The two grayed out blocks in the center of
the figure are the simulation modules which will be the main
focus and the point of start, namely the simulator and the
simulation viewer.

Fig. 1. Architecture of the simulator and its bordering systems.

The details of the connections between the different
software pieces are as follows. The 3D Simulation Viewer
will connect to the simulator, and receive information from it
to render the 3D representation of the simulation. It should
also have the functionality to send information of rendered
images back to the simulator for optical sensors such as
cameras (to test vision based algorithms). The simulator
connects to the MAS-T

2
er Lab’s microscopic traffic

simulator and to the pedestrian simulator. The main
simulator will receive traffic information from both the
simulators mentioned above, and will include that
information in its calculations. It should also be able to send
information of its agents back to those simulators, so that
they, in turn, can take those agents into consideration when
calculating the outcomes of their own simulations. Agents
will connect to the simulator and send all the information it

takes for the simulation to know the necessary characteristics
about the agents. This includes component positioning and
type of agent. It can be a driver agent, in which case it will
have a car assigned to it, or it can also be an infrastructure
agent, such as traffic lights.

B. Specific Features

Below, the specific features are briefly described,
grouped according to their role within the framework. These
objectives were reached after comparing the identified
problems as we had discussed in the beginning of this paper,
as well as the general review of the state of the art to figure
out what is missing in the simulators studied.

1) Simulator
Collision detection – it is the simulator ability to detect

collision between objects; Map reformatting – it is related to
modifying the road network map to add more details for the
simulation; V2V/V2I communication controlled by the
simulator – it is the simulator ability to authenticate and
forward messages between agents, to simulate V2V and V2I
communications; Environment affecting physics and/or
sensors – this is the simulator ability to take the environment
into consideration when calculating sensor values and object
movements; Failure simulation – it is the simulator ability to
simulate failures (e.g. not sending information to a sensor, or
sending corrupt data, ignoring actuator commands, etc.);
Sensor noise – it is the simulator ability to add noise to the
sensor values; Communications degradation – it is the
simulator ability to limit communications between the agents
depending on the environment.

2) Agents
Agents interface with the simulator – it is the simulator

ability to let agents to be connected to it; Agents-actuator
interfaces – it is the simulator ability to receive actuator
values from the agents; Agents-sensor interfaces – it is the
simulator ability to send sensor values to agents; Game type
agent – this is related to the ability of implementing a simple
agent that does not necessarily have decision-making
abilities, in other words is not autonomous. This agent will
have an interface with the user so that he/she can directly
control a vehicle within the simulator. This will come handy
for testing and debugging the simulator; Agents-traits
interfaces – it is the simulator ability to receive the traits
information from an agent, namely information regarding
their sensors, actuators and physical traits; Real vehicle type
agent – This is the functionality that allows a real vehicle to
connect their sensors and reporting as an agent; Real vehicle
reacting to virtual sensor responses – basically, it is the
functionality of having a real vehicle avoiding virtual
obstacles; Infrastructure agents – ability for an agent to
connect itself to the simulator, functioning as a simple road
network infrastructure (e.g. a smart traffic light); Obstacles
agent – ability for an obstacle agent to connect to the
simulator, functioning as a simple obstacle such as a broken
vehicle or emergency traffic signs.

3) 3D Viewer
Implementation of a 3D Simulation viewer – it is related

to the 3D graphics rendering library to implement the 3D
viewer that will be used to render the simulation scenes (e.g.
OpenGL); 3D simulation viewer interface with the simulator

– this is basically the ability of the 3D viewer to connect to
the simulator and receive information from it to render the
3D scene; Range indicators for sensors and communications
– this is a feature that would render shapes to inform the user
of various things such as sensor and communication ranges;
3D simulation viewer streaming images back to the optic
sensors – it is the ability of the viewer to render images from
a given point (an optical sensor) to stream back as
information for the agents to test their vision based
algorithms; Environment affecting visualization – it is
related to rendering some environment features such as
daylight, fog and darkness.

4) Traffic simulators
Interface with microscopic traffic simulators – it is the

simulator ability to connect to external microscopic traffic
simulator, such as MAS-T

2
er Lab’s microscopic simulator;

Import/export road network maps – it is the simulator ability
to load a road network map from an external traffic simulator
or any geographic information system (GIS) database;
Traffic information interface – it is the simulator ability to
receive traffic information from an external running
microscopic traffic simulator; Agent information interface –
it is the simulator ability to send agent information to an
external traffic simulator so that it can account for the
driverless car as a vehicle in the traffic flow; Pedestrian
simulators interface – it is the simulator ability to connect to
a pedestrian simulator; Pedestrian traffic information
interface – it is the simulator ability to receive pedestrian
flow information from a pedestrian simulator.

IV. CONCLUSIONS

In this work we have proposed an architecture mixing
different simulators to support autonomous vehicles
simulation in a mixed environment. From previous
experiences with robotics simulators and envisaging their
potential to more realistically represent a driverless vehicle,
we have defined an architecture that balances between
simulating a few very realistic autonomous vehicles and too
many simple cars within a microscopic traffic model.

Of course, starting a simulator from scratch is a daunting
task. At least, when compared to the task of modifying an
existing one to adapt it to our needs. And after careful
analysis of the available simulators, Ciber-Rato [15] was
selected to be the basis for our platform. It is a simulator that
already implements many desired features for our simulator,
as identified from section two. Besides, we are already
somewhat familiar with it which, together with the fact of
being an open source tool, turns it into a reasonable option.
Additionally, its programming is structured very well, which
makes it easy for us to adapt the environment to our own
needs and implement the aforementioned features. Some
extensions to its original framework already include
interesting and useful features, such as those implemented in
[16]. This version implements a modification that basically
allows agents to communicate between each other, similar to
what we intend to enable V2V and V2I communications in
our own framework. Another modification of this simulator
was implemented within the project IntellWheels, by
members of our group, including an enormous amount of

new features, compared to the original Ciber-Rato, to allow
autonomous and cooperative wheelchairs to interact within a
hospital environment. Besides different sensors and
actuators, as well as a whole bunch of dynamics models, this
enhancement includes a 3D viewer of their own, allowing for
different wheelchairs to be connected to the simulator, with
different sensors and characteristics [17].

Next steps include the adaptation of the MAS-T
2
er Lab’s

microscopic traffic simulator [2] to support the interaction of
its agents with external environments, in this case the
simulator of our proposed framework.

ACKNOWLEDGMENT

Authors gratefully thank Pedro Malheiro, Paulo Ferreira
and Edgar Esteves for their help and support with the
simulators they worked on and effort to integrate them
within the proposed framework.

REFERENCES

[1] L. C. Davis, “Effect of adaptive cruise control systems on traffic
flow,” Physical Review E, vol. 69, no. 6, 2004.

[2] P. Ferreira, “Specification and Implementation of an Artificial
Transport System,” Master’s Dissertation. Porto, Portugal: Faculty of
Engineering, University of Porto, 2008.

[3] T. Alberi, “A Proposed Standardized Testing Procedure for
Autonomous Ground Vehicles,” Master’s Dissertation, Blacksburg,
VA: Virginia Polytechnic Institute and State University, 2008.

[4] “Stanford Racing Team,” [Online]. Available:
http://cs.stanford.edu/group/roadrunner/, last accessed Aug, 2009.

[5] “Ben Franklin Racing Team,” [Online]. Available:
http://www.benfranklinracingteam.org/, last accessed Feb, 2009.

[6] “MIT DARPA Grand Challenge Team,” [Online]. Available:
http://grandchallenge.mit.edu/, last accessed Aug, 2009.

[7] I. Miller and M. Campbell, “Team Cornell’s Skynet: Robust
Perception and Planning in an Urban Environment,” Journal of Field
Robotics, vol. 25, no. 8, pp. 493–527, 2008.

[8] “Cornell DARPA Urban Challenge,” [Online]. Available:
http://www.cornellracing.com/, last accessed Aug, 2009.

[9] “Carnegie Mellon Tartan Racing,” [Online]. Available:
http://www.tartanracing.org/, last accessed Aug, 2009.

[10] “VictorTango Urban Challenge,” [Online]. Available:
http://www.me.vt.edu/urbanchallenge/, last accessed Aug, 2009.

[11] “Microsoft Robotics Developer Center,” [Online]. Available:
http://msdn.microsoft.com/en-us/robotics/, last accessed Aug, 2009.

[12] B. Browning and E. Tryzelaar, “ÜberSim: A Multi-Robot Simulator
for Robot Soccer,” in 2nd International Joint Conference on
Autonomous Agents and Multiagent Systems, 2003, pp. 948–949.

[13] T. Bräunl, “The EyeSim Mobile Robot Simulator,” Report CITR-TR-
58. Auckland, New Zealand: Computer Science Department,
University of Auckland, 2000.

[14] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper,
“USARSim: a robot simulator for research and education,” in IEEE
International Conference on Robotics and Automation, 2007, pp.
1400-1405.

[15] N. Lau, A. Pereira, A. Melo, A. Neves and J. Figueiredo, “Ciber-
Rato: um ambiente de simulação de robots móveis e autónomos,”
Electronics and Telecommunication, DETUA Journal, vol. 3, no. 7,
pp. 647-650, 2002. (in Portuguese)

[16] “Micro-Rato Competition,” [Online]. Available:
http://microrato.ua.pt/, last accessed Aug, 2009.

[17] P. Malheiro, “Intelligent Wheelchair Simulation,” Master’s
Dissertation. Porto, Portugal: Faculty of Engineering, University of
Porto, 2008.

