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ABSTRACT 
This paper describes the application of advanced 
inductive inference and statistical methods to on-line 
dynamic security assessment of the Crete island electric 
power system. A description of the problem and the data 
set generation procedure are included. Comparative 
results regarding performances of Decision Trees and 
Kernel Regression Trees are presented and discussed. 
 

1. INTRODUCTION 
In isolated power systems, like the ones operating in large 
islands, electric power is usually produced by Diesel units 
and gas turbines, resulting in high costs due to fuel 
imports and transportation. In these systems the 
production of electric energy from wind presents 
particular interest, especially when important wind energy 
potential exists, which is usual in many islands. 
Significant displacement of conventional fuels can 
therefore be obtained by a high wind power penetration. 
In this case however, it is important to ensure that the 
electric power system operation will not be adversely 
affected by an increased connection of this volatile form 
of energy in the system. 
 
The main problems faced by isolated electrical power 
systems are related to system security, control of 
frequency and management of system generation reserve. 
A common aspect to all these problems is the requirement 
to ensure that sufficient reserve capacity exists within the 
system to compensate for sudden loss of generation. 
Thus, mismatches in generation and load and/or unstable 
system frequency control might lead to system failures. 
This type of instability is termed frequency instability and 
depends on the ability of the system to restore balance 
between generation and load following a severe system 
upset with minimum loss of load [1]. Generally, 
frequency instability problems are associated with 
inadequacies in equipment responses, poor coordination 
of control and protection equipment or insufficient 
generation reserve. 

 
Additional difficulties are caused by the introduction of a 
high penetration from wind energy. Thus, fast wind 
power changes and very high wind speeds resulting in 

sudden loss of wind generator production can cause 
frequency excursions and dynamically unstable situations 
[2]. Moreover, frequency oscillations might easily trigger 
the under-frequency protection relays of the wind parks, 
thus causing further imbalance in the system 
generation/load. 
 
In order to guard isolated power systems against these 
disturbances and retain acceptable security levels, on-line 
dynamic security assessment functions can prove very 
valuable for their operation. Such functions have been 
developed and are integrated within an advanced control 
system tailored to the needs of small isolated power 
systems with increased wind power penetration. A pilot 
control system has been installed on the Greek island of 
Lemnos [3], an isolated Diesel-wind system with a peak 
load of approximately 10 MW. In this system, dynamic 
security assessment (DSA) is taken care of by two 
modules based on Decision Trees and Neural Networks, 
respectively [4, 6, 7]. Decision Trees are used to check 
security for the operating schedules proposed by the 
economic dispatch module, with respect to characteristic 
wind power fluctuations. Neural Networks are used to 
give a real-time quantitative security evaluation of the 
current operating state system, by emulating the expected 
frequency deviation to the pre-define wind disturbance. In 
this way, the wind power penetration can be increased 
without jeopardising the system security.  
 
The control system developed for small isolated power 
systems is currently extended within the frame of the 
European R&D JOULE (JOR3-CT96-0119) project to 
cover the needs of larger isolated systems with high wind 
power penetration. Larger systems are characterised by 
several conventional fossil-fuelled generation plants and 
meshed transmission networks. The dynamic behaviour 
performance of these systems depends not only on the 
total load and the size of the conventional units in 
operation, but also on their location and the response of 
the available spinning reserve [3].   
 
The objective of this paper is to present the capabilities 
provided by advanced inductive inference and statistical 
methods to provide on-line dynamic security assessment 
and monitoring of these systems. It is shown that based 
on the artificial intelligence techniques proposed, 
efficient security rules can be provided. These rules are 



being integrated into CARE, the advanced control system 
aiming to achieve optimal utilisation of renewable energy 
sources, in a wide variety of medium and large size 
isolated systems with diverse structures and operating 
conditions. A pilot installation is foreseen on the energy 
management center of Crete, the largest Greek island, in 
1999. The security evaluation structures that can be 
obtained provide a classification on dynamic security. 
Moreover, it is also interesting to obtain the degree of 
security, which in this case is evaluated by emulating the 
expected minimum value of system frequency and the 
maximal rate of frequency change for a selected 
disturbance. This complementary information can be 
provided by the kernel regression tree approach, as 
described in this paper. In the control center software, 
security evaluation functions can be activated “on call” 
by the operator, namely security monitoring. 
 

2. THE STUDY CASE SYSTEM 
The study case system is a realistic model of the power 
system of Crete, projected for the year 2000. It comprises 
several types of oil-fired units and a meshed 150 kV 
transmission network. The conventional generation 
system consists of two major power plants with twenty 
generating units installed. These are 6 Steam units of 
total capacity 103.5 MW, 4 Diesel units with 48 MW, 7 
Gas turbines with 185 MW and three combined cycle 
plant with 132 MW. The plants are located near to the 
major load points. The system peak load is equal to 360 
MW. The annual peak load demand occurs on a winter 
day and overnight loads can be assumed to be 
approximately equal to 25% of the corresponding daily 
peak loads. The base-load is mainly supplied by the 
steam and also by the Diesel units. The Gas turbine units 
normally supply the peak load at a high running cost, that 
increases significantly the average cost of the electricity 
being supplied. 
 
A total of 11 Wind Parks (WPs) consisting of 160 Wind 
Turbines (WTs) with an installed capacity of more than 
80 MW are or will be installed (have been approved) in 
Crete by the year 2000. These WPs will be connected at 
the MV (15 or 20 kV) network, which will be properly 
reinforced by new HV/MV substations. It is noted that 
with few exceptions, all WPs will be installed at the 
eastern part of the island, that presents the most 
favourable wind conditions. As a result, in case of faults 
on some particular lines the majority of the wind parks 
will be disconnected. Furthermore, the protections of the 
WTs might be activated in case of frequency variations, 
decreasing additionally the dynamic stability of the 
system. This might happen in case of frequency variations 
caused by wind fluctuations, conventional unit outages, 
faults or other disturbing conditions.  
 
Extensive simulations on the power system model have 
been performed using EUROSTAG software. It is shown 

that for the most common wind power variations, the 
system remains satisfactorily stable, if sufficient spinning 
reserve is provided. On the other hand for various short-
circuits and conventional unit outages, the system 
frequency undergoes fast changes and might reach very 
low values. In any case, the dynamic security of the 
system depends critically on the amount of spinning 
reserve provided by the conventional machines and the 
response of their speed governors. As an example, Figure 
1 shows the change of the system frequency in two 
different operating conditions, following the 
disconnection of three wind parks producing 
approximately 30 MW. First, the system is considered to 
operate with 28% of wind power, equal to 46 MW and 
with the fast thermal units, such as the Diesel machines 
and gas turbines to provide the spinning reserve (fast 
spinning reserve). The lower value of the frequency is 
49.31Hz. Secondly, the system is again considered to 
operate with the same high penetration of wind power but 
with the slower machines, such as the steam turbines to 
cover mainly the spinning reserve plus some Diesel 
machines (slow spinning reserve). In this case, the lower 
frequency value, which is equal to 49.04Hz, will cause 
the operation of the protection devices of the rest of the 
wind parks. The total wind power disconnection may lead 
the system to collapse and certainly will trigger the load 
shedding mechanisms that will disconnect part of the 
system load. 
 
3. CREATION OF THE LEARNING & TEST SETS 

The application of “learning from examples” techniques, 
such as the Decision Trees (DTs) and the Kernel 
Regression Trees (KRTs), dealt within this paper, are 
based on previous knowledge about the behaviour of the 
system, obtained from a large number of off-line dynamic 
simulations that define a data set. This data set is 
afterwards split in two sub-sets: a learning set (LS) and a 
testing set (TS). The learning set is required to extract the 
knowledge needed to derive automatic security evaluation 
structures. It consists of a large number of operating 
points (OPs) covering all possible states of the power 
system under study in order to ensure its representativity. 
Each OP is characterised by a vector of pre-disturbance 

Figure 1. Frequency change. 



steady-state variables, called attributes, that can be either 
directly measured (powers, voltages etc.) or indirectly 
calculated quantities (wind penetration, spinning reserve 
etc.). The quality of the selected attributes and the 
representativity of the LS are very important for the 
successful implementation of the automatic structures. 
 
For the creation of the global data set, a large number of 
initial operating points (OPs) are obtained by varying 
randomly the load for each load busbar, the wind power 
for each wind park and the wind margin. These variables 
are assumed to follow normal distributions around three 
operating profiles: 

1. Low-load operating condition with a total load 
PL =100MW. 

2. Medium-load operating condition with PL 
=180MW. 

3. High-load operating condition with PL 
=280MW. 

For each one of the 11 load busbars and each one of the 4 
aggregate wind parks in operation, a perturbation of 
approximately ±10% is applied around each one of the 
above operating profiles. A dispatch algorithm 
approximating actual operating practices followed in the 
control system of Crete is applied next in order to 
complete the pre-disturbance OPs. For a given load 
demand PL and wind power PW, the total conventional 
generation PC is given by 

PC = PL – PW   (1) 
and is after dispatched to the units in operation, 
depending on their type and their nominal power.  
 
For each one of the produced OPs a number of possible 
disturbances has been simulated, where EUROSTAG was 
used to obtain the system dynamic behaviour. Two major 
disturbances have been finally selected. These are: 
a) outage of a major gas turbine 
b) three phase short-circuit at a critical bus near the 

Wind Parks.  
These disturbances were selected according to utility 
criterion. In fact, a unit disconnection is a frequent event 
and a tree-phase fault, although rare, is a severe event that 
can occur during stormy conditions. 
 
For each OP the minimum value of system frequency and 
the maximal rate of frequency change are recorded. Both 
of these parameters are checked against the values that 
activate the under-frequency relays that protect the WPs, 
and the OPs are labelled accordingly. 
 
The list of activated attributes, that characterise each OP, 
is described in Table 1 and includes namely: 
• Active and reactive power of all power sources. 
• Spinning reserve of the conventional units. 
• Wind power penetration, expressed as the ration of 

the total wind power to the load of the system. 

• Wind margin, expressed as the ratio of the 
conventional units spinning reserve to the total wind 
power. 

• Active and reactive loads. 
 
In this part of our research the variable used to verify 
security is the minimum frequency the system 
experiments after the disturbance. The security criteria 
used was 

If  fmin <= 49 Hz then the system is insecure  
      else is secure 

 
Table 1 - List of activated Attributes 

AT ID Description units   symbol
AT23 Wind Park 1 MW -
AT24 Wind Park 2 MW -
AT25 Wind Park 3 MW -
AT26 Wind Park 4 MW -
AT27 Wind PowerTOTAL MW ΣPW

AT28 Wind Q.TOTAL MVAr -
AT37 Power Gen.1 MW Pg1
AT38 Spinning Res.1 MW SR1
AT39 Power Gen.2 MW -
AT40 Spinning Res.2 MW -
AT41 Power Gen.3 MW Pg3
AT42 Spinning Res.3 MW -
AT43 Power Gen.4 MW -
AT44 Spinning Res.4 MW -
AT45 Wind Penetration % WP
AT46 Wind Margin - -
AT47 Active Power MW -
AT49 Reactive Power MVAr -
AT51 Conv. Gen. MW ΣPC

AT52 Total Active Load MW ΣPL

AT55 Total React. Load MVAr -
AT57 Capacitors MVAr -

TOTAL

 
 

Using the approach described in this section, 2765 
acceptable operating points have been obtained, which 
are divided in the two sets mentioned before, (by sending 
2 OPs to the LS and 1 OP to the TS). The LS comprises 
1844 OPs and the TS used for testing the developed 
classifiers comprises 921 OPs. In this way, the capability 
of the security evaluation structures to evaluate correctly 
the security of unforeseen states can be estimated on a 
more objective basis. 
 

4. APPLICATION OF MACHINE LEARNING 
TECHNIQUES 

4.1 Decision Trees 
The decision tree methodology is a non-parametric 
learning technique able to produce classifiers about a 
given problem in order to deduce information for new 
unobserved cases. This approach has been successfully 
applied in security assessment as reported in [5]. The DT 
has the hierarchical form of a tree structured upside 
down. The construction of a DT starts at the root node 
with the whole LS of pre-classified OPs. These OPs are 
analysed in order to select the test T that splits them 
“optimally” into a number of most “purified” subsets. For 
the sake of simplicity, a two-class partition is considered. 
The test T is defined as:  



T: Ai < t                  (2) 
where t is the optimal threshold value of the chosen 
attribute Ai. The selection of the optimal test is based on 
maximizing the additional information gained through the 
test. The selected test is applied to the LS of the node 
splitting it into two subsets, corresponding to the two 
successor nodes. The optimal splitting rule is applied 
recursively to build the corresponding subtrees. In order 
to detect if one node is terminal, i.e. “sufficiently” class 
pure, the stop splitting rule is used, which checks whether 
the entropy of the node is lower than a present minimum 
value. If it is, the node is declared a leaf, otherwise a test 
T is sought to further split the node. If the node cannot be 
further split in statistically significant way, it is termed a 
deadend, carrying the two class probabilities estimated on 
the basis of the corresponding OPs subset. A more 
detailed technical description of the approach followed 
can be found in [4]. 
 
4.2 Kernel Regression Trees 
As the KRT approach is being applied for the first time in 
this field, a short description of the main stages of the 
method are included in the next paragraphs. 
 
The Kernel Regression Tree (KRT) is an hybrid 
algorithm that integrates recursive partitioning 
(regression trees – RT) with kernel regression (KR), 
dealing with continuous goal variables (i.e. regression 
problems). The first application of RTs in dynamic 
security assessment is due to Wehenkel [8], in 1995, and 
recently an application of the KRT approach in the 
voltage stability assessment problem was presented in [9]. 
 
Like in decision trees, the design of a RT consists in the 
extraction of interpretable security rules. Kernel 
regression models provide quite opaque models of the 
data, but, on the other hand, are able to approximate 
highly non-linear functions. By integrating this regression 
procedure in the tree leafs, we can obtain a model that 
keeps the efficiency and interpretability of a RT, but with 
a better accuracy, by increasing the non-linearity of the 
functions used at the leaf nodes.  
 
The regression problem consists in obtaining a functional 
model that relates the output y with the inputs a1, a2, ..., 
an (OP attributes), where the output y (denominate as goal 
variable) is, in this case, a numerical value of any 
electrical security index of the power system. For the 
problem under analysis the security index adopted is the 
minimum frequency - fmin (Hz). The design of a KRT 
involves two stages: 
• Determination of the regression tree; 
• Definition of the regression models in the leafs. 
 
Building the RT 
The learning of a RT consists in the decomposition of the 
attribute hyperspace into a hierarchy of regions. In our 

application, it consists in the decomposition of the LS 
into regions where the severity/security of a disturbance 
(y value) is as constant as possible. The main practical 
difference between decision and regression trees, is that 
the latter determines automatically the appropriate 
numerical value of the severity into subintervals, whereas 
the former merely reproduce a predefined classification. 
 
Starting with the root node (and exploiting the learning 
set data), the growing of the RT is made by successive 
splitting their nodes. The splitting rule of a node is 
defined by a dichotomic test as described in (2). 
 
The split of each node, i.e. the optimal splitting test, is 
determined so as to reduce as much as possible the MSE 
(Mean Square Error) of  y. In other words, the best split is 
the one that provides a maximum amount of information 
on the security index (y). Thus, the optimal split s at each 
node n is the one that maximizes: 
 

)3()y(MSEP)y(MSEP)y(MSE)y(MSE nRRnLLnsn −−=∆
where: 
− PL and PR is the proportional number of OPs at the 

left and right subsets resulting from the split; 
− MSE(y)n is the mean square error at node n; 
− MSE(y)nL and MSE(y)nR are the mean square error at 

the left and right subsets. 
 
This splitting rule is the one described by Breiman et al. 
(1984) and employed in CART[11]. Once the optimal test 
is found, the next step consists in creating two successor 
nodes, corresponding to the two possible instances of the 
test  

}   (){ and  }   (){ kkkk uaua ≤> . 

 
The procedure continues splitting the created successor 
nodes, until a stop splitting criterion is met. This decides 
whether a node should indeed be further developed or 
not. There are the two possible stop splitting rules: 
 
- Rule 1: It is not possible to reduce the MSE further 

in a statistically significant way; 
- Rule 2: The variance has been sufficiently reduced; 
 
When, in a node, one of these rules is verified it becomes 
a terminal node, i.e. a leaf node. Stop splitting at leaf 
nodes prevents the tree from overfitting the learning set, 
and hence allows the method to reach a better 
compromise between accuracy and simplicity. 
 
Deriving Kernel regressors 
Kernel regression is a non-parametric statistical 
methodology. Given a new operating point Q, a 
prediction for its security index is obtained using the LS 
OPs that are "most similar" to Q. Kernel methods obtain 
the prediction by a weighted average of the response of 
these OPs. The weight of each neighbour (Xi) is provided 



by a kernel function. This function gives more weight to 
neighbours that are nearest to Q. The notion of 
neighbourhood is defined in terms of distance from Q 
measured in the attribute hyperspace. This algorithm sets 
the bandwidth as the distance to the kth nearest neighbour 
of Q. The prediction for Q is obtained by 
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where D is the distance function between two instances 

(using an Euclidean norm), K(d)= e-d
2 is the kernel 

function, h is the bandwidth value, Xi are OPs of the LS 

and SK=ΣK[D(X i;Q)/h]. 
 

Through the integration of both methods (RT and KR) the 
efficiency and interpretability of regression trees are 
maintained while their accuracy is improved by the non-
linearity of the regression functions used in the leafs. 
 

The model used in this research to obtain the KRT is the 
one described by Luís Torgo, 1997 [10]. 
 

5. NUMERICAL RESULTS 
In any machine learning approach the quality of the 
results needs to be evaluated through classification errors 
(global classification error, false alarm and missed alarm 
errors) relatively to a priori classes or by quantifying 
mismatches relatively to the target output values y, in this 
case the minimum frequency - fmin. These indicators are 
namely the mean relative error, the mean absolute error 
and the mean square error. The performance evaluation 
for both disturbances are shown in the next tables for the 
DT and KRT approaches. 
 
5.2 Decision Trees performance 

 
Table 2 - Performance evaluation with DT 

Decision Tree – Disturbance ( Machine-Loss ) 
Classification Performance Evaluation 

Global Error 1.84% 
False Alarm 1.31% 
Missed Alarm 4.4% 

 
Table 3 - Performance evaluation with DT 

Decision Tree – Disturbance ( Short-Circuit ) 
Classification Performance Evaluation 

Global Error 2.17% 
False Alarm 1.87% 
Missed Alarm 2.58% 

 
The DT designed to deal with this short-circuit 
disturbance can be observed in figure 3. 
 
5.2 Kernel Regression Trees performance 
For the application of the KRT approach the following 
parameters were adopted relatively to the stopping 
criteria: 

• Minimum number of operating points - 10 
(STOP=1); 

• Minimum variance - 0,001 (STOP =3). 
 
After several experiences the number of neighbours used 
to design the KRTs were set to 3. 
 
The results obtained with the KRT approach are 
presented in tables 4 and 5 and correspond, for the two 
disturbances addressed, to regression trees with 57 and 43 
nodes, which can be considered as a complex decision 
model, when compared namely with the DT obtained by 
inductive inference with only 23 nodes for the short 
circuit case. 
 

Table 4 - Performance evaluation with KRT 
Kernel Regress. Tree – Dist. (Machine-Loss) 

Classification Performance Evaluation 
Global Error 0,33% 
False Alarm 0,00% 
Missed Alarm 15,00% 

Numerical Performance Evaluation 
Mean Relative Error 0,000357 
Mean Absolute Error 0,017489 
Root Mean Square Error 0,041144 

 
Table 5 - Performance evaluation with KRT 

Kernel Regress. Tree – Dist. (Short-Circuit)  
Classification Performance Evaluation 

Global Error 2,39% 
False Alarm 1,83% 
Missed Alarm 3,22% 

Numerical Performance Evaluation 
Mean Relative Error 0,000542 
Mean Absolute Error 0,026163 
Root Mean Square Error 0,10537 

 
5.3 Classification trees obtained 
Next two figures (figure 2 and 3) present respectively the 
RT and the DT designed for the short-circuit disturbance.  
 
Nodes in the RT are of two types: non-terminal and 
terminal nodes (leafs). In the root node (node number 1) 
we included information related with the number of OPs 
(1844 - total learning set), the total mean square error in 
the learning set and the splitting test. In figure 2 non 
terminal nodes present the node number and also contain 
information related to the splitting test, for instance in 
node 2 the decision rule is WP>17,6%. In the leaf nodes 
we can get information related with the node number, the 
number of OPs that belong there, the mean and the mean 
square error (MSE) of the security index (minimum 
frequency in Hz) of those OPs and the stopping criteria 
used. In this classification structure one can assigned a 
given degree of security to each leaf accordingly to the 
mean value of the OPs that belong to the node. 



 
For the DT described in figure 3, the contents of the box 
representing each node are the following: - node number; 
number of OPs that belong to it, safety ratio (given by the 

ratio of the number of LS secure operating points over the 
total number of LS OPs belonging to the node) and the 
splitting test for non terminal nodes. Leaf nodes with a 
safety ratio larger than 0,5 correspond to secure nodes. 
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Figure 2 – Regression tree obtained for the short-circuit disturbance 
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Figure 3 - Decision Tree obtained for the short-circuit disturbance. 
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Figure 4 - Real and predicted values for fmin OP of the testing set 

 
For the prediction of the minimum frequency value 
associated to each OP, it was observed that kernel 
regressor are able to predict these values with good 
accuracy. Figure 4 presents the real  (black triangles) and 
the predicted values (grey circles), obtained with the 
KRT, for the minimum frequency value presented by the 
system in the short circuit disturbance. All the OPs 
presented in figure 4 belong to the testing set. 

5.4 Comparative Assessment 
From the results obtained with the two approaches one 
can derive the following main conclusions: 
• Both techniques were capable of selecting the same 

attributes as the most important ones (although 
sometimes in a different order); 

• When used for security classification both 
approaches lead to decision structures with 
comparable performance. 

• KRTs have the advantage of producing 
simultaneously a classification structure and giving 
the degree of robustness of the system through the 
predicted value of fmin; 

• The DTs obtained presented simpler classification 
structures, which makes easier any interpretation of 
the phenomena and of the influence of the relevant 
parameters. 

6. CONCLUSIONS 
This paper described an application of two machine 
learning approaches oriented to deal with the evaluation 
of the dynamic security of a medium size power system. 
These structures will be integrated in the dynamic 
security assessment module of the advanced control 
system of the island of Crete, helping to identify the 
operating conditions and parameters, namely wind power 
penetration, that lead to a less robust operation of the 
system. 
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