Volatility Leveraging in Heart Rate: health vs disease
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Abstract

Heart Rate Variability (HRV) data exhibit long mem-
ory and time-varying conditional variance (volatility).
These characteristics are well captured using Fraction-
ally Integrated AutoRegressive Moving Average (ARFIMA)
models with Generalised AutoRegressive Conditional Het-
eroscedastic (GARCH) errors, which are an extension of
the AR models usual in the analysis of HRV. GARCH mod-
els assume that volatility depends only on the magnitude
of the shocks and not on their sign, meaning that positive
and negative shocks have a symmetric effect on volatility.
However, HRV recordings indicate further dependence of
volatility on the lagged shocks. This work considers Ex-
ponential GARCH (EGARCH) models which assume that
positive and negative shocks have an asymmetric effect
(leverage effect) on the volatility, thus better copping with
complex characteristics of HRV. ARFIMA-EGARCH mod-
els, combined with adaptive segmentation, are applied to
24 h HRYV recordings of 30 subjects from the Noltisalis
database: 10 healthy, 10 patients suffering from congestive
heart failure and 10 heart transplanted patients. Overall,
the results for the leverage parameter indicate that volatil-
ity responds asymmetrically to values of HRV under and
over the mean. Moreover, decreased leverage parameter
values for sick subjects, suggest that these models allow to
discriminate between the different groups.

1. Introduction

Heart Rate Variability (HRV) reflects the interaction be-
tween perturbations to the cardiovascular variables and the
corresponding response of the cardiovascular regulatory
systems [1]. The modeling of such variability can pro-
vide a quantitative and non-invasive method to assess the
integrity of the cardiovascular system. HRV data display
non stationarity and exhibit long memory and time-varying
conditional variance (usually designated by volatility)
among other nonlinear characteristics [2], that are well
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modelled by AutoRegressive Fractionally Integrated Mov-
ing Average (ARFIMA) models with Generalised AutoRe-
gressive Conditional Heteroscedastic (GARCH) errors [3].
GARCH models assume that volatility depends only on the
magnitude of the shocks and not on their sign, meaning
that positive and negative shocks have a symmetric effect
on volatility [4]. In [5] the authors consider an extension of
GARCH models, Exponential GARCH (EGARCH) mod-
els, which allow for an asymmetric effect (leverage effect)
and conclude that a model with leverage effect is more
suited to describe the complex and nonlinear characteris-
tics of HRV.

2. Data and Methods

2.1. Data

This study analyses HRV data from the Noltisalis
database [6] which was collected by the cooperative ef-
fort of university departments and rehabilitation clinics
in Italy. The dataset consists of 24 hour HRV record-
ings of 30 subjects: 10 healthy subjects (N, 22.5 + 1.6
hours; 102115.24+11365.4 beats; 42.24+6.4 years), 10 pa-
tients suffering from congestive heart failure (C, 22.4+0.9
hours; 107170.5 £+ 16689.3 beats; 53.6 = 11.2 years)
and 10 heart transplanted patients (T, 22.4 £ 0.7 hours;
116043.3 4= 11913.2 beats; 44.9 & 14.8 years). The start-
ing time of the Holter diary is available, enabling to dis-
tinguish between day and night periods. Therefore, the 24
hour HRV series are analysed in three periods: 6 hours
during day, 6 hours during night and 24 hours.

2.2. ARFIMA-EGARCH modeling of HRV

The model considered in this work is the ARFIMA(p, d, 0)-

EGARCH(1, 1) defined by the following equations [5]
¢(B)(1 — B)'z = & e

€ = 012 2
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logo? = ul +vilogo? | +up|z_1|+ &z (3)

where uf = wup — us \/g, zt = €/or and B is the
backward-shift operator.

Equation (1) describes the conditional mean of the pro-
cess with serially uncorrelated residuals €; and is said an
ARFIMA(p, d,0) with p € Ny and d € R; d, the long-
memory parameter, determines the long-term behaviour in

mean and (1 — B)¢ = ) ( Z ) (—1)*B* is the frac-
k=0

tional difference operator [7]; and the polynomial ¢(B) =

1—¢1B—...— ¢, B" allows for the modeling of the short-

range properties in the mean; for —0.5 < d < 0.5 the
ARFIMA process is covariance stationary. In the range
—0.5 < d < 0.5, the long memory parameter is related to
the Hurst coefficient, H, to the fractal dimension, D, and
to the slope of the (generalised) spectral density in the low
frequency range, a, by d = H — 0.5, H = 2 — D and
a = 2d, respectively. Moreover, for 0.5 < d < 1 the
ARFIMA process is non-stationary and mean reverting.

Equations (2) and (3) describe the conditional variance
of the process which varies over time as in time-varying
AR models. In (2) ¢ are called shocks and z;, indepen-
dent and identically distributed random variables with zero
mean and unit variance, are the standardised shocks. This
process does not require constraints on the parameters for
ensuring the positivity of the variance. The parameters u;
and v characterise the volatility clustering phenomena and
the parameter £; describes the leverage effect. The impact
of positive shocks, ¢;_1 > 01is (& + ul)z—:, while for
negative shocks it is (§1 — u1) 2= If & = 0, log o7 re-
sponds symmetrically to €;_.

Specifically consider the tachogram of the healthy sub-
ject N5 (segment of RR series with 1300 beats) repre-
sented in Figure 1(a) to which an ARFIMA(p = 6,d =
0.45,0) is fitted'. The corresponding residuals are repre-
sented in Figure 1(b). The squared residuals exhibit sig-
nificant autocorrelation (ACF), Figure 1(c). Additionally,
the cross-correlation (CCF) between the residuals €; and
their squares éf, Figure 1(d), indicate that the conditional
variance depends also on the lagged shocks (leverage ef-
fect). Fitting an EGARCH(1,1) model using maximum
likelihood (Econometrics Toolbox of Matlab [8]) the esti-
mated parameters are ug = —2.98, 41 = 0.23, 97 = 0.66
and él = 0.35. The estimated volatility equation (3) is

0.58 Zt—1 if Zt—1 Z O7

log o’t2 = —316+066 logdfl—i—{ 0.12 21 if 21 < 0.

1(i) Estimate d using the semi-parametric local Whittle estimator; (ii)
define the filtered data y; = (1 — B)4ay; (iii) estimate the AR(p) pa-
rameters in the filtered data y; by maximum likelihood, with the order p
determined by the Akaike Information Criterion (AIC)
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Figure 1. Short-term HRV data: (a) tachogram of a normal
subject (segment with 1300 beats of RR series for subject-
NS5 from the Noltisalis database), (b) residuals of the fitted
ARFIMA(6,0.45,0) model, (c) ACF of the squared residu-
als and (d) CCF of the residuals and the squared residuals.
The horizontal lines (- -) show the 95% confidence limits.

Taking antilog transformation, we have

0.582_1 ;
o2 — y240.66,-3.16 ) € #eotif 2y >0,
t t—1 e0122-1 if 2, | < 0.

For example, for a standardised shock with magnitude 2,
2 —_—
we have a Shock Impact [4] of 7e(z21==2) _ () 95 There-

0?(21_1:2)
fore, the impact of negative shock of size 2 standard devi-
ations is about 75% below than that of a positive shock of

the same size. Similar results were obtained in other cases.

3. Results and discussion

The description of 24 hour HRV recordings which
are long (approximately 100 000 beats) and exhibit sev-
eral non stationary characteristics with circadian variation,
is achieved by ARFIMA-EGARCH modeling combined
with adaptive segmentation [3]: long records are decom-
posed into short records of variable length (> 512 beats)
and the break points, which mark the end of consecutive
short records, are identified by AIC criterion. A detailed
description of the ARFIMA-EGARCH modeling proce-
dure can be found in [5].

The results are illustrated for the subjects N5, C5 and T3
in Figures 2, 3 and 4. The long memory estimates d in (b)
change over time showing circadian variation, with lowest
values during the night periods, 0 < d < 0.5 in contrast
with 0.5 < d < 1 for the day period. The volatility pa-
rameters estimates 4, and 01, (c), change over time with
some circadian variation for the healthy subject. The esti-
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Figure 2. (a) Tachogram of healthy subject-N5, Nolti-
salis database, Evolutipn over 24 hours of d in (b), w1(-)
and 01(- -) in (c) and &; in (d) estimated using ARFIMA-
EGARCH modeling.
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Figure 3. (a) Tachogram of patient affected by conges-
tive heart failure-C5, Noltisalis database, Evolution over
24 hours of d in (b), 41(-) and 91 (- -) in (c) and & in (d)
estimated using ARFIMA-EGARCH modeling.

mates u; are lower for sick subjects, C5 and T3. Note that
the estimated values for parameter vy are over 0.5 indicat-
ing some persistence in conditional variance. Moreover,
the leverage parameter estimate &, (d), changes over time
and presents higher values for the healthy subject. These
results are in concordance with [3,5].

The overall results for the 3 groups of patients in the
database are presented during the 24 hours, 6 hours of
night (Night period) and 6 hours of day (Day period), in
Table 1. The results indicate that the long memory pa-
rameter d increases for sick subjects, both during day and

night periods with the highest values for the T group. This
is consistent with [9]. The results also indicate that for the
normal subjects more than 90% of the segments present
volatility, while this value decreases to around 80% and
70% for the C and T groups , respectively. Additionally
the volatility parameter v; decreases for the sick subjects
both during day and night periods with lowest values and
higher variability for the T group. Parameter u; is slightly
higher for the N group. Finally with regard to the leverage
effect the results indicate that it is much stronger in the N
group, both in terms of percentage of segments with this
effect as with regard to the value of £;. The Shock Impact
described in section 2.2. The impact of a negative shock is
lower than that of a positive shock for the N group. In the
diseased groups C and T the Shock Impact is negligible.
It is however interesting to note that for the C group the
impact of a negative shock is lower than that of a positive
shock while for the T group is the opposite.

Statistical differences among the three groups of pa-
tients, applying the Kruskal-Wallis rank sum test and mul-
tiple comparison procedures (5% level of significance), are
reported in Table 2. The results indicate that the long range
parameter d differs between the groups N and T, C and T

Table 1. ARFIMA(p, d,0)-EGARCH(1,1) analysis for
the 3 groups of patients: healthy (N), subjects affected by
congestive heart failure (C) and transplanted (T) during 6
hours of day, 6 hours of night and 24 hour periods. The %
of segments with volatility, the % of segments with lever-
age and shock impact in volatility are reported. mean =+
standard deviations are presented.

Day period
Parameters N C T
d 0.454+0.06 0.57+£0.16 0.77+£0.13
Seg. volatility (%) 92.8+£9.5 84.1+13.3 74.4+24.4
Seg. leverage (%) 87.9+10.8 57.8£234 40.2 +25.3
uy 0.274+0.11  0.18 +£0.10 0.17+0.15
v 0.66 £0.09 0.63+0.21 0.53 +0.23
& 0.224+0.14 0.05+0.05 —0.014+0.04
Shock Impact 0.50£0.21 0.86+£0.13 1.11+0.23
Night period
Parameters N C T
d 0.31+0.05 0.36 +0.16 0.65 +0.17
Seg. volatility (%) 98.5+2.1 89.1+5.8 77.3+17.8
Seg. leverage (%) 78.1£19.5 55.7£26.4 49.6 +16.5
uy 0.29+0.08 0.22+0.11 0.22 +0.11
U1 0.77+0.05 0.67+0.13 0.51 +0.23
& 0.124+0.08 0.05+0.11 —0.01 +0.03
Shock Impact 0.734+0.18 0.92+0.32 1.13+0.18
24 hours
Parameters N C T
d 0.424+0.06 0.50=+0.14 0.74+0.10
Seg. volatility (%) 96.7+3.0 84.6£10.6 78.3+17.9
Seg. leverage (%) 82.8+£12.5 54.3+20.2 44.0 £12.0
uy 0.28 £0.07 0.20 + 0.09 0.21 +0.13
v 0.724+0.06 0.64+0.17 0.56 +0.20
&1 0.18 £0.11 0.05£0.07 —0.014+0.02
Shock Impact 0.59+0.19 0.89+0.18 1.11+0.12
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Figure 4. (a) Tachogram of heart transplanted patient-
T3, Noltisalis database, Evolutiop over 24 hours of d in
(b), 41(-) and 01(- -) in (c) and &; in (d) estimated using
ARFIMA-EGARCH modeling.

Table 2. Kruskal-Wallis rank sum test and % of correct
assignments for 3 groups (healthy N, congestive heart fail-
ure C and transplanted T) during 6 hours of day and night
periods. v/4/ (v/) 5% (10%) significant differences.

Day period Kruskal-Wallis ~ Multiple comparison % Correct
Parameter p—value N-C N-T CT assignm.
d < 0.001 Vv Y 70.0
w1 0.252 40.0
V1 0.247 50.0
&1 < 0.001 v VYV v 70.0
Night period  Kruskal-Wallis ~ Multiple comparison
Parameter p—value N-C N-T CT
d < 0.001 Vv VYV 60.0
ul 0.152 46.7
v1 0.021 R4 70.0
£1 0.002 v VY 60.0

in the day and night periods. The leverage parameter &;
differs among the 3 groups during the day and only be-
tween health and disease during the night. Additionally,
discriminant analysis is applied to determine the ability
of the parameters to distinguish among the three groups
of patients. During the daytime, the parameters d and &;
have the highest discriminatory power, 70%, among the
three patient groups. During the nighttime, the parameter
v1 has the highest discriminatory power, 70%. When the
four parameters are combined their discriminatory power
improve: during nighttime the highest value is 80% and
during daytime is 70%.

The above analysis indicates that ARFIMA-EGARCH
models provide a set of parameters that quantify important

characteristics of HRV such as long memory, time-varying
volatility and asymmetry in volatility. Such parameters are

promising in differentiating health and disease situations,
as well as in risk stratification and autonomic nervous sys-
tem dysfunction characterization, warranting further study.
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