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RESUMO

Nesta dissertação é apresentada uma metodologia onde se aplica uma nova técnica de
aprendizagem automática – as árvores de regressão híbridas – que explora o conhecimento
funcional sobre o comportamento de sistemas. Esta metodologia foi especialmente concebida
para exploração do comportamento dinâmico de redes eléctricas isoladas com grande produção
eólica. As árvores de regressão híbridas, para além de classificarem de forma rápida a segurança
de exploração do sistema, permitem ainda quantificar em tempo real o grau de robustez do
sistema através da emulação de índices de segurança contínuos que traduzem o seu
comportamento dinâmico em face de algumas perturbações.

É descrita a aplicação da metodologia desenvolvida à rede eléctrica da ilha da Terceira. O
objectivo desta aplicação consistiu na obtenção de estruturas de segurança, que realizem
avaliação rápida do comportamento dinâmico do sistema atendendo a problemas de instabilidade
da frequência. Esta descrição incluí a explicação do procedimento efectuado para a geração do
conjunto de dados.

É também descrito como a metodologia foi aplicada ao sistema eléctrico da ilha de Creta, no
sentido de desenvolver ferramentas avançadas que permitam apoiar os operadores da rede na
gestão da potência eólica instalada.

Neste documento apresenta-se ainda a avaliação de desempenho das estruturas de segurança
treinadas, incluindo uma análise comparativa com árvores de decisão e redes neuronais.

O trabalho de investigação que conduziu à elaboração desta dissertação foi realizado no âmbito
da fase final do projecto CARE do programa Europeu JOULE/THERMIE. Os trabalhos
decorreram na FEUP (Faculdade de Engenharia da Universidade do Porto) e no INESC Porto
(Instituto de Engenharia de Sistemas e Computadores do Porto).

Palavras Chave

Redes Eléctricas Isoladas com Produção Eólica
Avaliação Rápida de Segurança Dinâmica
Monitorização de Segurança
Problemas de Estabilidade da Frequência
Técnicas Híbridas de Aprendizagem Automática
Técnicas de Aprendizagem Máquina
Árvores de Regressão
Modelos de Regressão Kernel
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ABSTRACT

This thesis presents a methodology that applies a new automatic learning technique – the hybrid
regression trees –, which exploits the functional knowledge about systems behavior. This
methodology was specially conceived to exploit the dynamic behavior of isolated power systems
with large wind power production. The hybrid regression trees, besides producing fast security
classification of the system, can still quantify in real-time the security degree of the system by
emulating continuos security indices that define the power system dynamic behavior.

The application of the developed methodology to the power system of Terceira island is
described. The main goal of this procedure was to obtain security structures, which produce fast
dynamic security assessment of the system regarding frequency instability problems. A
description of the data set generation procedure is included.

This document also describes the application of the methodology to the power system of Crete.
The main goal of this procedure was to develop advanced tools that can help operators to
perform the management and operation of the installed wind power.

The performance evaluation of the trained security structures, including comparative assessment
with decision trees and neural networks, is also presented.

The research leading to this thesis was developed within the framework of the last stage of the
EU CARE project of the JOULE/THERMIE program. The work was carried out at FEUP
(Faculdade de Engenharia da Universidade do Porto) and at INESC Porto (Instituto de
Engenharia de Sistemas e Computadores do Porto).

Keywords

Isolated Power Systems with Wind Power Production
Fast Dynamic Security Assessment
Security Monitoring
Frequency Stability Problems
Hybrid Automatic Learning Techniques
Machine Learning Techniques
Regression Trees
Kernel Regression Models
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RESUME

Dans cette thèse on présente une méthodologie où on applique une nouvelle technique
d’apprentissage automatique – des arbres de régression hybrides – qui exploite connaissance
fonctionnelle sûr le comportement des systèmes électriques. Cette méthodologie a été
spécialement conçu pour aider à l’exploitation du comportement dynamique des réseaux isolés
qui ont une grande production éolienne. Les arbres de régression hybrides permettent de
classifier de forme rapide la sécurité d’exploitation du système, permettant aussi quantifier en
temps réel le dégrée de robustesse du système à travers de l’émulation des indices de sécurité
d’une façon continue en traduisant le comportement dynamique du réseau en face de quelques
perturbations.

On décrit l’application de cette méthodologie au réseau électrique de l’île Terceira aux Açores.
Comme résultat de cette application on a obtenu des structures de sécurité, qui permettent de
évaluer de forme très rapide le comportement dynamique par rapport à des problèmes
d’instabilité de fréquence. Cette application inclus le développement de la procédure effectué
pour faire la génération de l’ensembles de données.

On décrit aussi la façon comme cette méthodologie a été appliqué au réseau électrique de l’île de
Crète, en tenant en considération le fais que les structures développés se destinait à être intégrées
dans un système de aide à la gestion du réseau, nommément dans ce qui concerne la gestion de la
production éolienne.

Dans ce document on présente aussi l’évaluation de la performance de ces structures de sécurité,
de une façon absolue et en les comparant aussi avec la performance obtenu avec des arbres de
décision et des réseaux neuroneaux.

Ce travaille de recherche a été développé dans le cadre d’un programme de recherche Européen
JOULE/THERMIE. Les travaux on été développes à la Faculté des Ingénieurs de l’Université de
Porto (FEUP) et à l’INESC Porto.

Mots Clés

Réseaux Electriques Isolés avec Production Eolienne
Evaluation Rapide de Sécurité Dynamique
Monitorization de Sécurité
Problèmes de Stabilité de Fréquence
Techniques Hybrides d’Apprentissage Automatique
Des Arbres de Régression
Modèles de Régression Kernel
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1 Introduction

This thesis reports the research work related to the application of a new hybrid Automatic
Learning (AL) technique - the Hybrid Regression Trees (HRTs)- in the field of Dynamic
Security Assessment (DSA) and Security Monitoring (SM) of isolated power systems with high
penetration of wind power. The research was developed within the framework of an EU project
of the JOULE/THERMIE program.

This new hybrid approach was implemented to make, for the first time, fast dynamic security
assessment (DSA) of power system in the field of frequency stability problems. The results of
the application of this algorithm to Crete can be found in [1] and [2].

The HRT method was presented by Luís Torgo [3] in 1997, integrating Regression Trees (RTs)
([4] – Breiman et al., CART, 1984) with kernel regression models ([5] – Watson, 1964; [6] –
Nadaraya, 1964). The first application of the RT approach in DSA, used in the field of voltage
stability problems, is due to Wehenkel [42], in 1995. Recently, an application of a HRT approach
in the same security assessment problem was presented in [43] by Peças Lopes et al..

Another, not less important, goal of the research work reported in this document was to evaluate
the performance of the applied HRT technique, by comparing results with other existent
automatic learning techniques, namely Decision Trees (DTs) and Artificial Neural Networks
(ANNs). These approaches were tested on the electrical power systems of the Terceira island (in
Azores - Portugal) and of the Crete island (in Greece).

For the Terceira case study, a scenario of the year 1999 was considered. This electrical network
consists on an isolated Diesel-hydro power system, where a peak load of approximately 20 MW
was considered. Two wind parks, with a total installed power of 4.8 MW, are foreseen to be
operating in Terceira by the year 1999. This power system is properly explained in Chapter 4
(Section 4.2.1).

For the Crete case study, it was considered a scenario of the year 2000. This electrical network
consists on an isolated power system, which production is based on the exploration of several
types of conventional units, namely steam and Diesel units, gas turbines and 1 combined cycle
plant. A peak load of approximately 360 MW was considered for the year 2000. A total of 10
wind parks, consisting on 162 wind turbines with an installed capacity of more than 80 MW, are
or will be installed (have been approved) in Crete by the year 2000. A more detailed description
of this system is presented in Chapter 4 (Section 4.3.1).
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As it can be seen from the two previous power systems, the framework of this Master thesis
concerns with medium size and large isolated power systems with high penetration of wind
power production. In isolated power systems, the electric power is usually produced by
conventional fuel units, which results in high costs of electricity due to fuel cost itself and costs
of transportation. Therefore, in these systems, the production of electric energy from wind
presents particular interest, especially when important wind energy potential exists, which is
usual in many islands. In fact, significant replacement of conventional fuels can be obtained by a
high wind power penetration. In this case however, it is important to ensure that the power
system operation will not be adversely affected by an increased penetration of this volatile form
of energy.

Fast wind power changes and very high wind speeds resulting in sudden loss of wind power
production, can cause large frequency excursions and dynamically unstable situations. Moreover,
frequency and voltage oscillations might easily trigger the protection relays of the wind parks,
causing unbalance in the system generation/load. The resulting frequency oscillations might lead
to load shedding, or even to the system collapse.

In order to guard the power systems against foreseen disturbances, the system operators tend to
adopt a conservative policy for unit scheduling operation and generation dispatch, leading to
under exploitation of the installed wind power and to uneconomic operating points. To maximize
wind power penetration without compromising the system security, on-line dynamic security
assessment functions can prove to be very valuable. The integration of these DSA functions in a
proper advanced control system can help the operators taking decisions, by suggesting optimal
unit operating schedules and dispatch, both from economic and security point of view, as well as
by providing security monitoring. As such functions require on-line performances, the evaluation
of the system dynamic security obtained by means of conventional analytical tools of dynamic
simulation would create unfeasible high computational times. This fact leads to the application
of AL techniques to deal in a proper way with this problem.

Within the framework of an European R&D project of the JOULE II program (contract JOU2-
CT92-0053) [7], such functions have been developed and are integrated within an advanced
control system tailored to the needs of small isolated power systems with increased wind power
penetration. A pilot control system has been installed on the Greek island of Lemnos – an
isolated Diesel-wind system with a peak load of approximately 10 MW. In this system, dynamic
security assessment is taken care by two modules based on Artificial Neural Networks and
Decision Trees [40][41].

Within the framework of an European R&D project of the JOULE/THERMIE program (contract
JOR3-CT96-0119), this control system is currently being extended into the CARE system, to
cover the needs of large isolated systems with high wind power penetration. The CARE system
is an advanced control system that aims to achieve optimal utilization of renewable energy
sources, in a wide variety of medium and large size isolated systems with diverse structures and
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operating conditions [8]. During the present year, a pilot installation of this system is being
installed on the energy management center of Crete island. In this system, dynamic security
assessment is performed by three modules based on Artificial Neural Networks, Decision Trees
and Hybrid Regression Trees, being this later approach implemented within the research work of
this Master thesis.

This document is organized as follows. Chapter 2 addresses some problems related to the
operation of medium size or large isolated power systems with a high penetration of wind power
production. Having in mind these problems, the main functions of the CARE advanced control
system are synthetically described. Within the description of this technical solution, some of the
concepts related to the application of automatic learning techniques to perform dynamic security
assessment in power systems are explained at an intuitive level.

Chapter 3 gives an overview of the concepts related to the application of AL techniques to make
DSA in power systems. First, a short review to the definition of DSA is provided. Then, a
historical perspective of the application of AL techniques is presented. In this Chapter, the
problem formulation that is behind the application of AL techniques to perform DSA in power
systems is also presented. The functions provided by the AL security structures are also
addressed, highlighting their advantages regarding the ones provided by the classical analytical
models. In this Chapter, an overview of the security structure provided by two existent AL
methods – Regression Tree (RT) and K-Nearest Neighbors (KNN) rule – is provided. After the
construction of a security structure it is mandatory to evaluate its generalization capabilities by
estimating its accuracy. Therefore, the most applied procedures to estimate accuracy of AL
security structures – the testing error estimation and learning error estimation – are also
described in this Chapter. The overfitting problem is also addressed, where an illustration of this
problem is demonstrated in security structures extracted by applying the implemented Hybrid
Regression Tree method. Finally, a particular important issue described is the methodology
developed in this work to apply AL techniques in the field of DSA.

In Chapter 4, a technical description of the procedure developed to generate a data set for
Terceira electrical network, is provided. This task was mandatory to be performed in order to
extract AL security structures for this power system. This procedure involved the development
of a software tool, which provides a general methodology to generate data sets for Diesel-wind
isolated power systems. This software tool was developed in partnership with M. A. Mitchell
(researcher of the Power Systems Unit of INESC Porto), within the framework of his Master
thesis requirements. For the Crete case study, researchers of the NTUA (National Technical
University of Athens – Greece) provided the data set required to apply AL techniques. A
synthetic description of the procedure developed to generate this data set is also presented in
Chapter 4.

The implemented Hybrid Regression Tree algorithm is described in Chapter 5. Regarding the
application of AL techniques in the Terceira and Crete power systems, the obtained results with
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the implemented HRT algorithm are presented in Chapter 6. In this Chapter, the available ANN
and DT results are also presented for comparison purposes. Researchers of the NTUA provided
the DT results, whereas other researcher of the Power Systems Unit of INESC Porto provided
the ANN results. The security structures of the Crete case study are presently being integrated
into the CARE control system, which will be in operation in Crete during this year. Chapter 6
ends with the conclusions achieved from analyzing the obtained results, which includes a
comparative assessment between the performance of the three applied methods. The general
conclusions obtained from the work reported in this document are presented in Chapter 7.

The work reported in this Master thesis was developed within the framework of the European
R&D JOULE/THERMIE (JOR3-CT96-0119) project “CARE – Advanced Control Advice for
Power Systems with Large-Scale Integration of Renewable Energy Sources”. The project began
in February 1997 and concluded in July 1999. It involved several R&D institutions: NTUA [Gr]
– prime contractor, INESC Porto [Pt], RAL [UK], ARMINES [Fr], UMIST [UK], AUTH [Gr],
TUC [Gr]; industrial partners: EFACEC [Pt]; and utilities: PPC [Gr], EDA [Pt].
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2 Management and Operation of Isolated Systems with Large Wind Power
Production

2.1 Operation of Isolated Systems with Large Wind Power Production

In isolated systems, conventional production is mainly provided by Diesel units, and therefore,
with high cost of electricity production [9]. As an example, the islands of Cape Verde Republic
can be referred, where the electricity production costs impose restrictions to the country
development. In fact, this country imports Diesel fuel for electricity production and for
production of fresh water, which is done through desalination of sea water [10].

By increasing renewable power penetration in these systems, significant replacement of
conventional fuels consumption can be obtained, and therefore, the power production cost can be
considerably reduced. Moreover, in islands, usually there are particularly favorable
meteorological conditions for wind power sources exploitation. For these reasons, in the last
years a large amount of wind power sources have been installed in islands. Examples of recent
(or on going) installation of large penetrations of wind power in islands can be found in Greece
(Lemnos island [7], Crete island [11]), in Portugal (Madeira island [12][13]) and in Cape Verde
Republic (islands of S. Vincente [15], Santiago [16] and Sal [17]). From Figure 2.1 to Figure 2.4,
the foreseen installed power scenarios of the different types of electrical power sources that are
presently under exploitation (or are expected to be explored) on those systems are presented.
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Figure 2.1 – Foreseen installed power scenarios for the Lemnos and Crete islands - Greece
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Figure 2.2 – Foreseen installed power scenarios for the Madeira and Terceira islands - Portugal
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Figure 2.3 – Foreseen installed power scenarios for the S. Vincente and Santiago islands – Cape Verde Republic
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Figure 2.4 – Foreseen installed power scenario for the Sal island – Cape Verde Republic

In these systems it is important to ensure that the electric power system operation will not be
adversely affected by an increased integration of this volatile form of energy. In fact, due to the
uncertainty and uncontrolled characteristic1 of wind power production, and due to the weakness
of isolated power systems, the integration of large penetration of this kind of production in
isolated systems might introduce dynamic behavior problems.

When compared to interconnected power systems, isolated systems, although having the same
general operating rules, should be operated under some additional constraints. Since there is no
available help from neighboring systems, the grid is weaker and therefore greater concerns exist
related to system security, control of frequency and management of system generation reserve.

A common aspect to all these problems is the requirement to ensure that sufficient reserve
capacity exists within the system to compensate sudden loss of generation. In fact, mismatches in
generation and load and/or unstable system frequency control might lead to system failures. This
type of instability is called frequency instability and depends on the ability of the system to
restore balance between generation and load following a severe system disturbance with
minimum loss of load [18]. Generally, frequency instability problems are associated with
inadequacies in equipment responses, poor coordination of control and protection equipment or
insufficient generation reserve [1]. Thus, in isolated systems there is also a great concern in

                                                
1 Wind power production level is uncertain and not controlled by operators because it depends on wind climatic
conditions, which presents random nature. If wind parks belong to public owners, as a control action to maintain
system security, the operators can disconnect wind generators. On the other hand, if wind parks belong to private
owners, these power sources are non-dispatchable, and therefore, the operation policy of disconnecting generators
may be more difficult to apply.
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operating them with robust conventional thermal generators (i.e., with proper inertia constant
values and proper response of automatic voltage regulators (AVRs) as well as speed regulators).

Having in mind these problems and the additional difficulties caused by the introduction of a
high penetration from wind energy, in order to guarantee service quality and continuity of
operation in the sequence of the integration of the wind power, new operating rules have to be
adopted. In the common practice a large number of operating scenarios are screened off-line, by
running analytical tools of load-flow and dynamic simulation, from where operating guidelines
including corrective measures can be prepared. Whenever there is a significant change in the
system, these studies are repeated and new operating guidelines should be prepared [42]. These
new operating guidelines usually increase the complexity of the system operation and
management and, namely, might create generation dispatching and scheduling difficulties [9].

In very small isolated power systems, where the maximum demand does not exceed 1 MW, the
existing Diesel generators are small units, with short starting times. On the other hand, for
medium size (maximum demand up to 30 MW), the starting time of Diesel units is in the scale of
10 up to 30 min, or even more. Thus, in this systems optimal dispatching depends largely on the
judgements made by operators [7]. For this reason, in medium-size or large power systems with
high penetration of wind power, if operators do not have a proper control system to help them
taking decisions, they will tend to operate it in a conservative way, leading to uneconomic
operating points. This issue is particularly important in isolated systems, because it will increase
the already existent high electricity costs.

In the next two sections, the dynamic behavior problems and generation dispatching and
scheduling difficulties, introduced by high levels of wind power production in isolated systems,
are addressed in a more detailed way.

2.1.1 Dynamic Behavior Problems Introduced by Wind Generators

Dynamic behavior problems can occur from the introduction of a high penetration from wind
energy in isolated systems. Fast wind power changes and very high wind speeds that result in
sudden loss of wind generator (WG) production, can cause large frequency and voltage
variations, or even high rate of frequency changes. These oscillations, besides resulting in the
loss of service quality, might lead to partial service interruption, or even to system instability and
to the system collapse. In fact, they might trigger the operation of system protection devices,
performing the disconnection of generation units or load shedding, and thus increasing the
adversity of the disturbances.

The disturbances introduced by the WGs, which might originate these dynamic behavior
problems, can have origin in the random nature of wind power source and/or from the technical
characteristics of the energy conversion system. Usually, the main types of disturbances
introduced by WGs are the following:
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•  Electrical power outputs variations of WG, due to wind speed variation (turbulence in wind
speed or/and sudden and large wind speed changes).

•  Disconnection of WGs from the network, due to variations in wind speed that leads to
violation of cut-off or cut-in speeds. One example of these operating limits can be seen in
Figure 2.5 where the power curve of a WG NORDTANK 300/31 [300 kW, 400 V] with stall
power regulation is presented.

•  Disconnection of asynchronous WG after the occurrence of a short-circuit in the grid, due to
the generator not being able to re-excite after fault elimination;

•  Disconnection of synchronous/asynchronous WG after the occurrence of a short-circuit in the
grid, due to the activation of protection devices.
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Figure 2.5 – Power curve of WG NORDTANK 300/31 [300 kW, 400 V]

Usually, these disturbances are particularly critical during light load hours, because in those
periods wind power penetration can be considerably important. Although during light load hours
the wind disturbances typically cause the higher frequency and voltage deviations, in some
systems, less damped oscillations are more likely to occur during peak hours.

Sometimes, when the system suffers a sudden loss of wind power, to avoid its collapse, operators
might have to shed non-priority loads. However, if operators would have the proper tools to help
them, they could avoid unnecessary load shedding actions, or even avoid shedding any load.

2.1.2 Generation Dispatching and Scheduling Difficulties due to the Integration of Wind Generators

In order to ensure the system security, conventional units must fast and efficiently compensate
the mentioned wind power changes. To help operators exploiting the system in a secure way,
usually more efficient rules have to be found for the generation dispatching and scheduling
policy. These rules can include the connection of a particular more robust machine, an increased
minimum requirements of static conventional generation reserve (to accommodate load if wind
power becomes unavailable), and an increased minimum requirements of spinning reserve (to
compensate wind power variations).
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Usually, the local utilities adopt a very conservative policy of generation dispatch and
scheduling. This policy leads to unnecessary large spinning reserve (SR) requirements, to under
exploitation of wind power production, and therefore, to uneconomic operating points. One
example of a minimum SR requirement criterion, which is usually applied in Diesel-wind
isolated powers, is the following:

ShWD PPλPαSR −×+×≥ (2.1)

where:

PD – Load demand;
α  – Load margin;
PW – Wind power production;
λ  – Wind margin;
PSh – Amount of load that can be shed when frequency decreases dramatically.

The α  and λ  factors are perceptual values that express the SR that the system must have, in
order to accommodate a load increase of DPα ×  and a wind generation decrease of WPλ × .
Obviously, if the uncertainty of wind production profile and load demand profile increases, then
α  and λ  factors must have higher values in order to guarantee a high level of security in the
system.

When α  and λ  factors are too high, in order to guarantee the SR requirements, a large number of
Diesel machines have to be in operation. In this situation, Diesel machines might have to operate
at low load levels and therefore with low efficiency (to understand the Diesel generator load
level/efficiency relationship see Figure 2.6, where a typical curve of the fuel consumption versus
load level for this machines is presented). Moreover, when Diesel generators operate under
minimum technical limits, they need to consume Gas Fuel Oil (GFO), which leads to higher
costs of operation.

Fuel consumption (g/kWh)

210
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255
260
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Figure 2.6 – Fuel consumption curve for Diesel generator Deutz [2.3 MW, 6.3 kV]

One example of an extremely conservative policy of dispatch and scheduling, is when operators
try to guarantee a SR enough to accommodate the disconnection of a full wind park, and
therefore have to consider a very high value for the λ factor.
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As the uncertainty of load and wind changes imposes large SR levels, if proper prediction of load
consumption and wind power would be available, then the load margin and wind margin could
be decreased, providing that the SR requirements could be minimized and the wind penetration
maximized.

When wind penetration reaches too high values, a measure that is sometimes used by utilities in
order to follow the SR requirements consists on the disconnection of WGs, which might not be
the best solution.

2.2 Technical Solutions Recommended: an Advanced Control System

Global control systems are the most suitable tools to use, in order to optimize the management
and operation of isolated systems where a large amount of wind power production needs to be
accommodated [9].

These control systems can help the power system operators taking decisions by performing the
following functions:

Function 1:

Suggesting on-line optimal scenarios, both from economic and security point of view, by
providing:
− the start and stop schedule of conventional generating units and WGs for the next

planning horizon (usually for the upcoming hours with a time step of minutes);

− the load level for the conventional generating units selected to be in operation for the
upcoming minutes.

Function 2:

Providing security monitoring.

The suggested scenarios are the ones that minimize production costs and maximize wind power
penetration, without compromising the security of the system. To accomplish these
requirements, the control systems must include functions of:

•  wind power forecast;
•  load forecast;
•  economic operation, including unit commitment and dispatching functions;
•  and dynamic security assessment.

These functions have to be integrated with a SCADA system, a data-base, and a man-machine
interface.
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Due to special characteristics of the operation of medium-sized or large isolated systems with
large amount of wind power production, coordination between unit commitment (UC) and
economic dispatching (ED) must be different than in the case of interconnected systems.

In interconnected power systems, UC is usually performed off-line, typically with a horizon of a
week, with hourly time-steps. This gives the basis for performing the ED every 10 or 15 minutes,
most of the time including also reactive power dispatch and perhaps security constraints related
to major contingencies. In small isolated power system, on the other hand, a simple unit
scheduling is usually necessary, due to the simplicity of the system, even when renewable power
sources are present [19]. However, in medium-sized or large isolated power systems with high
penetration of wind power sources, a different approach is necessary. In fact, the wind power
production, whose generated power must be forecasted and has some degree of uncertainty, has a
strong influence in the dynamic security and economy of dispatch and generation schedule.
Thus, besides load forecast, the suggested units scheduling and generation dispatch must
consider wind power forecast, and therefore UC can no longer be performed off-line. Economic
operation must be divided in a unit commitment module and a dispatch module that are
performed in sequence, with an optional intermediate decision step that allows the operator to
take into account information automatically produced by a security assessment module.

Since January of 1995, a prototype of such control system is running in the Greek island of
Lemnos (an isolated Diesel-wind system with a peak load of approximately 10 MW – see
Figure 2.1), within the framework of an European R&D project of the JOULE II program [7].
Currently, within the framework of a European R&D project of the JOULE/THERMIE program
[8], this control system is currently being extended into the CARE system to cover the needs of
large isolated systems with high wind power penetration. By this year, the CARE system will be
in operation in the control center of Crete, the largest Greek island (an isolated conventional-
wind power system with a peak load of approximately 360 MW – see Figure 2.1).

The general architecture of such a control system is presented in Figure 2.7. In the remainder of
this Section, a synthetic description of the modules presented in Figure 2.7 is performed, where
emphasis is made to the dynamic security assessment functions. A complete description of the
Lemnos and Crete control centers and its modules can be found in [7] and [8].
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Figure 2.7 – Advanced control system architecture

The Load Forecasting and Wind Power Forecasting modules perform the prediction of load and
wind power sources profiles for the upcoming planning horizon, with a time step at least equal to
the one used by the unit commitment module. To make prediction, these modules need measures
from the network, provided by the SCADA system, related to load consumption and wind power
production.

The start and stop schedule of all the generating units for the next planning horizon are
determined by means of an on-line Unit Commitment (UC) module. This module aims at to
optimize the operating costs (fuel costs, start-up and shut-down costs) taking into consideration
the operating constraints of the power system, namely:

− technical constraints of the Diesel units (generation limits, start-up and shut-down times,
etc);

− and the prediction of load and wind power profiles for the next planning horizon.

The load level of the conventional generating units, for the upcoming minutes, is determined by
means of an Economic Dispatch (ED) module. Like the UC module, this module aims at to
optimize the operating costs under the operating constraints of the power system.

The control system of Crete island was projected to provide, every 20 minutes, a UC solution for
the next 8 hours (with a time step of 20 minutes), and a ED solution for the upcoming 20
minutes. In the prototype installed in the control center of Lemnos, every 10 minutes, presents a
UC solution for the next 2 hours (with a time step of 10 minutes), and a ED solution for the
upcoming 10 minutes.
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2.2.1 Dynamic Security Assessment Functions

Due to the difficulties mentioned before, in order to guarantee the dynamic security of the system
a Dynamic Security Assessment (DSA) module must be also available in the control center. This
module has the task to guarantee that the predispatch solutions, produced by the UC module, and
the dispatch solutions, produced by the ED module, lead to dynamically “secure” operating
points (OPs), for all of a set of pre-defined disturbances. To accomplish this, if the DSA module
identifies that the dispatch policy leads to an “insecure” OP, then the solution is rejected and a
request for a new solution is made.

Another interesting security function to be available is to have a real-time evaluation of the
system dynamic security for the current OP. In the developed control systems this task is
performed by a Security Monitoring (SM) module. The security monitoring task might be
important during the situation where the predictions of load and wind power, used to produce the
UC and ED solutions, are less accurate. In fact, in spite of the UC and ED solutions being
evaluated by the DSA module, there is always a risk for the system to reduce security levels. In
order that the SM module be able to provide security evaluations, the parameters that
characterize the current OP must be available in the control center database.

In the designed control centers, security evaluation functions can be activated/deactivated
“on-call” by the operator, namely security monitoring. The operator might also want to guarantee
security, just for some of the disturbances. To accomplish this, the man-machine interface has a
window, like the one presented in Figure 2.8, where the operator can select the disturbances he
wants to consider for the DSA and SM modules. For instance, in the example presented on
Figure 2.8, the operator wants to guard security for the disturbances “machine loss” and “wind
variation”.

Machine LossMachine Loss

Wind VariationWind Variation

Short CircuitShort Circuit

Disturbance 1

Disturbance 2

Disturbance 3

On

On

Off

XX

OPERATOR

Figure 2.8 – Window for activation of disturbances for the DSA and SM modules

2.2.1.1 Security Classification

In both DSA and SM modules, one OP can be classified as “secure/insecure” according to a
pre-defined security criterion. As already referred in Section 2.1.1, in isolated systems with wind
power production, the dynamic problems that are usual to occur are transient and frequency
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stability problems. Thus, a usual practice is to classify an OP as “insecure” if it is expected that a
disturbance provokes a large frequency excursions (∆f), or a large frequency rate (df/dt), or even
the loss of synchronism.

To perform this classification, it is necessary to define the security boundaries, i.e., the
numerical values of ∆f or df/dt from which the OP is considered to be “insecure”. These values
generally are the ones that trigger the operation of the system protection devices.

2.2.1.2 Evaluation of Security Degree

Besides classifying the OPs as “secure/insecure”, it is also interesting to obtain the degree of
security (also called security robustness or security margin), or in other words, obtain knowledge
of the “distance” to the security boundaries. This task can help the operators in defining more
efficient preventive control actions.

Security degree is provided by means of numerical continuous security indices that measure the
expected system dynamic behavior for each one of the pre-defined disturbances. Examples of
possible security indices are: maximum and minimum values reached by transient frequency (fmin

and fmax) or maximum value reached by the rate of frequency change (df/dtmax).

For instance, special windows might be available to present to the operator the expected
evolution of the security indices for the proposed UC schedule, for the upcoming planning
horizon. An example of such a window is presented in Figure 2.9, where the security index used
is the minimum value reached by the power system frequency (fmin). This window displays, for
two pre-defined disturbances, the expected minimum frequency for each time-step of the UC
schedule. To provide visualization of the system security margin, there exists a light gray zone
that highlights the acceptable values for frequency (which is limited by the security boundaries).
The load profile forecast is also visualized. Putting together all this curves, the operator can get,
in a fast way, an overview of the periods of the day when security issues are more critical [8].
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Figure 2.9 – Window with DSA profiles for the proposed UC schedule



2 – Management and Operation of Isolated Systems with Large Wind Power Production                                      

Application of Hybrid Automatic Learning Techniques for Fast Dynamic Security Assessment of Isolated Power Systems with Wind Power Production

30

2.2.2 Application of AL Techniques to Perform On-Line DSA of Power Systems

The on-line requirements for the unit-commitment and economic dispatch functions, also as the
real-time requirements for the security monitoring function, impose tied execution time
constraints that must be performed, namely by the DSA and SM modules.

For this reason, the evaluation of the system dynamic security obtained by means of analytical
tools of dynamic simulation would create unfeasible high computational times. In fact, to make
this evaluation, it would be necessary to perform numerical solution for the differential equations
that model the dynamic behavior of the power system components (asynchronous and
synchronous generators with governors and AVRs devices), having a complete analytical model
of the power system. Thus, the dynamic simulation time obtained by means of an analytical tool
(although being dependent of the power system dimension, range of simulation time and
computer processor characteristics) typically reaches several minutes.

Therefore, in order to obtain fast and accurate predictions of the system dynamic behavior, it is
mandatory to apply automatic learning (AL) techniques in the DSA and SM modules. Namely,
according to Wehenkel in [42], Regression Trees and Artificial Neural Networks typically take
less than a millisecond per security index estimation.

Besides computational time, there are still other advantages of applying AL techniques, which
are referred in Section 3.4.

2.2.2.1 Automatic Learning Techniques Applied in the Implemented Control Systems

In the control system developed for Lemnos, dynamic security assessment functions are taken
care by two modules based on Decision Trees (DTs) and Artificial Neural Networks (ANNs).
DTs are used to check security for the operating schedules proposed by the economic dispatch
module, with respect to characteristic wind power fluctuations. ANNs are used to give a
real-time quantitative security evaluation of the current operating state system, by emulating the
expected maximum frequency deviation to the pre-defined wind disturbance. To a more detailed
description of these applied AL approaches see [40], [41], and [7].

In the control system projected for Crete, both DT and Hybrid Regression Tree (HRT)
approaches are used to evaluate the security of the solutions provided by the UC and ED. The
security assessment is performed with respect to the outage of a major gas turbine and/or to a
three-phase short-circuit at a critical bus near the wind parks. The operator has the possibility to
select one of the implemented methods to classify the dynamic security of the unit scheduling
and dispatch solutions. The ANN method is used to provide security monitoring, by emulating
the expected minimum value reached by the system frequency and maximum value reached by
the rate of frequency change. Details of the unit-commitment/dispatch and dynamic security
modules can be found in [19] and [1].
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In the Crete control system, the HRT technique is being applied for the first time to provide
dynamic security assessment of power systems.

2.2.2.2 Security Functions Provided by HRT, ANN and DT

Here it is necessary to highlight that, while DT can only provide security classification, the HRT
and ANN methods, besides security classification, can also provide evaluation of security
degree.

The DT and HRT techniques are within the Machine Learning (ML) field, and therefore can
provide symbolic security rules similar to those used by human experts (i.e., “if-then-else”
rules), which can be easily understood, discussed, and eventually adopted by the operators.

On the other hand, ANN provides quite opaque models of the system behavior, being usually
compared to a black box composed by inputs (which are the parameters that characterized the
system operating condition) and outputs (which are the indices that provide security
classification and evaluation of security degree).
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3 Application of AL Techniques to Make DSA of Power Systems

3.1 Dynamic Security Assessment of Power Systems

As already explained, the work described in this document concerns with the application of a
new hybrid automatic learning approach to make fast dynamic security assessment of power
systems. In this context, a short overview of the definition of security assessment (SA) and
dynamic security assessment (DSA) is provided in this Section.

Security Assessment (SA) consists on:

Evaluating the security of the power system, or by other words, evaluate its capacity to face
foreseen disturbances without leading to violation of the system operating constraints (i.e., to the
violation of the equality and inequality algebraic equations of the power system, defined by Dy
Liacco).

By performing SA, the most appropriated control actions to take are proposed whenever the
system is considered to be no longer secure (i.e., when the system is no longer in the normal state
defined by Dy Liacco).

In fact, disturbances occur frequently in a power system, and therefore, the impact that they
introduce must be controlled. These disturbances can result from external or internal events (ex:
switching actions initiated by operators or internal failure vs short-circuits due to lighting), and
can be slow or fast (ex: smooth profile load vs line or generator tripping or sudden load
increase).

In Figure 3.1, a short description of the initial security conceptualization issues due to Dy Liacco
is presented [20]. This diagram presents the different operating states and transitions that can
occur in a power system.

In Normal State the system is considered to be “secure”. All the operating constraints of the
power system are satisfied (equality and inequality algebraic equations), and the system is
operated with maximum economy and with guarantee of security to the occurrence of foreseen
disturbances. Here is necessary to highlight that, since predicting future disturbances is difficult,
there is always a risk of the system to be classified as “secure” and lose integrity if some severe
and unforeseen disturbance occur.



3 – Application of AL Techniques to Make DSA of Power Systems                                                                           

Application of Hybrid Automatic Learning Techniques for Fast Dynamic Security Assessment of Isolated Power Systems with Wind Power Production

33

When insecurity is detected, the system is said to be in Alert State. In this state if a disturbance
occurs the system might fall into Emergency Sate. Therefore preventive control actions are
necessary to be performed, in order to move the system again into Normal State.

In Emergency Sate, system inequality constraints are violated (ex: overloads, undervoltages,
underfrequency, instabilities) due to the occurrence of an actual disturbance, and therefore the
system is in the process of losing integrity. In this sate, emergency control actions are necessary
to be performed in a fast way, in order to avoid partial or complete service interruption (i.e.,
system collapsing). Therefore, in this state, the time response is critical and economic
considerations are left to a second level of concern.
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Figure 3.1 – Short description of the Dy Liacco state diagram

If the control actions failed in bringing the system parameters back to values that satisfy
inequality constraints, then, in order to avoid damages in system components, the system
protection devices will act. This leads to further disturbances, which might result in system
splitting and partial or complete service interruption (i.e., violation of the system equality
constraints). If this last situation happens, the system will fall into the In Extremis State.

Automatically, operators have to minimize the amount and time of undelivered energy, trying to
bring system back into Normal Sate, by re-synchronizing generators and picking up the
disconnected loads.
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According to the type of problem and system behavior, SA can be divided into the following two
main classes:

− steady-state security assessment;
− dynamic security assessment (DSA).

Steady-state SA concerns with the capability of the power system to face a realistic set of lines
and/or generators outages without leading steady-state parameters to values that violate
inequality constraints (ex: components overflows or large bus voltage deviations from nominal
value).

Steady-state SA is performed with a power-flow simulation tool. Thus, to have a complete
answer about the system security, DSA must be also performed.

DSA main concern is to evaluate the capacity of the power system to face eminent disturbances
without system collapsing.

The dynamic problems, which can lead to system collapsing, can be classified into different
types of stability problems. Figure 3.2 provides an overview of the existing classes of stability
problem according to Kundur [18]. Beneath each class, is presented the type of phenomena
characteristic of the problem and the type of physical cause that leads to the problem.

Power Systems
Dynamic Problems

Angle Stability
Problems

Frequency Stability
Problems

Voltage Stability
Problems

- Type of phenomena: Loss of operating equilibrium
- Type of physical cause: Unbalance between opposing forces

Small Signal
Ang. Sta. Problems

Transient
Ang. Sta. Problems

- Loss of synchronism
- Torque unbalance between
  synchronous machines

- Voltage collapse (voltage drop)
- Increasing loading of long transmission lines
  with insufficient local reactive power supply

Large Disturbances
Volt. Sta. Problems

Small Disturbances
Volt. Sta. Problems

Long termShort term Mid termLong termShort term

- Frequency not within nominal range
- System generation/load unbalance

Figure 3.2 – Types of power system dynamic problems

Traditionally, to perform an accurate security analysis of a power system, there are available
specific analytical tools that should be adopted according to the type of dynamic problem to be
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addressed. These available tools are named analytical tools because they all extract security
information by applying numerical methods to analytical models of the power system. They all
need a large computational time and, therefore, are unfeasible to be applied for on-line purposes.
As already said, the only way to perform DSA, outdating this time consuming problem and
without losing accuracy, is by using AL technique application tools.

3.2 Historical Perspective of Automatic Learning

The term Automatic Learning (AL) is used to denote a research field concerning the extraction of
high level synthetic2 information (knowledge) from data set containing large amount of low level
information.

When the knowledge to extract is a continuous variable y , this last problem is denoted by
regression problem. This problem consists on obtaining a functional model ),...,,( nxxxfy 21=
that relates the value of y  (denoted by goal variable) with the values of the variables

nxxx ,...,, 21 (denoted by predictors or candidate attributes). The functional model is obtained by
extraction from a large set of samples of the unknown regression function, being of the form

),,...,,( yxxx n21 . These samples describe different mappings between the predictors and the goal
variable.

Many AL methodologies were developed and applied, including statistical data analysis and
modeling, artificial neural networks (ANNs) and machine learning (ML) methods. The early
attempts to apply these techniques can be found in [21] (Laplace, 1810) and [22] (Gauss, 1826)
in the field of statistic, in [23] (McCulloch et al., 1943) in the field of ANNs, and in [24] (Hunt et
al., 1966) in the field of ML 3.

The traditional statistical approaches to regression problem assume a particular parametric
function and use all the given samples to estimate the values of the function parameters, where
the selected values are the ones that optimize some fitting criterion. An example is the linear
regression ([25] – Draper & Smith, 1981), where it is assumed a linear model to the unknown
regression function, being the values of the model parameters estimated as the ones that
minimize the mean squared error.

Modern statistical approaches to regression problems include k-nearest neighbors (KNN) ([26] –
Fix & Hodges, 1951), kernel regression ([5] – Watson, 1964; [6] – Nadaraya, 1964), local
polynomial regression ([27] – Stones, 1977; [28] – Cleveland, 1979), artificial neural networks
and others.

                                                
2 In this document, to make a distinction between information obtained by means of analytical tools and by means of
AL techniques, the latter is named as synthetic information and the former as analytical information.
3 This historic information was adapted from Wehenkel work [45].
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The application of AL techniques must look into account three main issues:

•  predictive accuracy;
•  computational efficiency;
•  comprehensibility.

Machine learning (ML) is a class of AL techniques, which concerns with the automatic design of
interpretable symbolic rules, similar to those used by human experts (see example of extracted
“if-then-else” rule in Section 3.5). Therefore, comprehensibility has always been considered a
key advantage of ML approaches. Examples of ML techniques are the Decision Tree (DT) and
Regression Tree (RT) methods ([4] – Breiman et al., CART: Classification And Regression
Trees, 1984).

In the last two decades, AL techniques have been the focus of study of many researches and
applied in several areas. Experimental comparisons of different learning methods on various real
world problems have shown the impossibility to select a method that performs better in all
domains ([29] – Michie et al., 1994). This is sometimes called the selective superiority problem
([30] – Broadley - 1995).

In the context of power systems SA, the first research works with AL techniques started, in the
late sixties and seventies, with the statistical Pattern Recognition (PR) methods ([31] – Dy
Liacco, 1968; [32] – Pang et al., 1974; [33] – Gupta et al., 1975). In the early attempts, the
methodology was essentially limited by the small size of the data set that could be managed and
by the parametric nature of the existing PR methods, being unable to handle properly the highly
non-linear characteristic of the power systems security problems. Since mid eighties, researches
in AL have produced new regression techniques able to handle the complexity and highly
non-linearity of power system security problems. In particular, much work has been done in the
field of ANNs and ML methods. This can be seen by the large number of existing publications
about ANN and ML application to make security assessment of several dynamic power systems
problems (just to quote a few examples see from [34] to [43])4.

One of the main reasons responsible for the latest increasing interest for AL techniques in the
field of power systems SA, was the tremendous development achieved in the computation field.
This made possible to generate rich data sets to real large scale problems with acceptable
response times, and also feasible to apply the compute intensive AL algorithms into this large
data sets.

Another, not less important, reason that is contributing for the increasing interest for AL
techniques applied to power systems SA, is that further and further power systems have to
operate closer to their operating limits and with more erratically behavior. This operating policy
is leading to increasing the complexity of power systems security assessment. The common
practice of engineers is to use, in an off-line procedure, analytical tools of power system
                                                
4 Some of this historic information was adapted from Wehenkel work [45].
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behavior simulation, together with their expertise, to run some scenarios. From those
simulations, they extract the relevant security information in order to define planning and
operating strategies. However, with the growing complexity of the security assessment problem,
only with AL technique application tools the power systems engineers can control the system
security in a more efficient way.

3.3 Problem Formulation to Apply AL Techniques for DSA of Power Systems

3.3.1 General AL Problem Formulation

The generic problem of AL techniques application, can be formulated as follows:

Given a large set of samples of the system behavior - a learning set containing large amount of
inputs/output pairs of the system -, extract the best approximation to the unknown function of the
existing relationship between the inputs and output, which might be used to predict the output
value for any new unseen vector of inputs, and/or explain the observed pairs.

When the output is a numerical continuous variable, the AL problem is usually called regression
problem. When it is a categorical variable5, the AL problem can be named classification
problem.

3.3.2 AL Problem Formulation for DSA

In the context of AL techniques application for the DSA of power systems, the parameters of the
previously described problem formulation are the following:

•  The inputs: form a system operating point (OP), being characterized by a measurement
vector of candidate attributes with a standard structure, i.e.:

[ ]Na21 ,...,a,aaOP = (3.1)

Each candidate attribute ai is a value that characterizes one specific operating parameter of
the system. Candidate attributes can consist on values measured from the system (like power
generations, voltage magnitudes, and consumption) or in values derived from those measures
(like spinning reserve, wind margin, and wind penetration). The measurement hyperspace A
is defined as the hyperspace that contains the measurement vectors.

•  The output: usually named as goal variable, can be a continuous or categorical value B that
quantifies/classifies the power system dynamic behavior to a pre-defined disturbance.

                                                
5 The values of a categorical variable belong to a finite set not having any natural ordering.
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In this document, the continuous goal variables are called security indices, and the
categorical ones are called security classifiers. Examples of possible security indices are the
maximum and minimum values reached by transient frequency and the maximum value
reached by the rate of frequency changes. An example of one of the most used security
classifier, is a two classes one that classifies the system as “secure/insecure”. In this
document, only this type of security classifier is going to be considered.

Security indices provide knowledge of the system security degree (also called security
robustness or security margin), by presenting the “distance” to the security boundary B0. If
the security index B of an OP violates its security boundary B0, that OP is considered as
“insecure”, otherwise it is considered as “secure”.

•  The learning set: summarizes the knowledge of the power system dynamic behavior,
obtained from a large number of dynamic simulations provided by analytical tools, which are
screened off-line via massive random sampling. The learning set (LS) is composed by a set
of pre-analyzed scenarios, being defined by:

( ) ( ){ }N(LS)N(LS)11 ,BOP,...,,BOPLS = (3.2)

•  One sample: is a pre-analyzed scenario, being defined by an inputs/output pair (OP,B).

Using the nomenclature presented above, the problem formulation of the application of AL
techniques for DSA of power systems can be summarized as follows:

Given a LS, containing a large amount of pre-analyzed scenarios (OP,B) of the power system
dynamic behavior to a pre-defined disturbance, extract the best approximation to the unknown
function B=f(OP), which might be used to predict the B value for any new unseen OP, and/or
explain the observed pairs of (OP,B).

In this document, the synthetic information extracted from the LS, as being the best
approximation to the function B=f(OP) is denoted by security structure. After the extraction
procedure, the security structures can be used in the existing control center, to perform dynamic
security assessment functions.
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3.4 Functions Provided by AL Security Structures

The functions of security assessment provided by the AL synthetic security structures, can
complement the ones provided by the classical analytical power system models, in two main
ways:

•  computational efficiency;
•  interpretability.

In the sense of computational efficiency, by using AL security structures, instead of analytical
power system models, much higher speed might be reached when predicting the response B of
the system for a new unseen OP. This makes feasible to transfer most of the manual and off-line
tasks, of extracting security information, to be automatically performed and in an on-line
environment. Namely, by integrating the AL security structures in a proper advanced control
system (like the one presented in Section 2.2), the power systems engineers can have tools to
control the system security in a more efficient way.

Furthermore, to run AL applications, the data requirements are much lighter. In fact, analytical
tools require a full description of the power system operating scenario, while AL security
structures might be designed in order to evaluate security by exploiting only the most relevant
operating parameters.

In the sense of interpretability, AL techniques can be much more powerful than analytical tools.
In fact, there are some approaches of AL techniques, like DT and RT, that might be used to
explain the observed pairs of (OP,B) by providing symbolic security rules similar to those used
by human experts (see example of Section 3.5). These rules identify how the operating
parameters influence the dynamic system behavior. Therefore, they can be easily understood,
discussed, and eventually adopted by the operators, giving supplementary help to define the
operating guidelines that, in present practice, are manually extracted off-line by running
analytical tools of the system dynamic behavior.

According to the predicting value, security structures can be exploited in two main ways:

•  To make security classification, by outputting security classifiers;
•  To make evaluation of security degree, by outputting security indices.

Examples of automatic learning techniques that provide security classification are the Decision
Trees in the field of Machine Learning ([4], [44], [45]), and many of the Pattern Recognition
methods, like Fisher Discriminant Transformation ([44]) and K-Nearest Neighbors rule ([44],
[45]).
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Examples of automatic learning techniques that, besides security classification, can also provide
evaluation of security degree are the Regression Trees in the field of Machine Learning ([4]), and
Artificial Neural Networks ([46], [47]).

3.5 Regression Tree Security Structure

Regression Tree (RT) is a non-parametric statistical methodology that deals with continuous goal
variables (i.e., consists on a method to solve regression problems). So, the output of a RT
security structure is a security index B that measures the security degree of a hypothetical OP to a
pre-defined disturbance. The RT consists on a machine learning (ML) method. Thus it provides
security structures that can be translated into interpretable security rules.

Figure 3.3 shows an example of a security structure extracted by the RT method, from a
hypothetical power system LS with 1844 samples. In this LS, each OP is characterized by the
measurement vector [a1, a2] = [Spinning Reserve, Wind Penetration]. The emulated security index is
B = |∆f|max = maximum absolute value reached by frequency deviation to a wind park disconnection.

Number of samples in the node

N(t) = 1292 N(t) = 552

N(t) = 30 N(t) = 522

N(t) = 1844

SR > 5,8 MW

SR = 4 MW
WP = 45 %

New operating point Q

Yes No

NoYes

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

 Mean=1.86 Hz
 s2=0.0221 Hz2   

Leaf 4

WP>50%

������������������������������������
������������������������������������
������������������������������������
������������������������������������
 Mean=0.638 Hz
 s2=0.0029 Hz2   

Leaf 2

��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������

 Mean=0.827 Hz
 s2=0.0844 Hz2   

Root 1

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

 Mean=1.2 Hz
 s2=0.0007 Hz2   

Leaf 5

������������������������������������
������������������������������������
������������������������������������
������������������������������������
 Mean=1.236 Hz
 s2=0.0243 Hz2   

Non Terminal 3 Security Index:
B = |∆∆∆∆f|max (Hz)
Disturbance:
Wind park disconnection
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Figure 3.3 – Hypothetical binary regression tree

The security structure consists on a binary Regression Tree (RT), which is composed by nodes
and arcs. Each node contains a set of stored OPs from the LS. The first node of the RT, named as
root node, contains all the LS samples stored. To each non-terminal node, it is associated a
splitting test applied in the measurement hyperspace A. For instance, the splitting test associated
to the root node is {Load > 5,8 MW}?. On each node t, the splitting test defines the way how the set
of stored samples is divided into two disjoint subsets, creating the two successor nodes tL and tR.
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The terminal nodes of the RT, which are named leafs, define a partition of the LS by disjoint
regions in such a way that in each region the security index B is as constant as possible.
According to this goal, the design of a RT consists on explain as much as possible the mean
squared error of the security index B observed in the LS.

Let N(t) be the number of learning samples stored on each node t, and ft(OP) to be the predicting
function to use in the node, then:

Mean squared error of B in leaf t ( ) ( )∑
∈

−==
tiOP

)(OPfB
tN

MSE(t) iti
21 (3.3)

In the standard version ([4] - CART, 1984), RTs assign a constant value to the prediction of B on
each node. In those cases the predicting function used is the mean value of B, B . This choice is
based on the following elementary lemma:

The constant “a” that minimizes the mean value of (B-a)2

is the mean value of B.

In this case, the design of a RT consists on explain as much as possible the variance of the
security index B observed in the LS, where:

Variance of B in leaf t ( ) ( )∑
∈

−==
tiOP

2
ti

2 BB
tN
1ts )( (3.4)

Then, the variance in the Regression Tree RT, of the security index B observed in the LS, is given
by:

( ) ( )
{ }

∑
∈

=
RT ofLeafs t

2LS2 ts
LSN

N(t)RTs )( (3.5)

In the above equation, N(LS) is the total number of learning samples. For instance, with the
hypothetical RT of Figure 3.3, the variance of the LS, which is 0844.0 , is reduced to a mean
value of ( ) 00259.00007.05220221.0300029.01292

1844
1 =×+×+× . Thus, this RT explains

%9.96100
0844.0

00259.01 =×




 −  of the variance of B observed in the LS.

Given a new hypothetical unseen operating point, Q = [4MW,45%], to evaluate its dynamic
security relatively to the considered wind park disconnection, the following procedure needs to
be performed:
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− Find the leaf that verifies the Q operating conditions. The bold arcs in Figure 3.3, show how
the OP of our example, starting at the root node, crosses the tree in a top-down fashion to
reach a leaf. During this procedure, being Q in a node t, the successor node where Q must fall
is defined by the splitting test of t.

− Predict the |∆f|max of Q to the wind park disconnection by applying a function to the samples
stored in the leaf. The existing RT approaches differ in the predicting function used in the
leafs. For instance, Breiman et al. in CART [4] uses a mean value of B, whereas Karalic in
[48] and Quinlan in [49] use a linear regression function. Considering the mean value as the
function to apply in the tree leafs, then, for our hypothetical OP, the prediction is that
|∆f|max(Q) =1,2 Hz.

− Predict the security classification of Q relatively to the wind park disconnection by applying
a security criteria of the form:

If |∆f|max(Q) < security boundary ⇒  Q is classified as “secure”;
Else If |∆f|max(Q) ≥ security boundary ⇒  Q is classified as “insecure”.

For instance, by considering a security boundary of 1 Hz, the OP of our example would
be classified as “insecure”.

Also by considering the mean value of B as the predicting function to use in the leafs, the RT of
Figure 3.3 can be translated into the following set of “if-then-else” regression rules:

If (SR > 5,8 MW) Then (|∆f|max = 0,638 Hz) Else
If (SR ≤ 5,8 MW) and (WP > 50 %) Then (|∆f|max = 1,86 Hz) Else

If (SR ≤ 5,8 MW) and (WP ≤ 50 %) Then (|∆f|max = 1,2 Hz)

By considering a security boundary of 1 Hz, these rules can also be translated into the following
classification rule:

If (SR > 5,8 MW) Then system “secure” Else system “insecure”

Starting with the LS, the design of a Regression Tree involves the definition of three interrelated
issues:

•  A way to select a split at every intermediate node;
•  A method to determine when a node is terminal;
•  A predicting function ft(OP) to use in the tree leafs, to assign a value B for any new OP

that falls into the measurement hyperspace of a leaf t.
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At the end results a RT security structure. The method used to design this kind of structures is
properly explained in Chapter 5.

From now on, in this document the term T will be used to denote the binary tree structure,
whereas the term RT will be used to denote a Regression Tree structure. The RT consists on a
binary tree T with a predicting function ft(OP) in the leafs. Although the existing approaches
differ in the used ft(OP) function, in the work reported in this document, the CART approach [4]
was adopted. Therefore, the mean value of B was considered as being the prediction function
ft(OP) to use in the RT leafs.

3.5.1 Terminology and Properties of Binary Trees

The following terminology will be used for binary trees:

:T Binary tree structure
:~T Set of all the leafs in T

:~TT − Set of all the non-terminal nodes in T
:T Number of nodes in T

:~T Number of leafs in T

:~T Number of non-terminal nodes or splitting nodes in T

:t Node of T
:)(tlefttL = Successor node of t resulting from the verification of its splitting test

:)(trighttR =  Successor node of t resulting from the violation of its splitting test
:tT Subtree of T, which results from having the node t as the root node

:)(Troot Root of T
:)(LSN Number of samples in the LS

:)(tN Number of learning samples in node t

For instance, for the example of Figure 3.3:

{ }542 tttT ,,~ =

{ }31 ttTT ,~ =−

5=T ; 3=T~ ; 2=T~

211 ttleftt L == )( ; 311 ttrightt R == )(

3tT = Binary tree composed by the root node t3, and by the t4 and t5 nodes, which are the tree
leafs
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Some properties of binary trees are presented bellow:

1. Nodes RL tt  and are disjoint sets whose union is t

2. The leafs of T form a partition of the LS by disjoint regions
3. 1~2 −×= TT

4. 1~2 +×= TT

5. 1~~ += TT

6. A subtree T1 of T is referred as a pruned tree of T if root(T1) = root (T). This can be denoted
by 1TT !

Binary trees have many other properties that, however, are not referred in this document for not
being relevant to understand the subjects here described. A detailed description of binary tree
properties can be found in [4].

3.6 K-Nearest Neighbors Security Structure

As it was previously referred, K-Nearest Neighbors (KNN) rule belongs to the field of Pattern
Recognition (PR) methods, providing security classification.

KNN presents a very simple decision rule. Given a new OP, it will be classified with the
majority class among its K nearest neighbors in the LS, being K an odd number. Neighborhood
is measured by means of a distance function defined in the measurement hyperspace A. Usually,
the function used to measure the distance between OPs in the hyperspace A is the Euclidean
distance.

Figure 3.4 illustrates the application of the KNN method to a simple power system LS, defined
in a two-dimensional measurement space A.

a1

a2

Learning Set Measurement Space 

a'1

a'2
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�����
�������
�������

�����
�������������

�����

�������
�������

��������
��������

�������
�������

Sample of the LS classified as "secure"�������
Sample of the LS classified as "insecure"�������
New unseen OP Q = [a'1, a'2]

Equidistant Euclidean
Distance

Q

LS in the Measurement Space A

Figure 3.4 – Hypothetical LS and the 5 nearest neighbors for a new unseen OP
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The measurement vector [a1, a2] characterizes each OP of the LS. For simplicity, the two
candidate attributes are considered to have the same units and scale (otherwise normalization
would have to be performed before calculating distances between OPs). The emulated goal
variable is B = “secure/insecure” to a pre-defined disturbance.

In the right hand part of Figure 3.4, a zoom of the nearest neighbors for a new unseen OP
Q = [a’1, a’2] is presented. For instance, according to a 5NN rule, and considering the Euclidean
distance, this OP would be classified as “insecure”, because, among the 5NN, four belong to the
“insecure” class and only one belongs to the “secure” class, i.e.:

because KsKi >

where:

1class secure"" to belongingneighbors  nearest-k of Number Ks
4class insecure"" to belongingneighbors  nearest-k of Number Ki

5KsKiK

=
=

=+=

:
:

In the simplest version, given a LS, the design of a K-Nearest Neighbors rule involves the
definition of two issues:

•  The choice of the k odd value;
•  The type of distance function used to measure neighborhood.

3.7 Estimating Accuracy for AL Security Structures

After the construction of a security structure, it is mandatory to know its generalization
capabilities, i.e., how accurate it is when predicting B for unseen OPs. Performing this evaluation
allows comparing predicting performances between different AL methods, and between security
structures extracted by a same AL method. Therefore, the most applied procedures to estimate
accuracy of AL security structures – the testing error estimation and learning error estimation –
are described below.

3.7.1 Testing Error Estimation

The accuracy of a structure is measured by means of its predicting errors. These errors can be
estimated by using a large set of unseen samples of the system, named as testing set (TS). The
testing samples must result from the same distribution of the learning samples, but must be
independent from them [4]. The most common procedure used to generate a LS and a TS with
the properties earlier described, consists on generating a large data set (DS) of samples and then
randomly dividing it into a TS and a LS. Being the LS defined as it is presented in equation 3.2,
the TS is defined by:



3 – Application of AL Techniques to Make DSA of Power Systems                                                                           

Application of Hybrid Automatic Learning Techniques for Fast Dynamic Security Assessment of Isolated Power Systems with Wind Power Production

46

( ) ( ){ }'
N(TS)

'
N(TS)

'
1

'
1 ,BOP,...,,BOPTS = (3.6)

Here is necessary to highlight that the accuracy of a security structure strongly depends on the
quality of the used LS and TS. Thus, in order to make comparative predicting performance
between different AL methods, or between security structures extracted by a same AL method, it
is mandatory to use the same LS and TS.

3.7.1.1 Regression Errors

For security structures S that provide a security index B, the predicting error depends on the
difference between the true pre-computed values '

iB  and the predicted values ( )'
iS OPf  assigned by

the S  security structure. In these cases, prediction error is usually estimated by the following
numerical indices [4]:

Mean Absolute Error ( )TSS ( ) ∑
∈

−==
TSi'OP

)OP(fB
N(TS)
1SMAE '

iS
'
i

TS (3.7)

Mean Squared Error ( )TSS ( ) ( )∑
∈

−==
TSi'OP

2'
iS

'
i

TS )OP(fB
TSN
1)S(MSE (3.8)

Note that, while TS)S(MAE  estimates prediction error by making a simple mean value of the
mismatches )( ''

iSi OPfB − , TS)S(MSE  can highlight some particular high or low value of

)( ''
iSi OPfB − . Thus, by choosing a structure S that minimizes TS)S(MSE , instead of the one that

minimizes TS)S(MAE , besides trying to minimize the mismatches )( ''
iSi OPfB − , it is also tried to

have closer mismatch values.

The value of these last two predicting errors depends on the scale in which the goal variable B is
measured. For this reason, a normalized measure of accuracy, which removes this scale
dependence, is often used. This measure is the following:

Relative Mean Square Error ( )TSS ( )
)(

)(
TSs
SMSESRE

2

TS
TS == (3.9)

where )ST(s2 is the variance of B in the TS.

( )TSSRE  is always non-negative. Most of the predicting structures S  are more accurate than B ,
and therefore, in such cases, ( )TSSRE <1. Eventually, some construction procedure can result in
poor predicting structures, and therefore ( ) 1SRE TS ≥ .
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3.7.1.2 Classification Errors

For security structures S that provide a two classes security classifier of the form
“secure/insecure”, the predicting error is not metric. Instead, accuracy depends on the number of
classification errors. In these cases, prediction error is usually estimated by the following
misclassification rates [7]:

Global Classification Error ( )TSS =
{ }

{ } 0
0100 

samples TS #
 by  classifiedy incorrectl samples TS #

×S (3.10)

False Alarm Error ( )TSS =
{ }

{ } 0
0100

samples TS secure""#
insecure"" asby classified samples TS secure""#

× S (3.11)

Missed Alarm Error ( )TSS =
{ }

{ } 0
0100

samples TS insecure""#
secure"" asby classified samples TS insecure""#

× S (3.12)

Obviously, missed alarm error is a misclassification rate with higher importance, since missed
alarms correspond to actually “insecure” OPs for which the structure failed to warn. False alarm
error is less significant, since false alarms do not cause system security loss. For these reasons,
the evaluation of the classification capability of structures is normally mainly based on their
global classification error and missed alarm error.

3.7.2 Learning Error Estimation

An also used procedure to estimate accuracy for AL structures is the learning error estimation. It
consists on using the LS, i.e., the set of samples used to construct the structure, also to estimate
its accuracy. Among others, with this procedure the following predicting error will result:

Mean Squared Error ( )LSS ( ) ( )∑
∈

−==
LSiOP

2
iSi

LS )OP(fB
LSN
1)S(MSE (3.13)

The problem of using learning error estimation errors to estimate accuracy is that, as a
consequence of not using an independent set of samples, they generally give an overly optimistic
picture of the structure accuracy.

Note that equation 3.13 is identical to equation 3.5, by considering the mean value of B to be the
predicting function used in the leafs. In fact, the mean squared error of B in the Regression Tree
RT consists on its learning error estimation LSRTMSE )( .
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3.8 Overfitting

In the problem formulations for AL techniques application presented in Section 3.3.2, the
sentence “extract the best approximation to the unknown function B=f(OP)” in part denotes that
the extracted AL structure must be as much as possible proximal to the function B=f(OP)
presented in the LS. Besides that, it also denotes that, although wanting a structure that models
the LS with good accuracy, in order to avoid overfitting a limit must be establish to the
complexity of the extracted structure [45].

A function that overfitts the LS will exploit irrelevant information (i.e., noise), and therefore will
be sub-optimal in terms of generalization capabilities, i.e., will have lack of accuracy when
predicting B for new unseen OPs.

Figure 3.5 illustrates the overfitting phenomenon to a simple one-dimensional problem, i.e., for a
security structure with the form B=f(a1). As it can be seen in this figure, if a complex function
B=f’(a1) is used to make prediction of B, it will result in being very accurate when making
prediction for all the learning samples. However, for a new unseen OP Q of the same system, the
prediction of its response will be very poor. Using a function with less complexity B=f’’(a1),
although being less proximal to the LS, it will allow to improve accuracy when predicting B for
the new unseen OP Q.

B

a1

����

OPs from the LS
Q: a new unseen OP
B = f '(a1): overfitted security function
B = f ''(a1): smooth security function

������
������

Figure 3.5 – Overfitting illustration

For AL techniques where the extracted security structure consists on a binary tree T, the
complexity of the structure is proportional to the number of nodes T . The complexity of a KNN
rule is proportional to the number of attributes used in the distance calculation [45].

To control overfitting, it is necessary to reach a trade-off between bias and variance. When the
AL structure is too simple, it presents a large bias: i.e., the adaptation is poor and therefore the
extracted functional model is too rough. On the other hand, if the AL structure is too complex, it
overfitts the LS by exploiting irrelevant information, and therefore, although the bias can be
small, the structure presents a large variance by strongly depending on the random nature of the
LS. Both bias and variance lead to generalization errors, being thus necessary to reach a trade-
off between these two errors [45].
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3.8.1 Overfitting in Binary Tree Structures

In order to illustrate overfitting for a binary tree structure, an experiment was carried out using
the data set generated for the Terceira island, which is properly described in Chapter 4. The
considered security index was ∆fmin – the minimum value reached by the negative frequency
deviation resulting from a short-circuit that leads to wind power loss.

By running the developed software of the Hybrid Regression Tree approach described in
Chapter 5, several hybrid Regression Trees structures were generated with a decreasing number
of nodes. This set of generated trees resulted from applying the pruning algorithm described in
Section 5.1.3.

For the extracted hybrid Regression Trees, it was assigned a kernel regression model as being the
predicting function to use in the tree leafs. These structures are called in this document as Kernel
Regression Trees (KRT). Their accuracy was evaluated by applying testing error estimation (see
Section 3.7.1) and learning error estimation (see Section 3.7.2). For learning error estimation the
used predicting error was the root mean squared error, LSLS )KRT(MSE)KRT(RMSE = , whereas

for testing error estimation the used predicting error was TSTS )KRT(MSE)KRT(RMSE = . The
graphical evolution of these two predicting errors, as a function of the complexity T  of each
extracted KRT structure, is presented in Figure 3.6 for LS)KRT(RMSE , and in Figure 3.7 for

TS)KRT(RMSE .

As it can be seen in Figure 3.6, the more splitted the tree is, the lowest is the learning predicting
error LS)KRT(RMSE . In the most overfitting case, where the tree has 2329 nodes, since each leaf
has stored only learning samples with the same B value, all the leafs are pure, and therefore
learning error estimation gives a zero predicting error. This example is according to [4], where it
is mentioned that, in general, more splits result in lower values of the learning estimating errors.
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Figure 3.6 – Graphical evolution of LS)KRT(RMSE  versus T , for the extracted KRT structures (Terceira Island)
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On the other hand, as it can be seen in Figure 3.7, considering the testing predicting error
TS)KRT(RMSE , the KRT that maximizes accuracy will no longer correspond to the most splitted

tree. As previously said LS)KRT(RMSE  gives an overly optimistic picture of the structure
accuracy, being thus TS)KRT(RMSE  a more accurate estimation of the KRT true predicting error.
Thus, the results obtained with testing error estimation presented in Figure 3.7 show that, starting
with the most splitted tree, and as the tree initially decreases in size, the true KRT predicting
error decreases slowly. Then, at the tree with 133 nodes, the KRT structure hits a minimum.
From this point forward, as the tree gets smaller the true KRT predicting error has a fast increase.
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Figure 3.7 – Graphical evolution of TS)KRT(RMSE  versus T , for the extracted KRT structures (Terceira Island)

The behavior described in Figure 3.7 is well known and is also according to [4], where it is
mentioned that too large trees will overfitt the LS and therefore will have higher true predicting
error than the right sized tree. Too small trees will not use some of the information available in
the LS, and therefore will also result in a higher true predicting error than the right sized tree.

In practice, there are many different ways to fight against overfitting, being some specific to a
particular type of method and others generic. In the implemented HRT approach described in
Chapter 5, two techniques were applied. First was applied the direct use of stop-splitting rules
during the growing algorithm of the tree structure. This first technique, although avoiding the
tree to grow until having only pure leafs, does not look for the right sized tree. For this reason,
subsequently, another more efficient technique was applied. This technique consists on a pruning
algorithm that, starting with the most splitted tree, generates a set of pruned trees according to a
minimum error-complexity criterion. Then, among this set, the right sized tree is selected
according to an accurate estimation of the performance of the designed structures. These two
techniques are properly explained in Chapter 5.
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3.9 Main Steps to Apply AL Techniques in the Field of DSA

During the reported work, four main steps were considered in order to apply automatic learning
techniques to perform dynamic security assessment (DSA) of power systems. All these steps are
performed off-line. The final product of the procedure – the security structures – are to be used in
an on-line environment in the power system control center, or to obtain physical interpretation of
the system behavior. These steps, which are presented in Figure 3.8, are synthetically described
below.
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Figure 3.8 – Main steps to apply AL techniques in DSA

3.9.1 STEP1 – Identification of The Security Problem

The first thing to do when applying AL techniques to perform DSA of power systems is to
identify the dynamic security problem to evaluate. This analysis involves a procedure of
understanding the power system dynamic behavior, namely to identify the potential situations for
which the system may lose security. This typically requires making questionnaires to the system
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operators, and also performing sensitivity studies by running analytical tools of dynamic
simulation.

This first step defines the structure of the data set to generate, namely:

− the disturbances for which is important to known the expected behavior of the system;
− the security indices B to predict and corresponding security boundaries;
− the measurement vector of candidate attribute OP=[a1, a2,..., aNa] to use in order to

characterize the system OPs.

3.9.1.1 Disturbances Selection

A complete DSA should include all the disturbances that are eminent to occur and might
endanger the power system security. Some examples of possible disturbances to considered are
the following:

− Fault in the system;
− Loss of generation;
− Sudden increase of large loads;
− Disconnection of transmission or tied lines;
− Wind power disturbances.

3.9.1.2 Security Indices Selection

The selection of the security indices, must be made having in mind that what is important to
predict is the “distance” to the security boundary if a pre-defined disturbance occurs. Some
examples of typical security indices used for common security problems of power systems are
the following:

− Transient instability: critical clearing time and energy margin;
− Frequency instability: maximum and minimum values reached by transient frequency

deviation, maximum value reached by the rate of frequency changes;
− Voltage instability: total load increase tolerable by the system before voltage collapse

(i.e., load power margin).

3.9.1.3 Candidate Attributes Selection

The selection of the candidate attributes is a very important issue in the procedure because, in
order to achieved good results, it is required to use as candidate attributes the power system
operating parameters that have influence on the type of dynamic behavior B to predict. Having in
mind this fact, all possible influential operating parameters must be considered as candidate
attributes.
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However, for a practical power system, by considering all possible influential operating
parameters, the dimension of the measurement vector [a1, a2,..., aNa] can become too large. The
use of too many parameters will surely increase the computational effort of the design and
predicting stages. Besides, in some methods, the performance of the designed structure can be
damaged by the use of irrelevant parameters.

Therefore, after the data set generation, a feature extraction process must be performed. This
procedure allows the elimination of insignificant phenomena or redundancies, by reducing the
dimension of the measurement vector. It consists on applying a statistical mathematical method
that chooses the most influential parameters in [a1, a2,..., aNa].

For instance, when performing security classification, the significant parameters to find are the
ones that are able to distinguish, in the most effective way, the two groups of “secure” and
“insecure” OPs. In this field, different statistical mathematical methods have been proven to be
effective for performing feature extraction [44].

Candidate attributes are operating parameters that can be directly or indirectly measured from the
power system. They can be of the following two main categories [44]:

− Pre-disturbance steady state variables, which characterize the operating conditions before
the occurrence of a disturbance (like power generations, voltage magnitudes,
consumption, spinning reserve, wind margin, and wind penetration);

− Post-disturbance transient state variables, which characterize the conditions after
disturbance occurrence and at disturbance clearance moment (like post-fault network
configuration and fault clearing time).

3.9.2 STEP2 – Data Set Generation

This step concerns with the generation of a large data set (DS) of samples of the system behavior
(i.e., pre-analyzed security scenarios). These samples will be the input data to the design and
performance evaluation steps. In fact, to build a security structure, a learning set (LS) is required,
whereas to evaluate its performance characteristics an independent testing set (TS) is also
required. The LS and TS, although independent, must result from the same distribution.
Therefore, they must be obtained by randomly dividing the DS, resulting in the following sets:

( ) ( ){ })()( ,,...,, LSNLSN BOPBOPLS 11=  and ( ) ( ){ }'
)(

'
)(

'' ,,...,, TSNTSN BOPBOPTS 11=

As referred in CART [4], the TS is frequently taken as approximately 1/3 of the samples in the
DS, belonging the remaining samples to the LS. This partition is made having in mind that if the
majority of the DS is used for testing purposes in order to ensure good error estimates, then the
quality of the security structure will be reduced. On the other hand, if the majority of the DS is
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used for training purposes, then the testing errors will confer a wrong idea about the quality of
the designed structure.

In the context of the pruning algorithm applied to Regression Trees, Luis Torgo [50], based on
extensive experimentation, claims that to have a sufficient amount of samples to ensure reliable
estimates, the following method must be used to decide the size of the TS:

{ } { }( )1000,DS#3.0minTS# ×= (3.14)

When the available DS is too small, in order to have enough information to construct the
structure and to estimate its accuracy, instead of using a TS, another method, called V-fold Cross
Validation, needs to be performed [4]. By applying this method, every sample of the DS is used
to design the structure. The accuracy estimation is made by using V different testing samples,

V1 TS,...,TS , obtained by randomly dividing the DS into V subsets having, as possible, a nearly
equal size. For every V,...,1i ,i = , a structure is designed using a learning sample ii TSDSLS −= ,
whereas its accuracy is estimated using the iTS  testing sample. The predicting error of the final
extracted structure is estimated as being the mean value of the V obtained predicting errors. For
more information about V-fold cross validation see [4] and [50].

Regarding V-cross validation, the use of an independent TS is computational much more
efficient and, therefore, it is the preferable method when the DS contains a large number of
samples. Other techniques exist to deal with this issue, however their description is out of the
scope of this thesis.

3.9.2.1 DS Generation Method

The data set generation procedure can be summarized as follows:

Given an operating range and resolution, a data set of samples (OP,B) is created that
reflects the dependency of the system behavior (i.e., security index B) with the variation in
its operating conditions (i.e., measurement vector OP = [a1, a2,..., aNa]).

The data set consists on a large number of samples, where each sample can be considered as a
static picture of the system (i.e., there is no time dependency between samples). For the problem
under analysis, the operating conditions that are usually considered to change between samples
are the following:

- system load level;
- penetration of renewable power sources;
- network configuration;
- unit commitment scheme;
- generation dispatching scheme.
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These operating conditions must have high influence on the dynamic behavior B to predict.
Otherwise, they will unnecessarily increase the number of samples to generate, without
improving the information contained in the DS.

In the generation procedure, among the operating conditions to change, the ones that are
independent parameters (i.e., their values do not depend on other operating conditions) are
randomly sampled by a systematic method, according to a pre-defined operating range and
resolution. Then, for each sample, a unit commitment and economic dispatch module prepare the
unit commitment and generation dispatch scenarios. Finally, both measurement vector OP=[a1,
a2,..., aNa] and dynamic behavior B of each sampled operating scenario are provided by running a
proper analytical tool that simulates the system behavior.

In the generation of the Terceira data set, the systematic method used to sample the operating
conditions was the structured Monte Carlo sampling method [51]. This method is described in
Chapter 4. In this network, the concern was to evaluate its dynamic behavior in the sense of
frequency instability. Thus, the analytical tool used to generate the DS was one that involves a
power-flow resolution and the numerical resolution of the non-linear differential equations that
model the dynamic behavior of the power system components.

3.9.2.2 DS Requirements

The data set generation step is a very important part of the procedure. If the information
contained in the data set does not reflect the mechanism of the system behavior in a proper way,
then, in spite of having a good testing accuracy, there is no assurance that the extracted structures
will be accurate enough when making prediction to real life operating scenarios.

For the same reason, the data set should consist on an enough number of samples to cover all
possible states of the power system under study. Therefore, the generated OPs must cover the
breadth of the system operating range and with the best possible resolution. Specially, in order to
obtain good accuracy when predicting security classification, the data set must have good
resolution in the neighborhood of the security boundary.

To reflect the mechanism of the system behavior in a proper way, when defining the operating
scenarios to create the samples, it is necessary to consider the actual operating practices that are
performed in the power system. Examples of those constraints are the following:

− schedule and dispatch strategies;
− maximum and minimum operating limits of thermal units;
− maintenance programs of thermal units;
− spinning reserve criterion;
− typical load curve models;
− automatic action of voltage regulators in the transformers;
− automatic action of power factor regulators in the power stations.
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The operating range and resolution requirements can be improved by generating more samples.
However, the computational time for the generation procedure will always introduce some
limitation to this number. In the context of Hybrid Regression Trees, there is still another reason
to limit the number of samples to generate. In fact, the higher the number of samples in the LS,
which does not necessarily lead to a predicting accuracy improvement, the higher the number of
samples stored in the Kernel Regression Tree structure, and therefore, the higher will be the time
spent to make prediction.

In fact, all the specification of the data set generation must be defined, trying to find a
compromise between the DS quality and computational time.

3.9.3 STEP3 – Security Structure Design

After the LS and TS being generated, it is then possible to apply an automatic learning (AL)
technique. Like previously referred in Section 3.3, this step extracts from the LS the security
structure that is the best approximation to the function B=f(OP). Several AL techniques can be
applied, such as Pattern Recognition methods, Artificial Neural Networks, Decision Trees,
Regression Trees, or a hybrid model like the Kernel Regression Tree approach described in
Chapter 5 of this document.

3.9.4 STEP4 – Performance Evaluation

To select the best security structure within the set of the extracted ones, the designed structures
are applied to the TS to evaluate their performances. According to the control center
requirements, the security structures can be evaluated by looking into account three main issues:

•  predictive accuracy;
•  computational efficiency;
•  comprehensibility.

As already said, this evaluation is mandatory to be performed since it is the only way that allows
comparing predicting performance between different AL methods, and between security
structures extracted by a same AL method.
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4 Data Sets for the Power Systems of Terceira and Crete Islands

4.1 Introduction

In Section 4.2 of this Chapter, a technical description of the procedure developed to generate a
data set (DS) for the Terceira power system is presented. This task was mandatory to be
performed, in order to derive synthetic security information to include functions of security
assessment in the control center that is expected to be installed in the power system.

This procedure involved the identification of the security problem, the development of a software
tool to generate the data set, and finally the partition of the DS to create a learning set (LS) and a
testing set (TS). The software tool was developed with M. A. Mitchell (another researcher of
INESC Porto), within the framework of its Master thesis requirements. This software tool
provides a general methodology to generate data sets for Diesel-wind isolated power systems.

A brief description of the scenario considered for the Terceira electrical network is made in
Section 4.2.1. In Section 4.2.2, some issues related to the identification of the Terceira security
problem are presented, including the description of the selected disturbance, security indices,
candidate attributes, and security criterion. The method implemented to generate the DS is
described in Section 4.2.3. For the sake of the better understanding of the methodology
developed to deal with the data set generation, the description of the approach is presented in this
Section through the example of the Terceira island case. The resulting DS, LS and TS are
described in Section 4.2.4. To get a more detailed description of the Terceira electrical network
see [14].

For the Crete case study, researchers of NTUA provided the data set required for the extraction
of AL security structures. A brief description of the considered scenario for the Crete electrical
network is made in Section 4.3.1. In Section 4.3.2, some issues related to the identification of the
Crete security problem are presented, including the description of the selected disturbances,
security indices, candidate attributes, and security criterion. A short description of the method
implemented to generate the DS is described in Section 4.3.3. The provided data set is described
in Section 4.3.4. To get a more detailed description of the Crete electrical network see [11]. An
explanation of the method used to generate the data set can be found in [1].

The data set generation procedure is an off-line procedure, which concerns with the generation of
a large number of pre-analyzed security scenarios of the power system to study, which is
performed by running analytical tools that simulate the system behavior. Therefore this
procedure requires a high computational effort. In Section 3.9.2., an introduction to the data set
generation procedure is provided.
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4.2 Data Set of Terceira

4.2.1 Terceira Power System

For the generation of a data set for the Terceira power system, a load consumption level and
topology scenario of the year 1999 was considered. This electrical network consists on an
isolated Diesel-hydro power system, where it a peak load of approximately 20 MW and an light
load of 9.2 MW were considered. Figure 4.1 describes the main topological configuration of the
network. This single line diagram presents a reduced version of the network, which was used in
this work to make the analytical model of the power system.
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Figure 4.1 – Single line diagram of the electrical network of Terceira in the year 1999

The transmission and distribution network comprises 3 medium voltage levels (30 kV, 15 kV
and 6.6 kV). The 30 kV level plays the role of the transmission system in the island. The system
includes one Diesel power station (Belo Jardim) and three mini-hydro plants. In the Diesel power
station, there are 6 thermal units with a total capacity of 26.88 MW. The hydro power production
of the network is represented by the 0,72 MW unit, situated at the power station of Nasce Água.
The other hydro units were not considered in operation because of their small contribution.
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Although presently there are no wind parks in operation in the island, a considerable amount of
wind power production is foreseen to be installed by the year of 1999. Two wind parks, located
in two opposite regions of the island, are foreseen:

- Serra do Cume with an installed capacity of about 3 MW (utility owned);
- Santa Bárbara with about 1.8 MW of installed capacity (private owned).

Wind asynchronous generators of 300 kW were considered as the machines to be in operation in
the wind parks. The reactive consumption of these machines was considered to be partially
compensated through local capacitors connected in parallel with the generators.

The hydro units of the system do not participate in the speed regulation, and therefore this task is
assigned only to Diesel machines. In the Diesel power station, there is a management system that
monitors and controls the distribution of the reactive power among the machines. According to
the investment plan of EDA (the electrical utility of Azores), a SCADA system will be installed
soon to help in monitoring and controlling the network.

4.2.2 STEP 1: Identification of the Security Problem for Terceira

As it was already referred in Section 3.9.1, the identification of the security problem is
mandatory to be performed in order to specify a proper structure for the data set to generate. This
required the realization of sensitive studies to understand the power system behavior, which was
made by running extensive numerical simulations, including a steady-state and a dynamic
behavior analysis.

To perform these simulations an analytical tool developed by INESC Porto was used, especially
designed to deal with this type of analysis. It performs a Newton-Raphson power-flow and a
dynamic simulation analysis through the conventional step-by-step integration approach, using a
4th order Runge-Kutta method to solve the differential equations that model the dynamic
behavior of the power system components. Regarding the component modeling, the following
approach was used:

•  Asynchronous wind generators modeled through a 3rd order transient model;
•  Synchronous generators represented by the 4th transient model;
•  For the exciter and the AVR, the IEEE model 1 was adopted (see block diagrams of

Figure 4.2);
•  The speed regulator and turbine were represented by a simple model, which includes a

proportional and integral control actions (see block diagram of Figure 4.3);
•  The loads were modeled, during the dynamic simulation, as constant impedances.

A detailed description of the analytical models and numerical methods used in this simulation
tool can be found in [52].
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The performed studies showed that the system presents a quite reasonable dynamic behavior
regarding wind power disturbances. However, during light load hours with maximum wind
power penetration, the degree of dynamic security of the system is reduced. In fact, if, during this
load-wind scenario, a short-circuit takes place near the wind park provoking the disconnection of
a large amount of wind generators, the system might lose security. In those cases, although the
system demonstrated to be dynamically stable, large frequency excursion might lead to the
operation of some protection devices that, afterwards, would provoke the system collapse. These
studies also showed that, during light load hours, the dynamic behavior clearly depends on the
number and type of Diesel units in operation.

From those studies it was concluded that, after the wind parks being installed in the network, an
advanced control system would be quite helpful to manage the system operation. This system
would be especially necessary during light load hours with large wind power penetration
situations, namely by suggesting the most adequate Diesel machines to be in operation or also
suggesting the disconnection of some wind generators.
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Some of the dynamic responses of the system, resulting from those studies, are presented in
Figure 4.4 and Figure 4.5. These figures show the time evolutions of the system frequency
deviation, resulting from the simulation of a three-phase short-circuit in Angra do Heroísmo,
eliminated after 180 ms, for different operating scenarios. Figure 4.4 refers to the light load
scenario with no wind power penetration. Figure 4.5 refers to the same load scenario with
maximum wind power penetration. It presents the situation where, due to the actuation of the
under-voltage protection of wind generators, Santa Bárbara wind park is disconnected during the
fault occurrence. For this scenario two different dispatch schemes are considered:

1) only one large Diesel unit in operation (a 7.825 MVA unit);
2) two small Diesel units in operation (a 3.91 MVA units).
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Figure 4.4 – Change of frequency deviation due to short-circuit
(Scenario: light load with no wind power penetration)
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Figure 4.5 – Change of frequency deviation due to short-circuit with disconnection of Santa Bárbara WP
(Scenario: light load with maximum wind power penetration)

From the analysis of the dynamic response of the system to this disturbance for several load
scenarios, it was possible to conclude that, if a short-circuit occurs when there are no wind
generators in operation, then the frequency deviations are more or less the same, independently
on the load scenario. In these situations the system presents a behavior like the one of Figure 4.4,
which does not lead to dynamic security loss.

However, when all the wind generators are connected to the network, operating near their
nominal power, large excursions on frequency might be observed. During light load scenarios
these frequency deviations are particularly severe, having a behavior like the one presented in
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Figure 4.5. Namely, when there are two small Diesel units in operation, although the system
inertia being higher, the available spinning reserve is smaller and, therefore, frequency
excursions can reach values near -2 Hz. These values can lead to the operation of other
frequency relays, like the ones installed in the other wind park, which might provoke afterwards
to the system collapse.

4.2.2.1 Disturbance Selection

According to the dynamic behavior of Terceira power system, it was considered necessary to
known the expected behavior of the system to the following disturbance:

•  Tree-phase short-circuit in the 6.6 kV bus of Angra do Heroísmo, eliminated after 180 ms,
followed by the disconnection of Santa Bárbara wind park at 100 ms after the occurrence of
the default.

4.2.2.2 Security Indices Selection

The security indices selected to measured the dynamic behavior of the network are the following:

•  B1 = ∆fmin: minimum value reached by the negative frequency deviation (Hz);
•  B2 = ∆fmax: maximum value reached by the positive frequency deviation (Hz);
•  B3 = df/dtmax: maximum value reached by the rate of frequency change (Hz/s).

4.2.2.3 Security Boundaries Selection

The considered security boundaries are the following:

•  B01 = -1 Hz (according to ∆fmin, a OP is “secure” if ∆fmin(OP) >  -1 Hz, otherwise is “insecure”);
•  B02 = 0.65 Hz (according to ∆fmax, a OP is “secure” if ∆fmax(OP) < 0.65Hz, otherwise is “insecure”);
• B03 = 3.4 Hz/s (according to df/dtmax, a OP is “secure” if df/dtmax(OP) < 3.4Hz/s, otherwise is

“insecure”).

4.2.2.4 Candidate Attributes Selection

In the selection of candidate attributes for the Terceira data set, only pre-disturbances steady-
state continuous parameters were considered. The technique used in this work to model generator
unit status, was to consider the generator unit as off when its generation level is zero, and on
otherwise. In the case of circuit status, a fixed topology was considered to the network. A fixed
value was also considered to the transformers tap and hydro active generation level.

For the measurement vector that characterizes each OP of the Terceira data set, the following
candidate attributes were selected:
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General Attributes
a1 = WM6 in Serra do Cume Wind Park;

a2 = WM in Santa Bárbara Wind Park;

a3 = Total WM;

a4 = Total WP7 (%);

a5 = Total SR8 (MW);

a6 = Total active generation of Diesel power (MW);

a7 = Total reactive generation of Diesel power (MVAr);

a8 = Total active generation of wind power (MW);

a9 = Total reactive consumption in the wind generators (MVAr);

a10 = Total active load (MW);

a11 = Total reactive load (MVAr);

a12 = Total reactive generation in capacitor banks (kVAr);

a13 = Total active losses (kW);

a14 = Total reactive losses (kVAr);

Attributes of Belo Jardim Diesel Power Station
a15 = Active generation in Diesel unit GI (MW);

a16 = Reactive generation in Diesel unit GI (MVAr);

a17 = S.R. in Diesel unit GI (MW);

a18 = Voltage magnitude in Diesel unit GI (perceptual value to the nominal value);

a19 = Active generation in Diesel unit GII (MW);

a20 = Reactive generation in Diesel unit GII (MVAr);

a21 = S.R. in Diesel unit GII (MW);

a22 = Voltage magnitude in Diesel unit GII (perceptual value to the nominal value);

a23 = Active generation in Diesel unit GIII (MW);

a24 = Reactive generation in Diesel unit GIII (MVAr);

a25 = S.R. in Diesel unit GIII (MW);

a26 = Voltage magnitude in Diesel unit GIII (perceptual value to the nominal value);

a27 = Active generation in Diesel unit GIV (MW);

a28 = Reactive generation in Diesel unit GIV (MVAr);

a29 = S.R. in Diesel unit GIV (MW);

a30 = Voltage magnitude in Diesel unit GIV (perceptual value to the nominal value);

a31 = Active generation in Diesel unit GVI (MW);

                                                
6 WM

(MW) Park Wind the in Generation Active Total
(MW) SR TotalMargin Wind =→

7 WP %100
(MW) Load Active Total

(MW) Generation Active of Power Wind TotalnPenetratio Wind ×=→

8 SR Reserve Spinning→
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a32 = Reactive generation in Diesel unit GVI (MVAr);

a33 = S.R. in Diesel unit GVI (MW);

a34 = Voltage magnitude in Diesel unit GVI (perceptual value to the nominal value);

a35 = Active generation in Diesel unit GVII (MW);

a36 = Reactive generation in Diesel unit GVII (MVAr);

a37 = S.R. in Diesel unit GVII (MW);

a38 = Voltage magnitude in Diesel unit GVII (perceptual value to the nominal value);

Attributes of Serra do Cume Wind Park
a39 = Active generation in wind generator WG1 (MW);

a40 = Reactive consumption in wind generator WG1 (MVAr);

a41 = Active generation in wind generator WG2 (MW);

a42 = Reactive consumption in wind generator WG2 (MVAr);

a43 = Active generation in wind generator WG3 (MW);

a44 = Reactive consumption in wind generator WG3 (MVAr);

a45 = Active generation in wind generator WG4 (MW);

a46 = Reactive consumption in wind generator WG4 (MVAr);

a47 = Active generation in wind generator WG5 (MW);

a48 = Reactive consumption in wind generator WG5 (MVAr);

Attributes of Santa Bárbara Wind Park
a49 = Active generation in wind generator WG6 (MW);

a50 = Reactive consumption in wind generator WG6 (MVAr);

a51 = Active generation in wind generator WG7 (MW);

a52 = Reactive consumption in wind generator WG7 (MVAr);

a53 = Active generation in wind generator WG8 (MW);

a54 = Reactive consumption in wind generator WG8 (MVAr).

4.2.3 STEP 2: Data Set Generation Method Applied for Terceira

In the procedure applied to generate the DS of Terceira, the technique used to change the
operating conditions between samples was the structured Monte Carlo sampling method. This
method was developed by McCalley et al. [51], being in this research work adapted and extended
for the generation of DS for isolated systems. As this procedure is part of the research work of
another Master student, in this thesis only the relevant parts of the approach are described.

The applied procedure required an initial specification, which covers the definition of the
following aspects:
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•  Operating conditions to change between samples;
•  Monte Carlo parameters;
•  DS operating range and resolution;
•  Operating constraints;
•  Maximum number of samples to generate.

For the reasons already explained, in the specification of the DS a compromise between the DS
quality and computational time was necessary to be defined, which imposed a limit to all the DS
specification.

4.2.3.1 Operating Conditions to Change

For the creation of the Terceira DS, the change of operating conditions between samples was
obtained by changing:

•  the load level in each load busbar;
•  the wind power in each wind park, where the same generating level was considered for

the wind generators of the same wind park;
•  and the unit commitment scheme of the Diesel units (i.e., the status on/off of the Diesel

generator units).

4.2.3.2 Monte Carlo Parameters

The Monte Carlo parameters (aMC parameters) consist on the operating parameters in which the
sampling method is applied in order to change the operating conditions between samples.
Obviously, the value of the Monte Carlo parameters has to be independent from the operating
conditions, because otherwise they could not be sampled. For the Terceira DS, there were
identified the following Monte Carlo parameters:

- active load level in each load busbar (Pload);
- mechanical power in each wind park (Pmec);

which gives a total of 7 Monte Carlo parameters (5 for the load busbars and 2 for the wind
parks).

4.2.3.3 DS Operating Range and Resolution

After identifying the Monte Carlo parameters (aMC parameters), the definition of the
DS operating range was included. This was done by identifying the operating range for each aMC

parameter, i.e., the credible minimum aMC,min and maximum aMC,max values.
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The definition of the desired DS resolution was also performed. This was done by defining the
resolution for each aMC parameter, i.e., the number ”n” of intervals of each aMC operating range
where each interval has a range of (aMC,max – aMC,min)/n.

For the Terceira DS, the operating range and resolution defined for each one of the aMC

parameters are presented in Table 4.1.

Table 4.1 – Operating range and resolution considered for the Data Set of Terceira

Monte Carlo parameter Operating range Resolution

a MC1 : Pmec in Santa Bárbara wind park [0;1.8] MW n 1  = 5
a MC2 : Pmec in Serra do Cume wind park [0; 3] MW n 2  = 5
a MC3 : Pload,1 [3; 6] MW n 3  = 8
a MC4 : Pload,2 [2.5; 6] MW n 4  = 2
a MC5 : Pload,3 [3; 7] MW n 5  = 2
a MC6 : Pload,4 [0.5; 2.5] MW n 6  = 1
a MC7 : Pload,5 [0.5; 3] MW n 7  = 1

By defining the resolution of each aMC parameter, the DS operating range was divided into
intervals (in one dimension), cells (in two dimensions), irregular cubes (in tree dimensions) and
hypercells (four or more dimensions).

4.2.3.4 Generation Procedure

In the generation procedure, the following steps were applied:

1. The load levels and wind powers (i.e., the aMC parameters) were randomly sampled by the
structured Monte Carlo method, according to the pre-defined operating range and resolution.
This method consists on a step-by-step procedure, in which, for each hypercell, a load/wind
operating scenario was randomly sampled.

2. For each sampled load/wind scenario, a unit commitment (UC) module prepared a set of
possible scheduling schemes for the Diesel power station.

3. For each scheduling scheme, an economic dispatch (ED) module prepared an operating point
corresponding to the minimum cost dispatch scenario.

4. Finally, for each defined operating point, both measurement vector [ ]5421 ,..., a, aa  OP =  and
security indices [ ]maxmaxmin , df/dtf, f ∆∆  were provided by running the previously referred
analytical tool of power-flow calculation and dynamic simulation developed by INESC
Porto.
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This data set generation procedure included a decision of which numerical values in each
hypercell to sample. This decision was accomplished by the “Monte Carlo” part of the sampling
method, which consists on making a random selection.

One simple approach, named structured sampling, would be to sample the center of each
hypercell. However, by applying a random selection, a maximum resolution was possible to
achieve for each aMC parameter (i.e., the number of different values sampled for each aMC

parameter equals the number of operating scenarios to generate). This can be seen in Figure 4.6,
which illustrates the structured sampling and structured Monte Carlo sampling applied in a two-
dimension problem.
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Figure 4.6 – Illustration of structured sampling and structured Monte Carlo sampling in a two-dimension problem

As we can see in this figure, as the problem under analysis has 9 operating scenarios to generate:

− by applying the structured sampling, only 3 different values per parameter are sampled;

− whereas, by applying the structured Monte Carlo sampling 9 different values are possible to
sample per parameter.

The flowchart of the software tool, developed to generate the data set of Terceira, is presented in
Figure 4.7. Note that it is possible that the defined pre-disturbance operating condition result in a
non-converged power-flow or dynamic simulation solution. To consider this possibility in the
generation algorithm, when a non-convergent solution is detected, the correspondent sample is
not kept in the output file and the algorithm automatically starts the generation of the next
sample.
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For a given wind and load level, there is a wide range of unit commitment possibilities9. Since
each unit commitment solution adds one sample to the data set, a limit must be performed to this
number. To accomplish this, at the end of the economic dispatch calculations, the algorithm
orders these solutions by associated increasing cost, and then selects only the first nED solutions
(i.e., the dispatch solutions with less production cost). For instance, a nED = 5 was considered for
the generation of the Terceira DS.
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Figure 4.7 – Flowchart of the developed software to generate the Data Set of Terceira

4.2.3.5 Operating Constraints

During the definition of the operating points, the following constraints were included:

- typical load curve models;
- maximum and minimum operating limits of the Diesel units;

                                                
9 Theoretically, there are 2K – 1 possible combinations, being K the number of existent Diesel units. In practice, not
all combinations are feasible because of the imposed practical operating constraints.
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- spinning reserve criterion;
- maintenance programs of the Diesel units;
- production cost of the Diesel units;
- automatic action of the local capacitors in the wind parks;
- automatic action of the management system that controls the distribution of the reactive

power among the Diesel machines in Belo Jardim power station.

These constraints were included within the Monte Carlo, unit commitment, economic dispatch
and power-flow modules. A description of these constraints is presented bellow.

1 - Constraint of the Monte Carlo Method - Typical Load Curve Model
The load buses of the transmission and distribution network normally have typical daily load
curve models, that can be obtained via historical data.

This typical behavior was included in the DS generation algorithm, by associating to each load
busbar a control string like the one presented in Figure 4.8. The example of this figure presents
the load curve model for a hypothetical Pload Monte Carlo parameter, to which it was considered a
resolution of n = 8. According to this curve, the control string associates a binary variable to each
interval of the Pload operating range. If the binary variable is 0 then the interval will not be
considered in the sampling process, otherwise the interval will be considered.

Pload (MW)

0 24
time (h)

Typical Load Curve Model

1

0
1

1

1

0

Control
String

0

0

Figure 4.8 – Control string used to model a typical load curve in the DS generation algorithm

For the Terceira DS generation, a typical load curve model was assigned for the Pload,1 Monte
Carlo variable, by considering the control string presented in Figure 4.9.

binary variable

0

1

3 3.375 3.75 4.125 4.5 4.875 5.25 5.625 6
P load,1 (MW)

Figure 4.9 – Control string considered to model the typical load curve of the Pload,1 parameter of Terceira
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2 - Constraints of the Diesel Unit Commitment Module
The unit commitment module calculates all the feasible combination of generating Diesel units
to serve the Diesel power demand, given by:

hydrowindloadDiesel -P-PPP = (4.1)

where:

Pload: active load level;

Pwind
10: wind generation level;

Phydro: hydro generation level.

This module takes into account the following practical operating constraints:

− maximum and minimum operating limits of the Diesel units;
− spinning reserve criterion;
− maintenance program of the Diesel units.

For the spinning reserve (SR) criterion, the following minimum requirement was used:

(MW) Margin WindPMargin LoadPSR windload ×+×≥ (4.2)

where:

40%Margin Wind
10%Margin Load

=
=

During the system operation, there are times when some Diesel unit of the system can be out of
service due to maintenance procedures. To capture this aspect, the following model was used:

− To consider no maintenance procedures during most of the operating time, a cycle of
maintenance status for the Diesel power station was defined, where a large perceptual time of
this cycle was set as having all the Diesel units available to operate.

− The remaining time of the cycle was divided between all the units, giving a mean time when
each unit is out of service due to maintenance procedures. From this procedure resulted a
cycle of maintenance status like the one presented in Figure 4.10.

− Having defined the cycle of maintenance status for the Diesel power station, when
calculating the set of feasible unit commitments, a number is randomly selected within 0 and
100%, which gives the maintenance status of the Diesel units to consider.

                                                
10 In the unit commitment part of the algorithm, the wind generation level is not know (once it is an output of the
power-flow calculation), being thus set equal to the total mechanical power level in the wind parks.
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To model the maintenance program of the Belo Jardim Diesel units, the cycle of maintenance
status of Figure 4.10 was used.

0 10 20 30 40 50 60 70 80 90 100

GI, GII, GIII, GIV, GVI, GVII
 1   1   1    1     1    1
 1   1   1    1     1    0
 1   1   1    1     0    1
 1   1   1    0     1    1
 1   1   0    1     1    1
 1   0   1    1     1    1
 0   1   1    1     1    1

Maintenance satus of Diesel units 
0-denotes out of service due to maintenance procedures
1-denotes available to operate

(%)

Figure 4.10 – Cycle of maintenance status considered for the Diesel power station of Terceira

3 - Constraints of the Economic Dispatch Module
Once the set of feasible unit commitment solutions is determined, to each UC solution, the
generation algorithm must define a value for the active generation of the operating Diesel
machines. To accomplish this, an economic dispatch module was considered that performs a ED
solution for each feasible UC solution, by considering the following constraints:

- The sum of the output powers in the operating Diesel units, ∑ iP , must equal the Diesel
power demand hydrowindloadDiesel -P - P P P = .

- Each Diesel unit is within its minimum and maximum operating limits.

In this module, the following quadratic curve was assumed for the production cost function of
the Diesel machines:

iii
2

iiii CPBPA)(PF ++=  ($/h) (4.3)

where:

Ai, Bi and Ci: constant values;

Pi: power output of generator i (MW).

For the Diesel units of Belo Jardim power station, the following production cost functions were
considered:
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2

iGIIIGIIGI ++=== ..  $/h

300P57P0950F i
2

iGIV ++= ..  $/h

100P55P0750FF i
2

iGVIIGVI ++== ..  $/h



4 – Data Sets for the Power Systems of Terceira and Crete Islands                                                                          

Application of Hybrid Automatic Learning Techniques for Fast Dynamic Security Assessment of Isolated Power Systems with Wind Power Production

72

4 - Constraints of the Power Flow Module

Automatic Action of the Local Capacitors in the Wind Parks:

Typically, when the wind generator is an asynchronous machine, its reactive consumption is
partially compensated through local capacitor banks that are connected in parallel with the
generator. In those systems, the MVAr value of the local capacitor bank may depend on the
generator load level.

To consider this behavior in the data base generated for Terceira, just before the power-flow
calculation, the algorithm sets the MVAr value of the local capacitor banks of each wind
generator, according to the curve of Figure 4.11.
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Figure 4.11 – MVAr value of local capacitor bank versus Pmec in wind generators considered for the Terceira DS

Control of the Distribution of Reactive Power Among the Diesel Machines:

To model the action of the management system that controls the distribution of reactive power
among the Diesel machines of Belo Jardim power station, an automatic reactive compensation
feedback loop was introduced after each power-flow calculation. This loop guaranties that none
of the Diesel machines is consuming reactive power.

4.2.3.6 Maximum Number of Generated Samples

Considering the previously described specifications for the generation of Terceira data set, the
maximum number of samples to generate was therefore set equal to:

[n1×n2×(n3 - 4)×n4×n5×n6×n7]×nED = 400×5 = 2000 samples
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4.2.4 Data Set Results for Terceira

Using the approach described in this Section, 1976 acceptable samples were obtained. This DS
was divided into the LS and TS by sending sequentially 3 samples to the LS and 2 to the TS,
resulting in 1186 samples in the LS and 790 in the TS. This data set took 4 hours and 57 minutes
to be generated in a Pentium II Processor at 64 MB RAM, which gives about 9 seconds for the
generation of each sample. Regarding the security boundaries presented in Section 4.2.2.3, the
obtained number of “insecure” and “secure” OPs in the LS and TS are presented in Table 4.2 and
Table 4.3.

Table 4.2 – Number of “insecure” and “secure” OPs in the LS of Terceira
Disturbance Short-Circuit with Wind Power Loss

Security Index B 1 = ∆f min B 2 = ∆f max B 3 = df/dt max

Nº of Insecure OPs 125 35 135
Nº of Secure OPs 1061 1151 1051

Table 4.3 – Number of “insecure” and “secure” OPs in the TS of Terceira
Disturbance Short-Circuit with Wind Power Loss

Security Index B 1 = ∆f min B 2 = ∆f max B 3 = df/dt max

Nº of Insecure OPs 87 21 93
Nº of Secure OPs 703 769 697

The frequency distributions (histograms) of the 3 security indices ∆fmin, ∆fmax, and df/dtmax are
presented in Figure 4.12(a), Figure 4.13(a) and Figure 4.14(a). The obtained values of the
security indices for each OP of the DS are presented in Figure 4.12(b), Figure 4.13(b) and Figure
4.14(b). In these last three figures, each point represents an operating point of the DS.
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As it can be seen in the previously presented figures, the severity of the considered disturbance is
much more observed in the ∆fmin and df/dtmax security indices than in the ∆fmax security index.
However, the OPs of the DS that resulted to be “insecure” according to ∆fmax are ”secure”
according to ∆fmin, Therefore, the security assessment of ∆fmax was also considered necessary to be
performed.
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4.3 Data Set of Crete

4.3.1 Crete Power System

The power system of the island of Crete is the largest autonomous power system in Greece. It
comprises two power stations, one in Linoperamata and the other in Hania, equipped with Diesel
engines, gas and steam turbines. The data set generated for the Crete power system was projected
for the year 2000. Figure 4.15 describes the main topological configuration of the network
foreseen to the year 2000. In this network all the HV transmission lines operate at 150 kV. For
this scenario, a peak load of approximately 360 MW was considered. The annual peak load
demand occurs on a summer day, and overnight loads can be assumed to be approximately equal
to 25% of the corresponding daily peak loads.
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Figure 4.15 – Single line diagram of the Crete generation and transmission system in the year 2000

The conventional generation system consists on two major power plants with twenty generating
units installed. These are 6 steam units of total capacity 106.7 MW, 4 Diesel units with
49.2 MW, 7 gas turbines with 208.6 MW and one combined cycle plant with 133.4 MW. The
plants are located near to the major load points. The steam and Diesel units mainly supply the
base-load. The gas turbine units normally supply the peak load at a high running cost, which
increases significantly the average cost of the electricity production.

A total of 10 wind parks, consisting on 162 wind turbines with an installed capacity of
81.45 MW, are or will be installed (have been approved) in Crete by the year 2000. All the
generators of the wind turbines will be asynchronous ones, except for those that will be installed
in Ahladia site that will be synchronous. Each wind turbine is equipped with induction generator
comprising power factor correction capacitors.
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4.3.2 STEP 1: Identification of the Security Problem for Crete

Extensive dynamic simulations on the power system model have been performed by NTUA
using EUROSTAG software. These simulations showed that for the most common wind power
variations, the system remains satisfactorily stable if sufficient spinning reserve is provided. On
the other hand, for various short-circuits and conventional unit outages, the system frequency
undergoes fast changes and might reach very low values.

In any case, the dynamic security of the system depends critically on the amount of spinning
reserve provided by the conventional machines and the response of their speed governors. As an
example of this behavior, Figure 4.16 shows the change of the system frequency that follows
from the disconnection of three wind parks to a scenario of high wind power penetration. Two
different dispatch schemes were considered:

1) Operation with fast thermal units, such as gas turbines and Diesel machines to provide
spinning reserve (fast spinning reserve).

2) Operation with slower machines, such as the steam turbines to cover mainly the spinning
reserve plus some Diesel machines (slow spinning reserve).

Figure 4.16 – Frequency change to the disconnection of three wind parks

For the simulated situation presented in Figure 4.16, when fast spinning reserve is provided, the
lower value of the frequency reaches 49.31 Hz. However, in the case where only slow spinning
reserve is available, the lower frequency value, which reaches 49.04 Hz, will cause the operation
of the protection devices of the rest of the wind parks. The total wind power disconnection might
lead the system to collapse and certainly will trigger the load shedding mechanisms that will
disconnect part of the system load.

4.3.2.1 Disturbances Selection

For each one of the produced OPs, a number of possible disturbances has been simulated, where
EUROSTAG was used to obtain the system dynamic behavior. The following two major
disturbances were selected:



4 – Data Sets for the Power Systems of Terceira and Crete Islands                                                                          

Application of Hybrid Automatic Learning Techniques for Fast Dynamic Security Assessment of Isolated Power Systems with Wind Power Production

77

•  Machine Loss: outage of a major gas turbine;
•  Short-Circuit: three-phase short-circuit at a critical bus near the wind parks.

These disturbances were selected according to utility criterion. In fact, a unit disconnection is an
event that occurs frequently in the Crete power system, whereas a tree-phase fault, although rare,
is a severe event that can occur during stormy conditions.

4.3.2.2 Security Indices Selection

For each OP, the following two security indices were recorded:

•  B1 = fmin: minimum value reached by the system frequency (Hz);
•  B2 = df/dtmax: maximum value reached by the rate of frequency change (Hz/s).

4.3.2.3 Security Boundaries Selection

To classify an OP as “secure/insecure”, the following security boundaries were used:

•  B01 = 49 Hz (according to fmin, a OP is “secure” if fmin(OP) >  49 Hz, otherwise is “insecure”);
• B02 = 0.4 Hz/s (according to df/dtmax, a OP is “secure” if df/dtmax(OP) < 0.4Hz/s, otherwise is

“insecure”).

4.3.2.4 Candidate Attributes Selection

In the selection of candidate attributes for the Crete data set, only pre-disturbances steady-state
continuous parameters were considered. For the vector of candidate attributes that characterizes
each OP, 22 operating parameters were selected, which include:

•  Total active and reactive load: ∑∑ LL Q and P ;

•  Total conventional active generation: ∑ CP ;

•  Active and reactive power in the wind parks, being considered 4 aggregated wind parks:
 Q,P, 

WWi WP ∑∑ ;

•  Spinning reserve and active generation in the conventional power plants, being considered
4 aggregated power plants: Cii PSR   and ;

•  Total reactive generation in the capacitor banks: ∑ capQ ;

•  Wind power penetration: ∑∑= LW P/PWP ;

•  Wind margin: ∑∑= WP/SRWM .
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4.3.3 STEP 2: Data Set Generation Method Applied for Crete

For the creation of the Crete data set, different OPs were obtained by varying:

•  the load in each one of the 11 load busbars;
•  the wind power in each one of the 4 aggregate wind park;
•  and the wind margin.

In the generation procedure developed by NTUA, the following steps were applied:

1. The load level, wind power and wind margin were assumed to follow a normal distribution
around three operating profiles:

- Low-load operating condition with a total load PL = 100 MW;
- Medium-load operating condition with a total load PL = 180 MW;
- High-load operating condition with a total load PL = 280 MW.

2. For each one of the 11 load busbars and each one of the 4 aggregated wind parks, a
perturbation of approximately ±10% was applied around each one of the above operating
profiles.

3. A dispatch algorithm approximating actual operating practices followed in the control center
of Crete was applied, using several wind margins.

4. Finally, for each defined operating point, both measurement vector and security indices were
provided by solving the power-flow solution and by using EUROSTAG to make the dynamic
analysis.

4.3.4 Data Set Results for Crete

Using the approach described in this Section, 2765 acceptable samples were obtained. This DS
was divided into the LS and TS by sending sequentially 2 samples to the LS and 1 to the TS,
resulting in 1844 samples in the LS and 921 in the TS. Regarding the security boundaries
presented in Section 4.3.2.3, the obtained number of “insecure” and “secure” OPs in the LS and
TS are presented in Table 4.4 and Table 4.5.

Table 4.4 – Number of “insecure” and “secure” OPs in the LS of Crete
Disturbance Machine Loss Short-Circuit

Security Index B 1 = f min B 2  = df/dt max B 3  = f min B 4  = df/dt max

Nº of Insecure OPs 31 59 768 698
Nº of Secure OPs 1813 1785 1076 1146
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Table 4.5 – Number of “insecure” and “secure” OPs in the TS of Crete
Disturbance Machine Loss Short-Circuit

Security Index B 1 = f min B 2  = df/dt max B 3  = f min B 4  = df/dt max

Nº of Insecure OPs 20 32 375 354
Nº of Secure OPs 901 889 546 567

The frequency distributions (histograms) of the DS security indices, are presented in:
− Figure 4.17(a) for B1 (fmin resulting from machine loss);
− Figure 4.18(a) for B2 (df/dtmax resulting from machine loss);
− Figure 4.19(a) for B3 (fmin resulting from short-circuit);
− Figure 4.20(a) for B4 (df/dtmax resulting from short-circuit).

The obtained values of the security indices for each OP of the DS, are presented in:
− Figure 4.17(b) for B1 (fmin resulting from machine loss);
− Figure 4.18(b) for B2 (df/dtmax resulting from machine loss);
− Figure 4.19(b) for B3 (fmin resulting from short-circuit);
− Figure 4.20(b) for B4 (df/dtmax resulting from short-circuit).
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4.4 Conclusions

With the data sets generated for the Terceira and Crete islands, whose procedure is described in
this Chapter, it was possible to derive security assessment structures to those power systems, by
applying the Hybrid Regression Tree, Artificial Neural Network and Decision Tree methods.
The obtained results with these automatic learning approaches are presented in Chapter 6.

As it is usual to occur, the procedure applied to generate the data set of Terceira required a high
computational effort. In fact, the data set generation procedure is an off-line procedure that
concerns with the generation of a large number of pre-analyzed security scenarios of the power
system to study, which is performed by running analytical tools that simulate the system
behavior.

This generation procedure was designed in such a way that, through it, is possible to include the
usual system operating strategy, the breadth of the system operating range and with a good
resolution. In fact, this technique provided that the OPs are well distributed and highly resolved
throughout the pre-defined operating range. The developed software tool provides a general
methodology to generate data sets for Diesel-wind isolated power systems.
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5 Hybrid Regression Trees

5.1 Introduction

The aim of this Chapter is to give a technical description of a new hybrid automatic learning
technique, called in this document as Kernel Regression Trees, implemented to make, for the
first time, fast dynamic security assessment (DSA) of power system in the field of frequency
stability problems. The results of the application of this algorithm to Crete can be found in [1]
and [2].

The Kernel Regression Tree (KRT) is an hybrid method, presented by Luís Torgo [3] in 1997,
which integrates Regression Trees (RTs) ([4] – Breiman et al., CART, 1984) with kernel
regression ([5] – Watson, 1964; [6] –Nadaraya, 1964).

The first application of the RT approach in DSA, used in the field of voltage stability problems,
is due to Wehenkel [42], in 1995. Recently, an application of a KRT approach in the same
security assessment problem was presented in [43] by Peças Lopes et al..

The RT is a non-parametric statistical methodology that deals with continuous goal variables
(i.e., consists on a method to solve regression problems). Thus, the output of a RT security
structure is a security index B that measures the security degree of a hypothetical OP to a
pre-defined disturbance. The RT consists on a machine learning (ML) method. Thus it provides
security structures that can be translated into interpretable security rules. An overview to the
security structure provided by this method is presented in Section 3.5.

Kernel regression is also a non-parametric statistical methodology that belongs to a research field
usually called local modeling [3]. Kernel regression models provide quite opaque security
structures, but on the other hand, are able to model with good accuracy non-linear functions.
Thus, by integrating this regression procedures in the tree leafs, a security structure with better
accuracy can be obtained, by increasing the non-linearity of the functions used at the leafs [3].
Furthermore, in highly non-linear problems, by integrating kernel regression models in the tree
leafs, it is possible to overcome the limitations of the individual kernel regression model, both in
terms of accuracy and computational efficiency [53].

In the work of Luís Torgo presented in [53], the performance of several functional models was
studied to make prediction on the RT leafs, to several artificial and real life domains. These
studied alternatives included:

•  Parametric models, namely, the traditional mean value and linear regression;
•  Non-parametric models, namely, K-nearest neighbors and kernel regression.
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From those experiences it was concluded that, in highly non-linear problems11 the use of the two
non-parametric models in the tree leafs clearly give better accuracy, whereas kernel regression
proved to be the best predicting function. On the other hand, these two non-parametric
approaches also proved to be computationally more expensive. This is natural to occur since, for
each prediction, these models need to re-calculate the regression model, whereas by using the
mean value or the linear regression, the prediction is assigned by a constant model.

In this Chapter, the implemented Hybrid Regression Tree (HRT) algorithm is described. It
provides tree structures that can be of the following main types:

- a RT security structures, by considering the mean value as the model to use at the tree leafs;
- a KRT security structure, by considering a kernel regression as the model to use at the tree

leafs.

5.2 Design of a Hybrid Regression Tree

In the implemented HRT algorithm, the method used to design the tree structure of a RT and a
KRT structure is exactly the same. In fact, to extract a KRT security structure, the following two
stages are performed:

! Design of the regression tree (RT) structure;
! Assign a kernel regression model to make prediction in the tree leafs.

Two approaches were considered to design the RT, which differ in the way applied to avoid
overfitting problems. The first one, which is described in Section 5.2.1, fights overfitting by
applying directly stop-splitting rules during the growing algorithm of the RT. This first
technique, presented by Breiman et al. in CART [4], although avoiding the tree to grow until
having only pure leafs, does not look for the right sized tree. In fact, much work was made
centered on finding the appropriate stop-splitting rules for generating the tree with the right size
(i.e., with a good trade-off between bias and variance), where many variants were invented and
tested. From this work it was concluded that searching for the right stopping rule was the wrong
way of looking at the problem. A more satisfactory procedure was found that consists on pruning
instead of stopping. For this reason subsequently another more efficient technique was applied,
which is a pruning algorithm based in the one presented in CART [4] and that is described in
Section 5.2.3.

                                                
11 which is characteristic to occur in power systems security problems
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5.2.1 Design of a Regression Tree Using Stop-Splitting Rules

In this approach, the design of a RT is determined by the following two issues:

- the optimal splitting test;
- the stop-splitting rules.

5.2.1.1 Optimal Splitting test

Starting with the root node, which corresponds to the LS, the growing of the RT is made by
successively splitting their nodes. In the implemented algorithm, it was considered that all
candidate attributes are numerical values. In those cases the splitting of a node is performed by a
test applied in the measurement hyperspace A defined as:

?  u   samplea kk })({ > (5.1)

where:

kk

k

a attribute candidate chosen the of value threshold optimal:u
sample the in k attribute candidate of value samplea :)(

By applying this test to all the samples in the node, two successor nodes are created, which
correspond to the two possible instances of the test:

})({})({ kkkk u   samplea and u   samplea ≤> (5.2)

When dividing a node, the optimal splitting test has to be selected from the samples stored in the
node. In this procedure, for each candidate attribute, the set of candidate splitting tests is defined
by the halfway value between consecutive distinct values and by the lower value of the attribute
range.

The splitting of each node must be performed according to an optimal splitting test, which
corresponds to the one that provides a maximum amount of information. As already referred in
Section 3.5, the design of a RT consists on explain as much as possible the mean squared error of
the security index B observed in the LS. This corresponds to dividing the samples of the LS into
disjoint regions, in such a way that in each region the security index B is as constant as possible,
being this partition defined by the leafs of the designed tree.

According to this goal, the optimal splitting test ”s”, which divides a node ”t” into ”tL” and ”tR”, is
the one that most decreases the learning error estimator LSRTMSE )(  (see equation 3.13), i.e., that
maximizes:

( ) )()(),( RL tRtRtRtsR −−=∆ (5.3)
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where:

( ) ( ) 2

tOP
iti

i

OPfB
N(LS)

1 tR ∑
∈

−= )(

Note that

∑
∈

=
Tt

LS tRRTMSE
~

)()( (5.4)

The error measure ( )tR  as the property that for any split of ”t” into ”tL” and ”tR” then:

( ) )()( RL tRtRtR +≥ (5.5)

As already referred, in the implemented algorithm, the mean value was considered as the
predicting function to be used in the leafs of the RT. Therefore, the optimal splitting test was
selected as being the one that most decreases the RT variance LSRTs )(2  (see equation 3.5).
According to this goal, at each node ”t”, the selected splitting test ”s” was the one that maximizes:

( ) )(sP)(sPs),(s RL RL tttts 2222 ×−×−=∆ (5.6)

where:

( )

nodes successor right and left the at B of variance :ts and ts
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L
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)()(

These splitting rules are described in CART [4].

node
t
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)(
)(

tN
tN

P L
L =

)(
)(

tN
tN

P R
R =

s2(t)

s2(tL) s2(tR)

Figure 5.1 – Splitting a node t of a RT

5.2.1.2 Stop-Splitting Rule

The procedure continues splitting the created successor nodes, until a stop-splitting criterion is
met for all the non-splitted nodes. The criterion used, which was described by Luís Torgo, is
defined by the two stop-splitting rules:
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- Rule 1: It is not possible to further reduce the variance of B in a statistically significant
way. This corresponds to verify if a minimum number of examples, Nmin, has been
reached in the node [53][54].

- Rule 2: The variance of B has been sufficiently reduced. This corresponds to verify if a
minimum value of a statistic call coefficient of variation, CVmin, has been reached in the
node [53], where:

node

2

B

nodes
nodeCV

)(
)( = (5.7)

CV(node) captures the spread of the set of B values in the node. As an alternative, it can be
verified if a minimum value of the variance of B, s2

min, as been reached in the node, where
s2

min corresponds to a perceptual value of the variance of B in the root node [54], i.e.:

(root)s
100

 valuepercentuals 2
0

0min
2 ×= (5.8)

This procedure captures the spread of the set of B value in the node relatively to the root
node.

When, in a node, one of these rules is verified, it becomes a terminal node, i.e., a leaf.

In the literature, there are still other alternatives to stop splitting a regression tree. Namely, in
CART [4] it is referred that, a node t  can be declared as terminal if:

R(root)006.0ΔR(s,t)
s

×≤max (5.9)

where “s” is a splitting test

This procedure captures the capability of the splitting tests to reduce variance.

5.2.2 Predicting, with Kernel Regression Models in the Tree Leafs

Once the design of the RT, to obtain a KRT structure, a kernel regression model is assigned to
make prediction at the tree leafs. According to the used kernel regression model, a prediction of
the security index B for any new unseen operating point Q of the system (a query point) is
obtained by performing the following steps:

1) Find the leaf that verifies the Q operating conditions. At this stage Q becomes within the
measurement hyperspace A, defined by the learning samples stored in that leaf (see example
presented in Figure 5.2 for a three-dimension measurement hyperspace).
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a 1
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a 3

Q
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OP3

OP98

OP101

OP5

OP50

Figure 5.2 – Example of a new unseen operating point Q in the measurement hyperspace A of a leaf

2) Predict the numerical value of B(Q), i.e. B’(Q), by applying a kernel regression model to the
learning samples stored in the leaf. Kernel regression models [5][6] make prediction by a
weighted mean of the response B of the form:

( )[ ]

( )[ ]∑

∑

=

=

×

=′
 neighbors

1i
ih

 neighbors

1i
iih

Q,OPDK

BQ,OPDK
(Q)B (5.10)

where:

[ ]

ii

ii

h

neighbor of value index Security-  B
neighbor of Point Operating-  PO

function Kernel the K(.) being ,
h
xKxK

value Bandwidth :h
function Distance : D(Q,OP)





=

Distance Function
The prediction is obtained by using the samples in the leaf (also named neighbors) that are
"most similar" to Q. This similarity is measured by means of the distance function D(Q,OP).
This function measures the normalized distance between two samples in the measurement
hyperspace A.

One design issue of kernel regression models includes the choice of the distance function. In
the implemented model, an Euclidean distance was used, which is defined as:

∑
=

=
Na  

i
i  (Q,OP)dD(Q,OP)

1

2 (5.11)

where:
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Bandwidth Value
Another important design decision, when applying kernel regression models, is the choice of
the bandwidth value h, where many alternatives exist [55]. In the implemented model, a
K-Nearest Neighbor (KNN) rule12 was used. The KNN rule sets the bandwidth value h as the
distance D to the K-nearest neighbor of Q. It also sets that only the K-nearest neighbors are
used to make prediction.

Kernel Function
The kernel function K(.) (also called weight function) estimates the weight of each neighbor
to Q, giving more weight to neighbors that are nearest to Q. In the implemented model, a
Gaussian one was applied, which is presented in Figure 5.3 and given by:

2dedK −=)( (5.12)

Figure 5.3 – Kernel function

Atkeson et al. [56] claims that the choice of the kernel function is not a critical design issue,
as long as the function is reasonably smooth. These authors provide an extensive list of
alternative kernel functions and discuss some of their merits. Kernel regression (and
generally local modeling) can be very sensitive to the presence of irrelevant features, so
weighing can help to reduce this influence [3].

                                                
12 See Section 3.6 where the application of K-Nearest Neighbor rule in classification problems is synthetically
explained.
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5.2.3 Design of a Regression Tree/Kernel Regression Tree by Applying a Pruning Algorithm

The implemented pruning algorithm, applied to design a RT or a KRT structure, comprises the
following stages:

1) Design of a very large regression tree, maxRT , which is supposed to overfit the LS.

2) Generation of a sequence of pruned trees with decreasing complexity, rootTT 21 !"!!

where maxT T1 =# , by progressively pruning maxT  upward in the “right way” until being
reached the root node. Note that a subtree Ti of T is referred as a pruned tree of T if

 root (T)) root(Ti = , which can be denoted by iTT ! .

3) Selection, among that sequence of generated pruned trees { } { }rootTTT 21 ,,, "= , the right sized
one, based on an accurate estimation of the true predicting error of the corresponding security
structures, i.e., by using a testing set to estimate the structures performances.

5.2.3.1 Design of RTmax
To grow maxRT , the previously described design procedure that exploits stop-splitting rules is
applied. By using this process, a very large tree is designed by letting the splitting procedure
continue until each terminal node is sufficient small or contains only identical B values. The size
of this initial tree is not critical as long as it is large enough to overfitt the LS. For all the results
presented in Chapter 6, the following stop-splitting rules were used:

− rule 1: The number of examples in the node is 1 (i.e., 1nodeN =)( );
− rule 2: The variance of B in the node is 0 (i.e., ( ) 0nodes2 = ).

5.2.3.2 Pruning Process

Minimum Error-Complexity Criterion
Even for a moderate sized maxRT , there is an extremely large number of pruned trees of maxT  and
an even larger number of distinct ways of pruning up it to the root node. Regarding this, a
selective pruning process is applied, that generates a reasonable number of pruned trees of maxT ,
with decreasing size, such that each subtree is the “best” pruned tree in its size range.

To select the “best” pruned tree in its size range, a minimum error-complexity criterion is applied
to each last pruned tree. Considering that T is the binary tree structure of a regression tree RT, the
error-complexity measure of RT is defined by:

( ) ( ) TRTMSERTMSE LSLS ~×+= αα (5.13)

where:
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RT) of complexity the for (penalty0  number real α

RT of y(complexit T inleafs  of number T

3.13) equation (see error RT the of estimation learning RTMSE LS

≥:

):~
:)(

Thus, ( )LSRTMSEα  is formed by adding to the error of the RT, a cost penalty of its complexity.

One more time, the mean value was considered as the predicting function to use in the RT leafs.
Thus, to calculate the error ( )LSRTMSE of the RT, the variance measure LSRTs )(2  was used (see
equation 3.5).

Starting with 0=α , for each increasing value of α  the pruning algorithm finds the subtree
maxTT #α  that minimizes ( )LSRTMSEα , i.e.:

( ) ( )LS

TT

LS RTMSERTMSE ααα =
max

min
#

(5.14)

Note that when α is a small value, the penalty of having a large number of leafs is low and
therefore it will result on a large Tα.

Although α  runs through a continuous value, the pruning process produces a finite sequence of
pruned trees rootTT 21 ,,, "  with progressively fewer terminal nodes. This is because each Tα is the
minimizer subtree of ( )LSRTMSEα  for a range of values of α, and therefore as α increases it
continues being the minimizer subtree until a jump point α’ is reached, where a new smaller
subtree Tα’ becomes the minimizer. The pruning process stops when the minimizer subtree
becomes the root node of maxT .

A direct search through all possible subtrees maxTT #α  to find the minimizer of ( )LSRTMSEα  is
computationally expensive. Moreover, there are no guaranties that there is a unique subtree

maxTT #  that minimizes ( )LSRTMSEα , and that in the pruning process the nesting
}{rootTT 21 !"!!  holds.

To overcome this difficulties and obtain and effective algorithm for generating the sequence of
subtrees, the pruning process uses the following procedures:

− for each α  value, the pruning algorithm finds the smallest subtree maxTT #α  that
minimizes ( )LSRTMSEα ;

− each subtree of maxT  is obtained by pruning upwards from the previous subtree.
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Thus, for each value of α , the pruning algorithm looks for the smallest minimizing subtree
maxTT #α , which is defined by the following conditions:

( )

( ) TT then RTMSERTSEM If  (ii)

RTMSERTSEM   (i)

LSLS

LSLS

TT

#

#

αααα

ααα

=

=

,)(

)(min
max (5.15)

According to this previous definition, for every value of α  there is a smallest minimizing subtree
( ) maxTT #α , which is unique (the proof of this proposition can be found in CART [4]).

Generation of T1

1T  is the smallest pruned tree of maxT that minimizes ( )LSRTMSEα  for 01 =α=α , i.e., 1T  is the
smallest pruned tree of maxT  that satisfies:

( ) ( )LSLS RTMSERTMSE max= (5.16)

Letting “ Lt ” and “ Rt ” to be any two successor nodes resulting from the split of a node “ t ” of a
tree, then as previously said in Section 5.2.1.1:

)()()( RL tRtRtR +≥ (5.17)

Regarding this, 1T  is gotten from maxT  by pruning all the pair of leafs { }RL tt ,  that verify
)()()( RL tRtRtR += , where in the implemented approach the predicting function )( it OPf  was

considered to be the mean value.

In the resulting 1T , for any non-terminal node t :

( ) ( )LS
tRTMSEtR > (5.18)

where:

∑
∈

=

t
Tt

tRRTMSE LS
t

~
)()(

Generation of T2, ..., root node
Starting with 1T , the remaining set of pruned trees of maxT , { }rootTT 32 ,,, " , is obtained by
progressively replacing the weakest non-terminal node by a leaf.

Setting

t
LS

t
LS

t TRTMSERTMSE ~)()( ×+= αα (5.19)
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and
t node of measure complexity-error:tRtR α+=α )()( (5.20)

For every non-terminal node t  of 1T , as long as LS
tRTMSEtR )()( αα >  is preferable to have the

subtree tT  in 1T  instead of replacing the non-terminal node t  by a leaf. However, at some critical
2α  value of α , for some non-terminal node 2t  happens that LS

t )RT(MSE)t(R 22 αα = . At this
point, 2t  is smaller than 2tT  having the same error-complexity, and therefore is preferable. Thus,
for 2αα = , 2t  is the weakest non-terminal node of 1T . At this point:

1T

RTMSEtR

2t

LS
2t2

2
−

−
=α=α ~

)()(
(5.21)

To find automatically 2α  and 2t , let us define a function )(tg  for all non-terminal nodes of 1T  as:

1−

−=
t

LS
t

T~
)RT(MSE)t(R)t(g (5.22)

Regarding that for 2α=α  then )( 22 tg=α  and )( i2 tg<α { }211i tTTt −−∈∀ ~ , the weakest
non-terminal node 2t  of 1T  is the one that minimizes )t(g , i.e., that verifies:

{ } )t(gmin)t(g
T~Tt 11

2
−∈

= (5.23)

being

)t(g 22 =α

Having detected 2t , then 2T  is generated by replacing, in 1T , 2t  by a leaf, i.e.:

2t12 TTT −= (5.24)

Continuing with this process, a decreasing sequence of subtrees rootTT 21 !"!!  is obtained.

Summarizing:
The result of the implemented pruning process is a decreasing sequence of binary trees
{ } { }rootTTT 21 ,,, "=  where rootTT 21 !"!!  with maxT T1 =# , and a corresponding increasing
sequence of α values "<α<=α 21 0 , such that for 1+α<α<α kk , kT  is the smallest pruned tree
of maxT  that minimizes ( )LSRTMSEα . By considering the mean value to make prediction at the
tree leafs of { }T , the result of the pruning process is a set of regression trees
{ } { }rootRTRTRT 21 ,,, "= . By considering the kernel regression described in Section 5.2.2 to make
prediction at the tree leafs of { }T , the result of the pruning process is a set of kernel regression
trees { } { }rootKRTKRTKRT 21 ,,, "= .
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Here is necessary to remark that the sequence of minimum error-complexity trees is a
subsequence of the one constructed by a minimum error criterion, whose pruning process is the
following:

− Supposing that maxT  has L  leafs, for every value of LHH ≤≤1: , the subtree maxTTH #  with
HL −  leafs that minimizes LS)RT(MSE  is selected.

Although this minimum error pruning procedure is intuitive and possible to be implemented,
comparing with the minimum error-complexity pruning process, it is computationally much more
expensive. Moreover, in regression problems, the sequence of pruned trees that results from the
minimum error-complexity criterion is usually almost the same as the one that results from the
minimum error criterion. In fact, the pruning process based in the ( )LSRTMSEα  error-complexity
measure usually takes off only two terminal nodes at a time [4]. For instance, this behavior can
be seen in the results presented in Figure 3.6 of Chapter 3 (Section 3.8), which were obtained
from an experience carried out with the Terceira data set. From this experience, having T1 2329
nodes, a set { }T  with 1141 trees was generated, being the maximum possible number of pruned

trees in { }T  equal to ( ) ( ) 11651212329121T1T 11 =+−=+−=+~ .

5.2.3.3 Selection of the Right Sized Tree

According to the control center requirements, the user may want to exploit a specific KRT  or a
RT structure from the set of pruned trees { }T .

Note that, for the KRT and RT approaches, the tree structures in { }T  are exactly the same. The
only difference between the two approaches stays in the model used to make prediction in the
tree leafs. In the implemented algorithm, to make prediction, a kernel regression model is
assigned to the KRT  structures, whereas the mean value is assigned to the RT  structures.

Among { }T , the user must select the right sized tree based on an accurate estimation of the true
predicting error of the corresponding security structures. Thus, instead of a learning estimation, a
testing estimation must be used to evaluate the performances of the design structures. Therefore,
according to the control center requirements, the right sized tree must be selected by following
the criterions described below.

1) Regarding the cases when producing fast security evaluation is the main goal, then
maximizing accuracy and minimizing prediction time are the main requirements to the user.
To maximize accuracy, the right sized tree must be selected among { }T  according to the
minimization of a TS error estimator of the S structure, where S can be a RT or a KRT
structure. Within fast security evaluation, the following two situations can occur:
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1.a) If the goal is to make on-line evaluation of the system security degree, the TSSMSE )(

error estimator (see equation 3.8) can be used to estimate the accuracy of the structure.
According to the minimization of this error, the selected structure SMMT is such that:

{ }
TS

iTT
TS

MMT SMSESMSE
i

)(min)(
∈

= (5.25)

In this document, the KRT  and RT  structures selected according to this last criterion
are called MMTKRT  and MMTRT  (MMT – Minimum MSE Tree).

1.b) If the goal is to make on-line classification of the system as “secure/insecure”, the
selected structure must reach a small Global Classification TS error (see equation 3.10).
Besides this last requirement, two other important issues should be considered: to have
small False Alarm and Missed Alarm TS errors (see equation 3.11 and 3.12). Obviously,
missed alarm error is a misclassification rate with higher importance than false alarm
error, since they correspond to actually “insecure” OPs for which the structure failed to
warn.

2) Regarding the cases where the main goal is to extract interpretable security rules from the
tree structure, both interpretability and accuracy are important to the user. Obviously a
constant model must be considered in the tree leafs. Therefore, the use of a KRT structure is
not feasible since, for each prediction, these structures need to re-calculate a kernel
regression function. Thus, among the KRT and RT approaches, only the last one can be used
to extract those security rules. Within the extraction of interpretable security rules, the
following two situations can occur:

2.a) If the goal is to extract interpretable security rules that explain the B value as a function
of the system operating conditions (i.e., extract regression rules), it must be chosen a RT
that achieves a good compromise between the regression errors and complexity. In this
case, complexity depends on the number of leafs (since it gives the number of If rules)
and on their depth to the root node (since it gives the maximum number of attributes
that can be included in the If rule). In CART [4], to obtain a RT structure with a good
trade-off between accuracy and comprehensibility, it is suggested to select the right
sized tree according to the k SE rule for k = 1 (i.e., the 1 SE rule). By following the 1 SE
rule, the selected regression tree RTSET is the smallest one such that:

SEkRTMSERTMSE TS
MMT

TS
SET ×+≤ )()( (5.26)

where:

k=1

SE  is the standard error estimation of TS
MMTRTMSE )( , used to define the uncertainties of

the TS
MMTRTMSE )(  predicting error estimation.



5 – Hybrid Regression Trees                                                                                                                                          

Application of Hybrid Automatic Learning Techniques for Fast Dynamic Security Assessment of Isolated Power Systems with Wind Power Production

95

For any structure S :
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In this document, the RT that verifies the 1 SE rule is called SETRT  (SET – Standard Error

Tree). The 1 SE rule allows choosing the simplest tree whose accuracy is comparable to
the one that minimizes TSRTMSE )(  (i.e., the MMTRT ).

2.b) If the goal is to extract interpretable security rules that explain the system security class
(“secure/insecure”) as a function of the system operating conditions (i.e., extract
classification rules), it must be chosen a RT that achieves a good compromise between
the classification errors and complexity. In these cases, the number of leafs do not
necessarily measure the number of extracted If rules. To illustrate, let us suppose that a
tree has a large number of leafs, but only two of them are assigned by an “insecure”
class. Thus, although being large, this tree can be translated into a very simple set of
security rules of the form:

[ ]
[ ]
Secure"" else

Insecure"" Then 
 If or

 If





leaf insecure"" second  the to node root the from conditions operating
leaf insecure"" first the to node root the from conditions operating

5.3 Experiments to Compare Performance Between RT and KRT

In order to compare the performance of the implemented regression tree and kernel regression
tree approaches, an experiment was carried out for the case study of Terceira island already
referred in Section 3.8.1.

The resulting sequence of pruned trees rootTTT 114021 !!"!!  was evaluated in the sense of
predictive regression accuracy and predictive computational efficiency, where two situations
were considered:

− the use of a mean value as the function to make prediction in the leafs – RT approach;
− the use of the kernel regression model described in Section 5.2.2 as the function to make

prediction in the leafs – KRT approach;

The obtained results are shown in Figure 5.4 in the sense of regression accuracy performance,
and in Figure 5.5 in the sense of computational efficiency performance. To estimate the
predictive regression accuracy, the RMSE(S)TS error was used. To estimate predictive
computational efficiency, the execution time that the program takes to make prediction for all the
TS was used.
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Figure 5.4 – Comparing predictive accuracy between RT and KRT structures
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Figure 5.5 – Comparing predictive computational efficiency between RT and KRT structures

Regarding predictive regression accuracy, as it can be seen in Figure 5.4, KRT always obtained
the best score.

Regarding predictive computational efficiency, as it can be seen in Figure 5.5, KRT always
obtains the higher execution times. This is due to the prediction in KRT being a two-stage
process. First, like in RT, the OP is dropped down the tree. Then, instead of assigning the mean
value of B as being the predicting value, kernel regression is applied using the learning samples
stored in the leaf. The more complex the tree is, the lower is the number of samples stored in the
leafs, and therefore, the lower is the price in terms of time needed for local prediction tasks.
Thus, as it can be seen in Figure 5.5, as the tree grows in size, the predictive time of KRT gets
closer to the one obtained by RT. Also note that the more complex the tree, the higher is the time
needed to drop an OP down the tree, being this the reason for the execution time of the RT
presented in Figure 5.5, although slowly, increases with its complexity.



5 – Hybrid Regression Trees                                                                                                                                          

Application of Hybrid Automatic Learning Techniques for Fast Dynamic Security Assessment of Isolated Power Systems with Wind Power Production

97

5.4 Some Issues Related to Tree Structure Methods

When using the tree structure to extract interpretable rules, it is necessary to have in mind that
the fact that a candidate attribute does not appear in any of the tree splits does not mean that it is
not relevant for the problem. In fact, a relevant attribute can be constantly masked by another and
thus never be chosen for splitting the nodes.

At any given node, there may be a number of splits on different variables, all of them giving
almost the same decreasing of the MSE learning error. Since data is noisy, the choice between
these competing splits may be almost random. If one attribute masks another, then small changes
in the DS, or even in how the LS and TS result from randomly separating the DS, may shift the
split from one attribute to the other, which will lead to a different evolution of the tree from that
node downwards. This behavior, which is remarked in CART [4], leads to the tree structure
being unstable. Some examples can be seen in [4], which illustrate tree structure instability, i.e.,
that small changes in the DS may lead to much different tree structures, however achieving
almost the same accuracy.

This issue, which applies both to decision and regression trees, is very important because if it is
not considered then the tree structure may lead to misinterpretation.

Another frequently mentioned characteristic, and also referred in [4], of the tree growing
procedure is that it is only one-step optimal and not overall optimal. To illustrate this behavior,
lets suppose that the tree growing procedure produces 11 terminal nodes. If one could search,
within all possible partitions of the learning samples into 11 disjoint groups, for the one that
minimizes the MSE learning error, the two results might be quite different. However, looking for
the optimal tree structure hasn’t been an issue to reach by the researchers of this field, since an
overall optimal tree growing procedure does not appear computational feasible for any
reasonably sized data set. Besides, in the sense of the application to power systems security
assessment, the main goal is to construct a good predicting structure whose performance stands
up to the ones of other methods and that is useful and practical.
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6 Results

6.1 Introduction

In this Chapter, the results obtained with the Hybrid Regression Tree (HRT) method described in
Chapter 5, for the cases of the Terceira and Crete island networks, are presented. The available
Artificial Neural Network (ANN) and Decision Tree (DT) results are also presented for
comparative assessment purposes. The performance evaluation results were obtained by applying
the testing set (TS) to the obtained structures.

ANN structures were obtained to deal with this problem within the framework of the EU
research project, using software already available. These structures were designed by other
researches of the Power Systems Unit of INESC Porto [7]. Researchers of NTUA provided the
DT structures. These researchers were the ones involved in the CARE project responsible for
developing the DT module, and for constructing the DT structures to be used in the Crete
advanced control system. The obtained DTs were derived through the use of an ID3 algorithm
[45].

The security problem evaluated for the power system of Terceira is described in Chapter 4.
However, just to remind, in Table 6.1 the security indices selected that define the dynamic
security of this network are presented. The obtained number of “insecure” and “secure” samples
in the TS is presented in Table 6.2.

Table 6.1 – Security indices of the Terceira case
Disturbance

 followed by the disconnection of Santa Bárbara wind park at 100 ms after de occurrence of the default
Security Indices Security Boundary

B 1 ∆ f min : minimal value reached by the negative frequency deviation (Hz)  -1Hz
B 2 ∆ f max : maximal value reached by the positive frequency deviation (Hz) 0.65 Hz
B 3 df/dt max : maximal value reached by the rate of frequency change (Hz/s)  3.4 Hz/s

Short-Circuit + Wind Power Loss:  Tree-phase short-circuit in Angra do Heroísmo, eliminated after 180 ms,

Table 6.2 – Number of “insecure” and “secure” OPs in the TS of Terceira
Disturbance Short-Circuit with Wind Power Loss

Security Index B 1 = ∆f min B 2 = ∆f max B 3 = df/dt max

Nº of Insecure OPs 87 21 93
Nº of Secure OPs 703 769 697

The security problem evaluated for the power system of Crete is also described in Chapter 4. Just
to remind, the security indices selected to define the dynamic security of this network are
presented in Table 6.3. The obtained number of “insecure” and “secure” samples in the TS is
presented in Table 6.4.
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Table 6.3 – Security indices of the Crete case
Disturbance 1
Machine Loss : outage of a major gas turbine
Security Indices Security Boundary

B 1 f min : minimum value reached by the system frequency (Hz) 49Hz
B 2 df/dt max : maximal rate reached by the frequency change (Hz/s) 0.4 Hz/s

Disturbance 2
Short-Circuit : three-phase short-circuit at a critical bus near the wind parks
Security Indices Security Boundary

B 3 f min : minimum value reached by the system frequency (Hz) 49Hz
B 4 df/dt max : maximal rate reached by the frequency change (Hz/s) 0.4 Hz/s

Table 6.4 – Number of “insecure” and “secure” OPs in the TS of Crete
Disturbance Machine Loss Short-Circuit

Security Index B 1 = f min B 2  = df/dt max B 3  = f min B 4  = df/dt max

Nº of Insecure OPs 20 32 375 354
Nº of Secure OPs 901 889 546 567

For the case of Terceira, the implemented HRT method was applied for the 3 security indices to
obtain the corresponding AL structures. In order to evaluate the performance of this approach,
researchers of NTUA provided a DT structure for the B3 security index of the Terceira case.

For the case of Crete, by applying the implemented HRT and ANN methods, AL structures were
obtained for the 4 considered security indices. Therefore, for this study case it was possible to
compare accuracy performance between the implemented approach and the ANN approach. The
provided ANNs were trained to provide security monitoring by emulating the expected values of
fmin and df/dtmax. Therefore, they weren’t trained for classification purposes. The two multi-layer
ANNs were trained (one for each disturbance) using an adaptive back propagation algorithm
[40]. For each ANN, the structure presented in Figure 6.1 was adopted, which includes:

− one input layer with 22 attributes as inputs;
− one hidden layer with 8 neurons;
− one output layer with the two security indices as outputs.

Figure 6.1 – Structure selected for the trained ANNs

The two provided ANNs have a response time in the order of some microseconds to predict, for
one sample, both fmin and df/dtmax that succeed from a disturbance.

Also in order to compare the performance of HRT and ANN approaches, researchers of NTUA
provided a DT structure for the B3 security index of the Crete case.
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6.2 Results for the Case of Terceira Island

6.2.1 B1 of Terceira Case - Results Obtained with the HRT Method

In order to extract AL security structure for this case, the pruning algorithm described in
Chapter 5 was applied to the B1 security index of the Terceira LS. From this procedure a set { }T
of 1141 pruned trees was generated, where rootTTT 114021 !!"!! , having 1T  (the most
complex tree) 2329 nodes.

Regarding the use of the extracted RT and KRT structures to produce the emulation of the B1

security index, after analyzing the obtained set of pruned trees { }T  one can derive the following
main conclusions:

1. For each tree structure of { }T , the kernel regression tree (KRT) approach was able to provide
security structures with smaller RMSETS error than the regression tree (RT) approach (see
Figure 6.2). Thus, among the RT and KRT approaches, in the sense of accuracy, the last one
is the most suitable to produce on-line evaluation of the system security degree. In fact, as it
can be seen in Figure 6.10, Figure 6.17, Figure 6.26, Figure 6.32, Figure 6.39 and Figure
6.49, this was observed for all the cases studied of the Terceira and Crete power systems.
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Figure 6.2 - Comparing RMSETS error between the obtained {KRT} and {RT} (B1,Terceira)

2. Among the extracted structures, the most suitable one to produce on-line evaluation of the
system security degree is KRTMMT, which has 133 nodes (see Figure 6.2). The results of the TS
performance evaluation for this regression structure are presented in Figure 6.3.

The parameter prediction time presented in the Table of Figure 6.3 is an estimation of the time
that the structure takes to predict the security index value for one OP. It is measured as the
mean value of the time that the structure takes to make prediction to the testing samples in a
Pentium II Processor at 64 MB RAM. In the Graphic of Figure 6.3, each point represents one
TS sample, where its vertical distance to the diagonal presents the predicting error of
applying the KRTMMT to that sample.
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TS Predicting Errors KRT MMT               

(133 Nodes; K=3)
MAE (Hz) 0.02285

RMSE (Hz) 0.04046
RE 0.02413

Prediction time (s) 3.51E-03
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Figure 6.3 – TS performance evaluation results for the obtained KRTMMT (B1,Terceira)

3. In order to extract interpretable regression rules, the 1 SE rule was applied to the set of RT
structures { }RT . The selected RT, called in Figure 6.2 as RTSET, has 79 nodes (40 leafs).
Therefore, regarding the high number of nodes, RTSET is too complex to be translated into
comprehensible regression rules. The RT with 9 nodes (5 leafs) is considered much more
suitable to extract simple regression rules. This structure is the one that verifies the 18 SE
rule. Its equivalent regression rules and TS regression errors are presented in Figure 6.4.
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Figure 6.4 – Regression rules and TS regression errors for the obtained RT with 9 nodes (B1,Terceira)
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Regarding the use of the extracted RT and KRT structures to classify the B1 security index as
“secure/insecure”, after analyzing the obtained set of pruned trees one can derive the following
main conclusions:

1. As it can be seen in Figure 6.5, from the pruned tree structure with 97 nodes to the one with
133 nodes, the resulting KRT and RT structures achieve minimum Global Classification Error.
For the KRT approach, the simpler the tree structure is the higher is the prediction time.
Regarding this and also the values of the false and missed alarm presented in Figure 6.6,
among {KRT}, the KRT with 133 nodes is considered a suitable structure to produce fast
security classification. For the RT approach, the simpler the tree structure is the lower is the
prediction time. Regarding this and also the values of the classification errors presented in
Figure 6.7, among {RT}, the RT with 97 nodes is considered a suitable structure to produce
fast security classification. Although these two structures have the same classification errors,
the RT provides smaller predicting time. Therefore, among the extracted structures, the RT
with 97 nodes is considered suitable to produce fast security classification. The results of the
TS performance evaluation for this classification structure are presented in Figure 6.7.
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Figure 6.5 - Comparing Global Classification Error between the obtained {KRT} and {RT} (B1 ,Terceira)
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TS Predicting Errors RT            
(97 Nodes)

Global 1.01% (8 OPs)
False Alarm 0.71% (5 OPs)

Missed Alarm 3.45% (3 OPs)
Prediction time (s) 5.06E-06
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Figure 6.7 – TS classification errors for the obtained {RT} (B1,Terceira)

2. As it can be also seen in Figure 6.7, among {RT}, the RT with 37 nodes achieves a good
compromise between classification error and complexity. Moreover, its classification
structure provides 3 If rules. Therefore, the RT with 37 nodes is considered suitable to extract
classification rules. Its equivalent classification rules and TS classification errors are
presented in Figure 6.8. Its tree structure is presented in Figure 6.9.
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Figure 6.8 – Classification rules and TS errors for the obtained RT with 37 nodes (B1,Terceira)

In Figure 6.9, nodes in the tree structure are of two types: non-terminal and terminal nodes
(leafs). The root node (node number 1) includes information related to the total number of
learning samples (N), the variance of the security index B1 in the LS (s2(t)) and the splitting
test. Non-terminal nodes present the node number, containing also information related to the
splitting test. The leaf nodes present information related to the node number, the number of
learning samples stored there (N), and the mean (Mean) and variance (s2(t)) of the security
index B1 in those samples.

6.2.1.1 Interpretation of the Security Structures (B1 of Terceira)

As it can be seen in Figure 6.4 and Figure 6.8, the security rules extracted from the selected tree
structures can be easily understood, discussed, and eventually adopted by the operators to define
new operating strategies. Notice that the common practice of the engineers is to use, in an off-
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line procedure, analytical tools of power system behavior simulation, together with their
expertise, to run extensive scenarios. From those simulations, they extract the relevant security
information in order to define operating guidelines and corrective measures. By using machine
learning techniques, like the RT applied approach, much of the manual task to extract the
operating guidelines can be performed automatically by a systematic methodology.

Regarding the extracted security rules and the considered disturbance, it seems obvious the
influence of the total spinning reserve ( SR∑ ) and of the wind margin in Santa Bárbara wind
park ( 2WM ). However, to understand the influence of the active generation in Diesel unit GVI
( GVID,P ) a closer examination is necessary to be performed. First of all, in the data set generation

procedure, the Diesel unit GVI (one of the biggest machines of the Belo Jardim Diesel power
station) was considered, by omission, as the slack machine. Moreover, the lowest production
costs were assigned to the GVI and GVII Diesel units. As a result, these two machines were
considered in service in all the DS operating scenarios. Furthermore, by taking a closer look to
the generated data set, it was observed that when MW4.672 P GVID, ≤  then the total spinning reserve

is within 3 and 6 MW, being the wind power loss to compensate in the worst case of 1.8 MW (i.e.,
the installed power in the disconnected wind park). Regarding these issues, it seems much more
clear why GVID,P  has such an influence on the system security.

This example illustrates well how influent can the scheduling and dispatching strategies that are
reflected in the data set be on the generalization capabilities of the extracted AL structure. In
fact, as already highlighted in Section 3.9.2, if the considered operating strategies are not the
ones actually performed on the network, then, in spite of having a good testing accuracy, there is
no assurance that the structure will be accurate enough when making prediction to real life
operating scenarios.

Summarizing:
According to the required function of the hybrid regression tree, among the generated set of
pruned trees { }T , the structures presented in Table 6.5 were selected. In this table, the testing set
performance evaluation results obtained for the security structures and the number of secure and
insecure samples in the TS are also presented.

Table 6.5 – Selected hybrid regression trees (B1,Terceira)
Short-Circuit + Wind Power Loss, ∆∆∆∆fmin

Function Selected 
structure

MAE 
error

RMSE 
error

RE 
error

Global 
error

False Alarm 
error

Missed Alarm 
error

Prediction 
time (s)

on-line evaluation of 
security degree

KRT MMT             
(133 nodes; K=3)

0.0228 0.0405 0.0241  -  -  - 3.51E-03

extract interpretable 
regression rules RT  with 9 nodes 0.0791 0.1090 0.1753  -  -  -  -

fast security classification RT  with 97 nodes  -  -  - 1.01%  
(8 OPs)

0.71%       
(5 OPs)

3.45%        
(3 OPs) 5.06E-06

extract interpretable 
classification rules RT  with 37 nodes  -  -  - 1.14%  

(9 OPs)
0.57%       

(4 OPs)
5.75%        

(5 OPs) -

Nº of Insecure OPs in the TS 87
Nº of Secure OPs in the TS 703



  WM2: WM in Santa Bárbara Wind Park (attribute a2)
  WM: Total WM (attribute a3)
     ΣΣΣΣSR: Total SR (attribute a5)
  SRGIV: SR in Diesel unit GIV (attribute a29)
  PD,GVI: Active generation in Diesel unit GVI (attribute a31)
  QWG6: Reactive consumption in wind generator WG6 (attribute a50)

N = 11861
s2(t) = 0.068518

  PD,GVI > 4.672 MW
yes no

N = 2317

Mean =-1.112302
s2(t) = 0.003223
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s2(t) = 0.011989
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Figure 6.9 – Tree structure for the obtained RT with 37 nodes (B1,Terceira)



6 – Results                                                                                                                                                                       

Application of Hybrid Automatic Learning Techniques for Fast Dynamic Security Assessment of Isolated Power Systems with Wind Power Production

106

6.2.2 B2 of Terceira Case - Results Obtained with the HRT Method

In this case, by applying the pruning algorithm described in Chapter 5, a set { }T  of 1130 pruned
trees was generated, where rootTTT 112921 !!"!! , having 1T  2329 nodes.

Regarding the use of the extracted RT and KRT structures to produce emulation of the B2

security index, after analyzing the obtained set of pruned trees one can derive the following main
conclusions:

1. For this case, KRTMMT – the most suitable structure to produce on-line evaluation of security
degree – has 203 nodes (see Figure 6.10). The results of the TS performance evaluation for
this regression structure are presented in Figure 6.11.
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Figure 6.10 - Comparing RMSETS error between the obtained {KRT} and {RT} (B2,Terceira)
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Figure 6.11 – TS performance evaluation results for the obtained KRTMMT (B2,Terceira)

2. As it can be seen in Figure 6.10, for this example RTSET has 195 nodes (98 leafs), being thus
too complex to be translated into comprehensible regression rules. The RT with 11 nodes (6
leafs) is considered much more suitable to extract simple regression rules. This structure is
the one that verifies the 35 SE rule. Its equivalent regression rules and TS regression errors
are presented in Figure 6.12. Its tree structure is presented in Figure 6.16.
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Figure 6.12 – Regression rules and TS regression errors for the obtained RT with 11 nodes (B2,Terceira)

Regarding the use of the extracted RT and KRT structures to classify the B2 security index as
“secure/insecure”, after analyzing the obtained set of pruned trees one can derive the following
main conclusions:

1. As it can be seen in Figure 6.13, from the pruned tree structure with 47 nodes to the one with
53 nodes, the resulting KRT and RT structures achieve minimum Global Classification Error.
Regarding this and the TS performance evaluation presented in Figure 6.14 and Figure 6.15,
among the extracted structures, the RT with 47 nodes is considered suitable to produce fast
security classification. The results of the TS performance evaluation for this classification
structure are presented in Figure 6.15.
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Figure 6.13 - Comparing Global Classification Error between the obtained {KRT} and {RT} (B2,Terceira)
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Figure 6.15 – TS classification errors for the obtained {RT} (B2,Terceira)

2. As it can be also seen in Figure 6.15, among {RT}, the RT with 11 nodes achieves a good
compromise between classification error and complexity. Moreover, its classification
structure provides 1 If rule. Therefore, the RT with 11 nodes is considered suitable to extract
classification rules. Its tree structure, extracted classification rules, and TS classification
errors are presented in Figure 6.16.
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Figure 6.16 – Tree structure, classification rules and TS classification errors for the obtained RT with 11 nodes
(B2,Terceira)
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Summarizing:
According to the required function of the hybrid regression tree, among the generated set of
pruned trees { }T , the structures presented in Table 6.6 were selected.

Table 6.6 – Selected hybrid regression trees (B2,Terceira)
Short-Circuit + Wind Power Loss, ∆∆∆∆fmax

Function Selected 
structure

MAE 
error

RMSE 
error

RE 
error

Global 
error

False Alarm 
error

Missed Alarm 
error

Prediction 
time (s)

on-line evaluation of 
security degree

KRT MMT               
(203 nodes; K=5)

0.0103 0.0147 0.0260  -  -  - 2.50E-03

extract interpretable 
regression rules RT  with 11 nodes 0.0247 0.0305 0.1121  -  -  -  -

fast security classification RT  with 47 nodes  -  -  - 0.89%     
(7 OPs)

0.13%         
(1 OP)

28.57%        
(6 OPs) 2.53E-06

extract interpretable 
classification rules RT  with 11 nodes  -  -  - 3.42%     

(27 OPs)
3.51%         

(27 OPs) 0.00%  -

Nº of Insecure OPs in the TS 21
Nº of Secure OPs in the TS 769
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6.2.3 B3 of Terceira Case

6.2.3.1 Results Obtained with the HRT Method (B3 of Terceira)
In this case, by applying the pruning algorithm described in Chapter 5, a set { }T  of 1132 pruned
trees was generated, where rootTTT 113121 !!"!! , having 1T  2327 nodes.

Regarding the use of the extracted RT and KRT structures to produce emulation of the B3

security index, after analyzing the obtained set of pruned trees one can derive the following main
conclusions:

1. For this case, KRTMMT – the most suitable structure to produce on-line evaluation of security
degree – has 751 nodes (see Figure 6.17). The results of the TS performance evaluation for
this regression structure are presented in Figure 6.18.
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Figure 6.17 - Comparing RMSETS error between the obtained {KRT} and {RT} (B3,Terceira)
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Figure 6.18 – TS performance evaluation results for the obtained KRTMMT (B3,Terceira)
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2. As it can be seen in Figure 6.17, for this example RTSET has 195 nodes (98 leafs), being thus
too complex to be translated into comprehensible regression rules. The RT with 11 nodes (6
leafs) is considered much more suitable to extract simple regression rules. This structure is
the one that verifies the 42 SE rule. Its equivalent regression rules and TS regression errors
are presented in Figure 6.19.
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Figure 6.19 – Regression rules and TS regression errors for the obtained RT with 11 nodes (B3,Terceira)

Regarding the use of the extracted RT and KRT structures to classify the B3 security index as
“secure/insecure”, after analyzing the obtained set of pruned trees one can derive the following
main conclusions:

1. As it can be seen in Figure 6.20, from the pruned tree structure with 177 nodes to the one
with 181 nodes, the Global Classification Error of the KRT and RT structures achieve minimum
values. Regarding this and also the false and missed alarms presented in Figure 6.21, among
{KRT}, the KRT with 181 nodes is considered a suitable structure to produce fast security
classification. Regarding the classification errors presented in Figure 6.22, among {RT}, the
RT with 177 nodes is considered a suitable structure to produce fast security classification.
As we can see by comparing Figure 6.21 with Figure 6.22, the KRT structure with 181 nodes
provides smaller Global and Missed Alarm Errors than the RT with 177 nodes. Thus, among the
extracted structures, the KRT with 181 nodes is considered suitable to produce fast security
classification. The results of the TS performance evaluation for this classification structure
are presented in Figure 6.21.
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Figure 6.20 – Comparing Global Classification Error between the obtained {KRT} and {RT} (B3,Terceira)
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Figure 6.21 – Classification errors for the obtained {KRT} (B3,Terceira)
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Figure 6.22 – Classification errors for the obtained {RT} (B3,Terceira)

2. As it can be also seen in Figure 6.22, among {RT}, the RT with 55 nodes achieves a good
compromise between classification error and complexity. Moreover, its classification
structure provides 3 If rules. Therefore, the RT with 55 nodes is considered suitable to extract
classification rules. Its equivalent classification rules are presented in Figure 6.23, and its TS
classification errors are presented in Figure 6.22.
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Figure 6.23 – Classification rules extracted by the obtained RT with 55 nodes (B3,Terceira)

Summarizing:
According to the required function of the hybrid regression tree, among the generated set of
pruned trees { }T , the structures presented in Table 6.7 were selected.

Table 6.7 – Selected hybrid regression trees (B3,Terceira)
Short-Circuit + Wind Power Loss, df/dtmax

Function Selected 
structure

MAE 
error

RMSE 
error

RE 
error

Global 
error

False Alarm 
error

Missed Alarm 
error

Prediction 
time (s)

on-line evaluation of 
security degree

KRT MMT               
(751 nodes; K=3)

0.0527 0.0880 0.0274  -  -  - 8.59E-04

extract interpretable 
regression rules RT  with 11 nodes 0.1448 0.1799 0.1143  -  -  -  -

fast security classification KRT  with 181 
nodes and K=3  -  -  - 0.76%     

(6 OPs)
0.57%         

(4 OPs)
2.15%         

(2 OPs) 2.96E-03

extract interpretable 
classification rules RT  with 55 nodes  -  -  - 1.39%     

(11 OPs)
0.287%        
(2 OPs)

9.68%         
(9 OPs)  -

Nº of Insecure OPs in the TS 93
Nº of Secure OPs in the TS 697

6.2.3.2 Results Obtained with the Provided DT (B3 of Terceira)

For comparative purposes, the tree structure and TS classification errors obtained for the DT
provided by the NTUA researchers are presented in Figure 6.24.
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Figure 6.24 – Tree structure and TS classification errors for the DT provided by NTUA (B3,Terceira)



6 – Results                                                                                                                                                                       

Application of Hybrid Automatic Learning Techniques for Fast Dynamic Security Assessment of Isolated Power Systems with Wind Power Production

114

For the DT described in Figure 6.24, the nodes in the tree structure are of two types: non-
terminal (including the root node) and terminal nodes (leafs or deadend). The contents of the root
node are the following: the node number (1), the number of learning samples belonging to the
node (N), the safety ratio (SRatio = ratio of the number of LS “secure” samples over N) and the
splitting test. Non-terminal nodes present the node number and the splitting test. Terminal nodes
present the node number, the number of learning samples belonging to the node (N), the safety
ratio (SRatio), and the type of the node (LEAF or DEADEND). A terminal node becomes a LEAF if
its entropy is lower than a pre-defined minimum value. Otherwise, a test T is applied to further
split the node. If the node cannot be further splitted in a statistically significant way, then it
becomes a DEADEND. Terminal nodes with a safety ratio larger than 0,5 correspond to “secure”
nodes.

From the provided DT, the following classification rules can be extracted:
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Figure 6.25 – Classification rules extracted by the DT provided by NTUA (B3,Terceira)
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6.3 Results for the Case of Crete Island

6.3.1 B1 of Crete Case

6.3.1.1 Results Obtained with the HRT Method (B1 of Crete)
In this case, by applying the pruning algorithm described in Chapter 5, a set { }T  of 935 pruned
trees was generated, where rootTTT 93421 !!"!! , having 1T  3085 nodes.

Regarding the use of the extracted RT and KRT structures to produce emulation of the B1

security index, after analyzing the obtained set of pruned trees one can derive the following main
conclusions:

1. For this case, KRTMMT – the most suitable structure to produce on-line evaluation of security
degree – has 39 nodes (see Figure 6.26). The results of the TS performance evaluation for
this regression structure are presented in Figure 6.27.
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Figure 6.26 - Comparing RMSETS error between the obtained {KRT} and {RT} (B1,Crete)
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Figure 6.27 – TS performance evaluation results for the obtained KRTMMT (B1,Crete)

2. As it can be also seen in Figure 6.26, for this example RTSET has 83 nodes (42 leafs), being
thus too complex to be translated into comprehensible regression rules. The RT with 9 nodes
(5 leafs) is considered much more suitable to extract simple regression rules. This structure is
the one that verifies the 15 SE rule. Its equivalent regression rules and TS regression errors
are presented in Figure 6.28.
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Figure 6.28 – Regression rules and TS regression errors for the obtained RT with 9 nodes (B1,Crete)

Regarding the use of the extracted RT and KRT structures to classify the B1 security index as
“secure/insecure”, after analyzing the obtained set of pruned trees one can derive the following
main conclusions:

1. As it can be seen in Figure 6.29, all the set of KRT and RT structures achieve the same
classification errors. Therefore, among the extracted structures, the simplest RT (which has 5
nodes) is the most suitable structure to produce fast security classification and to be
translated into interpretable classification rules. Its tree structure, equivalent classification
rules and TS performance evaluation results are presented in Figure 6.30.
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Figure 6.29 – TS classification errors for the obtained {KRT} and {RT} (B1,Crete)
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Figure 6.30 – Tree structure, classification rules and performance evaluation results for the RT with 5 nodes (B1,Crete)

Summarizing:
According to the required function of the hybrid regression tree, among the generated set of
pruned trees { }T , the structures presented in Table 6.8 were selected.

Table 6.8 – Selected hybrid regression trees (B1,Crete)
Machine Loss, fmin

Function Selected 
structure

MAE 
error

RMSE 
error

RE 
error

Global 
error

False Alarm 
error

Missed Alarm 
error

Prediction 
time (s)

on-line evaluation of security degree KRT MMT             
(39 nodes; K=3)

0.0155 0.0395 0.0190  -  -  - 2.72E-02

extract interpretable regression rules RT  with 9 nodes 0.0539 0.0920 0.1029  -  -  -  -

fast security classification and extract 
interpretable classification rules

RT  with        
5 nodes  -  -  - 0.33% 

(3 OPs) 0.00% 15%           
(3 OPs) 5.43E-06

Nº of Insecure OPs in the TS 20
Nº of Secure OPs in the TS 901

6.3.1.2 Results Obtained with the ANN Method (B1 of Crete)

In Figure 6.31, the TS regression and classification errors obtained for the trained ANN are
presented.
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Figure 6.31 – TS errors for the trained ANN (B1,Crete)
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6.3.2 B2 of Crete Case

6.3.2.1 Results Obtained with the HRT Method (B2 of Crete)
In this case, by applying the pruning algorithm described in Chapter 5, a sequence { }T  of 1122
pruned trees was generated, where rootTTT 112121 !!"!! , having 1T  3403 nodes.

Regarding the use of the extracted RT and KRT structures to produce emulation of the B2

security index, after analyzing the obtained set of pruned trees one can derive the following main
conclusions:

1. For this case, KRTMMT – the most suitable structure to produce on-line evaluation of security
degree – has 25 nodes (see Figure 6.32). The results of the TS performance evaluation for
this structure are presented in Figure 6.33.
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Figure 6.32 - Comparing RMSETS error between the obtained {KRT} and {RT} (B2,Crete)
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Figure 6.33 – TS performance evaluation results for the obtained KRTMMT (B2,Crete)

2. As it can be also seen in Figure 6.32, for this example RTSET has 23 nodes (12 leafs), being
thus too complex to be translated into comprehensible regression rules. The RT with 9 nodes
(5 leafs) is considered much more suitable to extract simple regression rules. This structure is
the one that verifies the 8 SE rule. Its equivalent regression rules and TS regression errors are
presented in Figure 6.34.
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Regarding the use of the extracted RT and KRT structures to classify the B2 security index as
“secure/insecure”, after analyzing the obtained set of pruned trees one can derive the following
main conclusions:

1. As it can be seen in Figure 6.35, from 143 to 999 nodes and from 2411 to 3403 nodes, the set
of KRT and RT structures achieve a 0% Global Classification Error. Therefore, among the
extracted structures, the RT with 143 nodes is the most suitable structure to produce fast
security classification. The TS performance evaluation results for this classification structure
are presented in Table 6.9.
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Figure 6.34 – Regression rules and TS regression errors for the obtained RT with 9 nodes (B2,Crete)
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2. As it can be seen in Figure 6.36, among {RT}, the RT with 49 nodes achieves a good
compromise between classification error and complexity. Moreover, its classification
structure provides 2 If rules. Therefore, the RT with 49 nodes is considered suitable to extract
classification rules. Its equivalent classification rules and TS classification errors are
presented in Figure 6.37.
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Figure 6.36 – TS classification errors for the obtained {RT} (B2,Crete)
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Figure 6.37 – Classification rules and TS classification errors for the RT with 49 nodes (B2,Crete)

Summarizing:
According to the required function of the hybrid regression tree, among the generated set of
pruned trees { }T , the structures presented in Table 6.9 were selected.

Table 6.9 – Selected hybrid regression trees (B2,Crete)
Machine Loss, df/dtmax

Function
Selected 
structure

MAE 
error

RMSE 
error

RE 
error

Global 
error

False Alarm 
error

Missed Alarm 
error

Prediction 
time (s)

on-line evaluation of security 
degree

KRT MMT           
(25 nodes; K=3)

0.0046 0.0159 0.0084  -  -  - 2.86E-02

extract interpretable regression 
rules

RT  with 9 
nodes 0.0187 0.0333 0.0366  -  -  -  -

fast security classification RT  with       
143 nodes  -  -  - 0.00% 0.00% 0.00% 1.63E-05

extract interpretable classification 
rules

RT  with       
49 nodes  -  -  - 0.22% 

(2 OPs) 0.00% 6.25%         
(2 OPs)  -

Nº of Insecure OPs in the TS 32
Nº of Secure OPs in the TS 889
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6.3.2.2 Results Obtained with the ANN Method (B2 of Crete)

In Figure 6.38, the TS regression and classification errors obtained for the trained ANN are
presented.

TS Predicting Errors ANN

MAE (Hz/s) 0.00474
RMSE (Hz/s) 0.00943

RE 0.00294
Global 0.33% (3 OPs)
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Figure 6.38 – TS errors for the trained ANN (B2,Crete)



6 – Results                                                                                                                                                                       

Application of Hybrid Automatic Learning Techniques for Fast Dynamic Security Assessment of Isolated Power Systems with Wind Power Production

122

6.3.3 B3 of Crete Case

6.3.3.1 Results Obtained with the HRT Method (B3 of Crete)
In this case, by applying the pruning algorithm described in Chapter 5, a sequence { }T  of 1032
pruned trees was generated, where rootTTT 103121 !!"!! , having 1T  3341 nodes.

Regarding the use of the extracted RT and KRT structures to produce emulation of the B3

security index, after analyzing the obtained set of pruned trees one can derive the following main
conclusions:

1. For this case, KRTMMT – the most suitable structure to produce on-line evaluation of security
degree – has 205 nodes (see Figure 6.39). The results of the TS performance evaluation for
this structure are presented in Figure 6.40.
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Figure 6.39 - Comparing RMSETS error between the obtained {KRT} and {RT} (B3,Crete)
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Figure 6.40 – TS performance evaluation results for the obtained KRTMMT (B3,Crete)

2. As it can be also seen in Figure 6.39, for this example RTSET has 33 nodes (17 leafs), being
thus too complex to be translated into comprehensible regression rules. The RT with 9 nodes
(5 leafs) is considered much more suitable to extract simple regression rules. This structure is
the one that verifies the 4 SE rule. Its equivalent regression rules and TS regression errors are
presented in Figure 6.41.
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Figure 6.41 – Regression rules and TS regression errors for the obtained RT with 9 nodes (B3,Crete)

Regarding the use of the extracted RT and KRT structures to classify the B3 security index as
“secure/insecure”, after analyzing the obtained set of pruned trees one can derive the following
main conclusions:

1. As it can be seen in Figure 6.42, from the pruned tree structure with 129 nodes to the one
with 141 nodes, the resulting KRT structures achieve minimum Global Classification Error.
Regarding this and the false and missed alarms presented in Figure 6.43, among the extracted
structures, the KRT with 141 nodes is considered suitable to produce fast security
classification. The results of the TS performance evaluation for this structure are presented in
Figure 6.43.
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Figure 6.42 – Comparing Global Classification Error between the obtained {KRT} and {RT} (B3,Crete)
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Figure 6.43 – TS classification errors for the obtained {KRT} (B3,Crete)

2. As it can be seen in Figure 6.45, among {RT}, the RT with 71 nodes achieves a good
compromise between classification error and complexity. Moreover, its classification
structure provides 4 If rules. Therefore, the RT with 71 nodes is considered suitable to extract
classification rules. Its equivalent classification rules are presented in Figure 6.44, and the TS
classification errors are presented in Figure 6.45.
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Figure 6.44 – Classification rules extracted by the obtained RT with 71 nodes (B3,Crete)
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Summarizing:
According to the required function of the hybrid regression tree, among the generated set of
pruned trees { }T , the structures presented in Table 6.10 were selected.

Table 6.10 – Selected hybrid regression trees (B3,Crete)
Short-Circuit, fmin

Function Selected 
structure

MAE 
error

RMSE 
error

RE 
error

Global 
error

False Alarm 
error

Missed Alarm 
error

Prediction 
time (s)

on-line evaluation of security 
degree

KRT MMT             
(205 Nodes; K=7)

0.0249 0.0970 0.0299  -  -  - 4.45E-03

extract interpretable regression 
rules RT  with 9 nodes 0.0858 0.1754 0.0979  -  -  -  -

fast security classification KRT           
(141 Nodes; K=7)  -  -  - 1.74%     

(16 OPs)
0.92%        

(5 OPs)
2.93%         

(11 OPs) 6.55E-03

extract interpretable classification 
rules

RT  with 71 
Nodes  -  -  - 4.56%     

(42 OPs)
2.56%        

(14 OPs)
7.46%         

(28 OPs)  -

Nº of Insecure OPs in the TS 375
Nº of Secure OPs in the TS 546

6.3.3.2 Results Obtained with the ANN Method (B3 of Crete)

In Figure 6.46, the TS regression and classification errors obtained for the trained ANN are
presented.

45

45.5

46

46.5

47
47.5

48

48.5
49

49.5

50

45 46 47 48 49 50

B(TS)

B(ANN) B = f min  (Hz)A rtificial Neural Network  
TS Predicting Errors ANN

MAE (Hz) 0.03298
RMSE (Hz) 0.06539

RE 0.0136
Global 3.8% (35 OPs)

False Alarm 4.4% (24 OPs)
Missed Alarm 2.93% (11 OPs)

Figure 6.46 – TS errors for the trained ANN (B3,Crete)
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6.3.3.3 Results Obtained with the Provided DT (B3 of Crete)

The tree structure and TS classification errors of the DT provided by the NTUA researchers are
presented in Figure 6.48. From this DT, which has 23 nodes, the following classification rules
can be extracted:
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Figure 6.47 – Classification rules extracted by the DT provided by NTUA (B3,Crete)
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Figure 6.48 – Tree structure and TS classification errors for the DT provided by NTUA (B3,Crete)
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6.3.4 B4 of Crete Case

6.3.4.1 Results Obtained with the HRT Method (B4 of Crete)
In this case, by applying the pruning algorithm described in Chapter 5, a sequence { }T  of 1299
pruned trees was generated, where rootTTT 129821 !!"!! , having 1T  3579 nodes.

Regarding the use of the extracted RT and KRT structures to produce emulation of the B4

security index, after analyzing the obtained set of pruned trees one can derive the following main
conclusions:

1. For this case, KRTMMT – the most suitable structure to produce on-line evaluation of security
degree – has 43 nodes (see Figure 6.49). The results of the TS performance evaluation for
this structure are presented in Figure 6.50.
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Figure 6.49 - Comparing RMSETS error between the obtained {KRT} and {RT} (B4,Crete)
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Figure 6.50 – TS performance evaluation results for the obtained KRTMMT (B4,Crete)

2. As it can be also seen in Figure 6.49, for this example, RTSET has 41 nodes (21 leafs), being
thus too complex to be translated into comprehensible regression rules. The RT with 7 nodes
(4 leafs) is considered much more suitable to extract simple regression rules. This structure is
the one that verifies the 13 SE rule. Its equivalent regression rules and TS regression errors
are presented in Figure 6.51.



6 – Results                                                                                                                                                                       

Application of Hybrid Automatic Learning Techniques for Fast Dynamic Security Assessment of Isolated Power Systems with Wind Power Production

128

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

B(TS)

B(RT ) Regression  T ree  (7 Nodes) B = df/dt max  (Hz/s)

[ ]
[ ] [ ]( )
[ ] [ ]( )
[ ] [ ]( )




















=>≤<
=>≤

=≤≤

=>

npenetratio Wind:WP

1 plant power alconvention in reserve Spinning:SR

1 plant power alconvention in generation Active:P

 where

 1.3259Hz/sdf/dt Then 11.25MWSR and 37.6MWP23.15 If

 0.5435Hz/sdf/dt Then 11.25MWSR and 23.15MWP If

 0.4038Hz/sdf/dt Then 11.25MWSR and 37.6MWP If

 s0.06674Hz/df/dt Then 37.6MWP If

1

C1

1C1

1C1

1C1

maxC1

max

max

max

TS Predicting Errors RT           
(7 Nodes)

MAE (Hz/s) 0.02918
RMSE (Hz/s) 0.04448

RE 0.03477

Figure 6.51 – Regression rules and TS regression errors for the obtained RT with 7 nodes (B4,Crete)

Regarding the use of the extracted RT and KRT to classify the B4 security index as
“secure/insecure”, after analyzing the obtained set of pruned trees one can derive the following
main conclusions:

1. As it can be seen in Figure 6.52, from 1381 to 1851 nodes, the set of KRT structures achieve
a minimum Global Classification Error. Regarding this and also the false alarms and missed
alarms presented in Figure 6.53 and Figure 6.54, among the extracted structures, the KRT
with 1851 nodes is considered suitable to produce fast security classification. The TS
performance evaluation results for this structure are presented in Table 6.11.
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Figure 6.52 – Comparing Global Classification Error between the obtained {KRT} and {RT} (B4,Crete)
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Figure 6.53 – Comparing False Alarm Error between the obtained {KRT} and {RT} (B4,Crete)
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Figure 6.54 – Comparing Missed Alarm Error between the obtained {KRT} and {RT} (B4,Crete)

2. As we can see in Figure 6.55, among {RT}, the RT with 51 nodes achieves a good
error/complexity compromise. Moreover, its classification structure provides 3 If rules.
Therefore, the RT with 51 nodes is considered suitable to extract classification rules. Its
equivalent classification rules and TS classification errors are presented in Figure 6.56.
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Figure 6.55 – TS classification errors for the obtained {RT} (B4,Crete)
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TS Predicting Errors RT            
(51 Nodes)

Global 2.17% (20 OPs)
False Alarm 2.47% (14 OPs)

Missed Alarm 1.69% (6 OPs)
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Figure 6.56 – Classification rules and TS classification errors for the RT with 51 nodes (B4,Crete)

Summarizing:
According to the required function of the hybrid regression tree, among the generated set of
pruned trees { }T , the structures presented in Table 6.11 were selected.

Table 6.11 – Selected hybrid regression trees (B4,Crete)
Machine Loss, df/dtmax

Function Selected structure
MAE 
error

RMSE 
error

RE 
error

Global 
error

False Alarm 
error

Missed Alarm 
error

Prediction 
time (s)

on-line evaluation of security 
degree

KRT MMT               
(43 nodes; K=5)

0.0088 0.0202 0.0072  -  -  - 1.92E-02

extract interpretable regression 
rules RT  with 7 nodes 0.0292 0.0445 0.0348  -  -  -  -

fast security classification KRT  with 1851 
Nodes and K=5  -  -  - 0.76%   

(7 OPs)
1.06%        

(6 OPs)
0.28%         
(1 OP) 9.01E-04

extract interpretable classification 
rules

RT  with           
51 nodes  -  -  - 2.17% 

(20 OPs)
2.47%        

(14 OPs)
1.69%         

(6 OPs)  -

Nº of Insecure OPs in the TS 354
Nº of Secure OPs in the TS 567

6.3.4.2 Results Obtained with the ANN Method (B4 of Crete)

In Figure 6.57, the TS regression and classification errors obtained for the trained ANN are
presented.
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Figure 6.57 – TS errors for the trained ANN (B4,Crete)



6 – Results                                                                                                                                                                       

Application of Hybrid Automatic Learning Techniques for Fast Dynamic Security Assessment of Isolated Power Systems with Wind Power Production

131

6.4 Conclusions

In this Section the conclusions, achieved by analyzing the results obtained for the Terceira and
Crete power systems, are presented. First, a comparative assessment is made between the results
obtained with the three applied automatic learning methods – HRT (Hybrid Regression Tree),
ANN (Artificial Neural Network) and DT (Decision Tree). Then, a few last conclusions are
presented regarding the functions provided by these three methods.

6.4.1 Comparative Assessment

6.4.1.1 B3 of Terceira Case

Regarding the application of the AL structures to produce fast security classification of the
B3,Terceira security index, the TS predicting errors obtained from the HRT and DT methods are
presented in Figure 6.58. From these results, the following can be observed:

1. The selected HRT reaches lower classification errors than the provided DT.

0.76
2.19

0.57 0.95
2.15

11.85

0%

2%

4%

6%

8%

10%

12%

Global False Alarm Missed Alarm

KRT (181 Nodes)

DT (9 Nodes)

Classification Errors (%)

6

17

4
7

2

11

0

5

10

15

20

Global False Alarm Missed Alarm

Classification Errors (OPs number)

Figure 6.58 – Comparative assessment regarding fast security classification of B3,Terceira

Regarding the extraction of classification rules to the B3,Terceira security index, the TS predicting
errors obtained from the HRT and DT approaches are presented in Figure 6.59. From the
obtained results, the following can be observed:

1. The selected HRT reaches lower classification errors than the provided DT.

2. The DT has a simpler classification structure. In fact, the HRT provides 3 If rules, whereas the
DT provides 1 If rule (see Figure 6.23 and Figure 6.25).

3. Both techniques were capable of selecting approximately the same attributes as being the
most important ones.

Namely, the classification rules provided by the HRT structure include operating conditions
provided by the following parameters:
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losses active∑  - total active losses;
GIVSR  - spinning reserve in Diesel unit GIV;

GVIDP ,  - active generation in Diesel unit GVI.

The classification rules provided by the DT structure include operating conditions provided
by the following parameters:

losses active∑  - total active losses;
GIVSR  - spinning reserve in Diesel unit GIV;

GVISR  - spinning reserve in Diesel unit GVI.
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Figure 6.59 – Comparative assessment regarding the extraction of classification rules to B3 ,Terceira

6.4.1.2 B1 of Crete Case

Regarding the application of the AL structures to produce the emulation of the B1,Crete security
index, the TS predicting errors obtained from the HRT and ANN approaches are presented in
Figure 6.60. As it can be seen from these results:

1. The selected HRT reaches lower MAE and RMSE errors than the provided ANN.
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Figure 6.60 – Comparative assessment regarding the emulation of B1,Crete
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Regarding the application of the AL structures to produce fast security classification of the B1,Crete

security index, the TS predicting errors obtained from the HRT and ANN approaches are
presented in Figure 6.61. From these results, the following can be observed:

1. Both approaches have no false alarms.

2. The selected HRT reaches a higher missed alarm error than the trained ANN.
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Figure 6.61 – Comparative assessment regarding fast security classification of B1,Crete

6.4.1.3 B2 of Crete Case

Regarding the application of the AL structures to produce the emulation of the B2,Crete security
index, the TS predicting errors obtained from the HRT and ANN approaches are presented in
Figure 6.62. As it can be seen from these results:

1. The selected HRT reaches the lowest MAE error, whereas the provided ANN reaches the lowest
RMSE error.
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Figure 6.62 – Comparative assessment regarding the emulation of B2,Crete

Regarding the application of the AL structures to produce fast security classification of the B2,Crete

security index, the TS predicting errors obtained from the HRT and ANN approaches are
presented in Figure 6.63. From these results, the following can be observed:
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1. The extracted HRT reaches no classification errors, whereas the provided ANN has 2 false
alarms and 3 missed alarms.
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Figure 6.63 – Comparative assessment regarding fast security classification of B2,Crete

6.4.1.4 B3 of Crete Case

Regarding the application of the AL structures to produce the emulation of the B3,Crete security
index, the TS predicting errors obtained from the HRT and ANN approaches are presented in
Figure 6.64. As it can be seen from these results:

1. The selected HRT reaches the lowest MAE error, whereas the provided ANN reaches the lowest
RMSE error.
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Figure 6.64 – Comparative assessment regarding the emulation of B3,Crete

Regarding the application of the AL structures to produce fast security classification of the B3,Crete

security index, the TS predicting errors obtained from the HRT, DT and ANN approaches are
presented in Figure 6.65. From these results the following can be observed:

1. The HRT and DT reach lower classification errors than the ANN.

2. The HRT provides the lowest global and false alarms, whereas the DT reaches a slightly better
missed alarm error.
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Figure 6.65 – Comparative assessment regarding fast security classification of B3,Crete

Regarding the extraction of classification rules to the B3,Crete security index, the TS predicting
errors obtained from the HRT and DT approaches are presented in Figure 6.66. From the
obtained results, the following can be observed:

1. The selected HRT reaches higher classification errors than the provided DT.

2. The DT has a simpler classification structure. In fact, the HRT provides 4 If rules, whereas the
DT provides 3 If rules (see Figure 6.45 and Figure 6.47).

3. Both techniques were capable of selecting approximately the same attributes as being the
most important ones.

Namely, the classification rules provided by the HRT structure include operating conditions
provided by the following parameters:

11C SR and P  - active generation and spinning reserve in conventional power plant 1;

2CP  - active generation in conventional power plant 2;

WP  - wind penetration;
LP∑  - total active load.

The classification rules provided by the DT structure include operating conditions provided
by the following parameters:

11C SR and P  - active generation and spinning reserve in conventional power plant 1;

3CP  - active generation in conventional power plant 3;

WP  - wind penetration;
LP∑ - total active load;

CP∑  - total active generation of conventional power.
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Figure 6.66 – Comparative assessment regarding the extraction of classification rules to B3,Crete
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6.4.1.5 B4 of Crete Case

Regarding the application of the AL structures to produce the emulation of the B4,Crete security
index, the TS predicting errors obtained from the hybrid RT and ANN approaches are presented
in Figure 6.67. As it can be seen from these results:

1. The provided ANN reaches lower MAE and RMSE errors than the selected HRT.
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Figure 6.67 – Comparative assessment regarding the emulation of B4,Crete

Regarding the application of the AL structures to produce fast security classification of the B4,Crete

security index, the TS predicting errors obtained from the HRT and ANN approaches are
presented in Figure 6.68. As it can be seen from these results:

1. The extracted HRT achieves lower classification errors than the provided ANN.
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Figure 6.68 – Comparative assessment regarding fast security classification of B4,Crete



6 – Results                                                                                                                                                                       

Application of Hybrid Automatic Learning Techniques for Fast Dynamic Security Assessment of Isolated Power Systems with Wind Power Production

137

6.4.2 Functions Provided by the HRT, ANN and DT Approaches

1. The HRT and ANN methods have the advantage of producing simultaneously a classification
structure and giving the degree of robustness of the system, whereas the DT method can only
perform security classification.

2. The HRT and DT methods can provide interpretable rules of the system security class (i.e.,
classification rules), whereas ANNs always provide quite opaque models of the data. The
HRT method can still provide interpretable rules of the system security degree (i.e.,
regression rules).

3. For the two cases where a comparative assessment was made between the HRT and DT
methods – for the B3 security index of the Terceira and Crete cases -, the following was
observed:

- The DT always provided a simpler classification structure.

- For the B3 security index of the Terceira case, the HRT showed to be the most accurate
approach to perform fast security classification and to provide classification rules.

- Regarding the fast security classification for the B3 security index of the Crete case, it was
not possible to identify one of the approaches as being the most accurate one. In fact, the
HRT provides the lowest global and false alarms, whereas the DT reaches a slightly
better missed alarm error.

- Since the provided rules are simpler and achieve smaller errors, the DT showed to be
more suitable to extract classification rules to the B3 security index of the Crete case.

4. From the results obtained for the Crete case, where a comparative assessment was made
between the HRT and the ANN methods for the 4 security indices, the following was
observed:

- Regarding the evaluation of the system security degree, the HRT approach showed to be
more accurate for the B1 security index, whereas the ANN showed to be more accurate for
the B4 security index. For the emulation of B2 and B3, as the HRT reaches the lowest MAE
error and the ANN reaches the lowest RMSE error, it was not possible to identify one of
the approaches as being the most accurate one.

- Regarding fast security classification, the HRT approach showed to achieve smaller
classification errors for the B2, B3 and B4 security indices, whereas the ANN showed to be
more accurate for the B1 security index. However, it is important to mention that the
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provided ANNs were trained to provide emulating of the security indices, and therefore,
they weren’t trained for classification purposes.

It should be remarked that each of the provided ANN is able to emulate, at the same time,
both fmin and df/dtmax values that succeed from a disturbance. On the other hand, each of the
provided HRT structures is able to emulate only one security index. Thus, to obtain with the
HRT method a prediction for both fmin and df/dtmax values that succeed from a disturbance, two
different HRT structures are necessary to be used.

5. All the three approaches showed suitable performances to be integrated in an advanced
control system as the one that was developed within the European CARE project.



7 – General Conclusions                                                                                                                                                

Application of Hybrid Automatic Learning Techniques for Fast Dynamic Security Assessment of Isolated Power Systems with Wind Power Production

139

7 General Conclusions

In this last Chapter, the general conclusions obtained from the work reported in this Master
thesis are presented. First, the achievements of this research are provided. Then, some comments
related to the implemented Hybrid Regression Tree (HRT) method and with its perspectives of
development are presented.

7.1 Achievements of this Research

From the research work reported in this document, a new hybrid automatic learning technique,
named as Hybrid Regression Tree, was implemented to make, for the first time, dynamic security
assessment of power system in the field of frequency stability problems.

Within the framework of the European R&D project JOULE/THERMIE, the implemented HRT
approach was integrated within the advanced control system that is being installed, during the
present year, on the energy management center of Crete island, to perform dynamic security
assessment functions. This advanced control system is a prototype of the CARE system – an
advanced control system that aims to achieve optimal utilization of renewable energy sources, in
a wide variety of medium and large size isolated systems with diverse structures and operating
conditions [8].

In the Crete control system, the HRT technique is being applied for the first time to provide
dynamic security assessment of power systems. In this control center, the results obtained with
the HRT module have shown to be very promising. Namely, recently (in 23 of June 1999) a
machine loss incident occurred in the Crete island, having the dynamic security assessment
module predicted a minimum frequency deviation similar to the one that actually occurred in the
power system [57].

Besides being tested on the Crete power system, the implemented HRT approach was also tested
on a future foreseen scenario for the electrical power systems of the Terceira island.

For these two study cases, a performance evaluation of the obtained results and a comparative
assessment with Decision Tree and Artificial Neural Network approaches was performed. From
this analysis, the HRT showed to provide good predicting structure whose performance stands up
to the performance of the two other existent methods.
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7.2 Hybrid Regression Tree Implemented Method

7.2.1 Main Conclusions

1. The HRT implemented method enables a coherent evaluation of the robustness of the system
by providing:

a) fast evaluation of the degree of security by emulating, through the regression functions,
the continuous security indices that quantify/classify the power system dynamic behavior
to a pre-defined disturbance;

b) a way of clarifying security by presenting a set of regression and classification rules to be
interpreted and used for explanatory purposes.

2. Regarding the design of a HRT structure by using only stop-splitting rules, the pruning
process has the main advantage of allowing the choice of the best tree structure according to
the desired performances.

3. Among the RT and KRT variants of the HRT method, the last one was capable to provide the
smallest MSETS error, for all the cases studied of the Terceira and Crete power systems.
Consequently, in the sense of accuracy, the KRT approach was invariably most suitable to
produce on-line evaluation of the system security degree, for all the considered security
indices. Thus, to perform this security assessment function, the selected structure among the
obtained {RT} and {KRT} was always MMTKRT  (i.e., the KRT that minimizes the TSMSE error).

For the obtained MMTKRT  structures, the estimated values of their response time to predict a
security index for one OP is quite small (in the order of milliseconds). Therefore these
structures are suitable for on-line implementation.

4. Regarding the application of a HRT structure to make fast security classification of the
Terceira and Crete power systems, to select a proper structure among the obtained {RT} and
{KRT}, it was necessary to make a comparative analysis between the TS performances
provided by all the obtained structures. Specifically, it was necessary to analyze their
classification errors and prediction time. For the B1 and B2 security indices of the Crete case,
it was possible to identify the structure with the best accuracy performances. However, for
the remaining analyzed cases of Terceira and Crete, a selection among a set of possible
solutions was necessary to be performed. A way to make automatically this selection could
be by solving a 4-criterion problem, where these criterions would be to minimize the global
error, false alarm error, missed alarm errors, and the prediction time.
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For the HRT structures selected to make fast security classification of the Terceira and Crete
cases, the estimated values of their response time to predict a security index for one OP are
quite small (in the order of milliseconds). Therefore, like the selected MMTKRT  structures,
these structures are also suitable for on-line implementation.

5. Regarding the extraction of interpretable security rules, among the KRT and RT variants,
only the last one could be used. In fact, the use of a KRT structure is not feasible to perform
this function, since it does not assign a constant value for the prediction in the tree leafs.

6. Regarding the extraction of interpretable regression rules for the Terceira and Crete cases, the
selection of a RT structure obtained through the application of the 1 SE rule13, showed to
provide too complex regression structures. In fact, by applying this rule, RTs with a number
of nodes from 23  to 195  were selected, and therefore providing a number of If regression
rules from 12  to 98 .

To select a proper RT structure, it was necessary to make a comparative analysis between the
TS performances provided by the obtained RT structures. Specifically, to obtain a good
accuracy/interpretability trade-off, it was necessary to analyze their regression error TSMSE
and the complexity of their regression structure. Note that, the complexity of the regression
structure of a RT depends on its number of leafs (since it gives the number of If rules) and
from their depth to the root node (since it gives the maximum number of attributes that can
be included in each If rule).

By following this procedure, the actually selected RTs resulted in having a number of nodes
within 7  and 11  (providing a number of If regression rules from 4 to 6). Instead of verifying
the 1 SE rule, the selected structures verify from the 4 to the 42 rule. This means that these
are the smallest structures which TSMSE  is within:

 RTMSE of estimation error standardnRTMSE TS
MMT

TS
MMT )()( ×+

where for the best case 4n =  and for the worst one 42n = . Obviously, this resulted in the
loss of some accuracy relatively to the structure MMTRT  that minimizes the regression error.

7. Regarding the extraction of classification rules for the Terceira and Crete cases, to select a
proper RT structure, it was also necessary to make a comparative analysis between the TS
performances provided by all the obtained RT structures. Specifically, to obtain a good
accuracy/interpretability trade-off, it was necessary to analyze their classification errors and

                                                
13 The application of this rule allows choosing the simplest tree whose accuracy is comparable to MMTRT  (i.e., the

RT among {RT} that minimizes the regression error TSRTMSE )( ).
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the complexity of their classification structure. Note that the complexity of the classification
structure of a RT doesn’t necessarily depend on its number of leafs. In fact, although being
large, the selected trees for the Terceira and Crete analyzed cases provide a number of If
classification rules that goes from 1 to 3.

A way to perform automatically this selection could be by solving a 4-criterion problem,
where these criterions would be to minimize the global error, false alarm error, missed alarm
errors, and the complexity of the classification rules.

8. For all the studied cases, the RT approach showed to provide simple and efficient regression
and classification rules. As previously explained, these extracted security rules can be easily
understood, discussed, and eventually adopted by the operators to define new operating
strategies. Therefore, by using this machine learning technique, much of the manual task to
extract the operating guidelines can be performed automatically by a systematic
methodology.

7.2.2 Perspectives of Development

In the field of machine learning techniques and kernel regression models, many different
approaches are proposed in the literature. Some of them, which are considered interesting by the
author of this document to be included in the implemented HRT method, are presented in this
Section. Note that in order to select the approach that achieves the best performances in the field
of dynamic security assessment, experimental comparative studies would be necessary to be
performed, by applying those approaches to different power systems.

7.2.2.1 Use a More Accurate Model to Grow the Tree Structure of a KRT

In the growing algorithm of the tree structure presented in Section 5.2.1 (by using stop-splitting
rules) and in Section 5.2.3 (by using a pruning algorithm) the function ft(OP) used to make
prediction in the tree leafs was considered to be the mean value of B. As the KRT resulting
structure uses a more accurate model ft(OP) to make prediction in the tree leafs (i.e., a kernel
regression model), an obvious question is why not using that same prediction model during tree
growing when the goal is to extract a KRT structure.

This would perhaps bring some gains in accuracy to the designed KRT structure. However, one
difficulty of this approach certainly would be an increased computational effort during the
learning step. However, since this step is performed off-line, this difficulty is not considered a
problem in the context of dynamic security assessment.
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7.2.2.2 Making Kernel Regression Prediction with Feature Weighting

Besides considering a kernel function to estimate the weight of each neighbor to Q (as a function
to its distance to Q), to make prediction Luís Torgo in [3] also assigns a weight, wi, to each
attribute. These weights give an estimation of the influence that each attribute (also named as
features) has on the regression problem to solve, being included in the calculation of the distance
between OPs. By applying this approach, the considered distance function presented in Equation
5.11 changes into:

∑
=

×=
  Na

1i

2
ii  OP)(Q,dwOP)D(Q, (7.1)

In this proposed approach, an algorithm is applied to the data set that calculates a vector
[ ]Na1 wwW ,...,=  with the estimation of the quality of each attribute. This algorithm implements a

method called RReliefF, presented by Robnik-Sikonja and Kononenko [58], which estimates
attributes quality in the context of regression. This method does not assume independence
between attributes and, therefore, as claimed in [58], can correctly estimate the quality of
attributes in problems with strong dependence between attributes.

Another, also considered interesting experience to perform, would be to use the set of weights
( )Na1 w,...,w  extracted from the data set to make feature extraction before the learning step.

7.2.2.3 Using “Oblique” Splitting Tests

The splitting test used to grow the tree structure presented in Equation 5.1 (Section 5.2.1) is
applied on a single attribute, being thus perpendicular to the applied attribute axes and therefore
named as orthogonal splits. A proposed variant is presented in CART [4], which consists on the
following:

If a linear structure is suspected to exist between attributes, to the set of allowable
orthogonal splits “ ?  hresholdt   sampleak })({ > ”, there should be included all the linear
combination splits of the form:

?thresholdaw
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By using these oblique splits, besides finding the optimal threshold value, the splitting procedure
at each test node must also search for the optimal set of weight values. An efficient searching
algorithm is proposed in CART.

This approach is based in the assumption that, if a linear structure between candidate attributes
really exists, then oblique splits can provide a more efficient separation between the learning
samples. Note that two obviously difficulties of this approach are the increased computational
effort introduced during the learning and predicting step, and also the possible loss of some
interpretability of the design RT structure.
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