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Jõao Borges de Sousa
and Fernando Lobo Pereira

Dept. Eng. Electrot́ecnica e de Computadores
Faculdade de Engenharia da Universidade do Porto

4200-465 Porto, Portugal
Email: {jtasso,flp}@fe.up.pt

Maria Bento Nunes
Laborat́orio de Aeronautica

Academia da Força Áerea Portuguesa
Granja do Marqûes
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Abstract— A framework for the representation, formal spec-
ification, and control synthesis for networked vehicle systems
is presented. From dynamic optimization, this framework has
inherited the concepts and theories of optimality, reach set
computation and control, and the motivation to improve the
performance of increasingly complex physical processes. From
set theory, this framework borrowed the representational power
of the language of sets to capture the relations among vehicles
and controllers in a way that is consistent with control design.
The ANTEX-M project is described to illustrate the challenges
posed by networked vehicle systems and to illustrate how the
framework addresses these challenges.

I. I NTRODUCTION

Over the last decade we have been designing and building
multi-vehicle systems for underwater, sea, air, and ground
applications [5], [4], [3]. In this process we developed a better
understanding of the problem of bringing together technologi-
cal development, theoretical underpinnings, and computational
tools in the design and implementation of networked semi-
autonomous and autonomous vehicles. This problem poses a
new challenge to control engineering. The challenge comes
from the distributed nature of the problem and from the
nature of interactions. For example, in networked multi-vehicle
systems, information and commands are exchanged among
multiple vehicles, and the roles, relative positions, and de-
pendencies of those vehicles change during operations. This
challenge entails a shift in the focus of control theory – from
prescribing and commanding the behavior of isolated systems
to prescribing and commanding the behavior of interacting
systems.

In this paper we outline a framework for the formal rep-
resentation, specification, and control synthesis of networked
vehicle systems.

For our purposes, the world consists basically of regions,
physical objects, teams of physical objects, and networks of
teams. While some objects have a physical existence, others
are brought into existence as software agents. Examples of
software agents are controllers that may be created, modified,
and destructed in real-time. Examples of physical objects
include vehicles and other devices. Vehicles have attributes
and are capable of delivering atomic services (e.g. sensing),
of executing tasks (e.g. fly a certain path), and of performing

actions (e.g. launch a missile). Acomplex serviceis a service
that cannot be delivered by a single physical object: it requires
the composition of atomic services delivered by multiple
physical objects. This is done withatomic links. An atomic
link is a relation on the positions, motions and atomic services
provided by two physical objects. Anatomic configuration is
a list of atomic links connecting a group of vehicles. Vehicles
are teamed to deliver services, and to perform tasks that cannot
be delivered by a single physical object.

In what concerns formal representation we represent all of
the objects, their dynamic behavior, and the relations among
themselves with simple concepts from set theory and from
dynamic optimization. Relations of interest for us are: 1)
services and their composition; 2) services and their physi-
cal implementation; 3) services and their order relations; 4)
objects and modes of coordination; 5) objects and properties
of their composition; 6) services and service providers; 7)
objects and their control structure; 8) control structures and
services. Some of the relations are static, others concern the
dynamic behavior of vehicles under coordination constraints
that change with time. In order to represent the last ones
we use a set-valued description of the dynamic behavior of
vehicles and teams. We use reach sets to describe the evolution
of a dynamic system, invariant sets to describe the locations
where the permanence of an object within a certain set is
ensured, and solvability sets to describe the locations from
which a system can evolve to reach a given set.

We specify operations on objects, and express the specifi-
cation in a formal language. The key observation is that we
can represent the objects, the relations they satisfy, and their
operations in the language of sets. We will show that set-valued
constraints express all of the relations of interest for systems
of networked objects. This way we are able to represent the
world of systems of networked objects with simple concepts
from set theory. This is why we will be able to formally relate
design and specification. In fact, this is the key idea behind
our specification and control framework.

We write partial plan specifications and define a planning
procedure that results in a data structure defining all of the
controller specifications that precede controller design, and
where all logical relations are already satisfied.



Finally, we use techniques from dynamic optimization to
synthesize controllers that implement the plan, or that prove
that the plan is not feasible.

The paper is organized as follows. In section II we discuss
the ANTEX-M project to describe part of the motivation
for our developments. In section III we introduce a mission
example that we will use in the reminder of the paper to
illustrate our framework. In section IV we discuss the issues
of formal representation and specification. In section V we
formulate the control problem for the mission example and
in section VI we discuss the solution methodology. In section
VII we draw some conclusions.

II. ANTEX-M

The ANTEX-M project concerns the design and the con-
struction of a low cost unmanned air vehicle (UAV) platform
for the Portuguese Air Force. The objectives of the project
are:

• To design and build a low cost UAV platform for exper-
imentation, development, and integration of sensing and
communication technologies.

• To develop the technological and experimental expertise
required to integrate UAV technology in the Portuguese
Armed Forces.

• To demonstrate the operational capabilities of UAVs,
either in isolated operation or integrated in a system.

The primary mission of theANTEX-M UAV concerns
surveillance. The specific applications are:

• Search and rescue operations in the Portuguese coastal
waters.

• Monitor military activities in tactical operations.
• Anti-terrorist operations.
• Detection and tracking of maritime pollution.
• Fire detection.

The ANTEX-M UAV platform is an evolution of a Re-
motely Piloted Vehicle (RPV) developed by the Portuguese Air
Force Academy to conduct research on adaptive aero-elastic
structures [11]. The UAV will serve as a platform to mount
sensors developed by the Portuguese Armed Forces and by the
Directorate of Armament and Defense Equipment (Direcção
Geral do Armamento e Equipamento e Equipamentos de
Defesa). These sensors include infrared sensors with image
processing, for detection and automatic tracking on board;
laser emission detectors; and radar laser systems for three-
dimensional image generation.

The preliminary design specifications for the UAV are: 1)
empty weight – 5kg; 2) maximum take off weight – 8kg; 3)
wing span – 2.4 m; 4) max level speed – 151 km/hr; 5) cruise
speed – 139 km/hr.

III. M ISSION EXAMPLE

We illustrate our framework with one of the conceivable
missions for theANTEX-Mtype Unmanned Air Vehicle.

Fig. 1. ANTEX-M UAV

A conceivable mission for theANTEX-MUAVs consists in
the surveillance and mapping of selected regions. One such
example consists in monitoring the evolution of oil spills1.

Consider the following mission involving two vehicles, A
and B, that coordinate their motions to execute a “mapping”
task. The “mapping” task consists of having vehicle A follow-
ing a prescribed path in the geographic (x,y) plane and taking
measurements along that path without colliding with obstacles.
There are no constraints on the z geographic coordinate except
for those arising from unknown obstacles. Vehicle A has a
mapping sensor and does not have any sensor for obstacle
avoidance. Vehicle B surveys the area in front of vehicle A
to identify the presence of potential obstacles. B is faster
than A, and communicates the presence of obstacles to A. To
do this B, carries an obstacle detection sensor. The problem
is to coordinate the motions of the two vehicles so that,
under mild assumptions on the topography of the world, the
vehicles are able to execute the mapping task successfully, i.e.
vehicle A does not collide with an obstacle before reaching
its destination.

Hereafter, and unless stated otherwise, we will refer to this
mission as our “example”.

IV. FORMAL REPRESENTATION AND SPECIFICATION

The world consists basically ofregions, physical objects,
teams of physical objects, andnetworks of teams. While
some objects have a physical existence, others are brought
into existence as software agents.

Regions are subsets of<n. Physical objects arevehicles,
anddevices. Each vehicle has aType and each physical object
is located within at least one region.

A vehicle/device hasattributes (e.g. range), it is capable
of delivering atomic services (e.g. sensing), of executing
tasks (e.g. fly a certain path), and of performingactions (e.g.

1This type of mission is particularly important for Portugal. The intense
maritime traffic to and from Europe presents a considerable environmental
threat, as demonstrated recently by the oil spill from thePrestigetanker.



launch a missile). A vehicle is controlled to move, and to
deliver atomic services while moving. Physical objects have
the potential to establish interactions among themselves. This
is done withatomic links. An atomic link is a relation on
the positions, motions and atomic services provided by two
physical objects. Anatomic configuration is a list of atomic
links connecting a group of vehicles.

We use physical objects as the building blocks ofteams
and of networks of teams. Teams and networks of teams
are brought into existence to deliver complex services, and
to perform tasks that cannot be delivered by a single physical
object.

A complex serviceis a service that cannot be delivered by
a single physical object: it requires the composition of atomic
services delivered by multiple physical objects, in particular
vehicles. In order to do this, these vehicles have to be in a
particular atomic configuration. In practice, complex services
emerge frommodes of cooperationamong multiple objects,
for example physical objects and software agents.

A team is a set of vehicles that is able to performteam
missions. A team mission consists of team tasks and of task
switching logic (also called a teamplay). A team task consists
of the delivery of services and motions.

A plan is a data structure consisting of team tasks, controller
specifications for each task, ordering constraints, variable
binding constraints, and causal links. The plan is refined into
team tasks. The refinement process involves team composition
and tasking, resource allocation, and path planning.

Next we illustrate these concepts with the representation of
the problem domain for our mission example.

In our example the setVehiclesis:

Vehicles={A,B,C,D}

There are two types of vehiclesMapper andScout:

Type(A)=Mapper, Type(B)=Scout, Type(C)=Scout, Type(D)=Mapper

The functionProvideAtomicServicereturns the list of atomic
services provided by each vehicle type. The functionAt-
tributeAtomicServicereturns the list of attributes of an atomic
service and the functionValueAttribute(a,c)returns the value of
attributea of the typec atomic service.

ProvideAtomicService(Mapper)={Coms,MapSensor,Motion}
ProvideAtomicService(Scout)=

{Coms, ObstacleDetectionSensor,Motion}
AttributeAtomicService(Coms)=Range

ValueAttribute(Range,Coms)=RComs

The equations of motion for all vehicles are given by:

ẋi(t) = fi(t, xi(t), ui(t)) ui(t) ∈ Ui, i = A, B,C, D

The function Position(t,Z) returns the geographic position
(x,y,z) of vehicle Z at time tPosition(t,Z)= Π(xZ(t)). Π gives

the projection of the state of vehicle Z onto the geographical
position of the vehicle.

Atomic services are the building blocks of complex ser-
vices. This is because some of the atomic services have the
potential to establish interactions among the respective service
providers. We call the atoms of these interactionsatomic
links: an atomic link is a relation on the relative motions,
positions and atomic services provided by two different service
providers. The predicateAtomicLink(l, v1, v2) represents the
fact that vehiclesv1 and v2 are linked with a link of typel.
The type defines therole – the atomic services and the list of
commands accepted and issued – of each of the participants in
the link and theglue – the way the two participants interact.
The glue is a relation on the relative positions and motions of
both service providers, and on the commands they exchange.
The glue is determined from the attributes of the corresponding
atomic services.

We represent the fact that any two vehicles inVehiclesare
able to communicate under well-defined conditions with the
atomic link of typeComs:

AtomicLink(Coms,v1, v2) ⇔
Coms∈ ProvideAtomicService(v1) ∧
Coms∈ ProvideAtomicService(v2) ∧

φComs(Position(t,v1),Position(t,v2)) ≤ 1

where

φComs(a, b) : <3 ×<3 → <, s.t.

φComs(a, b) =
d2(a, b)
R2

Coms

, d(a, b) = ‖a− b‖2

It is convenient to express the functionφComs in terms of
the full state of both vehiclesv1 andv2.

φComs(xv1 , xv2) = φComs(Π(xv1),Π(xv2))

We use the following predicates and functions to represent
the complex service of types:
• RequiredVehicleType(s)returns a list with the types of

vehicles required to implement the service.
• RequiredVehicles(s,c,V)returns all the subsets ofV capable

of delivering the complex service of types with the value
of attributes specified inc.

• RequiredConfigurationStyle(c,a)returns the configuration
style that each set of vehicles inRequiredVehicles(c,a)must
satisfy to deliver the servicec with the value of attributes
as specifieda.

For example, we represent the interactions between vehicles
A and B in our mission example as theScoutedMapping
complex service. To do this we consider two genericMapper
andScoutvehicles,v1 andv2 respectively.

The vehicle of typeScout, v2, evolves in a vicinity P
of the current geographic position ofv1 and informsv1 of
the existence of obstacles so thatv1 can perform obstacle
avoidance successfully.P (Position(t, v1)) is given as a set-
valued map from the current geographic position ofv1 to a
subset of<3.



P (a) : a ∈ <3 ↪→ P (a) ⊂ <3

We represent this type of interactions betweenv1 and v2

with the atomic link of typeInside.

AtomicLink(Inside,v1, v2) ⇔
(Type(v1)=Mapper) ∧ (Type(v2)=Scout) ∧

(φInside(Position(t,v1),Position(t,v2)) ≤ 1)

where

φInside : <3 ×<3 → < s.t.

φInside(a, b) = d2
c(b, P (a)) + 1, dc(b, P ) = min

s∈P
d(s, b)

As before we defineφInside(xv1 , xv2) as follows:

φInside(xv1 , xv2) = φInside(Π(xv1), Π(xv2))

The implementation of the serviceScoutedMappingalso
requires both vehicles to communicate. This means that they
have to satisfy a configuration, i.e. a list of atomic links. We
use anatomic configuration styleas a compact representation
of a set of atomic configurations sharing a common property.
We represent the configuration styley with a predicateConfig-
urationStyle(y,c), wherec is a team of vehicles.

ConfigurationStyle(ScoutMapper,V)⇔
∃X, Y ∈ V : Type(X)=Mapper∧ Type(Y)=Scout∧

AtomicLink(Coms,X,Y)∧ AtomicLink(Inside,X,Y)

Finally we are able to represent theScoutedMappingcomplex
service:

RequiredVehicleType(ScoutedMapping)={Scout,Mapper}
RequiredVehicles(ScoutedMapping,nil,Vehicles)=

{{A, B}, {A, C}, {D, B}, {D, C}}
RequiredConfigurationStyle(ScoutedMapping,Vehicles)=

ScoutMapper

Single vehicles and teams of vehicles execute tasks. A task
has a type. Consider, for example, theMapping task. This task
is defined as follows.

Task(Mapping,{X, Y }, ScoutedMapping(X,Y),

Path(x0, xf , p, X), φ0(Position(t0,X),Position(t0,Y)))

where Mapping is the type of the task,{X,Y } is the team
of vehicles executing the task while delivering the service
ScoutedMapping, p = {(x, y) ∈ <2 : (x, y) = p(t), t ∈ [t0, tf ]},
and Path(x0, xf , p, X) and φ0(Position(t0,X),Position(t0,Y)) are
defined as follows (X, Y are vehicle variables):

∀t ∈ [t0, tF ] : φpath(t,Position(t,X),p(t))≤ 1

where

φpath(t, a, b) : <× <3 ×<3 s.t.

φpath(t, a, b) = d2(a, b)− δ + 1
φ0(Position(t0, X),Position(t0, Y )) ≤ 1

δ is the path-tracking tolerance and the last equation defines
the set of initial positions for vehicles X and Y. We define
φpath in the manner described above:

φpath(t, xvi
, b) = φpath(t,Π(xvi

), b)

The plan specification is a data structure consisting of tasks
and a partial order on these tasks. In our example the plan
specification consists only of the mapping task:

Plan = {Task(Mapping,{X, Y }, ScoutedMapping(X,Y),

Path((0,10),(100,10),p, X),φ0(Position(t0,X),Position(t0,Y)))}

We need to transform this plan specification onto an im-
plementable plan, i.e. we need a planner. Here we are not
concerned with planning procedures and we assume that the
planner produced the following plan.

Plan = {Task(Mapping,{A, B}, ScoutedMapping(A,B),

Path((0,10),(100,10),p,X)),φ0(Position(t0,A),Position(t0,B))}

At this point the plan consists of control specifications from
which we derive a feasible structure of controllers in case it
exists.

V. FORMULATION

The control problem formulation arises naturally from the
previous specification and is expressed as follows.

∀t ∈ [0, 1] : φpath(t, xA(t), p(t)) ≤ 1 ∧ (1)

φInside(xA(t), xB(t)) ≤ 1 ∧
φComs(xA(t), xB(t)) ≤ 1 ∧

φ0(xA(t0), xB(t0)) ≤ 1

We obtain this formulation from the instantiated plan, where
the variables X and Y are bound to vehicles A and B.

Remark 1:We represent all of the state constraints as
inequalities of the formφ(x) ≤ 1. We use this representation
to simplify the notation. In fact, all state constraints can be
represented in this form.

In what follows we consider the following hypotheses:

H1. The set-valued mapP is closed, convex, and bounded.
H2. The pathp is continuous in t.
H3. φ0(x, y) is continuous in both variables.

Lemma 1:Under hypothesesH1 − 2 the functions
φpath(t, x, y), φInside(x, y), andφComs(x, y) are continuous.

Defineφ(t, x, y), u andU as follows:



φ(t, x, y) = max{φpath(t, x, p(t)), φInside(x, y), φComs(x, y)}
u = {uA, uB},U = UA × UB

f(t, xA, xB , u) = col(fA(t, xA, uA), fB(t, xB , uB))

We use the approach from [10] to formulate this control
problem as an invariance problem (see [8], [9], [2], [1]). To
do this, we introduce the following value function.

V (t, xA, xB) = min
u(.)

max{{ max
τ∈[t0,t]

{φ(τ, xA[τ ], xB [τ ])}, (2)

φ0(xA(t0), xB(t0))}, xA[t] = xA, xB [t] = xB}

where u(.) is a feasible control function (u(τ) ∈ U , τ ∈ [t0, t]).
Now consider the sub-level set of this value function given

by the following equation:

R(t, xA, xB) = {(xA, xB) : V (t, xA, xB) ≤ 1} (3)

At time t, R represents the set of all locations for A and B
that satisfy equation 1.

The question now is how to calculate the value function.
This is not a trivial matter. The idea is to transform this global
problem into a local one. We do this by transforming the global
problem onto a partial differential equation.

VI. SOLUTION

In general the value function V can be calculated through
the generalized Hamilton-Jacobi-Bellman (HJB) equation. We
can only do this if the value function satisfies the principle of
optimality.

Theorem 1:The value function V satisfies the principle of
optimality.

Basically the principle of optimality states that the value
function satisfies a semi-group property. The value function
inherits this property from the semi-group property of the
reach set.

Using the techniques from [10] we can derive the HJB
equation for this problem. First we introduce some notation:

H(t, x, y, V, u) = Vt(t, x, y) + 〈Vx(t, x, y) · f(t, x, y, u)〉 (4)

An infinitesimal version of the principle of optimality leads
to Hamilton-Jacobi-Bellman equation:

Vt(t, x, y) + max
u∈U

〈Vx(t, x, y) · f(t, x, y, u)〉 = 0 (5)

whenV (t, x, y) 6= φ(t, x, y)
max
u∈U

{min{H(t, x, y, V, u),H(t, x, y, φ, u)}}
whenV (t, x, y) 6= φ(t, x, y)

V (t0, x, y) = max{φ(t0, x, y), φ0(t0, x, y)}
where Vt, Vx represent the corresponding sub-differentials.
Since V is non-differentiable the usual notion of solution of
a partial differential equation does not apply. We consider

generalized “viscosity”, or equivalent concepts, of solutions
for this equation (see [6], [7]).

Given a solution V to the Hamilton-Jacobi-Bellman equa-
tion we are able to find the invariant set R from equation
3. Now we have all of the ingredients required to synthesize
the controller for our problem (see [7]). DefineU(t, xA, xB)
as the set of control values where the maximum of equation
5 is attained whenxA and xB are the values of the state of
vehicles A and B at time t. In the interior of R we can use any
feasible control. On the boundary of R the control selection
is restricted to the set-valued mapU(t, xA, xB).

VII. C ONCLUSIONS

In this paper we propose a specification, planning, and
control synthesis framework for networked vehicles systems.
We use the language of set theory to uniformly represent
vehicles, patterns of interactions among these vehicles, and
the behavior of ordinary differential equations – such as the
ones describing the motions of a vehicle – and techniques from
dynamic optimization for the set-valued representation of this
behavior and for control synthesis under set-valued constraints.

The calculation of the value function is not a trivial matter.
We are investigating computational methods to do this.
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supported by Fundação da Cîencia e Tecnologia under project
Cordyal.

REFERENCES

[1] Jean-Pierre Aubin.Viability theory. Birkhauser, 1991.
[2] Jean-Pierre Aubin and Helene Frankowska.Set-valued analysis.

Birkhauser, 1990.
[3] J. Borges de Sousa, Anı́bal C. Matos, and F. Lobo Pereira. Dynamic

optimization in the coordination and control of autonomous underwater
vehicles. InProceedings of Decision and Control Conference. IEEE,
2002.

[4] J. Borges de Sousa and F. Lobo Pereira. Specification and design
of coordinated motions for autonomous vehicles. InProceedings of
Decision and Control Conference. IEEE, 2002.

[5] J. Borges de Sousa and Raja Sengupta. Tutorial on autonomous and
semi-autonomous networked multi-vehicle systems, decision and control
conference. December 2001.

[6] L. C. Evans. Partial Differential Equations. Graduate Studies in
Mathematics. American Mathematical Society, 1998.

[7] N.N. Krasovskii and A.I. Subbotin.Game-theoretical control problems.
Springer-Verlag, 1988.

[8] A. B. Kurzhanskii. Advances in nonlinear dynamics and control : a
report from Russia. Birkhauser, 1993.

[9] A. B. Kurzhanskii. Ellipsoidal calculus for estimation and control.
Birkhauser, 1997.

[10] A. B. Kurzhanskii and P. Varaiya. Optimization methods for target
problems of control. InProceedings of Mathematical Theory of
Networks and Systems Conference, 2002.

[11] A. Suleman, P. A. Moniz, and A. P. Costa. Design and testing of adaptive
rpv aerolastic demonstrator. InProceedings of the AIAA, pages 1361–71,
2001.


