
     

 
 
 
 
 

 
 
 
 
 
 
 
 

AN IMPLEMENTATION OF A FRAMEWORK FOR COOPERATIVE ENGINEERING 
 
 

Gil M. Gonçalves, Paulo Sousa Dias, António Santos, 
João Borges de Sousa, Fernando Lobo Pereira 

{gil, pdias, ansantos, jtasso, flp}@fe.up.pt 
 
 

Faculdade de Engenharia da Universidade do Porto 
Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal 

 
 
 

 
Abstract: This paper discusses a framework for Cooperative Engineering (CE) and its 
prototype implementation. Cooperative Engineering concerns the application of 
Concurrent Engineering techniques to the design and development of products and of 
their manufacturing systems by a network of companies coming together exclusively for 
that purpose. CE is a common practice in many industries such as automotive, aerospace, 
shipbuilding, defence, and pharmaceutical.  This framework provides a formal model for 
CE. This is done in the context of distributed hybrid systems (DHS), a modelling and 
control framework for networked systems introduced recently by the control and 
computer science communities.  Copyright © 2005 IFAC 
 
Keywords: agile manufacturing, concurrent engineering, cooperation, manufacturing 
systems, systems engineering 

 
 
 

 
1. INTRODUCTION 

 
In this new world of alliances, partnerships are not an 
option but a requirement. Recent advances in 
computer and communication technologies, of which 
the Internet is an example, can lead to what Toffler 
(1991) entitled Adhocracies – highly flexible 
organisations composed of decentralized networks of 
independent entrepreneurs: typically, a network of 
companies (members) is formed to take advantage of 
a business opportunity which is beyond the reach of 
any single company on its own; the organizational 
model emerges from the ad-hoc networking of its 
members, where each member contributes its core 
competences in areas so distinct as engineering, 
manufacturing, marketing, or finance; each member 
is an independent system, with its own objectives 
and utility functions; the members of the network 
share goals and utility functions; decision-making 
takes place under partial information since each 
member protects its assets and know-how; the 
network is dissolved or evolves in some other 
direction when the business opportunity ceases.  
This organizational model differs from other inter-
organizational models by the degree of shared 

responsibility and by the structure through which 
partners contribute with their competences, using 
plug-in compatible business processes (van der Aalst 
and van Hee, 2002). This praxis is leading both to 
new business models and to the formalization of 
current practices. One such practice is Cooperative 
Engineering (CE). CE concerns the application of 
Concurrent Engineering to the concurrent design and 
development of products and of their manufacturing 
systems by a network of enterprises coming together 
exclusively for that purpose.  
CE is illustrated with the design and production of 
the body of an automobile: one or more companies 
start an engineering process which involves a 
network of companies specialized in product 
engineering, manufacturing, marketing, design, etc.; 
the network develops the product (the car body) and 
the process (production line) in a coordinated 
fashion; the communication and coordination 
mechanisms are certified by the network for efficient 
operation; each company seeks to maximize its 
revenues; and the network seeks to maximize the 
quality of the body of the automobile and to 
minimize the time to market. 



     

The nature of these networked organisations raises 
several challenges concerning formal models, 
structure and configuration, coordination and 
operation. A formal model of networked 
organizations should be able to capture the essential 
features of these systems namely the semantically 
rich concepts invoked by distributed computing. 
Partner selection is a resource allocation problem 
subject to tight temporal and informational 
constraints. Coordination and cooperation 
mechanisms (Campbell, 1987) guarantee the 
alignment of objectives and actions in the network 
and the efficient operation of the network. 
This paper discusses a framework for CE and its 
prototype implementation. From control engineering, 
this framework has inherited the concepts of 
dynamic networks of hybrid automata, supervisory 
and decentralized control, and the motivation to 
improve the performance of increasingly complex 
processes.  From computer science, this framework 
has incorporated event-driven state machine models, 
concurrent processes and object-oriented approaches.  
A case study from the VIDOP1 project (Gonçalves et 
al., 2002) is used to illustrate the framework. The 
goal of the project was to develop CE tools and 
technologies to compose an integrated model of a 
production facility from the models of its 
components (sub-models). The final result was an 
infrastructure for vendor integrated decentralized 
modelling (IVM) which includes a communication 
platform enabling co-operative work with clearly 
defined views for manufacturers and suppliers to 
transmit securely and quickly models (geometric 
models, process models, workflow models), machine 
programs, documentation, notifications etc. 
 

 
 
Fig. 1. Assembly cell in Sindelfingen (DE) 
 

                                                 
1 http://www.vidop.org. This project was funded by 
the European Commission's "Competitive and 
Sustainable Growth" programme and was undertaken 
by a trans-European consortium, whose coordinator 
was KUKA Schweissanlagen GmbH. Participants 
included: DaimlerChrysler AG and University of 
Karlsruhe, Germany, INGEMAT, S. A. and 
ROBOTIKER, Spain, University of Porto, Portugal, 
Tecnomatix, Israel, Imtech and Eindhoven 
University of Technology, Netherlands, and 
Methodos S.p.A., Italy. 

This paper is organized as follows. Section two 
describes an illustrative example to provide the 
motivation for our developments and introduces a 
brief description of the current practice. Section 3 
presents a conceptual framework for Cooperative 
Engineering and section 4 its prototype 
implementation. Section 5 presents concluding 
remarks and discusses future developments. 
 
 

2. MOTIVATION AND RELATED WORK 
 
The following example was adapted from a test case 
developed for the VIDOP project.  
Part of the production line of the DaimlerChrysler 
(DC) body shop in Sindelfingen (Fig. 1) had to be re-
engineered to produce a new product along with the 
existing ones (a different sunroof). The re-
engineering project was split into several tasks, either 
according to the cells (components) that need to be 
modified (Fig. 2), or to the technologies involved in 
the process. 

 
Fig. 2. Overall project structure (component view) 
 
Typically the OEM2, DaimlerChrysler in this case, 
contacts the original supplier of the existing line, 
mostly because this supplier has all the required 
information (specification, models, etc.). This fact 
precludes the OEM from selecting a different vendor 
from its pool of "technology" suppliers. In this 
example, the OEM started the re-engineering project 
and its networked organization by selecting KUKA, 
the supplier of the original line (see Fig. 3 for a 
description of this network). KUKA, acting as a 
turnkey supplier, selects sub suppliers 1 and 3 to take 
care of the redesign of cells 1 to 3 and of the 
handling system. In turn, suppliers 1 and 3 decided to 
split their task (this is their project) into additional 
subtasks. Each supplier selects from their own pool 
of "technology" providers the ones that best fit the 
tasks at hand. 

 
Fig. 3. Overall project structure (company view) 
 

                                                 
2 Original Equipment Manufacturer 

Turnkey 
supplier

Turnkey 
supplier

Supplier 1Supplier 1 Supplier 2Supplier 2 Supplier 3Supplier 3

Sub supplie 31Sub supplie 31

Supplier 4Supplier 4

Sub supplier 32
&

Sub supplier 33

Sub supplier 32
&

Sub supplier 33Sub supplier 11Sub supplier 11 Sub supplier 12Sub supplier 12

Turnkey 
supplier

Turnkey 
supplier

Supplier 1Supplier 1 Supplier 2Supplier 2 Supplier 3Supplier 3

Sub supplie 31Sub supplie 31

Supplier 4Supplier 4

Sub supplier 32
&

Sub supplier 33

Sub supplier 32
&

Sub supplier 33Sub supplier 11Sub supplier 11 Sub supplier 12Sub supplier 12

LineLine

Cell 1Cell 1 Cell 2Cell 2 Cell 3Cell 3

RobotRobot

HandlingHandling

GunsGunsRobotRobot StationsStations

LineLine

Cell 1Cell 1 Cell 2Cell 2 Cell 3Cell 3

RobotRobot

HandlingHandling

GunsGunsRobotRobot StationsStations



     

The information and control flows in this networked 
organization are as follows. Information, drawings 
and models are exchanged on a need-to-know basis 
only. In this example, the OEM sends the necessary 
information (cell drawings, part drawings and new 
part parameters) to the turnkey supplier who, in turn, 
sends the information about cells 1 and 2 to suppliers 
1 and 2, etc. Supplier 1 filters this information and 
sends partial models and drawings to its sub 
suppliers (11 and 12). Sub suppliers 32 and 33 
receive the same information, possibly with different 
privileges. The case of supplier 4 is special. In order 
to redesign the handling system for the overall line, it 
needs information about the overall system. For 
example, it needs information about cells 1 to 3, but 
not in the level of detail needed to redesign the cells; 
it also needs updated information about the changes 
planned to cells 1, 2, and 3. 
 
 
2.1 Generalisation 
 
This illustrative example is a special case of the more 
general “Cooperative Plant Production” (CPP) 
scenario and of the “Phase and Role Model” 
(Woerner, et al., 2002). In this more general 
scenario, suitable for any Cooperative Engineering 
effort, several OEMs and several technology 
suppliers, which can also work as sub suppliers, are 
involved. These are classified either as Line Builders 
– suppliers of a complete line or cell, but also can 
work as turn key suppliers – or as Engineering 
Houses  - suppliers of partial solutions. 
In the general CPP scenario the OEM can 
subcontract a project to one turnkey supplier (line 
builder), to several Line Builders (for different 
lines/cells), or to Engineering Houses (for lines 
designed by OEM). In the last two cases the OEM is 
responsible for project management. A Line Builder 
can work as supplier for different OEMs and, at the 
same time, as a turnkey supplier. It can also work as 
sub supplier of other Line Builders. The Line 
Builders may also subcontract work to other Line 
Builders and Engineering Houses. An Engineering 
House can also play different roles in the CPP 
scenario (see Fig. 4). 
 

 
 
Fig. 4. Generalised Cooperative Plant Production 
 
The information and control flows in the CPP 
scenario pose requirements which go beyond current 
practice in traditional information systems. In the 
current practice, information potentially releasable to 
partners is often combined with other, sensitive data. 

The unfortunate consequence is a denial of useful 
information to cooperating partners. Filtering 
information into small, coherent, and discrete 
packages (views) makes it easier to control and 
distribute to other members. 
To support this operational concept a new paradigm 
to manage information in terms of standardized and 
discrete objects is required (Marmelstein, 2002). 
Such paradigm makes it possible to filter information 
objects from their sources, to publish, subscribe, 
query, and transform data objects, and to specify a 
policy governing the dissemination of and access to 
data objects. This paradigm leads to a structure of 
systems which manages, integrates, filters and 
distributes information to cooperating partners. 
 
 
2.2 Current Approach 
 
The problem of modelling and controlling networked 
systems has presented a new challenge to control and 
computer scientists. The challenge comes from the 
distributed nature of the problem. For example, in 
networked companies, information and commands 
are exchanged among multiple companies, and the 
roles, and dependencies of those companies change 
with time. The control and computer science 
communities address this challenge in the context of 
distributed hybrid systems, and contribute 
complementary views and techniques (see (Simsek, 
et al., 2001) for an overview of research on 
distributed hybrid systems).  
Researchers in both communities have used Dynamic 
Networks of Hybrid Automata (DNHA) to model 
systems with evolving structure (Deshpande, et al., 
1997). Informally, DNHA allow for interacting 
automata to create and destroy links among 
themselves and for the creation and destruction of 
automata. At the level of software implementation, 
this model has to incorporate the mechanisms by 
which software modules interact, which are called 
models of computation, or semantic frameworks. The 
choice of a model of computation for a specific 
implementation depends on the properties of the 
underlying problem domain (Edwards, et al., 1997).   
The problem of modelling systems with evolving 
structure is also discussed in (Milner, 1996). He 
argues that a rich conceptual development that gives 
a distinct character to the principles and concepts 
underlying computing, is in progress. In his claim, 
the distinct and unifying theme encompassing the 
new developments is what he calls "Information flow 
- not only the volume and quantity of flow, but the 
structure of the items which flow and the structure 
and the control of the flow itself". This is why Milner 
developed the Pi-calculus, an idealized modelling 
programming language and a mathematical model of 
processes whose interactions change with time 
(Milner, 1999). The Pi-calculus has been used to 
model service networks and other systems with 
evolving structure. 
Problem formulations that model systems whose 
specifications are given as global constraints but 
whose solution is given by local controllers is 
investigated in the theory of decentralized 
supervisory control for discrete-event models (Rudie 

OEM 1
Project: XC18

OEM 2
Project: Q class,

T class

Line Builder 1 Line Builder 2 Line Builder 3

Engineering
House 1

Engineering
House 2

Engineering
House 3

Engineering
House 4

Engineering
House 5

Engineering
House 6

OEM 1
Project: XC18

OEM 2
Project: Q class,

T class

Line Builder 1 Line Builder 2 Line Builder 3

Engineering
House 1

Engineering
House 2

Engineering
House 3

Engineering
House 4

Engineering
House 5

Engineering
House 6



     

and Wonham, 1992). The problem with these 
formulations concerns the computational complexity 
of most decentralized discrete-event control 
problems (Tsitsiklis, 1989). 
Today, there is no common software platform to 
support the implementation of a framework for CE 
across different projects in a cost-effective manner. 
This is especially true for small companies. In fact, 
the current practice concerns project-specific 
software platforms and does not encompass the 
methods and tools which could be used across 
different projects: i) communication flows are 
usually well defined but information management is 
project-dependant; and ii) communication is done 
through dedicated lines using costly proprietary 
platforms, which are common in big corporations. 
This practice makes it very difficult for small 
companies to enter and operate in a networked 
organization which would make them more capable 
to compete in a global market. Typically, these 
companies lack the methods and tools for access 
control and for secure and reliable information 
exchange which can significantly improve their 
capability to react to the requirements of a networked 
organization. 
 
 

3. A FRAMEWORK FOR COOPERATIVE 
ENGINEERING 

 
Based on the generalized Cooperative Engineering 
scenario, a supporting conceptual organisation can be 
derived. The proposed organisation is based on a 
hierarchical recursive structure. The OEM sets up a 
project, identifying a task and a partnership, (one in 
the case of a turnkey supplier) to several suppliers, to 
work on the project. In turn, each partner creates a 
new project based on his task. These new tasks are 
either executed in house or (sub) suppliers are 
contacted to deliver the product. All projects and 
tasks in the same tree are connected under a master-
slave paradigm so that all of them can be 
synchronised at any time (e.g. due to project or task 
status change). Although these relationships can span 
several tiers, the complete tree is always invisible to 
any partner. 
This organisation structure can be defined using an 
object oriented approach or using XML (eXtensible 
Markup Language). Figure 5 represents the XML 
schema representation for the presented conceptual 
organisation. Besides partners, tasks and their 
sequence, duration and precedence relations, 
companies and roles in the project, are also defined.  
 
 
3.1 Required Functionalities 
 
In order to support Cooperative Engineering, 
methods for the exchange of information and 
decisions have to be established. Some are set-up 
functions to establish and to manage cooperative 
work projects (defining projects, tasks and work 
items), but others include user functionality for 
managing work and information. 
Cooperation support methods and rules can be 
divided in three groups: 

- Cooperative work support methods. 
- Workflow, work management and sharing methods. 
- Knowledge protection and security methods. 
Cooperative support methods include groups of 
functionalities such as: file sharing; collaborative 
work & discussion; outliner; workflow definition and 
synchronization; and project management. 
 

 
 
Fig. 5. CPP Schema 
 
Besides specific cooperative work functionality, 
cooperation cannot exist without trust. The building 
blocks of trustworthy cooperation are methods for 
secure communication and for knowledge protection.  
This protection is realized by means of security, and 
data views methods. Based on a strong authentication 
and authorization, the system can define what the 
user is able to access and with what rights. It is 
mandatory that each partner is able to control his 
information as well as all the information that is 
coming from the hierarchical higher partner, 
addressing hierarchical lower partners.  
 
 

4. IMPLEMENTATION 
 
An implementation of the Cooperative Engineering 
Framework described in the previous section was 
developed under the VIDOP project. This prototype, 
called IVM (Infrastructure for Vendor integrated 
decentralised Modelling) already includes many of 
the characteristics of the proposed framework. 
 
 
4.1 Architecture 
 
The IVM is a distributed system that supports 
multiple, geographically distributed companies that 
are working together on a common project. The 
proposed architecture, made of loosely coupled 
modules, supports OEMs, turnkey suppliers, sub 
suppliers, as well as small engineering houses with 
limited resources. The IVM architecture is composed 
of several local IVMs representing the participating 
companies, all connected through a common 
communication platform. Each local IVM will offer 
services to its users. IVM services can be subdivided 
in generic and customisable services (Fig. 6). 
Examples of generic IVM services are uniform 
implementation of rules for secure transmission of 
information to remote users and uniform mechanisms 
for the implementation of view rights of models and 
documents directly at the source. Customisable 
services include services for locally defined project 



     

management, project workflow, project model 
management including the access rights and others. 
The choice of technical architecture was based on the 
following high level requirements for the IVM: 
- It is a network of decentralized cooperating nodes. 
- The access to each node and the content of 
information published within that node is fully 
controlled by the node owner. 
- The security mechanisms in the access and 
transmission over public networks prevent any 
unauthorized information access. 
- Nodes installed on different platforms interoperate 
seamlessly. 
- It is built using state-of-the-art and future oriented 
tools and artefacts, based on open standards. 
In order to meet these requirements a Service 
Oriented Architecture was chosen among a number 
of alternative options to implement distributed object 
architectures. Web services were preferred because 
of two advantages: 
- The SOAP protocol used in web services is more 
explicitly designed for internet applications than the 
IIOP protocol used in CORBA architectures. 
- The interoperability of web services applications 
deployed in different run time containers is expected 
to be better than the interoperability of CORBA 
applications running in ORBs of different vendors. 
In order to make the data easy to manipulate XML 
was chosen. Besides the obvious interoperability, 
data can also be easily checked for conformance and 
validity (XML, 2004). 
 
 
4.3 Components 
 
The overall application architecture shows the 
components that make up the IVM communication 
platform. One of the highlights of this architecture is 
the possibility of spreading several components of an 
IVM installation node over different machines and 
environments, as long as they are all connected to the 
Internet. Each of the IVM components has a 
published web service into where requests (SOAP 
messages) are sent. All the web services URIs are 
stored in a configuration file. The depicted databases 
(Fig. 6) – IVM DB, MM DB, and Security DB – can 
be of any sort, from relational databases to XML 
databases (even file systems). The only requirement 
is that they must implement the storage interface in 
order to communicate with an IVM database. This 
database stores information related with the general 
working of the application and also with 
collaborative work and organisation. In some 
situations the information regarding collaborative 
work and organisation can be stored in a specific 
database (CW database).  
The data objects (DOs) stored in this database are 
related with the organisation, project, relationship, 
task, authentication, authorization, messages and 
general data objects. 
Presentation Layer (GUI).  The decision taken about 
the IVM client is that it should be a simple web 
browser. As a consequence, the Presentation Layer is 
a collection of dynamic web pages, constructed using 
the Java Server Pages (JSP) technology and the 
Apache Struts framework. 

IVM Business Layer.  The business layer is where all 
business processes supported by the IVM are mapped 
onto. This layer controls the interactions between the 
various web services and the user. Internally, these 
business processes are mapped onto Struts action 
classes which are called when the server receives a 
request from the user through the GUI. Adding new 
business processes is fairly simple and without 
interfering with the rest of the system. 
Gateway.  Sends/receives requests from/to partner 
companies. When the gateway receives a request, it 
decrypts the message and then verifies its 
authenticity (signature). When sending a request to a 
partner the gate encrypts and signs the message. This 
module is the proxy of all messages between IVMs. 
Project WS.  Receives requests from the local IVM, 
and uses the Storage WS to store, retrieve and update 
project related objects (Organisation, Relationship, 
and Project) through the Storage WS. 
 
 

IVMPresentation Layer Gateway 

Project 
WS 

Task WS Messenger
WS 

Model 
Manageme

Authorisat
ion 
WS

Authentica
tion 
WS

Storage 
WS 

IVM logic layer Internal External 

MM 
DB 

Securi
ty 

DB

IVM 
DB 

Intranet 

Internet 

Firewall 

 
 
Fig. 6. IVM architecture 
 
Task WS.  Receives requests from the local IVM, and 
uses the Storage WS to store, retrieve and update task 
related objects (Task) through the Storage WS.  
Messenger WS.  Receives requests from the local 
IVM, and uses the Storage WS to store, retrieve and 
update messenger related objects (messages) through 
the Storage WS.  
Model Management WS.  Receives requests from the 
local IVM, and uses the Storage WS to store (check-
in), retrieve (check-out) and update DOs (models). 
The MM WS uses its own Database to store model 
management related information  
Authorisation WS.  Receives requests from the local 
IVM, and uses the Storage WS to retrieve 
Authorisation DOs (data objects) in order to execute 
the authorisation and filtering procedures.  
Authentication WS.  Receives requests from the logic 
layer and from the Gateway to authenticate users and 
partner companies. 
Storage WS.  Works as a proxy to a selected database 
(SQL, XML or file system) enabling other WS to 
store, retrieve and update objects. It capable of 
dealing with any kind of data objects (DOs). 
 



     

 
4.4 Tools used in the development 
 
In order to obtain portability for the IVM software 
Java was chosen for development. Versions of the 
Java virtual machine are available for all required OS 
platforms. First standards for SOAP handling are 
defined, which fit in existing Java concepts like the 
Java 2 Enterprise Edition (J2EE). Basic modules for 
rapid application development are available and 
developed further in open organisations like the 
Apache Project and the Java Community Process.  
The communication between different IVM nodes is 
implemented as web services based on the SOAP + 
attachment standard. Handling of SOAP messages is 
based on the standard JAX-RPC API (as 
implemented in frameworks like Apache Axis). Data 
structures in web method argument lists and return 
types as well as in implementation will be based on 
the following open source software: 
- Apache Jakarta Tomcat for the Java Web container. 
- JBoss for the Java enterprise bean container. 
- Apache Axis, for the server side handling of SOAP 
RPC messages and the invocation of web service 
methods. 
- JSP and the - Apache Struts framework (a variation 
of the classic Model-View-Controller – MVC) for 
the web browser user interfaces and the business 
logic invoking web methods in different IVM local 
nodes at client side. 
- MySQL for IVM databases in the RDB flavour. 
- Apache Xindice for IVM databases in the XML 
flavour. 
- Apache XML Security for the encryption and 
digital signatures. 
- Dom4J, Apache Xerces and Apache Xalan for 
XML manipulation 
 
 

5. CONCLUSIONS AND FUTURE WORK 
 
This paper presents the implementation of a 
framework for Cooperative Engineering based on a 
general framework of distributed hybrid systems.  
The proposed framework defines the interactions and 
responsibilities among the parties involved in 
Cooperative Engineering projects. Part of this work 
was developed in light of the VIDOP project, a trans-
European project supported by the European 
Commission's GROWTH Programme. 
This framework was applied to case study drawn 
from the automotive industry. In this case study, the 
framework was mapped onto a platform to support 
the cooperative design and development of 
production facilities. In this Co-operative 
Engineering project, several suppliers are involved in 
a project to reengineer a body shop. This application 
is very helpful in showing the main advantages of the 
framework: 
- Intra enterprise coordination and collaboration 
functionalities. 
- Inter enterprise workflow interoperability 
functionalities.  
- Co-operative work support methods. 
- Security and knowledge protection methods. 
- Faster interaction and document sharing. 

A small description of the implementation is also 
discussed. The framework was implemented using 
Web technologies, like JAVA, XML, and SOAP. 
Currently, the main focus of research is moving onto 
the automatic selection (or evaluation) of potential 
partners and on the automatic definition of rules for 
cooperation (including operational rules - language 
and semantics - and business rules). 
 
 

6. REFERENCES 
 
Campbell, D., Resource Allocation Mechanisms, 

Cambridge University Press, 1987. 
Edwards, S., L. Lavagno, E. Lee, and A. 

Sangiovanni-Vincentelli, Design of Embedded 
Systems: Formal Methods, Validation and 
Synthesis, Proc. IEEE, vol. 85 (n.3), March 
1997, pp. 366-290. 

Gonçalves, G., J. Sousa, F. Pereira, P. Dias and A. 
Santos, “A framework for e-cooperating 
business agents: An application to the 
(re)engineering of production facilities”, Proc. 
Int. Conf. Advanced Production Management 
Systems, Eindhoven, NL, September 2002. 

Marmelstein, R., Force Templates: A Blueprint for 
Coalition Interaction within an Infosphere, IEEE 
Intelligent Systems, vol. 17, 2002, pp. 36-41. 

Milner, R. (1996), Semantic ideas. In Computing 
tomorrow: future research directions in 
computer science, Ian Wand and Robin Milner, 
(ed.), pp. 246-283, Cambridge University Press. 

Milner, R., Communicating and mobile systems: the 
Pi-calculus, Cambridge University Press, 1999. 

Rudie, K, and Wonham, W. M. Think Globally, Act 
Locally: Decentralized Supervisory Control. 
IEEE Transactions on Automatic Control, vol. 
37, N. 11, November 1992, pp. 1692-1708. 

Simsek, T., J. B. Sousa and P. Varaiya, 
Communication and control in hybrid systems, 
(Tutorial session), Proc. American Control 
Conference, Washington, US, June 2001. 

Toffler, A., The Third Wave, Bantam Books, 1991. 
van der Aalst, W., and K.M. van Hee, Workflow 

Management: Models, Methods, and Systems, 
MIT press, Cambridge, MA, 2002. 

Woerner, J., T. and Laengle and H. Woern, 
Corporate Planning and Simulation of Plant 
Production Facilities in the Virtual World, Proc.  
18th Int. Conf. CAD/CAM, Robotics and 
Factories of the Future, Porto, Portugal, 2002, 
pp. 109-116. 

XML – Extensible Markup Language 1.0 (Third 
Edition), W3C Recommendation 4th February 
2004, <http://www.w3c.org/TR/2004/REC-xml-
20040204/> (February 2005) 


