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Abstract: In this article, we address the infinite horizon
problem of optimizing a given performance criterion by
choosing control strategies whose trajectories are asymp-
totically stable. In a first stage, we state and discuss suf-
ficient conditions of optimality conditions in the form of
an Hamilton-Jacobi-Bellman equation, and, based on them.
Then, we present necessary conditions of optimality in the
form of a maximum principle and show how it can be de-
rived from an auxiliary optimal control problem with mixed
constraints.
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1. INTRODUCTION

In this article, we discuss optimality conditions for
an infinite horizon optimal control problem whose control
processes must satisfy the usual constraints and be such that
the corresponding trajectories converge asymptotically to an
equilibrium point in a given target set. In other words, we
consider the problem

P∞(τ, z) Minimize g(ξ) (1)

subject to





ẋ(t) = f(x(t), u(t)), a.a.t ≥ τ
x(τ) = z
u ∈ U
x(t) → ξ ast →∞
ξ ∈ S ⊂ IRn.

(2)

Here,S ⊂ IRn is a closed set containing at least on equilib-
rium pointξ which is also a decision variable,g : IRn → IR
andf : IRn × IRm → IRn are given functions, and

U := {u ∈ L∞[τ,∞) : u(t) ∈ Ω a.a.t ≥ τ}
is the set of control strategies whereΩ is a compact set in
IRm.

Notice that the value of the optimal cost depends not only
on the equilibrium point, but also on the specific trajectory
reaching it. This is substantially different from the problem
usually understood in the control literature by optimal sta-
bilization which is, in fact, time-optimal stabilization, i.e.,
finding a control that steers the state of the system to the ori-
gin in minimum time.

In the next section, we will discuss sufficient conditions
of optimality for this problem in the form of a generalized
Hamilton-Jacobi-Bellman equation which can be regarded

as a version of the ones derived for conventional problems
in [13] and based on which an algorithm for synthesis of a
feedback control strategy was presented in [10]. Then, nec-
essary conditions of optimality are presented for a variant of
problemP∞(τ, z) where the stabilizing constraints are in-
corporated via mixed inequality constraints.

There has been a significant demand of results for this
problem. A small sample of optimal stabilization application
problems include micro-electro-mechanical (MEMS) control
systems [3], economic systems under a variety of constraints
and assumptions, [1, 12], rigid body mechanical systems [6],
biological, medical, and health care systems [7], to name just
a few.

This contrasts with what appears to be a small body of
results available for the general nonlinear dynamic optimiza-
tion framework addressing the pertinent issues. See for ex-
ample, [9] for a very specific problem and approach. The
problem of stabilizing general dynamic nonlinear control
systems has been receiving a considerable attention in the
control literature, [4, 5, 11] and references cited therein. It
has also emerged the important role of dynamic optimization
and methods of nonsmooth analysis to derive stability results,
see [4, 5]. However, to the best of our knowledge, no results
have been derived for optimal control problems where con-
trol strategies are restricted to the subset of stabilizing ones.

2. OPTIMALITY CONDITIONS OF HAMILTON-
JACOBI-BELLMAN TYPE

First, we point out that, byxū(t) → ξ ast → ∞ where
xū is the trajectory associated to the control function some
ū(·)∈U , we mean

lim
t→∞

∫ t

τ

eγs‖x(s)− ξ‖ds < ∞,

for someγ > 0.
Now, we present a number of preliminary concepts and

results needed in order to state the optimality conditions of
this section. LetH : [0,∞)× IRn× IRn → IR be the Hamil-
tonian function for this problem defined by

H(t, x, η) := sup
v∈Ω

{〈η, f(x, v)〉}. (3)

We say that a continuous functionφ : [τ,∞)× IRn → IR
is a viscosity solution to the Hamilton-Jacobi-Bellman equa-



tion if

φt(t, x)−H(t, x,−φx) = 0, ∀(t, x) ∈ [τ,∞)× IRn,

wherever

∇tw(t, x)−H(t, x,−∇xw(t, x))
{≤ 0 ∀(t, x)∈A−φ−w

≥ 0 ∀(t, x)∈A+
φ−w

for any C1 function w : IR × IRn → IR. HereA+
φ−w and

A−φ−w denote, respectively, theargmaxand theargminof the
function(φ− w)(·, ·) in [0,∞)× IRn.

This solution concept satisfies the uniqueness and non-
smoothness requirements of the generalized solution to the
HJB equation, but a characterization of an extended valued,
lower semicontinuous solution is needed when endpoint state
constraints are present. So, we will adopt the solution con-
cept based on the notion ofproximal sub-gradientandprox-
imal super-gradient(see [5, 13] for the corresponding defin-
itions).

Definition. A lower semicontinuous functionv : [τ,∞)×
IRn → IR∪{+∞} is a proximal solution to the HJB equation
if ∀(t, x) ∈ [τ,∞)× IRn, such that∂P v(t, x) 6= ∅,

η0 −H(t, x,−η) = 0, ∀(η0, η) ∈ ∂P v(t, x), (4)

where∂P v denotes theproximal sub-gradientof the function
v.

There are well known results in the literature providing a
characterization of the value function,V : IR × IRn → IR,
for an optimal control problem, defined for our problem by

V (τ, z) := Inf{P∞(τ, z)}
as a generalized lower semicontinuous solution to the HJB
equation (see for example Theorem 12.3.7 in [13]). Such a
result was derived for the infinite time horizon in [2].

Since invariance type results provide more detailed infor-
mation on optimal control processes than this characteriza-
tion of the value function, we proceed with the definition and
properties of verification functions.

Now, we extend the concept of local verification function
for this new problem formulation and provide conditions un-
der which the existence of a verification function for a refer-
ence process(x̄, ξ̄, ū) is necessary and sufficient for its opti-
mality.

Let x̄ be an admissible arc of problemP∞(τ, z). Let
T (x̄, ε) be a tube centered atx̄ defined by

T (x̄, ε) := {(t, x) ∈ [τ,∞)× IRn : ‖x− x̄(t)‖ ≤ ε}.
Definition. A function φ : T (x̄, ε) → IR ∪ +∞ is a lower
semicontinuous local verification function for(x̄, ξ̄, ū) if φ is
lower semicontinuous and the following conditions are satis-
fied.

1. For all (t, x) ∈ int T (x̄, ε) such that∂P φ(t, x) 6= ∅,
η0 + min

u∈Ω
{〈η, f(x, u)〉} ≥ 0,

for all (η0, η) ∈ ∂P φ(t, x).

2. For all ξ ∈ S and admissible control process(x, u),

lim inf
t→∞

φ(t, ξ) ≤ g(ξ).

3. For all ξ ∈ S ∩ [ξ̄ + εB],

lim inf
t↑∞,ξ′→ξ

φ(t, ξ
′
) = lim inf

t↑∞
φ(t, ξ).

4. φ(τ, z) = g(ξ̄).

The following assumptions on the data of the problem are
required for the conditions of optimality stated below.

H1) f is continuous and locally Lipschitz inx.

H2) There existsc > 0 such that

f(t, x, u) ∈ c(1 + ‖x‖)B, ∀(t, x) ∈ [0,∞)× IRn.

H3) The setf(t, x, Ω) is convex-valued for all(t, x) ∈
[0,∞)× IRn

H4) The setΩ is compact.

H5) g is lower semicontinuous.

Theorem. Let (x̄, ξ̄, ū) be an admissible process of problem
P∞(τ, z). We have the following:

1. If there exists a lower semicontinuous local verifica-
tion function for (x̄, ξ̄, ū), then this control process is
a strong local minimizer forP∞(τ, z).

2. Conversely, if(x̄, ξ̄, ū) is a strong local minimizer of
P∞(τ, z), then there exists a lower semicontinuous lo-
cal verification function for(x̄, ξ̄, ū).

The proof is a slight modification of a similar result for
finite time interval problems in [13]. Our approach consists
in considering a family of auxiliary optimal control problems
where this asymptotic convergence constraint gives rise to a
penalization term added to the cost function of the original
problem, i.e., we consider the problem:

P l
∞(τ, z) Minimize g(ξ) +

∫ ∞

τ+l

eγt‖x(t)− ξ‖dt

subject toẋ(t) = f(x(t), u(t)), a.a.t ≥ τ

x(τ) = z

u ∈ U
ξ ∈ S ⊂ IRn.

Note that we should have
∫ ∞

τ+l

eγt‖x(t)− ξ‖dt → 0

as l → ∞, thus recovering the original optimization prob-
lem without the explicit constraint. Then, we show how to
construct an (almost) optimal feedback control for problem



P l
∞(τ, ξ). This framework also allows us to construct stabi-

lizing optimal feedback controls.

Here, discuss briefly an algorithm for feedback control
synthesis for problemP∞(τ, z) that, essentially, is a version
of the procedure in [13] modified in order to force the state
to reach the target setS. A partitionπ = {tk} of [τ,∞) is a
countably, strictly increasing sequencetk such thatti > tj ,
wheneveri > j, tk → ∞ ask → ∞. The diameter ofπ,
denoted byhπ, is defined bysup

k≥0
{∆k}, where∆k = tk+1 −

tk. Let us assume thatτ = 0.
Let φ be a given local verification function as defined in

the previous section and letx ∈ IRn be a given state. Define

U(x) := {u ∈ Ω : 〈NP
S (pS(x)), f(x, u)〉 ≤ 0}

wherepS(x) is the proximal point ofx atS.
Let us start withx(0) = x0. Then, an approximating

optimal control process is constructed recursively by com-
puting a piecewise constant control function given, for each
k = 0, 1, . . . by

ūπ
k ∈ arg max

u∈U(xπ(tπ
k
))

{
φ
(
tπk , xπ(tπk ) + ∆kf(xπ(tπk ), u)

)
}

and the corresponding trajectory is obtained by integrating
the dynamics differential equation with the boundary condi-
tion given by the last value of the state variable in the pre-
vious time subinterval of the partition. Namely,xπ(t) is de-
fined on[tπk , tπk+1) as the solution of

ẋ(t) = f(t, x(t), ūπ
k ) a.e.t ∈ (tπk , tπk+1],

with initial value x(tπk ) given by the value of the state
variable in the previous interval.

We have the following main result of this work.

Theorem. Assume that(H1) − (H5) hold. Let φ be
a lower semicontinuous solution to the Hamilton-Jacobi-
Bellman equation. Take(xπ, uπ), the control process ob-
tained by the recursive procedure described above. Then,xπ

has a cluster point1 with respect to the topology of uniform
convergence on compact intervals, and, associated with such
a pointx(·), there is a pair, controlu(·) and limit point ξ,
such that(x(·), ξ, u(·)) is an optimal process ofP∞(0, x0).

3. NECESSARY CONDITIONS OF OPTIMALITY

In this section, we derive necessary conditions for a vari-
ant of problemP∞(τ, z) where the minimum rate of the as-
ymptotic convergence of the trajectory a mixed inequality
constraint of the form

h(x, u) :=
xT f(x, u)
‖x‖2 + γ ≤ 0

whereγ is a given positive number.

1A cluster point of a given sequence is a point to which there is a con-
vergent subsequence.

Let us fixτ = 0 andz = x0, and consider the following
optimal control problem

(P ) Minimize g(ξ) (5)

subject to ẋ(t) = f(x(t), u(t)) L−a.e. (6)

x(0) = x0 (7)

x(t) → ξ ∈ S (8)

h(x(t), u(t)) ≤ 0 ∀t ≥ 0 (9)

u(t) ∈ Ω ∀t ≥ 0. (10)

Obviously, it is implicit thatu∗ is such thatx∗(t) → ξ∗ ∈
S ast →∞.

In order to state the necessary conditions of optimality,
we consider the pseudo-Hamiltonian (or Pontryagin func-
tion) defined by

H(x, p, q, u) := pT f(x, u) + qh(x, u),

and assume the following set hypotheses on the data of our
problem:

H1) The functionsg, f andh are locally Lipschitz continu-
ous inx uniformly w.r.t. all other variables.

H2) The functionsf andh are Borel measurable w.r.t. the
control variable.

H3) The setsS ∈ IRn andΩ ∈ IRm are closed and bounded.

H4) There is at least one equilibrium point inS.

H5) The set

{f(x, u), h(x, u) + v) : u ∈ Ω, v ≥ 0}

is convex∀x ∈ IRn.

H6) There existsδ > 0 such that

inf{h(x, u) : u ∈ Ω} ≤ −δ.

Remark that a generalization of H6) to vector-valued
mixed constraints, i.e.,h : IRn × IRm → IRk is: ∃δ > 0
such that

δBk ⊂ {h(x, u) + v : u ∈ Ω, v ≥ 0}.

HereBk is the open unit ball inIRk centered at the origin.

Theorem. Let (x∗, u∗) be an optimal control process for
problem(P ).

Then, there exists an absolutely continuous functionp :
[0,∞) → IRn, aL1 functionq : [0,∞) → IR, and a number
λ ≥ 0 satisfying:

−ṗ(t) ∈ co∂xH(x∗(t), p(t), q(t), u∗(t)) a.e. (11)

lim
s→∞

p(s) ∈ −λ∂xg(ξ∗)−NS(ξ∗) (12)
{

q(t) ≤ 0 a.e. and
q(t)h(x∗(t), u∗(t)) = 0 a.e.

(13)

u∗(t)maximizes a.e. the mapping

v → H(x∗(t), p(t), q(t), λ, v) onΩ. (14)



Here,NS(ξ) and∂f(ξ) are, respectively, the normal cone
to the setS and the generalized gradient off atξ, both in the
sense of Clarke (see [5]).

Now, we outline the proof which essentially consists in
extending the main result (more specifically, corollary 3.2)
in [8] to infinite horizon. We consider the following steps:

a) The infinite horizon is regarded as the limit of the con-
ditions for finite time for the problem(PT ). Given an
optimal control process for the infinite time horizon, its
truncation to some finite interval[0, T ] for T sufficiently
large is proved to be an almost minimizer of the auxil-
iary finite time optimal control problem.

b) Then, after showing that the requirements of Ekeland’s
variational principle hold, we write down the necessary
conditions of optimality proved in [8] for another conve-
nient auxiliary optimal control problem approximating
the original one and whose optimal control process is
known.

c) Finally, limits are extracted in order to get the stated
conditions.

4. CONCLUSION

We presented and discussed an infinite time horizon con-
trol optimization problem in which a given objective func-
tional is optimized by choosing control strategies which en-
sure the stabilization of the dynamic control system within
a given target set. We provided a dynamic programming
based algorithm which yields a control process defined in a
feedback form that approximates the optimal process. The
method proposed here is modification of previous construct
in [10] for a simpler problem with neither target nor stabil-
ity constraints and addressing a finite time interval. We also
present necessary conditions of optimality in the form of a
maximum principle for an optimal control process satisfying
a prescribed minimum rate for the asymptotic convergence
towards the optimal equilibrium point in a given target set.
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