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ABSTRACT
This paper describes the application of advanced
inductive inference and statistical methods to inae-|
dynamic security assessment of the Crete islancirile
power system. A description of the problem anddata
set generation procedure are included. Comparative
results regarding performances of Decision Treed an
Kernel Regression Trees are presented and discussed

1. INTRODUCTION
In isolated power systems, like the ones operatingrge
islands, electric power is usually produced by Bliesits
and gas turbines, resulting in high costs due tel fu
imports and transportation. In these systems the
production of electric energy from wind presents
particular interest, especially when important wamrgy
potential exists, which is usual in many islands.
Significant displacement of conventional fuels can
therefore be obtained by a high wind power perietrat
In this case however, it is important to ensure the
electric power system operation will not be advigrse
affected by an increased connection of this vadtirm
of energy in the system.

The main problems faced by isolated electrical powe
systems are related to system security, control of
frequency and management of system generationveeser
A common aspect to all these problems is the reqent

to ensure that sufficient reserve capacity existsinvthe

system to compensate for sudden loss of generation.

Thus, mismatches in generation and load and/oablest
system frequency control might lead to system fafu
This type of instability is termed frequency insli#pand
depends on the ability of the system to restorertua
between generation and load following a severeesyst
upset with minimum loss of load [1]. Generally,
frequency instability problems are associated with
inadequacies in equipment responses, poor cooiainat
of control and protection equipment or insufficient
generation reserve.

Additional difficulties are caused by the introdoct of a
high penetration from wind energy. Thus, fast wind
power changes and very high wind speeds resulting i
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sudden loss of wind generator production can cause
frequency excursions and dynamically unstable sitns

[2]. Moreover, frequency oscillations might eadifigger

the under-frequency protection relays of the wirdkp,
thus causing further imbalance in the system
generation/load.

In order to guard isolated power systems agaireseth
disturbances and retain acceptable security lewaldine
dynamic security assessment functions can provg ver
valuable for their operation. Such functions haeerb
developed and are integrated within an advancettalon
system tailored to the needs of small isolated powe
systems with increased wind power penetration. lat pi
control system has been installed on the Greekdstd
Lemnos [3], an isolated Diesel-wind system withealp
load of approximately 10 MW. In this system, dynami
security assessment (DSA) is taken care of by two
modules based on Decision Trees and Neural Networks
respectively [4, 6, 7]. Decision Trees are usedheck
security for the operating schedules proposed lgy th
economic dispatch module, with respect to charestier
wind power fluctuations. Neural Networks are used t
give a real-time quantitative security evaluatidnttoe
current operating state system, by emulating tipeeted
frequency deviation to the pre-define wind distunt® In
this way, the wind power penetration can be ina@das
without jeopardising the system security.

The control system developed for small isolated grow
systems is currently extended within the frame fod t
European R&D JOULE (JOR3-CT96-0119) project to
cover the needs of larger isolated systems with tigd
power penetration. Larger systems are charactetiyed
several conventional fossil-fuelled generation {Haand
meshed transmission networks. The dynamic behaviour
performance of these systems depends not only @n th
total load and the size of the conventional units i
operation, but also on their location and the raspoof
the available spinning reserve [3].

The objective of this paper is to present the céifieb
provided by advanced inductive inference and skzais
methods to provide on-line dynamic security assessm
and monitoring of these systems. It is shown tleeteld
on the artificial intelligence techniques proposed,
efficient security rules can be provided. Thesesure



being integrated into CARE, the advanced contretesy
aiming to achieve optimal utilisation of renewableergy
sources, in a wide variety of medium and large size
isolated systems with diverse structures and oipgrat
conditions. A pilot installation is foreseen on theergy
management center of Crete, the largest Greekdisian
1999. The security evaluation structures that cen b
obtained provide a classification on dynamic seguri
Moreover, it is also interesting to obtain the @egof
security, which in this case is evaluated by enmgathe
expected minimum value of system frequency and the
maximal rate of frequency change for a selected
disturbance. This complementary information can be
provided by the kernel regression tree approach, as
described in this paper. In the control centervemfe,
security evaluation functions can be activated tafi”

by the operator, namely security monitoring.

2. THE STUDY CASE SYSTEM
The study case system is a realistic model of theep
system of Crete, projected for the year 2d®@@omprises
several types of oil-fired units and a meshed 150 k
transmission network. The conventional generation
system consists of two major power plants witienty

generating units installedThese are6 Steam units of
total capacity 103.5 MW, 4 Diesel units with 48 MW,
Gas turbines with 185 MW and three combined cycle
plant with 132 MW. The plants are located nearht®e t
major load points. The system peak load is equ&l6®
MW. The annual peak load demand occurs on a winter
day and overnight loads can be assumed to be
approximately equal to 25% of the correspondindydai
peak loads. The base-load is mainly supplied by the
steam and also by the Diesel units. The Gas tunlniits
normally supply the peak load at a high running,cibsit
increases significantly the average cost of thetedgty
being supplied.

A total of 11 Wind Parks (WPs) consisting of 160nd/i
Turbines (WTs) with an installed capacity of mohart
80 MW are or will be installed (have been approvied)
Crete by the year 2000. These WPs will be conneated
the MV (15 or 20 kV) network, which will be propegrl
reinforced by new HV/MV substations. It is notedatth
with few exceptions, all WPs will be installed dtet
eastern part of the island, that presents the most
favourable wind conditions. As a result, in casdaniits
on some particular lines the majority of the wirarks
will be disconnected. Furthermore, the protectiohthe
WTs might be activated in case of frequency variet]
decreasing additionally the dynamic stability ofe th
system. This might happen in case of frequencyatiaris
caused by wind fluctuations, conventional unit ges
faults or other disturbing conditions.

Extensive simulations on the power system modekhav
been performed using EUROSTAG software. It is shown
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Figure 1. Frequency change.
that for the most common wind power variations, the
system remains satisfactorily stable, if sufficispinning
reserve is provided. On the other hand for varghut-
circuits and conventional unit outages, the system
frequency undergoes fast changes and might reagh ve
low values. In any case, the dynamic security @& th
system depends critically on the amount of spinning
reserve provided by the conventional machines &ed t
response of their speed governors. As an examjgere~
1 shows the change of the system frequency in two
different  operating  conditions, following the
disconnection of three wind parks producing
approximately 30 MW. First, the system is considei@
operate with 28% of wind power, equal to 46 MW and
with the fast thermal units, such as the Dieselhimas
and gas turbines to provide the spinning reserast (f
spinning reserve). The lower value of the frequeiskcy
49.31Hz. Secondly, the system is again consideoed t
operate with the same high penetration of wind pdwt
with the slower machines, such as the steam twshtime
cover mainly the spinning reserve plus some Diesel
machines (slow spinning reserve). In this case)dher
frequency value, which is equal to 49.04Hz, wilusa
the operation of the protection devices of the ofgshe
wind parks. The total wind power disconnection read
the system to collapse and certainly will triggee toad
shedding mechanisms that will disconnect part & th
system load.

49

3. CREATION OF THE LEARNING & TEST SETS
The application of “learning from examples” techreg,
such as the Decision Trees (DTs) and the Kernel
Regression Trees (KRTs), dealt within this papee a
based on previous knowledge about the behaviotieof
system, obtained from a large number of off-lineatyic
simulations that define a data set. This data set i
afterwards split in two sub-sets: a learning s&)(and a
testing set (TS). The learning set is requiredxtoaet the
knowledge needed to derive automatic security exialo
structures. It consists of a large number of ofregat
points (OPs) covering all possible states of thavgyo
system under study in order to ensure its reprateity.
Each OP is characterised by a vector of pre-diahgse




steady-state variables, called attributes, thatbeamither

directly measured (powers, voltages etc.) or imdliye

calculated quantities (wind penetration, spinniegerve

etc.). The quality of the selected attributes ahé t
representativity of the LS are very important fowe t
successful implementation of the automatic striestur

For the creation of the global data set, a largaber of
initial operating points (OPs) are obtained by uagy
randomly the load for each load busbar, the windgyo
for each wind park and the wind margin. These We®m
are assumed to follow normal distributions aroumee
operating profiles:

1. Low-load operating condition with a total load

P. =100MW.

2. Medium-load operating condition with (P
=180MW.

3. High-load operating condition with P
=280MW.

For each one of the 11 load busbars and each dhe df
aggregate wind parks in operation, a perturbatién o
approximately+10% is applied around each one of the
above operating profiles. A dispatch algorithm
approximating actual operating practices followadthie
control system of Crete is applied next in order to
complete the pre-disturbance OPs. For a given load
demand P and wind power g, the total conventional
generation Pis given by

Pc =R - Ry 1)
and is after dispatched to the units in operation,
depending on their type and their nominal power.

For each one of the produced OPs a number of gessib

disturbances has been simulated, where EUROSTAG was

used to obtain the system dynamic behaviour. Twjpma

disturbances have been finally selected. These are:

a) outage of a major gas turbine

b) three phase short-circuit at a critical bus nea th
wind Parks.

These disturbances were selected according tayutili

criterion. In fact, a unit disconnection is a frequevent

and a tree-phase fault, although rare, is a sexanat that

can occur during stormy conditions.

For each OP the minimum value of system frequendy a
the maximal rate of frequency change are recorBeth
of these parameters are checked against the vHiaes
activate the under-frequency relays that proteetWPs,
and the OPs are labelled accordingly.

The list of activated attributes, that charactegaeh OP,

is described in Table 1 and includes namely:

» Active and reactive power of all power sources.

e Spinning reserve of the conventional units.

* Wind power penetration, expressed as the ration of
the total wind power to the load of the system.

« Wind margin, expressed as the ratio of the
conventional units spinning reserve to the totaidwi
power.

* Active and reactive loads.

In this part of our research the variable used dafy
security is the minimum frequency the system
experiments after the disturbance. The securitieriai
used was
If fmin <= 49 Hzthen the system is insecure
elseis secure

Table 1 - List of activated Attributes

AT ID Description units symbol
AT23 Wind Park 1 MW -
AT24 Wind Park 2 MW

AT25 Wind Park 3 MW

AT26 Wind Park 4 MW

AT27 Wind Powertrota.  |MW 2Py
AT28 Wind Q. o1 MVAr

AT37 Power Gen.1 MW Pgl
AT38 Spinning Res.1  |MW SR1
AT39 Power Gen.2 MW -
AT40 Spinning Res.2  |MW -
AT41 Power Gen.3 MW Pg3
AT42 Spinning Res.3 MW -
AT43 Power Gen.4 MW

AT44 Spinning Res.4  |MW -
AT45 Wind Penetration |% WP
AT46 Wind Margin -
AT47 Active Power MW

AT49 Reactive Power  |MVAr

AT51 Conv. Gen. tora.  |MW 2Pc
AT52 Total Active Load MW 2P
AT55 Total React. Load |MVAr

AT57 Capacitors MVAr

Using the approach described in this section, 2765
acceptable operating points have been obtained;hwhi
are divided in the two sets mentioned before, @ndsg

2 OPs to the LS and 1 OP to the TS). The LS compris
1844 OPs and the TS used for testing the developed
classifiers comprises 921 OPs. In this way, theabaipy

of the security evaluation structures to evaluateectly

the security of unforeseen states can be estinted
more objective basis.

4. APPLICATION OF MACHINE LEARNING
TECHNIQUES

4.1 Decision Trees
The decision tree methodology is a non-parametric
learning technique able to produce classifiers akou
given problem in order to deduce information fowne
unobserved cases. This approach has been suchessful
applied in security assessment as reported inffx@. DT
has the hierarchical form of a tree structured dgpsi
down. The construction of a DT starts at the roaden
with the whole LS of pre-classified OPs. These @Rs
analysed in order to select the test T that splitsn
“optimally” into a number of most “purified” subsetFor
the sake of simplicity, a two-class partition isiswlered.
The test T is defined as:




T:A <t 2
where t is the optimal threshold value of the chose
attribute A. The selection of the optimal test is based on
maximizing the additional information gained throupe
test. The selected test is applied to the LS ofrheée
splitting it into two subsets, corresponding to theo
successor nodes. The optimal splitting rule is iegdpl
recursively to build the corresponding subtreesoriaer
to detect if one node is terminal, i.e. “sufficightclass
pure, the stop splitting rule is used, which chegkether
the entropy of the node is lower than a presentrmim
value. If it is, the node is declared a leaf, otlise a test
T is sought to further split the node. If the nad@not be
further split in statistically significant way, i termed a
deadend, carrying the two class probabilities estich on
the basis of the corresponding OPs subset. A more
detailed technical description of the approachofeéd
can be found in [4].

4.2 Kernel Regression Trees

As the KRT approach is being applied for the filste in
this field, a short description of the main stagéshe
method are included in the next paragraphs.

The Kernel Regression Tree (KRT) is an hybrid
algorithm that integrates recursive partitioning
(regression trees — RT) with kernel regression (KR)
dealing with continuous goal variables (i.e. regi@s
problems). The first application of RTs in dynamic
security assessment is due to Wehenkel [8], in ;1888
recently an application of the KRT approach in the
voltage stability assessment problem was presémt&d.

Like in decision trees, the design of a RT condistthe
extraction of interpretable security rules. Kernel
regression models provide quite opaque models ®f th
data, but, on the other hand, are able to apprdgima
highly non-linear functions. By integrating thiggression
procedure in the tree leafs, we can obtain a mtudsl
keeps the efficiency and interpretability of a RUf with

a better accuracy, by increasing the non-lineasftyhe
functions used at the leaf nodes.

The regression problem consists in obtaining atfanal
model that relates theutput y with the inputs a;, a,, ...,

a, (OP attributes), where the outputdenominate as goal
variable) is, in this case, a numerical value ofy an
electrical security index of the power system. FHos
problem under analysis the security index adopsetthé
minimum frequency - fmin (Hz). The design of a KRT
involves two stages:

» Determination of the regression tree;

» Definition of the regression models in the leafs.

Building the RT
The learning of a RT consists in the decompositibthe

attribute hyperspace into a hierarchy of regiomsolr

application, it consists in the decomposition oé thS
into regions where the severity/security of a disamce

(y value) is as constant as possible. The main peicti
difference between decision and regression treethai
the latter determines automatically the appropriate
numerical value of the severity into subintervalbgreas
the former merely reproduce a predefined classifina

Starting with the root node (and exploiting therihéag
set data), the growing of the RT is made by suceess
splitting their nodes. The splitting rule of a node
defined by a dichotomic test as described in (2).

The split of each node, i.e. the optimal splittiegt, is
determined so as to reduce as much as possibM3fe
(Mean Square Error) of. In other words, the best split is
the one that provides a maximum amount of inforamati
on the security indexy). Thus, the optimal splg at each
noden is the one that maximizes:

AMSE(Y)sn = MSE(Y) — R MSE(y)ni. - PRMSE(Y)nr (3)

where:

- P and R is the proportional number of OPs at the
left and right subsets resulting from the split;

- MSE(y),is the mean square error at node n;

-  MSE(y),. and MSEY).r are the mean square error at
the left and right subsets.

This splitting rule is the one described by Breinedral.

(1984) and employed in CART[11]. Once the optineakt
is found, the next step consists in creating twecessor
nodes, corresponding to the two possible instantése

test

{a 0 >u} and{a, () <u,}.

The procedure continues splitting the created sswre
nodes, until a stop splitting criterion is met. Jkliecides
whether a node should indeed be further developed o
not. There are the two possible stop splittingsule

- Rule I Itis not possible to reduce the MSE further
in a statistically significant way;
- Rule 2 The variance has been sufficiently reduced;

When, in a node, one of these rules is verifidzkitomes

a terminal node, i.e. a leaf node. Stop splittingeaf
nodes prevents the tree from overfitting the leagrset,
and hence allows the method to reach a better
compromise between accuracy and simplicity.

Deriving Kernel regressors

Kernel regression is a non-parametric statistical
methodology. Given anew operating point Q a
prediction for its security index is obtained usthg LS
OPs that are "most similar" to Q. Kernel methodtaiob
the prediction by a weighted average of the resparis
these OPs. The weight of each neighbouy i&provided




by a kernel function. This function gives more weitp
neighbours that are nearest to Q. The notion of
neighbourhood is defined in terms of distance frQm
measured in the attribute hyperspace. This algoribts
the bandwidth as the distance to the kth nearéghineur

of Q. The prediction for Q is obtained by

OPs
fmin'(Q) = o > K[D( Q) min(x,) &
i=1

where D is the distance function between two irctan

(using an Euclidean norm)yq)= e—d2 is the kernel
function, h is the bandwidth value; dre OPs of the LS
and SK=ZK[D(X.Q)/h].

Through the integration of both methods (RT and KiR)
efficiency and interpretability of regression trease
maintained while their accuracy is improved by tos-
linearity of the regression functions used in .

The model used in this research to obtain the K&Rfhe
one described by Luis Torgo, 1997 [10].

5. NUMERICAL RESULTS
In any machine learning approach the quality of the
results needs to be evaluated through classific&icors
(global classification error, false alarm and misségarm
errors) relatively toa priori classes or by quantifying
mismatches relatively to the target output valyds this
case the minimum frequencymin. These indicators are
namely the mean relative error, the mean absolute e
and the mean square error. The performance evatuati
for both disturbances are shown in the next tatoethe
DT and KRT approaches.

5.2 Decision Trees performance

Table 2 - Performance evaluation with DT
Decision Tree — Disturbance ( Machine-Loss )

Classification Performance Evaluat
Global Erro 1.84%
False Alarm 1.31%
Missed Alarm 4.4%

Table 3 - Performance evaluation with DT

Decision Tree — Disturbance ( Short-Circuit )

*  Minimum number
(STOP=1);
e Minimum variance - 0,001 (STOP =3).

of operating points - 10

After several experiences the number of neighbasesl
to design the KRTs were set to 3.

The results obtained with the KRT approach are
presented in tables 4 and 5 and correspond, fotvtbe
disturbances addressed, to regression trees witim® 43
nodes, which can be considered as a complex decisio
model, when compared namely with the DT obtained by
inductive inference with only 23 nodes for the shor
circuit case.

Table 4 - Performance evaluation with KRT
Kernel Regress. Tree — Dist. (Machine-Loss)
Classification Performance Evaluation

Global Erro 0,33%
False Alarn 0,00%
Missed Alarn 15,00%
Numerical Performance Evaluation
Mean Relative Error 0,00035
Mean Absolute Error 0,01748!
Root Mean Square Error 0,04114.

Table 5 - Performance evaluation with KRT

Kernel Regress. Tree- Dist. (Short-Circuit)

Classification Performance Evaluation

Classification Performance Evaluation
Global Erro 2.17%
False Alarn 1.87%
Missed Alarm 2.58%

The DT designed to deal with this short-circuit
disturbance can be observed in figure 3.

5.2 Kernel Regression Trees performance

For the application of the KRT approach the follogyi
parameters were adopted relatively to the stopping
criteria:

Global Error 2,39%
False Alarn 1,83%
Missed Alarn 3,22%
Numerical Performance Evaluation
Mean Relative Error 0,000542
Mean Absolute Error 0,02616:.
Root Mean Square Error 0,1053°

5.3 Classification trees obtained
Next two figures (figure 2 and 3) present respetyithe
RT and the DT designed for the short-circuit disturce.

Nodes in the RT are of two types: non-terminal and
terminal nodes (leafs). In the root node (node remi)
we included information related with the numberQits
(1844 - total learning set), the total mean squegrer in
the learning set and the splitting test. In fig@&enon
terminal nodes present the node number and algainon
information related to the splitting test, for imste in
node 2 the decision rule is WP>17,6%. In the |leafes
we can get information related with the node numtier
number of OPs that belong there, the mean and #am
square error (MSE) of the security index (minimum
frequency in Hz) of those OPs and the stoppinggait
used. In this classification structure one cangmesl a
given degree of security to each leaf accordinglyhe
mean value of the OPs that belong to the node.



ratio of the number of LS secure operating points ¢he

For the DT described in figure 3, the contentshef hox total number of LS OPs belonging to the node) ded t
representing each node are the following: - nodebmar; splitting test for non terminal nodes. Leaf nodethva
number of OPs that belong to it, safety ratio (gibg the safety ratio larger than 0,5 correspond to secades

ﬂ N =1844

MSE = 0.306514
Pg1>37.1 MW

yes ‘ no

WP>17.6 % WP >234%

5 | N =403
Tiean =49.835918 ‘

MSE =0.001451
TOP =3 |

SR1>11.2MW
[

1| N=8
Wean =46.216248
WSE =0.184591

STOP=1

Pg1>14.2MW

P > 1513
W

12 13

Pg2>41.5MW WP>41.4%

Pg1> 36.4MW

] N=2 []N=255 [21]N=203 [22]N=2 23 [5] N=358 ®|N=7 [27]N=6
Mean =49.133499 Mean =48.856621 ‘ Mean =48.949791 Mean =47.890999 ‘ Mean =49.071476 ‘ ‘ Mean =47.784 ‘ Mean =48.168003 ‘
MSE = 0.000006 X X .( MSE = 0.002049 MSE = 0.035883 MSE = 0.003625
STOP=13 STOP=3 | STOP=3 | STOP=1 | ‘ WP >24.5% ‘ WP >25% ‘ STOP=3 | | STOP=1 | STOP=1 |
] ]
=7 31 32 33 37 38
5429
" ‘ P, > 142.93 uw ‘ ‘ WP > 25.5% ‘ P> 161.84 uw ‘ ‘ P> 152.15 ww ‘ ‘ P, >39.6 MW ‘

0] N=7 a|N=8 2] N=20 w“|N=6 6]N=35 [47|N=15 [48]N=5 9] N=6 s0|N=13 [si|[N=7 52[N=10 [s3[N=2
Mean=46.659283 || Mean=46.834995 || Mean =48.906898 Wean =48.532337 Mean=48.907883 || Mean=48.812599 || Mean=48473396 || Mean=48.565502 || Mean=48.633694 || Mean=48.734287 || Mean=48371201 || Mean=48.191498
MSE = 0.003166 MSE =0.002069 wse=002186 || oo qge gy, || WSE=oo0te2 5P > 154uw MSE =0001042 MSE =0.001351 MSE = 0.001596 MSE =0.000563 X X X MSE =0.000992
I STOP=1 | sToP=13 | STOP=3 |-l - | STOP=13 | L | sTOP=3 | STOP=3 || stop=13 ||  stop=13 | STOP=3 |_stop=13 || STOP=1 | sToP=13 |
54| N=8 55| N=23 56 | N=19 57| N=15
Mean=48.741123 || Mean=48822304 || Mean=48.661686 || Mean =48.731068
=0.000771 X X MSE =0.001767
STOP=13 | STOP=3 I STOP=3 Il sToP=3 |

Figure 2 — Regression tree obtained for the shootit disturbance
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Figure 3- Decision Tree obtained for the short-circuit disaince.
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Figure 4 - Real and predicted valuesffoin OP of the testing set
For the prediction of the minimum frequency value REFERENCES
associated to each OP, it was observed that kernel [1l Pi KUfnduf, G-fK- '\gﬁ)fisony b“IA Revier of Definiths and
; ; Classification of Stability Problems in Today's Ravwsystems”,
regressor "’?re able to predict these Values. withd goo Panel Session on Stability Terms and DefinitioisEE PES
accuracy. Figure 4 presents the real (black theemgnd Meeting, Feb. 2-6, 1997, New York.
the predicted values (grey circles), obtained witie [2] N. Hatziargyriou, E. Karapidakis, D. Hatzifsti “Frequency

KRT, for the minimum frequency value presented gy t
system in the short circuit disturbance. All the sOP
presented in figure 4 belong to the testing set.

5.4 Comparative Assessment

From the results obtained with the two approaches o

can derive the following main conclusions:

» Both techniques were capable of selecting the same
attributes as the most important ones (although
sometimes in a different order);

e When wused for security classification both
approaches lead to decision structures with
comparable performance.

« KRTs have the advantage of producing

simultaneously a classification structure and gjvin
the degree of robustness of the system through the
predicted value dfimin;

e The DTs obtained presented simpler classification
structures, which makes easier any interpretation o
the phenomena and of the influence of the relevant
parameters.

6. CONCLUSIONS

This paper described an application of two machine
learning approaches oriented to deal with the ex@in

of the dynamic security of a medium size powereyst
These structures will be integrated in the dynamic
security assessment module of the advanced control
system of the island of Crete, helping to identife
operating conditions and parameters, namely wingepo
penetration, that lead to a less robust operatioth®
system.
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