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Abstract— New problems of optimal path coordination for
multiple vehicles are introduced, formulated and solved in
the framework of dynamic optimization. The novelty of these
problems arises in several ways. The cost function and the
dynamics include non-trivial dependencies, modeled through
existential quantification over groups of vehicles - this leads
to non-Lipschitz behavior and to non-standard optimal control
problems. There are consumable resources, modeled with the
help of integral constraints - the structure of the constraints
suggested new strategies for optimal cooperation which out-
perform the results obtained with standard formulations with
state-constraints. Our formulation uses the structure of the
problem to decouple the overall optimization into simpler
coupled problems in lower-dimensional spaces. This is expressed
in the form of the solution, which is encoded as the composition
of value functions in lower-dimensional spaces.

I. INTRODUCTION

Problems of optimal path coordination for multiple vehi-
cles are posing new challenges to control. Consider, as an
example, the problem of controlling operations of unmanned
air vehiclesv1 (UAV) in hostile air spaces. The probability
of survival of an UAV is directly proportional to the value
of the path integral taken with respect to some risk function
[1]; the level of risk is significantly reduced when the UAV
flies under the protection of an UAVv2 carrying a jamming
device . This is an example of a collaborative control problem
where vehicles coordinate their paths to improve individual
or group performance. Other examples include the use of
bulldozers (or icebreakers) to open routes for other cars (or
ships) and air refueling missions. The bulldozer modifies
or “morphs” the terrain (the cost function shared by other
vehicles using the road). The questions are: What is the value
of cooperation? Is cooperation useful at all? If so, in what
extent? How should the vehicles cooperate in an optimal
fashion under budget (fuel) constraints?

We discuss these questions with the help of a simple two-
vehicle optimal path coordination control problem. This is
a non-standard optimal control problem, in the sense that
the the actions of one dynamic system (bulldozer) change
the cost function for the others (cars) in a non-Lipschitz
way. A basic form of this problem was studied in [2]. The
problem is revisited here and new features are incorporated:
physical obstacles and the possibility of choosing the optimal
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departure point ofv1 among several candidate regions. We
also relax some of the assumptions in order to make the
formulation applicable to a broader class of systems. Like
in [2] we formulate the collaborative control problem for
the two vehiclesv1 and v2 as an optimal control problem
for a hybrid automaton with three discrete states (the hybrid
automaton models the combinatorial aspects of the problem).
We follow the hybrid systems model from [3].

We tackle the problem in the framework of dynamic
programming (DP) [4]. DP approaches the problem of op-
timizing the behavior of a dynamic system with respect to
some cost function by introducing a value function which
gives, at each point of the state space, the optimal cost to go
for the system. This has the advantage of providing a global
perspective on the optimal behavior of the system, as also
of facilitating the development of optimal feedback control
laws. For general nonlinear problems, the value function is
obtained from the solution of a Hamilton-Jacobi-Bellman
(HJB) partial differential equation (PDE). In this work we
pursue that path and we employ a numerical procedure for
the solution of the HJB PDE.

The problem described here combines the following as-
pects: a) both controlled (discrete input) and autonomous
(state dependent) transitions between discrete states areal-
lowed; b) controlled transition may be triggered only at cer-
tain points of the continuous state space; c) running cost de-
pends on the discrete state; d) nonlinear continuous dynamics
are assumed. We are not aware of any published work on DP
for hybrid systems combining all of the above mentioned
aspects and offering a general efficient computation method.
In [3], where the author presented a taxonomy for hybrid
systems which subsumed previous models, optimal control
of hybrid systems in the setting of DP is discussed. However,
no general efficient computation method is devised there.
That line of development is still an open problem today.
Most of the results toward efficient methods are obtained
by restricting their range of applicability just to certain
classes of problems. In [5] the authors develop a Hybrid
Bellman Equation for systems with regional dynamics (i.e.,
only autonomous transitions are considered). The results are
demonstrated only for problems featuring two dimensional
continuous dynamics, with quadratic cost. Practical appli-
cability of the method to more complex systems is not
discussed. A similar problem for piecewise affine systems is
presented in [6], also using ideas from DP. In [7] the authors
use stochastic DP for a related collaborative control problem.
There is a vast body of work on dynamic optimization
of switched systems and multi-model systems (switched
systems with state jumps) but none seems to meet all the



above mentioned aspects (see [8], [9], [10] and references
therein). In [11], the authors describe a single pass numerical
method for the solution of the HJB PDE in hybrid optimal
control problems. We use some insights of that work in our
numerical example.

The paper is organized as follows. In section II we state
and formulate a path coordination problem in the framework
of hybrid systems. In section III we use DP techniques to
characterize the solution to the problem. In section IV we
discuss optimal strategies in the framework of DP and in
section V we illustrate practical application of the approach
using numerical examples. In section VI we draw the con-
clusions.

II. PROBLEM FORMULATION

A. The system

We need some definitions.UAV is a generic term for the
entities composing our force. There is a finite set oftypes,
calledUAVTypes={simple, jammer}. A UAV is characterized
by its type and its (two-dimensional) location(x). So, our
force with N UAVs is thus described by a set of the form

UAVs = {v1 = (type1, (x1)), · · · , vN = (typeN , (xN ))}. (1)

Consider the simplest problem setting withN = 2,
type1 = simple and type2 = jammer. Vehicle v1 has to
find the optimal trajectory fromα to γ. The instantaneous
path cost forv1 is reduced by a fixed amountl when the
position of this vehicle “coincides” with the position of
another vehicle,v2; this means that the path cost forv1 is
a discontinuous function of the relative positions of the two
vehicles.v2 has a limited amount of fuel; it departs from
β 6= α and is required to return toβ before it runs out of
fuel. The corresponding motion models are

ẋi(t) = fi(xi, ui), xi ∈ R
n, ui ∈ Ui, t ≥ 0

x1(0) = α, x2(0) = β

whereui are the controls andUi are closed sets. The fuel
consumption ofv2 is modeled by the state variablec2 ∈ R

ċ2(t) = g2(x2, u2) =

{

w2(x2, u2) if c2 > 0
0 otherwise

c2(0) = θ

wherew2(., .) ≤ 0.
Considerv1. The cost of a path joiningα andγ is

J1(u1(.), . . . , uN(.), γ) =

∫ tf

0

l(x1) · k1(x1, u1)ds (2)

wherek1(., .) > 0, tf is the first time whenx1(tf ) = γ under
the control functionsu1(.), . . . uN(.) and l : R

n → [0, 1] is

l(x1) =

{

ξ if ∃vi ∈UAVs: x(vi) = x1 ∧ type(vi) = jammer
1 otherwise

The functionl models the fact that the path cost forv1 is
reduced (ξ ∈ (0, 1)) when the position ofv1 coincides with
the position of anotherUAV.

The standing assumptions are:

A1) fi : R
n × Ui → R

n and w2 : R
n × Ui →

R are uniformly Lipschitz in x and uniformly
continuous in the control variable. This condition
ensures existence and uniqueness of solutions for
the differential equations.

A2) There existK1 < ∞ and 1 ≤ ς1 < ∞ such that
‖l(x1, x2) ·k1(x1, u1)‖ ≤ K1(1+‖(x1, x2)‖)

ς1 for
(x1, x2) ∈ R

n × R
n, u1 ∈ U1.

A3) There existK2 < ∞ and 1 ≤ ς2 < ∞ such that
‖g2(x2, u2)‖ ≤ K2(1 + ‖x‖)ς2 for x ∈ R

n, u2 ∈
U2. This assumption and the previous are related
to the existence of solution to the problem.

A4) 0 ∈ int fi(xi, Ui) (locally controllable).
A5) f1(x, U1) ⊆ f2(x, U2). This means thatv2 is capa-

ble of replicating the motions ofv1. If necessary,
this constraint can be enforced by considering a
new set of controls forv1, U c

1 ⊂ U1, such that
f1(x, U c

1 ) ⊆ f2(x, U2).
A6) The vehicles are allowed to meet only once and

then move together up to the point wherev2 returns
to β (this precludes behaviors where the vehicles
move together and separate repeatedly).

A7) k1(x1, u1) may take an arbitrary high value (finite,
so that A2 is fulfilled), in the line of theexact
penalization method (see [12]). This is done to
define forbidden regions, which may be used to
represent, for instance, physical obstacles.

B. The case for coordination

Consider thatv1 is operating in isolation (l = 1)
Problem 1: [Uncoordinated] Find

inf
u1(.)

J1(u1(.), γ) (3)

The path planning problem becomes more interesting
when the two vehicles are allowed to coordinate their mo-
tions. It may be worthwhile forv1 to deviate from the
optimal path for Problem 1 to joinv2 before reachingγ.
The following example illustrates this point.

Example 2.1: Consider Figure 1. Let:
xi ∈ R

2, ẋi(t) ∈ B0, i = 1, 2 (B0 is the closed unit ball).
α = (0, 0), β = (50, 40), γ = (100, 0).
η = (39.2000, 24.1254), µ = (60.7999, 24.1254).
c2(0) = θ = 12.
k1(x1, u1) = 1,−w2(x2, u2) = 0.2, l(x, x) = 0.1.
The circle of radius 30 centered atβ encloses the set of
points reachable byv2 within fuel constraints. This will
be discussed in more detail later. In this example, the fuel
optimal paths forv2 are straight lines. The same happens
with the optimal paths forv1 (for fixed values ofl). This is
because we have simple dynamics and piecewise constant
cost functions. The straight line joiningα and γ is the
optimal path for Problem 1; the optimal cost is100. The cost
of the path(α, η, µ, γ), wherev1 deviates from the original
optimal path to benefit from a cost reduction in the segment
(η, µ), is 94.2182. v2 complies with the constraints by taking
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Fig. 1. Example of coordinated paths.

a loop (triangle) fromβ, with fuel cost12.0000 (within the
fuel budget).

The optimal coordinated path planning problem forv1 is
Problem 2: Find

inf
u1(.),u2(.)

J1(u1(.), u2(.), γ) (4)

infu1(.),u2
J1(u1(.), u2(.), γ) ∈ R under the stated as-

sumptions
Lemma 2.1: Let R denote the set of points reachable

by v2 for a round trip fromβ under fuel budgetθ. Joint
operation may only happen onR.

A characterization ofR is in order. For that purpose, we
introduce the following value functions:V2b(x), a map of
x to the minimum amount of fuel required to reachx after
departing fromβ; andV2c(x), a map ofx to the minimum
amount of fuel required to reachβ after departing fromx.
These functions are not necessarily the same. For instance,
if the vehicle has to face directional winds, the expended
fuel will be different depending on the direction of the trip.
Details on dynamic optimization techniques for reachability
analysis can be found in see [13].

On example 2.1, the fuel consumption ofv2 depends only
on the trip duration (as given byw2); v2 will adopt its
maximum velocity (unit velocity) in order to minimize the
trip duration, which is given by‖x−β‖2

1 . Due to the simple
dynamics ofv2 it is trivial to see thatV2b(x) = V2c(x) =
0.2‖x − β‖2. Therefore,R is the circle of radius30 with
centerβ.

Remark 1: Notice that wasv2 faster thanv1 it could use
that velocity to reach farther points without breaking A5.

C. The structure of the optimal solution

The existential quantifier in the cost function forv1 (see
(2)) means that it depends on endogenous and exogenous
variables. There is a continuous dependence on the en-
dogenous variables (the position and controls ofv1) and
a discontinuous dependence on the exogenous variables –
the position of other vehicles (v2 in our problem). The
discontinuity on the position ofv2 means that the cost
function does not provide information on whatv2 should
do when the two vehicles are not moving together. In our
approach, that behavior is implicitly imposed byV2b(x)
and V2c(x), as explained below. In fact this discontinuity
introduces a combinatorial aspect to the problem (for the

case of more vehicles). The discontinuous behavior can be
described by enumerating all possible interactions. For the
two vehicle problem this could be modeled with two discrete
states. However, the requirement that the vehicles can only
meet once demands an additional state to memorize the fact
that a meeting took place.

Assuming that the optimal solution implies coordinated
operation,v2 has to travel a round trip fromβ to meet with
v1 at some some point inR. The round trip is composed
of three path segments:(β, xb), (xb, xc), (xc, β). (xb, xc) is
the path traveled together byv1 andv2; cb, cc andcf are the
levels of fuel available forv2 at respectivelyxb, xc and β.
We observe that the points in the path segment(xb, xc) are
in R.

If the optimal path forv1 in Problem 2 goes through
R, then both vehicles go through discrete states(a, b, c)
as follows.v1 starts at statea to follow the optimal path
connectingα and xb ∈ R; in stateb, it is accompanied by
v2 in the optimal path connectingxb to xc; and in statec it
follows the optimal path connectingxc to γ.

When the two vehicles meet at pointxb, the path optimiza-
tion for both vehicles is no longer decoupled. Moreover, the
model of fuel consumption forv2 adds anintegral constraint
to the problem. From the perspective ofv1, all that really
matters in what concernsv2 is: 1) the point where the
meeting takes place; and 2) the amount of the fuel remaining
in the fuel tank ofv2.

In the discrete statesa and c, v2 follows fuel optimal
paths connecting respectivelyβ to xb and xc to β. In
order to maximize the coverage ofv1 by v2 we will have
cb = V2b(xb), since there is no point inv2 spending more
fuel than needed to reachxb.

In what concernscc, we can conclude the following:
Proposition 2.1: Let p be an optimal path for Problem 2

with a segment(xb, xc) in R. Let V2bc(x, x0) be the fuel
required forv2 to follow v1 in its optimal path fromx0 to
x. Assume thatv2 is fuel constrained, i.e., thatv2 has not
enough fuel to cover the entire pathp Then cc ≥ V2c(xc),
i.e., for certain system dynamics,v2 may have to return to
β with nonzero fuel slack. IfV2b(x), V2c(x) andV2bc(x, x0)
are continuous thencc = V2c(xc) (zero fuel slack).
We do not present the proof here due to space limitations.

Remark 2: Notice that, in all of the above, we do not
imply anything about the wayxb is chosen. In what concerns
xc we can infer the following corollary:c2(t) ≥ V2c(x1(t))∧
c2(t

+) < V2c(x1(t
+)) ⇒ xc = x1(t).

D. Hybrid model

The formulation of the coordinated optimal path planning
problem for vehiclev1 requires the consideration of a state
variable that keeps track of what each vehicle does. We do
this with a 3-state hybrid automaton. The hybrid state space
is S =

⋃

v∈{a,b,c}(Sv × v). v1 evolves inSa = R
n after

departing fromα. The positions of the two vehicles coincide
in the discrete stateb. We need an additional variable to
keep track of the fuel consumption forv2; this is whySb =



R
n × R

+
0 . v1 moves inSc = R

n after taking the transition
from discrete stateb to discrete statec (after leavingv2).

There is a controlled vector fieldfv associated to each
discrete state, wherefa = fc = f1 and fb = {f1, g2}. The
control constraints areUa = U1, Ub = U1×U2 andUc = U1.
In the terminology of [3], associated to each discrete statev
there are autonomous jump setsAv,v′ , controlled jump sets
Cv,v′ and jump destination setsDv,v′ . The trajectory of the
system jumps fromSv to Sv′ upon hitting the autonomous
jump setAv,v′ ; it may or may not leaveSv upon hitting the
controlled jump setCv,v′ and it can leaveSv at any point in
Cv,v′ ; the destination of a jump isDv,v′ .

In what follows,xi represents the i-th component ofx.
The autonomous and controlled jump sets for the system

are respectivelyA =
⋃

v,v′ Av,v′ andC =
⋃

v,v′ Cv,v′ . The
jump set isJ = A

⋃

C. These are given by

Ca,b = R

Ab,c = {(x1, x2, x3) : x3 = V2(x
1, x2)}

Da,b = {(x1, x2, x3) : x3 ≥ V2(x
1, x2)}

Db,c = Sc

The transition maps are

Ga,b : Ca,b → Da,b, Ga,b(x) = (x, θ − V2(x))

Gb,c : Ab,c → Db,c, Gb,c(x) = (x1, x2)

The interpretation is as follows.v1 starts moving inSa;
if x1(.) entersCa,b then it may continue inSa, or take a
controlled jump toSb. In the case of a controlled jump, the
transition mapGa,b maps the current state ofv1 to a state
extended to include the optimal amount of fuel remaining in
v2 at the same location after departing fromβ with an initial
amount of fuelθ. In Sb, the positions of the two vehicles
coincide; there is an autonomous jump fromSb to Sc when
the trajectory of the system hitsAb,c. This means thatv2 had
to leave, since there was just enough fuel to go back toβ. The
jump relation consists of eliminating the third component of
the state. The transition maps imply thatv2 uses fuel optimal
strategies to travel to the meeting point and to reachβ after
leavingv1. Figure 2 shows the automaton corresponding to
this hybrid system.

a b c

?[x ∈ R]/c2 := V2b(x) ![c2(t
+) < V2c(x)]

ẋ(t) = f(x, u)ẋ(t) = f(x, u) ẋ(t) = f(x, u)

ċ2(t) = w2(x(t), u(t))

Fig. 2. Hybrid automaton modeling the system. The continuous state space
on modeb has one additional dimension to model available fuel inv2.

With the aid of the hybrid system formulation, we define
T as the set of points reachable byv2 in Sb under the
fuel constraintθ for a round-trip fromβ. T is the set of
all (x1, x2, x3) ∈ Sb such that the first two components

(x1, x2) are in R and the last component(x3) satisfies the
fuel constraint:

T = {x ∈ Sb : (x1, x2) ∈ R ∧ (x3 ≥ V2(x
1, x2))∧

((θ − V2(x
1, x2)) ≥ x3)}

Remark 3: M = {Sb\T, b} is not reachable inS.

III. D YNAMIC PROGRAMMING

The precise formulation of the hybrid optimal control
problem is presented in [2]. We recover some of the main
definitions and results to be used here.

The minimum cost to reach continuous statex ∈ R
n on

discrete statev ∈ {a, b, c}, departing fromα, is defined as
V (x, v). In this context, we present a new assumption.

A8) Vehiclev1 may choose to leave from any point from
a predefined arbitrary setS0 ∈ R

n, with initial cost
defined byg(x), x ∈ S0.

This means that the boundary condition is given by∀x ∈
S0 : V (x, a) = g(x). Moreover,∀x ∈ (Sb\T ) : V (x, b, σ) =
+∞. On example 2.1 we haveS0 = {α} andV (α, a) = 0.

The following theorems can be proved with the help of
the results from [14].

Theorem 1: The value functionV (x, v) satisfies the prin-
ciple of optimality for everyv ∈ {a, b, c}.
Keep in mind thatv1 can reach a same position in the three
discrete states. The principle of optimality is valid only if
the discrete state is also taken in account. For instance, we
may have an optimal trajectory fromα to γ, passing through
η ∈ R on discrete statea, and also an optimal trajectory from
α to η which is not a subset of the former. That happens
because in the later caseη would be reached on other state
thana.

Theorem 2: The value functionV (x, v) is the viscosity
solution of the HJB equation.

Vt(x, v) + H(x, v, Vx) = 0, (x, v) ∈ S\S0 × a

V (x, a) = g(x), x ∈ S0

with

H(x, v, p) = sup
u∈U

[p(x, v) · fv(x, u) − l(x) · k1(x, u)] (5)

IV. OPTIMAL STRATEGIES

The optimal strategy forv1 is derived from the value func-
tion V (x, v). This requires some additional computations.

The position ofv1 is given by the continuous state of the
hybrid automaton in the discrete statesa and c, and by the
first two components of the continuous state in the discrete
stateb; the third component,x3, is the fuel remaining inv2.
However, the value functionV in b depends not only on the
position ofv1 (x1, x2), but also on the fuel remaining inv2

(x3). An additional minimization overx3 is required. This
is done next with the help of a new function,Ṽ : R

n → R.

Ṽ (x, a) = V (x, a)

Ṽ (x, b) = min
x3∈[V2(x),θ−V2(x)]

V ((x, x3), b)

Ṽ (x, c) = V (x, c)



Ṽ (x, a) is also the optimal value function for Problem 1.
To find the optimal path cost atx ∈ R

n we need to
drop the dependence of̃V on the discrete state with another
minimization. This is done with the the help of a new
function,V (x) : R

n → R.

V (x) = min
v∈{a,b,c}

Ṽ (x, v) (6)

The optimal discrete state at the final state of the trajectory
x(tf ) is given by

v∗ = argminv∈{a,b,c}Ṽ (x(tf ), v) (7)

Observe thatv∗ is not necessarily a singleton. We summarize
these observations in the theorem.

Theorem 3: V (γ) is the optimal value for solving Problem
2. If v∗ = a then path coordination is not optimal.
The optimal control is given byu∗ as follows

u∗ = argmaxu∈U [Vx(x, v) · fv(x, u) − l(x) · k1(x, u)] (8)

V. NUMERICAL EXAMPLES

Example 2.1 is an interesting benchmark example because
it is relatively simple to validate the associated optimal
trajectories geometrically. Even so, the advantages of the
approach described in this paper should not be neglected even
for an apparently easy problem. This approach allows us to
make universal quantification and to answer questions such
as “What is the set of destination points for which the optimal
trajectory implies vehicle coordination?” (see Theorem 3). A
more complete analysis of example 2.1 can be found in [2].
We emphasize that this problem should not be confused with
a simple problem of weighted regions (e.g., [15]), since the
duration of the coordinated mode depends on the dynamics
of v2 (namely on its fuel consumption) and its trajectory,
not on some predefined boundaries on the continuous state-
space.

We start by computing the value function at discrete points
of a regular gridΩ ⊂ S. The value function is computed
by numerical methods (described below). Several destination
points are then considered. The optimal trajectory to each of
those destinations is computed much like as in standard DP
problems: by recursive backward in time integration of the
system dynamics, with continuous input given by (8). The
main differences reside on the need to detect the transitions
between discrete states, reverting the state jumps (remember
that the computation is performed backward in time) and,
of course, selecting the value function accordingly to the
discrete state. This procedure is also described below.

For each example we present a figure displaying the
level sets ofV (x), along with the optimal trajectories for
arbitrarily selected destination points. The coordinatedflight
phase is plotted on red (thick). The destinations for which
coordinated operation is the optimal choice are filled in gray.
For discrete statesa andc we use a grid of 400x400 points.
On discrete stateb the grid has 400x400x480 points.

Figure 3 refers to example 2.1. It is possible to see the
length of the joint motion path (discrete stateb) varying
according to the selected destination point. The computation

of V (x, v) took 715 seconds on a computer based on the
Intel T7250 processor.
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Fig. 3. Level sets ofV (x) for example 2.1, along with the optimal
trajectories for arbitrarily selected destination points. The coordinated flight
phase is plotted on red (thick). The circle delimitsR, the set of points that
v2 can reach and still return to its initial position. The gray area marks the
destinations for which coordinated operation is the optimal choice.

The second example is still based on example 2.1, but
with elements that make it harder to compute the optimal
trajectories by simple geometrical considerations. First, v1

may depart from any point ofS0 = {(0, 0)} ∪ {(x1, x2) :
x2 = 100 ∧ 20 ≤ x1 ≤ 60}; second,v1 is not allowed to
reach the rectangular regions{(x1, x2) : (45 ≤ x1 ≤ 55 ∧
0 ≤ x2 ≤ 10)}, {(x1, x2) : (10 ≤ x1 ≤ 38.5 ∧ 85 ≤ x2 ≤
90)} and {(x1, x2) : (42.5 ≤ x1 ≤ 70 ∧ 85 ≤ x2 ≤ 90)}.
As illustrated on Figure 4, the computation of the optimal
path shows the optimal departing point forv1. Also, the
implemented numerical algorithm has no problems in dealing
with the obstacles. In this case, the computation ofV (x, v)
took 1115 seconds.
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Fig. 4. Level sets ofV (x) for second example, along with the optimal
trajectories for arbitrarily selected destination points.



A. Algorithms

The main difficulty in the DP approach for general non-
linear problems is the computation of the solution of the
HJB PDE. We perform that task using ideas from [11] and
[16]. Those papers describe a class of single-pass numerical
algorithm for the static HJB PDE designated as “Ordered
Upwind Methods” (OUM). The OUM are inspired by the
Dijkstra algorithm, which is characterized by computing
the value function in a monotonic fashion, i.e., from the
points with lower value to the ones with higher value. This
characteristic is important for the efficiency of our approach,
namely on handling the controlled transition froma to b.
However the theoretical analysis of the OUM takes the lim-
iting assumption thatF(x) = f(x, U) is a compact set with
the origin in its interior for everyx in the continuous state
space. Moreover, the performance of the algorithm degrades
asF(x) deviates from an hypersphere centered at the origin.
The dynamics considered on the examples presented in this
paper fulfill the above mentioned assumption only on states
a andc. On stateb, due to the dynamics of the fuel variable,
that assumption is not met (F(x) is a cone with vertex at the
origin and axis directed toward decreasing values ofx3). In
order to deal with that case, we made a free adaptation of the
ideas of the OUM. The results are consistent with the ones
obtained by the “brute force” approach used for example 2.1
in [2]. The current implementation does not follow all hints
presented in [16], therefore it might be possible to further
improve the computation times mentioned above. As can
be seen in the previous subsection, the computation time of
the algorithm does not depend solely on the number of grid
points. This happens because, at each iteration, the algorithm
must manage a front of candidate points and also select the
lowest value point from it. The greater complexity of the
second example (obstacles, several starting points) leadsto
a front composed of more points; therefore, the evaluation
of the front takes an average time greater than in the first
example.

Given V (x, v), the computation of any optimal trajectory
takes negligible time. The backward in time integration is
performed using the Euler method. The procedure is as
follows (remember thatu∗(t) is given by (8)):

1) Start witht = 0. x(0) is the destination point. Identify
the respective optimal discrete state using (7).

2) Checkx(t) ∈ S0; if true, stop the procedure.
3) x(t − ∆t) = x(t) − ∆t · f(x(t), u∗(t)).
4) If in stateb, c2(t − ∆t) = c2(t) − ∆t · w2(x(t)).
5) t = t − ∆t.
6) If in statec, check (7). If the new optimal state isb,

resetc2(t) to argminx3V ((x(t), x3), b).
7) If in stateb, checkθ − V2(x(t)) − c2(t) ≤ 0; if true,

switch to statea.
8) Go back to step 2

VI. CONCLUSIONS

We have shown how to use dynamic programming to
compute the optimal solution for a class of collaborative

control problems. We use the hybrid systems framework to
model the problem. This allows a clear description of the
logic of the problem and also the consideration of different
dimensions for each discrete state, with obvious advantages
for computational efficiency. This class of problems fea-
tures autonomous and controlled transitions between discrete
states. We compute a value function for each discrete state.
However, it must be remarked that these value functions
are coupled, i.e., they may not be computed independently.
The solution of the resulting HJB PDE is computed through
numerical methods. The global approach allows a systematic
qualitative and quantitative determination of whether coop-
eration is advantageous or not, along with the respective
optimal trajectory.
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