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Abstract: Nowadays, there is a wide range of commercial LBMS (Location-Based Mobile Services) available in the
market, mainly in the form of GPS-based navigation solutions, and a trend towards the display of 3D maps
can be clearly observed. Given the complete disparity of ideas and a visible commercial orientation in the
industry, the study of the visualisation aspects that influence user performance and experience in the explo-
ration of urban environments using 3D maps becomes an important issue. In this work, a generic conceptual
framework is proposed whose main purpose is to objectively evaluate the impact and contribution of the major
visualisation elements involved (henceforth mentioned asfeature vectors). With this framework in mind, an
online questionnaire was developed and administered to 149test subjects in order to measure the real impact of
feature vectors. The results clearly demonstrated that certain features have clear impact on user performance,
and should be taken in account in LBMS development. As an example, just by displaying buildings with a
3D appearance, subjects were able to match more accurately the real environment with the one presented on a
mobile device. In general, users were able to perform the tasks entrusted to them faster, if they were provided
more realistic imagery.

1 INTRODUCTION

The LBMS technology, namely in the form of GPS-
based navigation systems, has just recently reached a
state of technological maturity, enabling the develop-
ment of 3D map-based graphical interfaces. Nowa-
days, there is a wide offer of LBMS solutions in the
market, especially in the form of automotive navi-
gation systems. Motivated by commercial interests,
many of these products promise to offer the “best vi-
sualisation experience ever”, in search for a differ-
entiating factor from the competition. By looking at
the variety of visualisation paradigms being proposed,
one can clearly notice a great disparity of ideas with-
out a clear notion of its usefulness.

Provided the non-existence of an objective state-
of-the-art generalising theory capable of unifying and
evaluating all the visualisation elements and proper-
ties, the main motivation of this work is to study the
most relevant of these features and how to adjust them

appropriately, in order to maximise the usability of
mobile maps and to improve the navigation experi-
ence, in accordance with the following objectives:

1. Elicit and assess the state-of-the-art contributions
on visualisation paradigms of 3D maps, with par-
ticular interest on mobile services and devices;

2. Develop a methodology for evaluating the differ-
ent issues that influence user experience and per-
formance when exploring an urban environment
with mobile maps.

2 STATE OF THE ART

2.1 Visual Perception of Realism

The variety of free and commercial products featuring
three-dimensional map-based mobile services avail-
able to the masses, usually ranges from very abstract



to reasonably realistic and immersive visualisation
paradigms. However, there is a common misconcep-
tion on what isImage Realism, how is it visually per-
ceived, and how can it be effectively measured.

In (Rademacher et al., 2001), a scientific exper-
iment was conducted to understand what aspects of
an image can make it look “real” or “not real”, i.e.,
whether it is perceptually indistinguishable or not
from the corresponding photographs. The results
showed that subjects were not convinced by the in-
creasing number of light sources and shadows nor the
variety or number of shapes. The same could be said
for “perfectly sharp” shadows or “perfectly polished”
surfaces.

In (Lange and Ch, 2003), an experiment was car-
ried out with 75 test subjects to classify 90 images of
the virtual landscape of Brunnen / Schwyz (Switzer-
land) from three different viewpoints in a degree of
realism from 1 (very low) to 5 (very high). The
results generally demonstrated that the variable that
most contributed to the sense of realism was – by far
– the high-resolution orthophotographic imagery, and
the second most important being texture-mapping.

In other works like (McNamara et al., 2000), the
importance of perception-based image quality metrics
is studied, such as the ones given by the VDP (Visible
Differences Predictor) and the VDM (Visual Discrim-
ination Metric). These two metrics aim to analytically
predict the differences between a computer-generated
image and the photograph it depicts, taking into ac-
count the limitations of the human eye described by
the HVS (Human Visual System). The VDP quality
metric takes the two images as input and generates a
difference mapthat predicts the probability of the hu-
man eye finding differences between the two pictures,
as demonstrated in (Bolin and Meyer, 1999) (see Fig-
ure1).

Figure 1: Difference map in the VDP quality metric (ob-
tained from the previously mentioned work).

A simplification of the VDM quality metric was
provided by following a similar approach (Bolin and
Meyer, 1999): instead of finding adifference map, a
just noticeable difference mapwas proposed which
corresponds to a 75% probability of a person detect-
ing a difference between the two images (McNamara
et al., 2000).

Because of some controversy and no agreed-
upon standards for measuring realism in computer-
generated imagery, a conceptual framework for mea-
suring image realism and evaluating its usefulness
was proposed in (Ferwerda, 2003). The frame-
work distinguishes three different varieties of real-
ism: physical realism, photo-realismand functional
realism. However, this framework does not seem to
be enough to encompass the extents to which real-
ity or virtuality can be “augmented”. Accounting for
such circumstances, the concept ofVirtuality Contin-
uumwas introduced in (Milgram and Kishino, 1994)
as represented in Figure2.

Figure 2: The Virtuality Continuum (obtained from the pre-
viously mentioned work).

At the left end, we have the “completely real”
Real Environment, which is made up of “real” objects:
“any objects that have an actual objective existence”.
At the right end, we have the “completely computer-
simulated”Virtual Environment, which is made up of
“virtual” objects: “objects that exist in essence or ef-
fect, but not formally or actually”.

2.2 User tasks

The underlying basic equation that can help us find
the “perfect” balance in map-based mobile services is
what could be called ofMobility Equation. This equa-
tion was first formulated by Leonard and Durrant-
Whyte for mobile robot navigation (Borenstein et al.,
1996) but can be equally extended to human naviga-
tion. The equation is made up of the following three
questions:

• ‘Where am I?’

• ‘Where am I going?’

• ‘How do I get there?’

In (Hunolstein and Zipf, 2003), the tasks are clas-
sified into 4 different groups of high-level user tasks
that have a strong relationship with these questions,
as described in table1.

2.3 Location-Based Mobile Services

In this work we have analysed and studied several
state-of-the-art contributions on LBMS which pro-
vide a wide variety of visualisation paradigms, in or-
der to understand the current tendencies in the indus-
try and to formulate hypothesis regarding their valid-
ity and usefulness. The contributions range from pilot
studies to commercial products, within the scope of
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Table 1: The primary tasks that 3D maps are used for.

Task Description
Locator Identification of the user’s own po-

sition and other objects. Answers
‘Where am I?’ questions.

Proximity Inform the users of nearby facili-
ties. Implied by ‘Where am I go-
ing?’ questions.

Navigation The most tangible example is rout-
ing from one location to another.
Answers ‘How do I get there?’
questions.

Event Time/Location dependent objects,
allowing the users to know what is
happening and when/where. An-
swers ‘And now what?’ questions.

road and pedestrian maps, as follows: TellMaris, m-
LOMA, LAMP3D, TomTom, Navigon, NDrive, iGO,
Google Earth, INSTAR, Virtual CableTM and Enkin.

3 CONCEPTUAL FRAMEWORK

In this section, a generic evaluation framework is pro-
posed which can be used as the main methodology for
the specification, development and evaluation of new
or existing solutions in the visualisation problem do-
main. This framework is proposed in order to simplify
the evaluation process to the most relevant features,
to the detriment of other classical analysis methods
that can be used to obtain a more thorough evaluation.
This framework defines the concept offeature vectors
comprisingorientationsandmagnitudes. Theorien-
tation defines the idea or concept the visualisation
paradigm represents, andmagnitudethe degree/level
to which the paradigm “amplifies” the vector. An ex-
ample can be seen in Figure3 to describe a possible
feature vector for transportation. An orientation of
this feature vector is the mode of transport, while pol-
lution, cost and speed are magnitudes.

The framework is composed by six feature vectors
as shown in Figure4 and described below. These fea-
ture vectors are not intended to characterise the com-
plete set of visualisation features, but the most rele-
vant ones observed from the current state of the art
described in section2.3.

3.1 Image Realism

Image Realismis the feature vector that is concerned
with how real, i.e., free from any idealisations or
abstractions, is the image of the map presented to
the user. Taken into account what was previously

Figure 3: A possible feature vector for “Transportation”.

Figure 4: Evaluation Framework through feature vectors.

mentioned on this matter (see Section2.1), the sug-
gestedmagnitudesfor this vector will be based on the
framework proposed in (Ferwerda, 2003) and the con-
cepts onvirtuality continuumdefined in (Milgram and
Kishino, 1994), with a few modifications. Firstly, a
“relaxed” version ofphysical realismwill be adopted,
i.e., it is assumed that current displays are consid-
ered perfect in the sense that they can emit the ac-
tual energy we want them to reproduce. Secondly,
this framework will be incorporated into thevirtuality
continuumas illustrated in Figure5, adapted from the
above work.

Figure 5: An illustration of the proposed framework com-
bining the Virtuality Continuum spectrum with varieties
of image realism (adapted from the previously mentioned
work).

Photo-Realismis located to the left ofFunctional
Realism, not because it is considered “less virtual”
thanFunctional Realismbut because it is closer to the
Physical Realism, and consequently providing a more
“realistic” environment.

In terms oforientations, this vector includes the
visualisation elements that represent the real world
visual information, namely3D Buildings(city build-
ings, landmarks),Map Vectors(roads and polygons),
andSurface Model(ground surface elevations).
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3.2 Object Labelling

Object Labellingencompasses the kind of visual tech-
niques and strategies that are followed to label map
elements such as rivers, streets, cities, and so on.

In (Been et al., 2006) and other studies, the impor-
tance of two types of labelling, namelystatic labelling
anddynamic labelling, is discussed. This is relevant
to distinguish since, depending on the case, we might
be dealing with dynamic maps, i.e., maps that support
continuous zoom (changing the scale) and continuous
panning (usually by dragging the map). Based on the
framework proposed in the previous study, themag-
nitudesfor this vector will include the concepts of
Static/Dynamic Selection(visibility) and Placement
(size, position and orientation) of labels.

One of the possible approaches when labelling ob-
jects is to project the labels oriented towards the cur-
rent perspective, analogous to a billboard in Computer
Graphics. This approach is followed by all the con-
tributions exceptGoogle Earthwhere labels are flat-
tened and laid down on the maps surface.

Based on the works of (Wolff, 1999; van Dijk
et al., 1999) and the previous discussion on adaptive-
ness to the current perspective, the proposedorien-
tationsfor Object LabellingarePerspective-Adaptive
(oriented towards the current perspective),Point Posi-
tioning (point symbols),Line Positioning(polygonal
chains, such as rivers),Area Positioning(areal fea-
tures such as countries), andGeneral Positioning(a
combination of the three previous methods).

3.3 Visual-Spatial Abstraction

Visual-Spatial Abstractionmeasures the complexity
of mental operations that are required to perform the
visual matching of the real environment that can be
observed and the one on the screen. This vector is
specifically focused on the mental viewing transfor-
mation that is required in order to have a perfect cor-
respondence between both images: the reality and
the screen. The proposedorientationsfor this vector
are presented, regardless of the elevation angle of the
“camera”, namelyGround Level(when it is only pos-
sible to observe the current street and its junctions),
Local-Area Level(when streets that may not even be
part of the route can be observed), andWide-Area
Level (when municipalities and an overview of the
route are visible). The proposedmagnitudesreflect
the adaptiveness of the camera to the users’ behaviour.
We defineAdaptive Leveland Adaptive Orientation
when the camera adapts to the user’s movement (ac-
cording to some variable like speed), and whether it
adapts to his looking direction, respectively.

3.4 Route Indication

Route Indicationprovides a classification of the visual
techniques and strategies for showing the itinerary
path in the road maps, and the kind of manoeuvre in-
dicators or way points that are presented in the dis-
play. The proposedorientationsfor this vector, can
be regarded as the visual indicators that are gener-
ally used by the majority of the contributions to dis-
play the route, namelyArrows, Cords, Way Pointsand
Carpet-like shapes to indicate the route. These in-
dicators can be used with different “immersion” lev-
els which are considered the proposedmagnitudesfor
Route Indication, namelyInstructive(when indicators
are merely instructive) andSimulative(when they re-
semble real world indicators).

3.5 Landmark Symbology

Landmark Symbologyevaluates the cartographic sym-
bology that is used to portray the world using a pic-
torial language, represented by “map symbols”, often
accompanied by a legend. This vector is also related
to Image Realism, in the way that both should be com-
plementary, i.e., excessive realism may distract the
users, but a great lack of symbology may completely
blur their sense of orientation.

New concepts and design guidelines for the carto-
graphic visualisation of landmarks in mobile maps are
proposed in (Elias et al., 2005). Based on these con-
cepts, theorientationsfor this vector will reflect the
kind of buildings represented by symbols, specifically
Shops referenced by name(e.g., KFC, McDonalds),
Shops referenced by type(e.g., hotel, pharmacy),
Buildings with unique name / function(e.g., Tokyo
Tower, Statue of Liberty), andBuildings with unique
visual properties(e.g., “the large yellow house”). Ad-
ditionally, the first proposedmagnitudefor this vec-
tor will define in itself, the concept of levels of ab-
stractions for landmarks, according to a scale (from
the most abstract, to the most concrete):Words, Sign,
Icon, Sketch, Drawing, andImage, as defined in the
previous study.

There are other parameters that influence the de-
cision of whether an abstraction level should be used
in a mobile map for a given situation. For in-
stance, some cartographic generalisation procedures
(like scaling down a landmark object to an appropri-
ate size suited for its representation in a map) might
raise some problems such ascongestion, coalescence,
and imperceptibility(Elias et al., 2005). To account
for these restrictions, the proposedmagnitudescon-
sist of Adaptive ZoomandAdaptive Complexity, re-
spectively, whether the abstraction level of landmarks



adapts to the current zoom level, and whether they
change with the varying complexity of features.

3.6 Contextual Awareness

Contextual Awarenessmeasures the extent to which
a visualisation paradigm is applied to get additional
information on a contextual or situational basis.

It is important to distinguish the three groups of
application areas in which virtual urban environments
can be valuable, according to the spatio-temporal na-
ture. These groups constitute the proposedorienta-
tionsfor this vector, depending on whether they focus
on the past, present or fiction, according to (Coelho,
2006): Reconstructional(reconstruction of urban en-
vironments that were totally or partially lost),Recre-
ational (urban design, urban planning, etc.), andFic-
tional (creation of imaginary realities).

Levels of awareness regarding the current loca-
tion, time, and situation can vary from contribution
to contribution. In (Burigat and Chittaro, 2005), it is
claimed that a passive contextual-awareness approach
is generally more flexible than an active approach. In
the latter case, if the user is constantly presented with
unwanted information it can become “too obtrusive”.
Contrarily, in most automotive navigation systems,
direction instructions or location-based information
such as nearby points of interest are automatically
presented, i.e., without the need of the user’s interven-
tion. For these reasons, the proposedmagnitudesfor
this vector will reflect the different autonomy levels
of “contextual awareness” an application can demon-
strate in different contexts and tasks, as previously
denoted by (Chen and Kotz, 2000), specificallyAc-
tive Awareness(without the need of user interven-
tion), andPassive Awareness(when the user shows
interest for getting context-based information).

Table2 summarises the evaluation framework, ac-
cording to the proposedmagnitudesandorientations.

4 METHODOLOGY

An interactive online questionnaire was developed
and several hypothesises were formulated, in order
to assess the real impact of each visualisation feature
described in the conceptual framework. Since avail-
able free online questionnaires are generally limited
to allow users to set their preferences, an interactive
online questionnaire was developed specifically for
this study, enabling the measuring of time for each
answer and a more adequate visual aspect definition.
However, due to the intrinsic limitations of the pro-
posed questionnaire, and in order not to make it per-

ceived by potential participants as “too exhaustive”,
only the features for which there are no significant
indications from the state-of-the-art (regarding their
impact and relevance) were evaluated with the ques-
tionnaire. Moreover, there are some components that
were not possible to evaluate, and therefore were not
included in this study, given the limitations imposed
by this kind of questionnaire.

The questionnaire was divided into 3 parts. In
the first part, the exercises were mainly based on the
pointing task paradigmas previously performed in
other studies (Nurminen, 2006). In the second part,
a similar approach was followed, but instead of eval-
uating the matching of the two realities, the main ob-
jective was to measure how well users perform a given
task (see Section2.2). In the last part, users were
asked about their preferences regarding the visualisa-
tion of map elements such as landmarks.

4.1 Image Realism

All Image Realism orientationswere tested along
with the various degrees ofmagnitudes, in accordance
with the vector instances (orientationsand magni-
tudescombined) found in the state-of-the-art contri-
butions. These instances were considered eligible for
the evaluation through the questionnaire, since there
are few or no indications, with regards to their impact:

• Simple Textured Buildingsand Photo Textured
Buildings

• Coloured MapandOrthophotomap

• Flat ModelandTerrain Model

It was hypothesised that, in the absence ofSim-
ple Textured Buildings, test subjects will have to rely
on their ability to match the 3D geometry of the real
building with the geometry of the 2D polygon repre-
sentation on the map. At the same time, it is supposed
that by providing the three-dimensional (yet simple)
geometry of the whole building, in the presence of
this component, test subjects will make fewer mis-
takes and, as a consequence, will require less time
matching both realities (see Figure6).

Figure 6: The 2 images supporting the questions that evalu-
ate the impact of Simple Textured Buildings.

In the case of thePhoto Textured Buildingscom-
ponent (see Figure7), it was hypothesised that, by
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Table 2: Structure of the proposed evaluation framework.

Feature Vector Orientations Magnitudes
Image Realism 3D Buildings, Map Vectors, Surface

Model
Physical Realism, Mixed Realism,
Photo-Realism, Functional Realism

Object Labelling Perspective-Adaptive, Positioning
(Point, Line, Area, General)

Static / Dynamic Selection / Place-
ment

Visual-Spatial Abstraction Ground Level, Local-Area Level,
Wide-Area Level

Adaptive Level, Adaptive Orientation

Route Indication Arrows, Cords, Way points, Carpet Instructive, Simulative
Landmark Symbology Shops (referenced by name), Shops

(referenced by type), Buildings (with
unique name / function), Buildings
(with unique visual properties)

Abstractness (Words, Sign, Icon,
Sketch, Drawing, Image), Adaptive
Zoom, Adaptive Complexity

Contextual Awareness Reconstructional, Recreational, Fic-
tional

Active Awareness, Passive Awareness

simultaneously providing the 3D geometry of a build-
ing along with photographic façades, test subjects
will be able to detect features (e.g. windows, doors,
unique wall patterns, etc.) more accurately and faster
than in the case ofSimple Textured Buildings.

Figure 7: The 2 images supporting the questions that evalu-
ate the impact of Photo Textured Buildings.

RegardingMap Vectors, it is assumed that anOr-
thophotomapcan provide subjects a much more en-
riching visualisation experience than the one provided
by a Coloured Map(see Figure8). The hypothesis
rests on the belief that anOrthophotomapcomponent
can make easier for users to discern the true features
of the map’s surface, by giving a realistic view rather
than a rough generalisation. There are many situa-
tions were coloured vector polygons are not enough
to represent features like a tiled pavement; a group of
trees arranged in a special and unique way; and sev-
eral “static” features like public benches, zebra cross-
ings, and many others that are impossible to find in a
coloured vector map.

Figure 8: The 2 images supporting the questions that evalu-
ate the impact of Coloured Map and Orthophotomap.

Regarding theSurface Model, it was hypothesised
that by using aTerrain Modelrather than aFlat Model
component, users will be able to perform the spa-
tial matching of both reality and virtuality in a much
more immersive and natural way (see Figure9). It
is expected that by providing theTerrain Modelcom-
ponent, users will be able to use elevated reference
points, and to understand and visualise occlusions
caused by the varying landscape elevation.

Figure 9: The 2 images supporting the questions that evalu-
ate the impact of Flat Model and Terrain Model.

In the end, it is expected that users will be able to
perform their tasks in less time, since they just need to
think “outside the box”. On the other hand, by using a
Flat Model, users would understand that the image on
the screen does not account for occlusions, and there-
fore, they would have to do that job themselves.

4.2 Object Labelling

With respect toObject Labelling, it was hypothesised
that, when users are analysing labels (e.g. of streets,
rivers, cities, and so on) which are not oriented to-
wards the current viewing direction depicted in the
device, they will feel much more difficulty reading
the words, due to the decreased visibility, especially
when looking in a direction which is parallel to the
map’s surface (see Figure10).

In such case, users will not be able to read labels
as faster, and will pan the map closer to the camera so
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Figure 10: The 2 tasks that evaluate the impact of
Perspective-Adaptive Labelling (close-up).

it becomes easier to read. Particularly in the case of
labels which are almost parallel to the camera’s view-
ing direction, some users will wish to skip words, if
they find them “too difficult” to read.

4.3 Route Indication

It was hypothesised that, when a user is presented
with an image which looks more familiar to him,
given the current context, the user will be able to per-
form his task with lesser effort (see Figure11). It is
assumed that users won’t make more mistakes using
one approach or the other, but that a significant dif-
ference in the time they require to complete their task
may arise, i.e., that aSimulativecomponent will result
in faster responsiveness than anInstructiveapproach.

Figure 11: 2 of the tasks that evaluate the impact of Instruc-
tive and Simulative route indications.

4.4 Landmark Symbology

For this feature vector, it was hypothesised that users
will requireAdaptive Zoomfunctionality, i.e., that the
majority of them will choose an abstract landmark
representation of a given building, when a map which
is zoomed out far from the ground is used, but a more
concrete representation when at close range (see Fig-
ure12).

The basis of such hypothesis rests on the various
issues raised by the cartographic generalisation pro-
cedures, as previously explained in Section3.5. For
instance, even if a concrete landmark is used rather
than an abstract representation, there are certain zoom
levels of a map which do not allow users to perceive
enough features of that landmark, in order to identify
it with a significant confidence level.

Figure 12: The preferences that evaluates the users’ need for
an Adaptive Zoom approach, when a map which is zoomed
out far / zoomed in close to the ground is used.

5 RESULTS

In total, 149 test subjects answered the questionnaire,
mostly from a student population in Computer Sci-
ence and Informatics: 89% were male, and 78% were
in the 18 to 25 age group. In general, prior to an-
swering the questionnaire, subjects considered them-
selves fairly capable of using both maps and GPS nav-
igators, given the approximate 50-50 ratio shared be-
tween “average” and “experienced” users. Only 3%
of the participants reported they were unfamiliar with
either maps or GPS navigators.

5.1 Image Realism

Regarding the impact of the presence and absence of
Simple Textured Buildings, there were 91% and 77%
correct answers, respectively, in both situations. Al-
though slight, the difference between the two cases
shows the advantage of the presence ofSimple Tex-
tured Buildingsover its absence. Test subjects re-
quired, in average, 11s (7.3s standard deviation) to an-
swer when buildings were shown, proving to be faster
than when using a classic 2.5D map (avg. 15s, 6.4s
s.d.). While in this case there was just a 14% dif-
ference in the number of correct answers, in the case
of Photo Textured Buildingscomponent there were
88% and 30% correct answers respectively. Despite
this difference between both questions, the number
of correct answers in the presence ofPhoto Textured
Buildingswas almost the same as in the case ofSim-
ple Textured Buildings. In terms of answers times,
95% of the subjects had already answered before the
first 21s in the presence ofPhoto Textured Buildings,
about 4.4s less than in the presence ofSimple Textured
Buildings. When the buildings were all removed from
the exercise withPhoto Textured Buildings(i.e., in its
absence), 95% of test subjects answered before the
first 42.7s (avg. 17.8s, s.d. 14.4s) against 25.4s (avg.
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15s, s.d. 6.4s). This clearly demonstrates that the re-
sults withPhoto Textured Buildingsare more stable,
considering the increase in difficulty of the exercise.

In the presence of aColoured Map, the num-
ber of participants who were unable to answer the
question was quite high (14%). The same happened
with the number of wrong answers being quite differ-
ent from theOrthophotomap(67% and 7%, respec-
tively). Nevertheless, subjects had no apparent dif-
ficulty in finding the correct answer, in the presence
of theOrthophotomapcomponent, as 92% chose the
correct answer in similar conditions (as shown in Fig-
ure13). Besides being more effective, theOrthopho-
tomapproved also to be more efficient, as subjects
took an average time of 9.3s (s.d. 18.4s) to answer the
question, considerably faster compared to the 23.5s
(s.d. 16.8s) in the case of theColoured Map.

Figure 13: Answers in the presence of a Coloured Map and
an equivalent Orthophotomap.

In terms ofSurface Model, there was just a 5%
difference in the number of correct answers between
both cases, with advantage to theTerrain Model.
However, theTerrain Modelwas much more efficient,
as the average response time was 7.5s (s.d. 5s), com-
pared to the 15.3s (s.d. 13.8s) obtained with theFlat
Model.

These results point out that image realism can im-
prove the task of matching the 3D map with reality,
both maximising effectiveness (lesser mistakes) and
effectiveness (lesser time).

5.2 Object Labelling

With respect toObject Labelling, when labels were
oriented towards the camera, the subjects took lesser
time to perform the task (avg. 11.8s, s.d. 5.2s) than
when labels were not oriented according to the cam-
era (avg. 15s, s.d. 6.4s), as shown in Figure14.

From these results a conclusion can be made that
Perspective-Adaptive Labellingcan increase readabil-
ity of labels in 3D maps.

5.3 Route Indication

With respect to theRoute Indicationthere was no rel-
evant difference in terms of answer correctness be-
tween Instructiveor Simulativecomponents. How-

Figure 14: Answer times in the presence and absence of
Perspective-Adaptive Labelling component.

ever, in terms of efficiency, theSimulativecomponent
resulted in faster response times (avg. 8.6s, s.d. 5.9s),
against (avg. 11.8s, s.d. 7.9s) in the case of theIn-
structivecomponent.

Although both techniques can achieve similar lev-
els of correctness, theSimulativeapproach can speed-
up the task of matching reality with the 3D map. This
can be of great importance when supporting activities
that demand short response times, such as driving.

5.4 Landmark Symbology

A vast majority of participants (87%) answered they
would more easily identify and recognise the presence
of a given distant landmark, when an abstract repre-
sentation of that landmark was used. Approximately
86% of them indicated their preference towards the
use of concrete landmarks at close range.

Different zoom levels over 3D maps will encom-
pass also different levels of visual complexity, and as
such,Adaptive Zoomfunctionality is of great impor-
tance for maximising readability.

6 CONCLUSIONS AND FUTURE
WORK

In this study, a genericEvaluation Frameworkwas
proposed as the main methodology for the specifica-
tion, development and evaluation of new or existing
solutions in the 3D map visualisation problem domain
for LBMS. Feature Vectorscan individually describe
a set of choices (orientations) and degrees of appli-
cability (magnitudes). The proposed framework fo-
cuses on 6feature vectorsnamely, Image Realism,
Object Labelling, Visual-Spatial Abstraction, Route
Indication, Landmark Symbology, and finally Con-
textual Awareness. These feature vectors encompass
the most relevant visualisation issues in 3D maps on
LBMS, but there was no intent to cover them com-
pletely. A future line of research would consist in
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analysing the totality of features that address visuali-
sation aspects, in the context of exploration of urban
environments, using 3D LBMS as guidance.

Although the state of the art contemplates some
of the issues involved, the questionnaire gave a much
more clear insight on them. In general, it is ob-
served a greater tendency towards the need ofImage
Realismrather thanImage Functionalism. In terms
of Perspective-Adaptive Labelling, it was proved that
users are at disadvantage, if they are given the task to
read labels of a map, when these labels are not ori-
ented towards the camera’s viewing direction. The
results also demonstrated that users can more easily
identify the presence of a distant landmark with an ab-
stract representation, and a close landmark with a con-
crete representation, which is indicative of the need of
anAdaptive-Zoombehaviour.

Since there are several limitations on the kind of
measurements that can be performed with the pro-
posed questionnaire in order to evaluatefeature vec-
tors, it would be interesting to perform other kinds of
tests, with particular focus on dynamic experiments,
to get more information about other vectors such as
Visual-Spatial AbstractionandContextual Awareness
which were not evaluated. An example of these exper-
iments would include using a driving simulator to test
the participants’ reflexes, given a situation where they
are approaching a manoeuvre, and deciding which
way to go.

From the results obtained from this work, and fu-
ture lines of research, we expect the definition of new
paradigms of visualisation for 3D map visualisation
on LBMS that maximise usability and improve user
experience and performance.
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