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We examine the electromagnetic properties of the A(1232) resonance within the self-consistent
chiral quark-soliton model. In particular we present the A form factors of the vector-current
Gro(Q?), Gp2(Q?) and G (Q?) for a momentum-transfer range of 0 < Q% < 1GeV2 We ap-
ply the symmetry-conserving quantization of the soliton and take 1/N. rotational corrections into
account. Values for the magnetic moments of all decuplet baryons as well as for the N — A transition
are given. Special interest is also given to the electric quadrupole moment of the A.

I. INTRODUCTION

The hadron spectrum can be ordered by flavor-SU (3) multiplets where the low lying baryons are assigned to either
an octet or decuplet with spin 1/2 and 3/2, respectively. The main focus of this work is the hyper-charge +1 state of
the decuplet, the A. Eventhough the A is the first excitation of the proton and rather isolated from other resonances,
due to its short life time many of its properties are not yet experimentally determined with accurate precision. This
is reflected in the poor experimental knowledge of the magnetic moment of the A which is listed by the Particle
Data Group as pa++ = 3.7 ~ 7.5un and pua+ = (2.7779(stat.) £ 1.5(syst.) & 3(theor.)) un, where uy = e/2My is
the nucleon magneton @] The former value is extracted from the reaction 7tp — 7¥py, e.g. [2,13], and the latter
one from the process yp — pr®y’ @] The study of the transition process of the nucleon to the A can be used to
gain additional information about the NA system. This process is characterized by a magnetic dipole and an electric
quadrupole transition moment which are in E,} extracted as uya = 3.46+0.03 ux and Qna = —(0.0846+0.0033) efm?,
respectively. Appart from the A, experimental data on electromagnetic properties of decuplet baryons only exist for
the magnetic moment of the 2~ baryon pq- = (—2.02 4 0.05) uy [1].

On the theoretical side, the A was investigated within many different frameworks. In the case of SU(6) symmetry
the A magnetic moment is predicted to be pa = Qapyp, with Qa being the charge of the A and p, the magnetic
moment of the proton, which yields a value of pa++ = 5.58 uy ﬂa] Other approaches include quark models ﬂﬂ, ], 19,
[1d, [11, 12, ], large N, and soliton models [14, [15, ], lattice QCD calculations ﬂﬂ, 14,19, ], QCD sum rules and
chiral perturbation theory , 22, 23, 24, [25, ] Very recently lattice QCD calculations of electromagnetic form
factors of the A up to a momentum-transfer of Q% < 2.5 GeV? were presented in m] In addition, large N, relations
which connect the magnetic moments of the octet and the electric quadrupole moments of the NA transition to the
moments of the A are found in [28, 29, 30].

In the present work we investigate the electromagnetic form factors of the AT (1232) in the framework of the self-
consistent chiral quark-soliton model (xQSM) assuming iso-spin symmetry. In particular we calculate the charge
(Ggo), electric quadrupole (Ggz) and magnetic dipole (G 1) form factors of the AT up to a momentum-transfer
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of 0 < Q% < 1GeV2 We also present values for the magnetic moments of all decuplet baryons as well as for the
N — A transition. In the yQSM baryons are seen as certain SU(3) rotations of a classical soliton, having therefore
the same origin. The quantization of these rotations allows only SU(3) multiplets with zero triality, hence the octet
and decuplet appear naturally. Because of this, the yQSM is able to describe various observables of various baryons
within the same set of parameters. These parameters are fixed by reproducing mesonic experimental data, letting the
constituent quark mass to be the only free paramter in the baryon sector. Since we can not take an exact form of the
momentum-dependent constituent quark mass we use the value of M = 420 MeV which is known to reproduce very
well the experimental data 31,132,133, 134, 35]. The regularization behavior of the momentum-dependence is mimicked
by the proper-time regularization. The cut-off parameter and the averaged current quark mass are then fixed for a
given M to the pion decay constant f, and m,, respectively. The model parameters used in the present work are the
same as in previous works [34, 135, 136, 137, 138, 139, 140, 41/, 142], no additional readjusting for different observables were
done. Given that, the YQSM, with model-parameters fixed in the meson-sector and natural inclusion of octet and
decuplet baryons, provides a unique framework with predictive power.

In the past the YQSM was applied successfully to the octet baryon (axial) vector form factors [32,133,134, 35,136, 137, 39],
parton- and antiparton-distributions |43, 144, 45, |46, 47, 148, 49, |50]. Furthermore, the xQSM was also applied to
observables of the anti-decuplet pentaquarks |40, 41, [42, 51, 52, 153, 154, [55]. The vector current of decuplet baryons
at Q% = 0 were investigated in various versions of the YQSM in the past: in the self-consistent yQSM [56, 157, in the
XQSM version formulated in the infinite momentum frame [58] and in the so-called model independent xQSM version
[55]. Both self-consistent yQSM calculations in the literature, which presented the decuplet magnetic moments, were
prior to the symmetry-conserving quantization of the xQSM [59] which is explicitly applied in this work and ensures
the realization of the Gell-Mann-Nishijima relation in the model.

The outline of this work is as follows. In the section II we give the general, model-independent expressions for the
observables in question. The given formulae at the end of this section are suitable for calculation in the yQSM.
Section IIT then describes how these expressions are treated in the model. Final results for the self-consistent yQSM
are given in section I'V. We summarize the work in section V and give more detailed expressions in the appendix.

II. GENERAL FORMALISM

Our aim is to investigate the A(1232) electromagnetic form factors and compare them to nucleon electromagnetic
form factors and the N — A magnetic transition moment in the self-consistent SU(3) xQSM. For that, we will
summarize in this section the relevant model-independent definitions of these quantities. The form factors are defined
through the baryon matrix-element of the vector-current where the virtual photon couples to the NN, NA and AA
systems.

A. The v*"NN Vertex

The baryon matrix element of the vector-current, V#X(0) = W(0)y*¥(0) , between nucleon states is parametrized
by two form factors F1(Q?) and F»(Q?)
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with ¢ = p' — p, Q% = —¢?, u(p, s) as the nucleon-spinor of mass My and third-spin component s. In the Breit-frame
the Sachs form factors are defined as
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where we have in the Breit-frame Q2 = ¢2. The right-hand side of these equations can be evaluated in the YQSM.



B. The v*"NA Vertex

We take the rest-frame of the final A with momentum p’ = (Ma,0) and mass Ma. The incoming nucleon has
the momentum p = (En,—¢) and energy En. For the v*NA-Vertex we use the decomposition of [60, [61]. The
baryon-matrix element is written by using the Rarita-Schwinger spinors u®(p, s) for the A as
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with the magnetic dipole (GY/), electric quadrupole (GR“) and Coulomb quadrupole (G¥?) form factors. The
corresponding structures are
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where the momenta are defined as P = 3(p' 4+ p), ¢ = p’ — p and A~1(¢?) = 4M3|q]>. We are interested in the
d(lq qifik3

magnetic transition moment of the N — A process. We will use again the projector 3 [ T TaP for which the term

ngk vanishes.
Applying the projector on the baryon matrix-element leads to
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The electromagnetic N — A transition is dominated by the form factor GYA (exp. GRA/GYA = (-2.5+0.5)% [1].
Neglecting the GY*(Q?) contribution and taking the point Q? = 0 we have
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The magnetic transition moment is given by [61]
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Although we will denote the quadrupole moment in units of fm? in this paper, it is understood that the electric
quadrupole moment is expressed in units of efm?, with e as the electric charge.
These above equations can be investigated in the yQSM.

C. The v*AA Vertex

The baryon matrix element of the vector-current, V*(0) = ¥(0) y* ¥(0) , between A-states is parametrized by four
form factors
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The electric charge and quadrupole form factors Ggg, G2 and magnetic dipole and octupole form factors Gs1,G a3
are defined in the Breit-frame by

Gr(@) = (4 2n)[Fr — 78| - 3r( 4 ) F - 7Ry ] (15)
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with 7 = We will concentrate in this work on the form factors Ggg, Gg2 and G ;1 and postpone the discussion on

4M2 ’
Gys for future work. The zeroth-component of the matrix-element Eq.(I4]) for both A having a third-spin component
of +3/2 reads
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where the projections on Ggo and Gg2 are given by
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Using the projector 3 f 49 g q.z‘s on the A-matrix element Eq.([d]) gives
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The magnetic moment of the A is given by [61]
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and the electric quadrupole moment by
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We will also denote Qa, like Qua in the section before, in units of fm?. The projectors which in the nucleon case
project on the electric and magnetic form factors, project in the A case on the electric charge and magnetic dipole
form factors. We will investigate Eqs. 02T22) in the yQSM.



IIT. FORM FACTORS IN THE CHIRAL QUARK-SOLITON MODEL

We will now briefly describe how equations like Eqs. BHEITTR20ZTI22) are evaluated in the SU(3) xQSM. For details
we refer to Ref.[31, 132, 133]. The main part of the form factors come from the baryonic matrix element

(B'(p")|TX(0)| B(p)) = (B' ()| ¥!(0)0"*¥(0)|B(p)), (25)

where the explicit form of the operator J#X = W (0)O*XW¥(0) (x being a flavor index) are given by the projector in
question

JHX — 1 for the rotational Hamiltonian (26)
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The matrix-element Eq.(28]) will be treated in the path-integral formalism with the following effective partition
function of the quark and chiral fields ¥ and U(z), respectively:
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where the Tr represents the functional trace, N, the number of colors, D the Dirac differential operator in Euclidean
space and = diag(m, M, ms) = M + dm the current quark mass matrix of the average of the up- and down-quark
mass and strange quark mass, respectively. We assume iso-spin symmetry. The SU(3) single-quark Hamiltonian h(U)
is given by

h(U) = iv*"y'0;, =y MU —~y*m | (34)
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where we use Witten’s embedding of the SU(2) field U(x)sy(2) = exp(it'm*(z)) into the SU(3). The 7(z) denote the
pion-fields. We use the factor of N, in Eq.() in the large N, limit to integrate the chiral-field in Eq.(30) with the
saddle-point approximation. For that we have to find the pion field that minimizes the action in Eq.(3I)). Generally
the following Anstze for the chiral-field U(z) and the baryon state |B) in Eq.(28) are made:
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The first equation assumes the SU(2) field U to have the most symmetric form, a hedgehog form, with the radial pion
profile function P(r) while the last two take the baryon state as an Ioffe-type current consisting of N, valence quarks.

The matrix I‘lg'”ch carries the hyper-charge Y, isospin I, I3 and spin J, J3 quantum numbers of the baryon and the
b; and §; denote the spin-flavor- and color-indices, respectively.
Applying the above treatments to the baryonic matrix element Eq.([25) yields:
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Finding the minimizing chiral-field configuration U,, the soliton, corresponds to determine its profile function P.(r).
This is done by setting J#X(0) = 1 in Eq.([39). For large Euclidean times, T — oo, the expression is proportional
to the nucleon correlation function from which we can obtain the yQSM expression for the nucleon mass. Solving
numerically the equation of motion coming from §Se;r/dP(r) = 0 (minimizing the xyQSM nucleon energy) in a self-
consistent approach determines the function P.(r).

Rotations and translations of the soliton also minimize the effective action and are written as

U(#,t) = A(W)U(7 - Z(1)) A" (1) (40)

where A(t) denotes a time-dependent SU(3) matrix and Z(t) stands for the time-dependent translation of the center
of mass of the soliton in coordinate space. Sofar, we considered only the classical version of the yQSM which has
to be quantized. Suitable quantum numbers are now obtained by quantizing the rotational zero-mode. A detailed
formalism can be found in Refs.[31, 133].

The Dirac operator of Eq.([32) written in terms of the soliton U, and its zero-modes acquires the form:

D(U) = T A(t) [D(UC) +iQ(t) = T Tory — iy AT()SmA(L) | TS, AT(1), (41)
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where the T’ ;) denotes the translational operator and the 2(t) represents the soliton angular velocity defined as
. ; . 1
Q= —iATA= —%Tr(ATA)\a))\a = 59", (42)

The standard way to proceed is to treat all three terms Q(t), T:(t)Tz(t) and ém perturbatively by assuming a slow
rotating and moving soliton and by regarding dm as a small parameter. Generally we expand Eq.(@I) to the first
order in §(t), dm and to the zeroth-order in Tj(t)Tz(t).

After introducing the collective baryon wave function on the level of Eq.([39) as
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and expanding the occuring fermionic determinant and product of propagators and quantizing the soliton rotation,
we obtain the following collective Hamiltonian [62]:

Hcoll = Hsym + Hsb ) (44)

where Hgym and Hgp, represent the SU(3) symmetric and symmetry-breaking parts, respectively,
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The M, denotes the mass of the classical soliton and I; and K; are the moments of inertia of the soliton [31], of which
the corresponding expressions can be found in Ref.[63] explicitly. The components J; denote the spin generators
and J, correspond to the generalized SU(3) spin-generators. The Xgy 2y is the SU(2) pion-nucleon sigma term. The

Désg) (A) and DS) (A) stand for the SU(3) Wigner D functions in the octet representation and the Y is the hypercharge
operator. The parameters «, (3, and - in the symmetry-breaking Hamiltonian are
11 Nc K2
a == MgSgpa — —=Mg—2,
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The collective wave-functions of the Hamiltonian in Eq.([@4) can be found as SU(3) Wigner D functions in represen-
tation R:

K K, K
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The Y’ is related to the eighth component of the angular velocity Q2. During the quantization process Y’ is constrained
to be Y/ = —N,./3 = —1. In fact, this constraint allows us to have only SU(3) representations with zero triality.
The Hg, mixes the representations for the collective baryon states and are treated by first-order perturbation by



Table I: Moments of inertia and mixing coefficients for M = 420 MeV.
I [fm] I [fm] K [fm] Ko [fm] YN [MGV] &) Cc27 a7 ass

1.06 048 042  0.26 41 0.037 0.019 0.074 0.018
syimy BR'| sb |Br)
|Br) = |BY |Briy—r22——— (49)
R R;R R') — M(R)

From this we obtain the collective wave functions for the baryon octet and decuplet with inclusion of wave function
correction proportional to the strange quark mass as (other wave function corrections are listed in the appendix)
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Turning now to the general expression Eq.([89) for a certain operator J#X(0) which we can now write in the form
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We have used again the saddle-point approximation and expanded the Dirac operator with respect to 2 and dm to the
linear order and 77 2 t)T (t) to the zeroth order, everything contained in the expression G#X(Z). The DA and d3z arise
from the zero-modes due to summing over all U, configurations which minimize the xQSM action. The expression
GMX(Z) contains the specific form factor parts originating from the explicit choice of J#X(0). The expansion in £ and
om provides the following structure of the form factors in the yQSM:
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where the first term corresponds to the leading order (2%, m?), the second one to the first 1/N, rotational correction
(22, m?), the third to the linear m corrections coming from the operator, and the last one to the linear m corrections
coming from the wave function corrections, respectively.

In the xQSM Hamiltonian of Eq.([34]) the constituent quark mass M would in general be momentum dependenet,
introducing a natural regularization-scheme for the divergent quark loops in the model. However, the inclusion of
a momentum dependent constituent quark mass is not straight forward and in the present framework the standard
way to proceed is to take the quark mass as a free, constant parameter and to introduce an additional regularization
scheme. The value of M = 420 MeV is known to reproduce very well experimental data |31, 132, 133, 34, 135] together
with the proper-time regularization. In the meson-sector the cut-off parameter and the 7 are then fixed for a given
M to the pion decay constant f; and m,, respectively. Proceeding to the baryon-sector does not include any more
new parameters. Throughout this work the strange current quark mass is fixed to ms = 180MeV. We want to
emphasize that all these model parameters are the same as in previous works [34, 135, 136, 137, 138, 139, 140, 41, 42],
no additional readjusting for different observables were done. The numerical results for the moments of inertia and
mixing coefficients are summarized in Tablll for M = 420 MeV. In case of the form factors we apply the symmetry
conserving quantization as found in [59].

A. The v*"NN Vertex in the yQSM

We now give final expressions for Eqs.(@H4) evaluated in the yQSM on the ground of Eq.(54)). References are
[31,132,133]. The projector contracts the Lorentz-index and an average over the momentum transfer orientation gives



raise to spherical Bessel-functions jo 1(|q]|Z]). In the Breit-frame we have Q* = |q]%. The electric and magnetic form
factors are obtained by choosing in Eq.([39) J#(0) as
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according to Eqs.([3lH).
The electric and magnetic form factors in the yQSM read:
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The electric and magnetic densities are given by
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Since M7 and Mg are proportional to mg only the first lines of the above expressions remain in case of flavor-SU(3)
symmetry. The expressions B(2), ..., Ms(Z) are given in the appendix. The Wigner D-functions depend on the rotation

A, e.g. DY) = D(é)(A) and expressions like

x3 T Tx
8
[ a1 D) (B (0)
are evaluated as described in the appendix. The value for the nucleon mass My in front of Eq.(GI]) is taken as the

value given by the classical soliton mass, i.e. by the mass of the nucleon in the yQSM, which is by a factor of 1.36
heavier than the experimental mass [31].

B. The v*NA Vertex in the YQSM

We now investigate Eq.([[I]) in the yQSM. In order to evaluate the left hand side of Eq.(I]) in the xQSM we had
to take lim N, — oo
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In the whole YQSM approach we do not take any N2 and also not all N corrections into account, e.g. corrections
coming from the translational zero-mode in Eq.([ Il or vabriations of the classical soliton U, were not considered.
According to this we could rewrite the factors of the right hand side of Eq.(66]) as follows:
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The expressions of Eq.(60]) then reads
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The xQSM expression is then given by
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where the density G),(%) is the same as in Eq.(6I]) since the projectors in Eqs.(@II)) are the same. The only 1/N,
correction which is taken into account on the level of Eq.(54)) are those originating from G(Z) but not from the

expression e'@'?. This is connected to the fact that we just expand Eq.[#I) to the zeroth-order in T7 (t)T (t)- In case
of the rest-frame of the A we have for §? the expression

7> = (Ma— En)? +Q2 Q>+ O(N;?) (76)
@ = VQ2+O(N?) . (77)

This means in the present formalism the |g] entering in Eq.(7) is actually /Q?. Applying the above large N,
arguments means, we neglect all 1/N, corrections beside those coming from the rotational frequency () expansion
of Eq.( ). After having done this, we put N, = 3 in order to get finite numerical numbers.

C. The yv*AA Vertex in the YQSM

For the A electromagnetic form factors we use again the Breit-frame with Q2 = ¢2 and

Gro(@) = 365" (@ ”FG (@) (78)
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Gra@) = 565"(@) + 7=65"(@) | (79)

Gin(@) = 3ON (@) + 5 =GN (@) - (50)

The projector of the electric charge form factor of the A is the same as for the nucleon case, hence we can use Eq.(60)
with

. 3 . 3
Gho(@) = [ =il AGIGREIAG) - (81)
The A magnetic dipole form factor Eq.([22) and magnetic moment have the pre-factors
1 1 1 1
SR S S S (52)
MA MN'Fﬁ MN1+O(NC)
My My 1
Max ~ My1+O(N2)’ (83)
and give therefore the expressions in the xQSM
X 2 — d3 .]1 |(j|| | § X A § 4
Gin(@) = My [ @ LI ARG, @IAG) | (84)
HA = GM1 uN . (85)

The densities G5 (2) and G, (Z) are the same as in Eqgs.(GUGI) since the projectors in Eqgs.@20) and Eqgs.(@22)) are
the same, respectively.
The projector on Gpgo is different. The electric quadrupole form factor reads in terms of Eq.(54])

531 T N 3
Cha(@) = = [don| 257 [ a5 aG)YHO)@IAG) (56)
which gives after performing the integral over df},
Gru(@) = ovEME [ar e 2B Lo ) vimvme™ @) 1aC) ")

with r = |Z] and k = |g]. The expression [v/47Ya0(£2,)GX(2)] = g%(i) shall illustrate the xQSM form factor density
which we obtain when we choose the operator J#(0) in Eq.([39) as

TH0) B0t VArYae(Q.)7°4° T | (88)

according to Eq.(21).

Since G o is extracted out from the zeroth-component of the vector-current the Lorentz-structure is the same as for
the form factor Gg. Hence, we can construct the Ggo xQSM form factor density from the expression for Gg. For
the form factor Ggo we will not take any ms-corrections coming from the operator into account and start from the
SU(3)-expression of G g which reads

GH@) = [ @il [daw|agyE B | (59)

with the density

Q
mx
Il

D\ B 2 DY)~ 2 DT
B = ¢>I,<z*>o¢v<z*>—%Zsign@n)qsuawn(zx

T = 5 3 Il sl (0T6,(2) + 1 3 Ralens e nlr m) 81, (107 60 (2)

an;zéau n,m

Lo = iz L )t (2)06,0 (2) + - an EnrEm0) B! o (F)0¢ (2)(n|m®) .

Eno — &y
Eno

nmo
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The choice of J#(0) defines the operator O in the densities 3, Z, Zo which in case of the form factor Gg is O = %% = 1
and in case of Ggg it is O = \/EYQQ(QZ). The density B originates from the zeroth-order Q° in the rotation-velocity
expansion of Eq.(I)) whereas Z;,Z, are the first rotational Q2'-corrections. The Q! corrections are also referred to as
1/N, corrections. In case of the operator O = v/47Y2y(2.) the corresponding densities B(2) and Z(Z) are zero.

The final expression in the xQSM for the form factor G gs reads

) 12 ) ®) 4 J2(ldlr)
GX,(Q%) = i ﬂMA<B/| 3D J; - D& Jl} B) [ dr it 25 T (r) (90)
with the density
6 1
~Tip(r) = > (=) (AY, G¥ || ||A", G (A", G™||[r){VArYs @ 71 }1 (]| AY, GY) (91)

Ne

Ep — €
ntv n v

1
+5 D Ralen,em) (5)5 7 (A7, G| ||A™, GTH(A™, G [r){ViTYs @ i (1] AT, G7), (92)

where the sum over the third grand-spins of the basis sates in App[VIElare already taken. The whole G}, form factor
originates from the rotational corrections and therefore scales as 1/N,. and vanishes in the large N, limit.

The same density also occures in the yQSM expression for the N — A transition form factor ratios Rgy =
—GRA(0)/GYA(0) = E2/M1 and Ry = C2/M1 ~ GE2(0)/GYA(0) in [38]. The final results of that xQSM
SU(3) analysis are E2/M1 = —1.4% and C2/M1 ~ —1.8% for which we can write

Cppn pr 1A [ra(an) | L@

0.78 =~ ===z - r
OZ/MI C2 3 fd’l“]g(|(ﬂT‘)I1E2($)

(93)

by using the formulae presented in [38]. Inserting the density Z;g2(r) of this work reproduces the 0.78. In addition
we can also reproduce the values for M %2 presented in [64] by using the expressions of that work with the density
T1m2(r) of this work.

IV. RESULTS AND DISCUSSION

We now present and discuss the final results of this work. We have calculated the electromagnetic form factors Ggy,
Gpa and Gy of the A(1232) and compare them to the form factors Gg and Gy of the nucleon. We also consider
the magnetic transition moment of the process N — A and give numerical values for all other decuplet magnetic
moments. All results are achieved by using the self-consistent SU(3) xQSM. In this formalism the constituent quark
mass M is the only free parameter with standard value M = 420 MeV. Numerical parameter are fixed as described
in Sec[[Tll and are exactly the same as in the works |34, 135, 136, 137, 138, 139, 140, 141, [42]. With the numerical parameters
of Tablll the YQSM yields masses of the octet and decuplet baryons in unit of MeV as Ref.[42]:

My = 1001(939), M, = 1124(1116), My = 1179(1189), M= = 1275(1318) , (94)

Ma =1329(1232), Ms. = 1431(1385), Mz. = 1533(1530), Mgq = 1635(1672) ,

where the numbers in the parentheses are the experimental values of the Particle Data Group [1]. The xyQSM
values were obtained by first calculating the hyper-charge splittings with Eq.[@4) and afterwards starting from the
experimental octet mass center, Mg = (My + Mx)/2 = 1151.5 MeV.

In general for the observables investigated in this work a change of the constituent quark mass between the values
M = (400 ~ 450) MeV affect the numerical values of the observables by 4%. We therefore present only final results
for M = 420 MeV.

We will first discuss the values of the form factors at the point Q% = 0 and afterwards their Q? dependence up to
Q? = 1GeV>

The magnetic moments are obtained from Eqs. (EAZR0])

Gu(0) = 5[50 + =637 0)] . (95)
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w1 w2 W3 wWaq ws We
—12.94 (With Mo)
—13.64 (without M)

7.13 5.16 —1.31 —-0.78 0.07

Table II: Magnetic parameters for Eq.(@8). The parameters are for a constituent quark mass of M = 420 MeV and a mass of
Mf\‘,QSM =939 -1.36 MeV in Eq.(GI) as described in the text. The density My is proportional to ms.

p/n.m. ATH AT A AT 2 %Y B B B Q7
this work | 4.85 2.35 —0.14 —2.63 2.47 —0.02 —2.52 0.09 —2.40 —2.29
xQSM '98 [57]| 4.73 2.19 —0.35 —2.90 2.52 —0.08 —2.69 0.19 —2.48 —2.27

Table III: Magnetic moments of the decuplet in the self-consistent yQSM for M = 420 MeV. All numbers are given with
inclusion of flavor-SU(3) symmetry breaking effects. The flavor-SU(3) symmetric value of this work is given by pgio =

2.47 Q1o pn. The xQSM Q™ magnetic moment agrees well with the experimental value given by the Particle Data Group of
- = (=2.02 4 0.05) un [1]. The mass factor of Eq.(@T) is MX?*™ =939 - 1.36 MeV as described in the text.

for which we can rewrite Eqgs.(63) in the following simple form:

G0 = [da B10)[g + o)) (96)
~ ~ 1 N
g1>\</[ = wlDisg) + U)dequ;Sp) Jq + w3ﬁD§(88) Jg (97)
sy (ope 1 8 8) (8 8) (8 8) (8 8) (8
G = wi—zdps DS DS + ws (DYDY + DY DY) +ws(DE) DY) — DYDL)) (98)

V3

All magnetic constants in this work can be reproduced (within accuracy) by using the values of Tabllll and the
matrix-elements of App[VIT1 In the case of flavor-SU(3) symmetry only the paramters w;, we and ws contribute
whereas wy, ws and wg are m corrections coming from the operator; wave function corrections contribute via | B) with
the paramters wy, wy and ws. Since the right hand-sides of Eqgs.(GIT4B400) are model-equations we also take the
model-value for the nucleon mass which is by a factor of 1.36 larger than the experimental value, M jf,QSM =939-1.36
MeV.

As in [57] we can write the magnetic moments of the decuplet baryons in flavor-SU (3) symmetry by the simple formula

1 1 1
Hplo = —E(’wl — —Wgy — —’LU3) QlO J3 UN (99)

2 2
where @19 is the charge of the decuplet baryon and J3 its third-spin component. The numerical value of this equation,
given later (Eq.(I00)), is close to the model independent analysis in [57] and comparable to the one in [55]. The yQSM
analysis of |56, 57] gave in flavor-SU (3) a decuplet magnetic moment of 2.23- Qqopun. Eventhough the numerical value
of the present work is close, there are differences in its determination. As explicitly mentioned in [57] the so-called
symmetry conserving quantization (SCQ) technique [59] was not applied and the magnetic moment of 2.23 - Qoun
is normalized to the experimental nucleon mass in Eq.(60). The SCQ has as a consequence that it decreases pp, like
g% in [35] compared to [65] , but the normalization to the nucleon mass as it comes out in the self-consistent yQSM
enhances pp. The final numerical value for the decuplet flavor-SU(3) magnetic moment with J3 = 3/2, application

of SCQ and normalization to the soliton nucleon mass, M]’\‘,QSM =939-1.36 MeV, is

NE%SM =247 Q1o pnN , (100)

by using the values of Tabllll Our final results for the magnetic moments by including flavor-SU (3) breaking effects
are summarized in Tabl[Tll The m; corrections of this work are more moderate compared to the results in [57].
This is also a consequence of the SCQ. The SCQ has a significant impact on the parameter wi, therefore alters the
ratio of the wave function to operator corrections in this work compared to [57]. For the wave function corrections,
numerically the factor as; is dominant and the magnetic moment corrections originating from it are sensitive to w;.
However, in general the m, corrections in this work are maximal 8% beside the neutral baryons . The m corrections
in this work have the same sign as in [56] which is not always the case by comparing with [57)].

Magnetic moments for the nucleon, the N — A and A™ are discussed in more detail in Tab[[Vl Since the xQSM
uses the large N, approximation, to some extent the large N, relations of [28] should be fulfilled. The relations given
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plun]| Q0 Q0L QO 4 oml large N, rel. exp.
pp | 125 246 2.44 2.79
pn |—0.93 —1.63  —1.68 —1.91
lpan|| 1.38  2.56 272 |pan = J5(kp — pn) = 2.91 3.46 4 0.03
pa+ | 1.16 247 2.35 fat A 2 (up — pn) = 247 |2.7 £ 115018 £ 1500

Table IV: Magnetic moments of the nucleon, the N-A transition and the A1 in the self-consistent YQSM for M = 420MeV.
The second column corresponds to the leading order in rotation whereas the third and forth columns are linear rotational
and ms corrections, respectively. The last column are experimental data taken from [1, |4, |5, 166] with the uncertainty of
pa+ = (27719 (stat.) £ 1.5(syst.) + 3(theo.)) un. The normalization in Eq.(BI) is taken as MI’\‘,QSM =939 - 1.36 MeV for all
given observables as described in the text. The values for the large N, relations are given by using the xQSM values where in
case of the pia+ the pao contribution is omitted.

in that paper are exact up to the order O(N;2). In the present approach of the YQSM there are two reasons why
this relations should not be exactly fulfilled. First, in order to achieve numerical values the transition back to N, = 3
is done. Second, not all N ! corrections are taken into account, e.g. corrections from the translational zero-mode are
not considered. Generally, also for other decuplet magnetic moments in the YQSM of Tabl[Il] the large N¢ relations
of 28]

9 ~
pare = pa- = iy = pin) + O(N; ) (101)
3 ~
par = pao = =(up = pn) + O(N; ) (102)
3 _
st~ b = S — ) +ONT?) (103)
pzo, —Hz- = —3(uzo — pz-) + O(N?) (104)

are satisfied up to 7%.
In case of the N — A transition and the A form factors we made use of large N, arguments in Eqgs. ([7II83)) for several
mass-ratio factors, which lead to the values, also presented in the Tabl[V] and Tab[V] in the self-consistent yQSM of

GNA(0) =2.72 pNA =272 py (105)
G411 (0) =235 pa+ =235 iy (106)

Keeping these mass-ratio factors, which are over-all factors, yields

GYA(0) =2.30 pNA =272 pn (107)
GA1(0) = 3.09 fin+ =2.35 N . (108)

The first treatment would correspond to neglecting all 1/N,. corrections beside the rotational corrections while keep-
ing the pre-factors would correspond to keeping some more 1/N, corrections but neglecting all model-based 1/N,
corrections besides the rotational ones.

We will discuss now the At electric and magnetic form factors G and G for Q2 < 1 GeV?2,

The results of the self-consistent yQSM calculations for the electric and magnetic form factors G4, G4, G%g and

G]\Afl are best reproduced by a dipole type form factor

Grm(Q?) = (109)

In Tab[V] we present the fitted parameter which reproduce the proton and AT electric and magnetic form factors of
Figlll In case of the lattice results [27] an exponential type form factor for Gn

G (Q%) = Gani (0) e~ /M (110)

parametrizes best the lattice results. We compare our results in Tab[V] with those of [27].
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A%/(GeV?) Gh,(0) A /(GeV?)[A%o/(GeV?) G (0) A31/(GeV?)
xQSM 0.614 2.438 0.716 0.585  2.354 [3.089]) 0.736TP [0.490]"<P
Quenched Wilson 1.101 2.635 0.978%XP
Dyn. Ny = 2 Wilson 1.161 2.344 1.0226%P
Hybrid 1.126 3.101 0.895°%P
Experiment 0.523 2.793

Table V: Table of proton and A1 parameters for the dipole (dip) and exponential (exp) form factor fits Eqs.([0QII0). The

numbers in parentheses corresponds to 1) using normalizaion of MXQSM = 1232-1.36 MeV in Eq.(84) 2) using an exponential
type form factor. The self-consistent yQSM calculation for Gasi is best reproduced by a dipole type form factor while the
numbers for A%;, in case of the lattice results are for an exponential type form factor.

The charge and magnetic dipole form factors of the decuplet baryons in case of flavor-SU(3) symmetry can be
written as

Q1o X /d zyo(l(ﬂ|2|)[ B2+ 3 511(2) +%I2I(j) ’

Gun@) = Quxn 3 [t W R i nl

with Q19 as the charge of the decuplet baryon and its third-spin component J; and Ma the normalization of the
magnetic form factor. In case of the neutral decuplet baryons the entire form factors for Ggo and Gy, even for
Q? > 0, are only due to strange-quark mass corrections.

For the proton the experimental value of the charge radius is [(r%)7]*/2 = 0.8750 4 0.0068 fm ((r%)" ~ 0.766 fm?) [1.
The charge radii of the proton and A" of G and G gg in the self-consistent yQSM with M = 420 MeV are, respectively

Gro(Q?)

r2)p = 0.768 fm> 23U G — 0770 fm? , 111
E E/P

r)a+ = 0.794fm? T SZ(?’) =0.813fm? | 112
E A

and the magnetic radii for G/ (Q?) and Gr1(Q?) are

2p = 0.656fm>  (r2)3Y3) = 0.665fm? | (113)
(Par = 0.634fm>  (73,)30 = 0.658 fm? | (114)

where the index SU(3) indicates the value in case of flavor-SU (3) symmetry. The above radii are calculated by differ-
entiating the yQSM form factor expression, i.e. explicitly integrating the xQSM form factor densities. Alternatively
one could calculate the radii by using the dipole fit due to (r% vy =12/ AQE) s for which the values only differ by max
1%.
In Fig[llwe compare the final YQSM results for the A* form factors Ggo and Gjr1 with those of the lattice calculation
[27]. The xQSM form factors drop faster with increasing Q2. In case of the YQSM it is known that the Q? dependence
of the experimental data of the electric and magnetic form factors for both nucleons are very well reproduced [31]. In
the lattice work [67] the nucleon iso-vector form factor FI'~"(Q?) for pion-masses ranging from m, = 775 MeV down
to m; = 359 MeV was calculated. It was found that the form factor becomes steeper by lowering the pion-mass.
Still for a value of m, = 359 MeV the results of [67] are above the experimental values. The minimal value of m,
in Ref.|27] for the form factors Ggg and Gy of the AT, Figlll is m, = 353 MeV and also do not fall off as fast as
the xyQSM results. This can also be seen in the fact, that the lattice results are best reproduced by an exponential
type form factor while the YQSM are more of a dipole type form factor. The A magnetic moment is presented in the
range of pa+ = (1.58 ~ 1.91) uy in the pion mass range m, ~ (353 — 400) MeV. The value of the present yQSM
calculation is pa+ = 2.35 un.
Recently, a first dynamical lattice QCD calculation |20] of the A and Q~ magnetic dipole moments was also performed
using a background field method. The calculation for = was done at the physical strange quark mass, with the result
o- = —1.93(8) puy in very good agreement with the experimental number. The A has been studied at smallest pion
mass value m, = 366 MeV with the result ua+ = 2.40(6) un

We will now discuss the results for the A electric quadrupole form factor Ggo. In Figl2lwe present the final results
and compare them with the recent lattice calculations in [27]. As already mentioned in Sec[lII(J the form factor
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Figure 1: Electric and magnetic form factors of the A%, A%, A~ and the nucleon in the self-consistent YQSM compared to
lattice results. The form factors of the ATT are roughly by an overall factor of 2 larger than those for the A1 and are not

explicitly shown. The G%g and GAA/IUI for @Q? > 0 are entirely due to ms corrections and therefore smaller compared to the
neutron Gps. For all magnetic form factors M]’\‘,QSM = 939 - 1.36 MeV is used in Eq.(6I)) beside the xQSM graph in the
lower-right picture where we also take MXQSM = 1232 - 1.36 MeV and indicate the normalization by [Mpy(a)]. In the last two
figures we compare our final results for the AT form factors Gro and Gas1 with those of the lattice results in Iﬂ]
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Figure 2: The electric A* quadrupole form factor G2 in the self-consistent yQSM and comparison to the lattice results of
[27]. The left picture shows the form factor decomposed into its valence and sea quark contributions while the right picture
compares the final result with those of the lattice calculation. In the right picture we once took MI’\‘,QSM =939 - 1.36MeV and
once MXQSM = 1232 - 1.36MeV for the mass in Eq.([@0).

xQSM Quenched Wilson Dynamical Wilson Hybrid
G4, (0) —2.145 ~0.810 —0.784 —1.851
A2, /(Gev?)|0.369%P [0.268]8XP 0.696°*P 1.938%%P 0.542°%P

Table VI: Table for fit parameters of the form factor Gg2. The indices “dip” and “exp” corresponds to fitting with a dipole or
exponential type form factor Eqs.(T0OII0). A dipole type form factor reproduces the self-consistent xQSM calculation more
accurate than an exponential fit.

G g2 in the xQSM is only due to rotational corrections which are seen as 1/N, corrections. In the large N, limit the
xQSM leads to a vanishing form factor. In the left panel of FigPlwe decomposed the form factor into its contributions
coming from the valence and sea quarks. The sea contribution gives the most sizeable part of the form factor. This
behavior is also seen in Ref.|64] where the electric quadrupole moment Qya was investigated in the SU(2) xQSM.
The density Z1 g2(r) also contributes to the NA transition in [64]. The Fig[2shows the same behavior of valence and
sea quark contributions for Ggo as Fig.1 in Ref.|64] for the quantity Qna. In case of the xQSM we had to introduce
a regularization scheme for the sea quark contribution which was the proper-time regularization. The fact that the
sea quarks give the dominant part of the form factor could result in a sensibility of the yQSM GEg2 to the applied
regularization scheme. An analogous situation is met, and well known, in case of the X, n form factor in |68, I69].
In this work we do not investigate the regularization dependence of the form factor Gg2 and give all final results for
applying the proper-time regularization.
For the parametrization of this form factor we prefer a dipole type fit Eq.([[09). In Tab[VIlwe summarize the parameters
which reproduce the self-consistent yQSM calculation and compare them to the results of the lattice calculation of
[27]. In case of the electric quadrupole form factor the lattice results are more divergent. Again the xQSM result falls
off faster in the region 0 < Q2 < 0.50 GeV? compared to all three lattice results but compares well to the quenched
Wilson and hybrid action results for 0.50 GeV? < Q2 < 1 GeV?, respectively.

In the Ref.[29] a relation in the large N, limit is found which connects the quadrupole moment of the N — A
transition Qnya to the quadrupole moment Qa of the A

22

= TQpA+ + O(NJQ) . (115)

Qa+

The Ref.[5] extracted the value of

Qna = —(0.0846 =+ 0.0033) fm? | (116)
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which gives with the above large N, relation
Qa+ = (—0.048 4 0.002) fm?* .

The final result of this work in the self-consistent xQSM is

Gpa(0
QXYM = Eg ) 00509 m? (117)
A

which agrees well to the above estimation. From the left panel in Fig[2l we see that for the electric quadrupole moment,
propotional to Gg2(0), the sea quark contribution dominates the valence quark contribution. Furthermore, one can
expect the sea quark contribution to have a broader spatial distribution than the one for the valence quarks. This
in turn leads to a steeper Q? dependence of the contribution to Gga of sea quarks as compared with valence quarks.
This is evidenced in the present calculation as shown in Figl2

In the xyQSM work [64] the authors presented an electric quadrupole transition moment of @Qna = —0.020 fm?. Also
for this quantity the main contribution comes from the sea quarks. The small value of Qna = —0.020 fm? in [64]
is in contrast to Qya = —(0.0846 + 0.0033) fm?® from [66] and the relative large electric A quadrupole moment
QX%SM = —0.0509 fm? of this work. We can reproduce with the density Z; g2(r) of this work the values given in
[64]. The discrepancy of the above numbers could be due to a possible breakdown of the approximation &k - R < 1
performed in [64], with k being the photon-momentum at Q% = 0 of the v*NA process and R being the nucleon
charge radius. This remains to be investigated in future studies.

In the work |70] the AT electric quadrupole moment is estimated to QXZP (7€) — _0.032 fm? (—0.119fm2) by using a
constituent quark model with once configuration mixings and no exchange current and once with an exchange current
but no configuration mixing, respectively. A recent light cone QCD sum rule calculation |71] obtained an electric
quadrupole moment of Qo+ = —(5.8£1.45)10~*fm?. Our value of QXCL{SM = —0.0509 fm? is more comparable to the
constituent quark model results.

V. SUMMARY

In the present work we investigated in the framework of the self-consistent SU(3) xQSM the electromagnetic form
factors of the vector current for the decuplet baryons. We explicitly take the symmetry conserving quantization, linear
1/N. rotational as well as linear strange-quark mass corrections into account. Earlier self-consitent SU(3) xQSM
results only calculated the decuplet magnetic moments and did not apply the symmetry conserving quantization.
Numerical parameters of the model are fixed in the meson-sector as described at the end of Sec[Ill The only free
parameter of the yQSM for the baryon-sector is then the constituent quark mass. All these parameters were fixed by
previous studies and were also used in the present work. No additional readjusting is done. With these parameters,
the general way to calculate observables in the model is to determine the eigenvalues of the xQSM hamiltonian
numerically by using a self-consistent pion-field profile, the soliton. These eigenvalues are then used for determining
all observables in the yQSM.

In particular we calculated the form factors Ggo, Gyi1 and Ggo for the AT up to a momentum-transfer of
Q? < 1GeV? and magnetic moments for all decuplet baryons and the N — A transition. In general all yQSM form
factors are best reproduced by a dipole type fit.

Experimental data for decuplet magnetic moments are available for the A™* with pua++ = 3.7 ~ 7.5un |1], the AT
with pa+ = (2.7719(stat.) & 1.5(syst.) & 3(theor.)) ux [4] and for the Q= with - = (—2.0240.05)ux. The present
work yields values of pa++ = 4.85 un, pa+ = 2.35 uny and po- = —2.29 uny which is in good agreement with the
experimental ones. The N — A magnetic transition moment was extracted in [5] as pya = 3.46 & 0.03 uy whereas
this work yields a value of pany = 2.72 uy. Other xQSM results for decuplet magnetic moments are summarized in
TablIIIl

The final results for the magnetic dipole and electric charge form factors are presented in Figs[ll In the yQSM the
A* radii of these form factors, (r%) = 0.794fm? and (r3,) = 0.634 fm?, are comparable to the ones of the proton,
(rZ) = 0.768 fm* and (r3;) = 0.656 fm?, keeping in mind that we take for both baryons the same classical soliton
configuration. The experimental value for the proton electric radius is (r%) ~ 0.766 fm?.

We also presented the electric quadrupole form factor of the A*. The value Gg2(0) is directly proportional to the
A electric quadrupole moment for which we found a value of Qa = —0.0509 fm?. The electric quadrupole moment
and the electric quadrupole form factor appear in the model entirely as 1/N. corrections arising form the expansion
in the rotation velocity of the soliton. Hence, in the large N, limit the model leads to a vanishing form factor and
moment. In addition a decomposition into the valence and sea quark contribution of the electric quadrupole form
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factor, Fig[2] shows that the main contribution originates from the sea quarks. Furthermore, one can expect the sea
quark contribution to have a broader spatial distribution than the one for the valence quarks. This in turn leads to a
steeper Q? dependence of the contribution to Gga of sea quarks as compared with valence quarks which is explicitly
seen in the present calculation.
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VI. APPENDIX
A. Model Independent Quantities

We use the Breit-frame in which the incoming p and outgoing p’ momenta are defined as

—

P=(ED . p=(B-2) a=00, Q*=—¢ =&, ¢=dl0sin0c0s,sin05sin¢,cos ) (118)

NS

with ¢? = 4(E? — M?). We use the Rarita-Schwinger spin-3/2 spinor

o 3s o . E+M s
u®(p,s) = Z 012,\%5/ e*(p, \) u(p,s) with u(p, s) = i ( &ﬁ s )
A, s’ s

The spin-1 vector e®(p, A) is defined by with A = £+1,0

P B(ex D) i X i
o _(ex'D “(ex- oA . L . .
€ (p, )\) = ( M , €N + m) with €41 = 5 —1 , €0 = 0 , €1 = 5 —1 . (119)
0 1 0
The final and initial A states for the used third-spin components read
Blp 13 1, .8

o) = 2 D) 0)+ /3 up—3) 1) (121)

For the zeroth-component of the vector current, (A(2)[V°|A(2)) we obtain by using the Breit-frame

2
a(p', s u(p,s) = Oy ;e (p ) gape’ (p,1) = —1 — 37 + (3cos? 6 — 1)% , (122)
2
. iy . q o 1+7 1
a(p', s )o% qu(p,s) = _Z—QM(SS,S ;e (p', 1)gagpe’ (p, 1) = 4M2T—3 1- 5(3 cos?0 —1)] , (123)

with 7 = Q2/(4M?).
For the spatial-component of the vector current (A|Vy|N)we obtain by using the rest-frame of the A

Bkor Pogr = M 5°° %5¢° | (124)
Eﬁouwpvq'yekoaép;%? = eﬁav'ypuq'yekaOJMQJ = M? éﬂb [5bkqQ - qbqk] . (125)
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B. xQSM Electric Densities

The electric densities of Eq.([G2]) are

¢T

- = Zs1gn en)0) (2)dn(2),
;Y — |rl‘|n>¢1<5>ri¢v<z*>+1ZR3<an,sm><n|ri|m>¢a<5>fi¢n<z>,
En;ﬁsv n Ev
Z ()LD (Z 1 3 Ralen )60 ()60 (2 nlm?),

Z

En

nm0

—61(2)6n (o) + % S )5, (6n (R e ),

n - <v

;ﬁsu n,m
5 Z e |TL>¢T( )T (;SU(Z) + Z<7’L|’7 |m>¢T ( )T ¢n( )Rg,(&n,gm),
an;zéau n v n,m

Z

€,0

&L (2)pno (2)(n°[7°0) + ZR5 £+ €m0 ) b0 ()60 (2) (7 °|m”).

Eno — &y

The vectors (n| are eigenstates of the YQSM Hamiltonian h(U) which are a linear combination of the eigenstates (n°|
of the Hamiltonian H (1) [72].

C. xQSM Magnetic Densities

The operator for the magnetic form factors in the YQSM is O; = 7°[Zx ¥]3 = 7v°[Zx &]10 and the magnetic densities

of Eq.([G3) are

~—
&y
I

—~
&
I

= (WI2{01 ® T }o(Zllv) + ) V2Gn + L(nl|2{01 ® ma}o(ln)Ra(en),

> (S w0 Ay nlimlv)

— &
n v
En;ésl,

433 Ralensen) (45O i fm) (m|2) 01 (211,

> %lAHO1 B o) e )

+ 3 Ri(en20n)v/2Cm + Lm®||D{01 ® 7 Jo (2} (n | m?),
Z S;fni_(i;)(_ﬁ" (n[|2){01 @ 71 }1 (2l |v) (v |71 |[n)

En

+% > Ralen,em) (=) (n]| {01 ® 11 11 (Z]m)(m]|m1]n),

> L elBO O mdo(aln) o)

n
EnFEy

S Rl )V 2o T L m) (01 © Yo ().

> (Sl ) el1) 0 (Elm)

— €
n v
EnFEy

=5 37 Ralensem)(4) = (allyOra o) ] )01 (2],



M) = 3 {01 ® )olFln’) (1)

Epo —
n0

— > Ralen,emo) v/ 2Gm + Lm || 2{01 @ 11 }o (2 In) (nly[m?).

n,m0

D. Regularization Functions

The regularization functions are defined as:

> du
Rilen) = / R
2\/_ /a2 VU
2 2
me —ug,, _Ene —ue,,
Ra(en,em) = 7
2{em ) /1/A2 2\/7ru En — Em
En,Em) = ——= e _ 7
’ 27 S Valu™ 22, =22 .
1 [ 1 (1= a) —ae,,
R4(En,€m) = 2— du/ dae—aiu(l—a)—agfnug ( a) 75 ,
T J1/n a(l —a)
1 signe,, — signen,
Ralemem) = 37 2 o
1 —si n)Si m
RG(EnuEm) = Slggn(g_):lgn(g )

E. Reduced Matrix Elements for {v47Y> ® 71 }1

20

(126)

(127)

(128)

(129)

(130)

(131)

We use the basis of [72] where the iso-spin 7 and total angular momentum j is coupled to the grand-spin G = 7+ j

(G=1+s)

1
|l=G,]:G+§

1
|l:G;j:G—§'GG3>,

=
=
I

y GG3> y

=
=
Il

2) = I=G+1; ]—G+— GGs)

3 = I=G-1;j=G-5; GGs) .

(132)
(133)
(134)

(135)

The reduced matrix elements for the operator {v47Y2 ® 71}1 in the density Zig2(r) Eq.(@0) are with the notation

(n|{VArY2 @ 11 }1|Im):

1

AG) = (—)(G+2)\/(20+3—)CEG+1) AYG) = (—)G(2G+4)\/
_ 1 1 o (G+2)
BUG) = 3 55a71) B(G) = 3\/2(2G+1)(2G+3)

G — (G- 1), |26+

(G+1)(2G + 4)

@G +1) CH@) = () \/(2G+1)(2G+3)

G
DY(G) = (_)3\/2(2G+1)(2G+3)

(2G +1)(2G + 2)(2G + 3)
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6™ =G"|0(G)) 1(G)) 12(G)) [3(G))] |G™ =G +1]]0(G+ 1)) [L(G+1)) [2(G+1)) [3(G+1))|

0(@)] |AYG) B(G) 0 0 (0(@)] 0 0 BY(G)  AYG)
(L&) |BY(G) C%(G) 0 0 (&) 0 0 ci@) DG
@) |0 0 A%G) B%G) (@) BYG)  ANG) 0 0
B@& | 0 0 B%G) C°(G) B(G)| ci(G)  DYG) 0 0

F. Matrix-Elements

The baryon matrix-elements, such as (B’ |D§3)|B), are evaluated by using the SU(3) group algebra |73, [T4]

dimR/
dimR

R' n R R! n R
. < Q' Q7 ) < -Y!S' — S} —Y. SV— S ) ’ (136)
~ X s 3 m S 3

with @ = YII5. (---) denote the SU(3) Clebsch-Gordan coefficients.
The wave function corrections Eq.(d9) for the other decuplet baryons are

(Bl/| D (A)|Br) = (—1)3YHSE (1) Yot Ss

|Bio) = [103/2, B) 4 a%|273/2, B) + a55|353/, B) (137)

with the mixing coeflicients

15/2 5/v/14
2 B 2./5/7
373 , af =azs ol (138)
0 2/5/7

B
Qo7 = Q27

in the bases [A, X5, Z5p, Q).

1. Magnetic Part

We take the abbreviation dgp3 D;i) Jo = dD,J and the matrix-element for the magnetic form factors of the decuplet
baryons read as follows with |B1g) = |B1o(Y, I3, S3)):

Leading order:

(a1p{1a) = (519108 1310) = (210103 1210) = 21D 10) = —13153
AID{E) s318) = (210105 s31%10) = (21010 5315100 = (@D 5519 = 133/ L3
(AldDgJ|A) = (X10ldD3J[210) = (E10ldD3J|E10) = (2[dD3J|Q) = I3 1553

(AIp$ 18y = (21010 1910) = (21010 1510 = (21D 19) = ~v3y/%ss
(a1p{) 5318 = (210108 $51210) = (=101D{) s31210) = (2D s510) = v s,
(AldDgJ|A) = (27,1dDgJ|S5) = (E5|dDgJIE]) = (2]dDgJ|Q) = Y%%S:;

Wavefunction corrections:

<ng83)m> - (fz\Dgss)Jg\m = (Q|dD3J|Q) = 0

8 8 : 5
@Ip{10) = —aB s34/ g (@D 5319) = 5308 8 /& (QldDgIia) = ~ 5534/ 1hzal



A N

DY |1355 | — a8\ /35 —al g/ || P | ss|ef i/ -aBi/ %
Dé?"s 1353 | —ag /15 T ods3\/ 12 Dz(;i)‘]3 53 |agy /95 + o555/ 1
aD3J |I3Ss| = f54/ F005r — §ass\/1a | | 4087 | Ss| T/ 1008y — 3/ 42 s

* *
>10 >10
(8) B 1 B1 /1 (8) B1 /1 B 1
D33 1383 | —a375 ~935% 35 Dgs S3|a573 3 7 35 105
(8) (8) B 1 B 5 1
Dgg 93| 1353 272 Jr“352 1 Dgg' 53 S3|aeyr3 T 3534/ 35

1 ,B _ 5 1 ,B
dDgJ 1353 " 12%7 ~ 12/ 35“35“

1. B 1 _ 5 1 B
dDgJ | 53 6“27\/; 2/ 10535

=* =k
=10 =10
(8) rd 1 1 (8) B 1 1 B 3 1
D33 1383 | — 6 6 5? 7 Dgs S3|e3754/ 2 ~ %353 210
(8) (8) B3 /1, ,B15 /1
Dyg 93| 13593 ag G/ 5 tegs3/ ot | |Pss 53| Ss|adrir/§ Tedi 70

_ T .B 1_5
ab3J | 1353 18 27\/2 RV L

1 /1,B _ 15 1B
dDgJ | S3 "ﬁ\/gaw 1 \/ 210 %35

8 8 8

Operator corrections D( )D( ) — ég)Dég)
A =1 =7, Q
D(S)Dg? —S3I3 155 —S3I3 —S3I3 15 0
D(S)D(S)d abs | ~S3l31ee /L —S3ls /1 —s3I34% /1 0

(8) p(8) 4. /1 1. /1 L ./1 1. /1
Dgs Dgg S33g 3 S313 3 —5373% 3 —S37% 3
(8) H(8) 5 L 5 1

Dgq Pap dabs S387 —53%3 —S3%%1 —S311

22

2. Electric Part

The A state |A) is explicitly |A) = |A(I3,S3)) and the matrix elements for the electric form factor read:

(8) (8 13
(AD|A) = 1 \f e\ 352\/ (AIDPDPIA) = Ty
8 25 g 8 5 1
(AIDS) Ji|A) = I3_ 8 %12\/ 354\/ (AIDEDP|A) = ~L5\/5
8 [ 1 (8 8) 1 1
(A|DS) JalA) = I3_ 4+ 276 \/ 352\/ (AIDS DY |A) = —13% 3
8 (8) 1(8) _ 7
AIDR1A) = 5 +abT 354,/ (AIDDFNA) = =
15
25 / 15 [1 (AID®DP|A) = =
<A|D§§)Ji|A> = ——\/j—i— 2A7 3 3%5 3 4— 298
(8) n(8) _ 9
(8) A15 (AlDss Dss 18) = 56
<A|D8a Ja|A> = 274 asp 4
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