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Abstract— New problems of optimal path coordination for ~ departure point of»; among several candidate regions. We
multiple vehicles are introduced, formulated and solved in g|so relax some of the assumptions in order to make the
the framework of dynamic optimization. The novelty of these  ¢5rmulation applicable to a broader class of systems. Like

problems arises in several ways. The cost function and the . .
dynamics include non-trivial dependencies, modeled throgh N [2] we formulate the collaborative control problem for

existential quantification over groups of vehicles - this lads the two vehiclesu; and vz as an optimal control problem
to non-Lipschitz behavior and to non-standard optimal contol ~ for a hybrid automaton with three discrete states (the laybri
problems. There are consumable resources, modeled with the gutomaton models the combinatorial aspects of the problem)
help of integral constraints - the structure of the constrants We follow the hybrid systems model from [3].

suggested new strategies for optimal cooperation which out . .
perform the results obtained with standard formulations with We tackle the problem in the framework of dynamic

state-constraints. Our formulation uses the structure of he Programming (DP) [4]. DP approaches the problem of op-
problem to decouple the overall optimization into simpler timizing the behavior of a dynamic system with respect to

coupled problems in lower-dimensional spaces. Thisis expssed  some cost function by introducing a value function which
in the form of the solution, which is encoded as the composiin - giyes, at each point of the state space, the optimal cost to go
of value functions in lower-dimensional spaces. . .
for the system. This has the advantage of providing a global
I. INTRODUCTION perspective on the optimal behavior of the system, as also
of facilitating the development of optimal feedback cohtro

Problems of optimal path coordination for multiple vehi- ) L
s. For general nonlinear problems, the value function is

cles are posing new challenges to control. Consider, as : ) ) .
example, the problem of controlling operations of unmannefPt@ined from the solution of a Hamilton-Jacobi-Bellman
air vehiclesv; (UAV) in hostile air spaces. The probability (HJB) partial differential equation (PDE). In this work we
of survival of an UAV is directly proportional to the value Pursue that path and we employ a numerical procedure for
of the path integral taken with respect to some risk functiowe solution of the H‘],B PDE. i )

[1]; the level of risk is significantly reduced when the UAV The problem described h(_are com_blnes the following as-
flies under the protection of an UAV, carrying a jamming pects: a) both controlle_d_ (discrete mpu'F) and autonomous
device . This is an example of a collaborative control proble (state dependent) transitions between discrete stateal-are

where vehicles coordinate their paths to improve individud®ed: b) controlled transition may be triggered only at-cer

or group performance. Other examples include the use il Points of the continuous state space; c) running cost de
bulldozers (or icebreakers) to open routes for other cars (Bends on the discrete state; d) nonlinear coqt|nuous dyssami
ships) and air refueling missions. The bulldozer modifie&"® assumed. We are not aware of any published work on DP

or “morphs” the terrain (the cost function shared by othet?" hybrid systems combining all of the above mentioned

vehicles using the road). The questions are: What is thesval@SPECts and offering a general efficient computation method
of cooperation? Is cooperation useful at all? If so, in whaf' [3]. where the author presented a taxonomy for hybrid

extent? How should the vehicles cooperate in an optimﬁi"s’tem_s which su_bsumed previous modgls, optimal control
fashion under budget (fuel) constraints? of hybrid systems in the setting of DP is discussed. However,

We discuss these questions with the help of a simple twéo general efficient computation method is devised there.

vehicle optimal path coordination control problem. This is 12t line of development is still an open problem today.

a non-standard optimal control problem, in the sense th ost of the results toward efficient methods are obtained
’ restricting their range of applicability just to certain

the the actions of one dynamic system (bulldozer) chan i
the cost function for the others (cars) in a non-Lipschitf asses of problems. In [5] the authors develop a Hybrid

way. A basic form of this problem was studied in [2]. TheBeIIman Equation for systems with regional dynamics (i.e.,

problem is revisited here and new features are incorpocrate%lqu autonomous transitions are considered). The restdts a

physical obstacles and the possibility of choosing thenogti demonstrated only for problems featuring two dimensional
continuous dynamics, with quadratic cost. Practical appli
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above mentioned aspects (see [8], [9], [10] and referencesThe standing assumptions are:
therein). In [11], the authors describe a single pass nwaleri Al) fi : R" xU; — R* andws : R" x U; —

method for the solution of the HIB PDE in hybrid optimal R are uniformly Lipschitz inz and uniformly

control problems. We use some insights of that work in our continuous in the control variable. This condition

numerical example. ensures existence and uniqueness of solutions for
The paper is organized as follows. In section Il we state the differential equations.

and formulate a path coordination problem in the framework a2y  There existk; < oo and1 < ¢; < oo such that

of hybrid systems. In section Ill we use DP techniques to (21, 22) ki (21, w)|| < Ky(1+ (21, 22)]))5 for

characterize the solution to the problem. In section IV we (z1,22) € R" x R, u; € UL.

discuss optimal strategies in the framework of DP and in aA3) There existk, < oo and1 < ¢, < oo such that

section V we illustrate practical application of the apmioa g2 (a2, u2)|| < K2(1 + ||z]))%2 for z € R™,uy €

using numerical examples. In section VI we draw the con- Us,. This assumption and the previous are related

clusions. to the existence of solution to the problem.

Ad) 0 €int f;(x;,U;) (locally controllable).

Il. PROBLEM FORMULATION . .
AB)  fi(z,U1) C fa(z, Us). This means that, is capa-

A. The system ble of replicating the motions of;. If necessary,
We need some definition&lAV is a generic term for the this constraint can be enforced by considering a
entities composing our force. There is a finite setypkes, new set of controls fow,, Uy C Ui, such that
calledUAVTypes={simple, jammer }. A UAV is characterized fi(z,Uf) C fax, Ua).
by its type and its (two-dimensional) locatigm). So, our AB) The vehicles are allowed to meet only once and
force with N UAVs is thus described by a set of the form then move together up to the point whesereturns
to 8 (this precludes behaviors where the vehicles
UAVs = {vi = (typey, (21)), -+, v = (typey, (2n))}- (1) move together and separate repeatedly).
Consider the simplest problem setting withi = 2, AT)  ki(z1,u1) may take an arbitrary high value (finite,
type, = simple and type, = jammer. Vehicle v; has to so that A2 is fulfilled), in the line of thesxact
find the optimal trajectory fromy to ~. The instantaneous penalization method (see [12]). This is done to
path cost fory; is reduced by a fixed amountwhen the define forbidden regions, which may be used to
position of this vehicle “coincides” with the position of represent, for instance, physical obstacles.

another vehicleyp,; this means that the path cost for is o
a discontinuous function of the relative positions of the tw B. The case for coordination
vehicles.v; has a limited amount of fuel; it departs from  ~gnsider thaw, is operating in isolationi(= 1)

8 # « and is require_d to re'gurn t6 before it runs out of Problem 1: [Uncoordinated] Find
fuel. The corresponding motion models are

zi(t) = fi(zi,wi), z € R™, u; € U, t >0 ulln(f) Ji(u(),7) (3)
21(0) = o, 22(0) = The path plann_lng problem becomes more mterlestmg
when the two vehicles are allowed to coordinate their mo-
whereu; are the controls and/; are closed sets. The fuel tions. It may be worthwhile forv; to deviate from the
consumption ofu, is modeled by the state variable € R optimal path for Problem 1 to joim, before reachingy.
: The following example illustrates this point.
Gr(t) = ga(wa, uz) = wo(x2,uz) If ca >0 _ . > '
2(l) = g2(T2,u2) =3 otherwise Example 2.1: Consider Flgure_l. Let: _
x; € R?, (t) € Bo,i = 1,2 (B is the closed unit ball).

c2(0) =0 a = (0,0), 8 = (50,40), v = (100, 0).
wherews(.,.) < 0. 1 = (39.2000,24.1254), 11 = (60.7999, 24.1254).
Considerv;. The cost of a path joining and~ is c2(0) =0 = 12.

4 ki(z1,u1) =1, —wa(x2,u2) = 0.2, l(z,z) = 0.1.
Ji(ur(), .. un(), ) :/ l(z1) - ki (21,u1)ds (2) The circle of radius 30 centered at encloses the set of
0 points reachable by, within fuel constraints. This will
wherek, (.,.) > 0, t; is the first time whem; (£;) = v under be discussed in more detail later. In this example, the fuel

the control functionsu;(.),...ux(.) andl: R* — [0,1] is ~ optimal paths foru, are straight lines. The same happens
with the optimal paths fop; (for fixed values ofl). This is

because we have simple dynamics and piecewise constant
cost functions. The straight line joining and v is the
optimal path for Problem 1; the optimal costlig0. The cost

The functionl models the fact that the path cost faris  of the path(«, n, i, v), wherev; deviates from the original
reduced § € (0, 1)) when the position o, coincides with optimal path to benefit from a cost reduction in the segment
the position of anothedAV. (n, 1), is 94.2182. vy complies with the constraints by taking

) = ¢ if Ju; eUAVSs: z(v;) = 1 A type(v;) = jammer
(1) = 1 otherwise



80 case of more vehicles). The discontinuous behavior can be
described by enumerating all possible interactions. Fer th
two vehicle problem this could be modeled with two discrete
states. However, the requirement that the vehicles can only
meet once demands an additional state to memorize the fact
that a meeting took place.

Assuming that the optimal solution implies coordinated
operation,w, has to travel a round trip from¥ to meet with
v1 at some some point iR. The round trip is composed
of three path segment&3, xy), (x5, x.), (z¢, 8). (Tp, xc) IS
the path traveled together by andwvs; ¢y, c. andcy are the
levels of fuel available fowy at respectivelyxy, z. and .
We observe that the points in the path segmentz.) are
in R.

If the optimal path forv; in Problem 2 goes through
R, then both vehicles go through discrete statesb, c)

Fig. 1. Example of coordinated paths.

a loop (triangle) froms, with fuel cost12.0000 (within the
fuel budget).
The optimal coordinated path planning problem #gris

Problem 2: Find as follows.v; starts at state: to follow the optimal path
inf  Ji(ui(),uz(.), ) (4) connectingan andz;, € R; in stateb, it is accompanied by
u1(.),uz2(.) vy in the optimal path connecting, to x.; and in statec it

info, (), J1(ur(-),u2(.),7) € R under the stated as- ¢50,s the optimal path connecting. to .

sumptions When the two vehicles meet at poi imi
] . poiry, the path optimiza-
b Lem':f‘a 2.1 Le':j ? defnote thedsetf Ofl pbo'(;'ts yre\?chat‘bletion for both vehicles is no longer decoupled. Moreover, the
y v2 t_or a roun | rr']p romiﬁun er fuel budgev. Joint - model of fuel consumption far, adds arintegral constraint
operation may on'y happen an. to the problem. From the perspective @«f, all that really
A characterization of® is in order. For that purpose, we matters in what concerns, is: 1) the point where the

'ntmd#ce t.h_e following valufeffurllctlon%bd(a:), a mr":;t of meeting takes place; and 2) the amount of the fuel remaining
 to the minimum amount of fuel required to reachafter . o fel tank ofvy.

g?npoirg?%ff:‘igﬂr;ea?ﬁr;%cEg)}ezqr{;a;tg];x dteo g:gnm'%n”im In the discrete states and ¢, v, follows fuel optimal
q P 9 ) aths connecting respectively to z;, and z. to . In

These functions are not necessarily the same. For instan Cder to maximize the coverage of by v, we will have
. . . . . 2
if the _veh|cle_ has to face d.|rect|onal Wl.ndS,. the expendeglb — Viy(x3), Since there is no point im; spending more
fuel will be different depending on the direction of the trip

. . e . .= fuel than needed to reach,.
Details on dynamic optimization techniques for reachgpili In what concerns.. we can conclude the followina:
analysis can be found in see [13]. ° 9:

. Proposition 2.1: Let p be an optimal path for Problem 2
On example 2.1, the fuel consumptionefdepends only with a seamen in B Let V- be the fuel
on the trip duration (as given bys); v, will adopt its gment(zy, z.) : 2be (2, T0)

. : . Loy S required forv, to follow v, in its optimal path fromz, to
maximum velocity (unit velocity) in order to minimize the ) ) )
. . A 12— B8]l . x. Assume that, is fuel constrained, i.e., that, has not
trip duration, which is given by=—="2. Due to the simple enough fuel to cover the entire pathThen c, > Vi, (z.)
dynamics ofv, it is trivial to see thatla,(z) = Vac(x) = 9 P Ce = V2clZc),

B . . . . i.e., for certain system dynamics; may have to return to
2é2r|1|tir5 B||2. Therefore,R is the circle of radius30 with 3 with nonzero fuel slack. Wy (z), Vae(z) and Vape(, 7o)

Remark 1: Notice that wasv, faster tharnw; it could use 3&5 ggn:gtuo:]essg:ﬁ?h: ‘?gé?‘;])e(éego ;u:)l :Ia;ckg.l'm'tat'ons
that velocity to reach farther points without breaking A5. P P u P Imitations.

Remark 2: Notice that, in all of the above, we do not

C. The structure of the optimal solution imply anything about the way;, is chosen. In what concerns

. . . . x. we can infer the following corollary:s (t) > Vo (z1(t))A
The existential quantifier in the cost function for (see . Qf*) < Vool (7)) = 20 = 21 (8).

(2)) means that it depends on endogenous and exogenod
\éarlables. Thgre is a contlnL_JQus dependence on the eB'- Hybrid model
ogenous variables (the position and controlsvgf and
a discontinuous dependence on the exogenous variables The formulation of the coordinated optimal path planning
the position of other vehiclesv{ in our problem). The problem for vehiclev; requires the consideration of a state
discontinuity on the position ofi;, means that the cost variable that keeps track of what each vehicle does. We do
function does not provide information on what should this with a 3-state hybrid automaton. The hybrid state space
do when the two vehicles are not moving together. In ous S = ¢4 .0 (S0 X v). v1 evolves inS, = R™ after
approach, that behavior is implicitly imposed B%,(«) departing fromn. The positions of the two vehicles coincide
and Va.(z), as explained below. In fact this discontinuityin the discrete staté. We need an additional variable to
introduces a combinatorial aspect to the problem (for thieeep track of the fuel consumption fog; this is why S, =



R™ x Rf. v; moves inS, = R™ after taking the transition (z!,2%) are in R and the last componerit®) satisfies the
from discrete staté to discrete state (after leavingus). fuel constraint:
There is a controlled vector field, associated to each 1 9 3 1 2
discrete state, wherg, = f. = f1 and f, = {f1,92}. The T={zeS:(,a%) €ERA(2" 2 Va(a,2%))A
control constraints ar&, = Uy, U, = Uy x U andU,. = Uy. (60 — Va(a',2%) > 2%)}
In the terminology of [3], associated to each discrete state  Remark 3: M = {S,\T, b} is not reachable irf.
there are autonomous jump seis .-, controlled jump sets
Cy.»» and jump destination sef®,, .. The trajectory of the I1l. DYNAMIC PROGRAMMING
system jumps fron, to S,» upon hitting the autonomous The precise formulation of the hybrid optimal control
jump set4, ,; it may or may not leaveS, upon hitting the problem is presented in [2]. We recover some of the main
controlled jump set’, ,» and it can leaveS, at any pointin definitions and results to be used here.
Cy ; the destination of a jump i®,, .. The minimum cost to reach continuous statec R™ on
In what follows, z* represents the i-th component :of discrete stater € {a, b, ¢}, departing frome, is defined as
The autonomous and controlled jump sets for the systeli(z, v). In this context, we present a new assumption.
are respectivelyd = UM, Ay andC = Uw/ Cy. The A8) \ehiclev; may choose to leave from any point from
jump setisJ = A{JC. These are given by a predefined arbitrary séf € R”, with initial cost
defined byg(x),z € Sp.

Cop =R . e
b L o 3 5 - This means that the boundary condition is giventhy €
Ape = {(a7,27,2%) s 27 = Va(z", 27)} So : V(z,a) = g(x). Moreovervz € (Sy\T) : V(z,b,0) =
Doy = {(z', 2% 2%) : 2® > Vo (!, 2?)} +00. On example 2.1 we havg, = {a} andV («, a) = 0.
D =S The following theorems can be proved with the help of
b,c c
N the results from [14].
The transition maps are Theorem 1: The value functiort/(z, v) satisfies the prin-
Gab: Cat — DapsGap(e) = (2,0 — Va(x) ciple of optimality for everyv € {a, b, c}.

Keep in mind thaty; can reach a same position in the three
Goc: Ape = Dy, Gyo() = (21, 2°) discrete states. The principle of optimality is valid onfy i
The interpretation is as followss; starts moving insS,: the discrete stat(_a is alsc_> taken in account. Fgr instance, we
if 21(.) entersC,, then it may continue inS,, or take a may have an optimal trajectory fromto 7, passing through
controlled jump toS,. In the case of a controlled jump, the ! € 2 on discrete state, and also an optimal trajectory from
transition mapG,_, maps the current state of to a state ton whlch is not a subset of the former. That happens
extended to include the optimal amount of fuel remaining ipecause in the later cagewould be reached on other state
vo at the same location after departing frghwith an initial thana. ) ) _ )
amount of fueld. In S, the positions of the two vehicles 1heorem 2: The value functionV(z, v) is the viscosity
coincide; there is an autonomous jump frémto S, when Selution of the HIB equation.
the trajectory of the system hit, .. This means that, had Vi(z,v) + H(x,v,V,) =0, (z,v) € S\Sp x a
_to leave, since ther_e was jugt gnoggh fuel tq go bagk fthe V(z,a) = g(z),z € So
jump relation consists of eliminating the third componeit o
the state. The transition maps imply thatuses fuel optimal Wwith
strategies to travel to the meeting point and to readfter H(z,v,p) = sup[p(z,0) - folz,u) — 1(z) - kr(z,0)] (5)
leavingv,. Figure 2 shows the automaton corresponding to T wer v ’

this hybrid system. IV. OPTIMAL STRATEGIES

e € R]/es i= Vay(x) lea(tH) < Vae ()] _ The optimal s_trategy_ foo, is derived_ f_rom the value f_unc-
tion V(x,v). This requires some additional computations.

The position ofv; is given by the continuous state of the
hybrid automaton in the discrete statesndc, and by the
first two components of the continuous state in the discrete

i(t) = f(z,u) i(t) = flz,u) i(t) = f(z,u) stateb; the third component;3, is the fuel remaining in,.
éa(t) = wala(t), u(t)) However, the value functiolr in b depends not only on the
position ofv; (', 22), but also on the fuel remaining i

3 N AR 3 . .
Fig. 2. Hybrid automaton modeling the system. The contisustate space (x ) An add|t|(_)nal minimization over 'S_ r?qu'rEd' This
on modeb has one additional dimension to model available fuebdn is done next with the help of a new functiowi,: R™ — R.

With the aid of the hybrid system formulation, we define ‘f(x’ a) =V(z,a)
T as the set of points reachable by in S, under the V(z,b) =
fuel constraintd for a round-trip fromg3. T is the set of -
all (z%,2%,2%) € S, such that the first two components V(z,c) =V(z,c)

—~

min V((z,2%),b
z3€[Va(x),0—Va(x)] (( ) )



V(z,a) is also the optimal value function for Problem 1.of V(z,v) took 715 seconds on a computer based on the
To find the optimal path cost at € R™ we need to Intel T7250 processor.

drop the dependence &f on the discrete state with another

minimization. This is done with the the help of a new

function, V(x) : R® — R. 10
V(z) = min V(z,v) (6)
ve{a,b,c} 80
The optimal discrete state at the final state of the trajgctor
z(ty) is given by 60
2
" . -~ x
v = argmlnje{a,b,c}v(x(tf)v 1)) (7)
Observe that* is not necessarily a singleton. We summarize 40
these observations in the theorem.
Theorem 3: V() is the optimal value for solving Problem 20
2. If v* = a then path coordination is not optimal.
The optimal control is given by.* as follows 0 |
0 20 40 ,60 80 100

5131

u* = argmax c[Ve(z,v) - folz,u) —U(z) - ki (x,u)] (8)

V. NUMERICAL EXAMPLES Fig. 3. Level sets ofV/(x) for example 2.1, along with the optimal
. . . trajectories for arbitrarily selected destination pairftee coordinated flight
Example 2.1 is an interesting benchmark example becausigise is plotted on red (thick). The circle delimits the set of points that

it is relatively simple to validate the associated optima#2 can reach and still return to its initial position. The gragamarks the
trajectories geometrically. Even so, the advantages of tﬁlsstlnatlons for which coordinated operation is the optiohmice.

approach described in this paper should not be neglected eve

for an apparently easy problem. This approach allows us t0 The second example is still based on example 2.1, but
make universal quantification and to answer questions sugfih elements that make it harder to compute the optimal

trajectory implies vehicle coordination?” (see Theorem/3) may depart from any point oy = {(0,0)} U {(z!,2?) :

more complete analysis of example 2.1 can be found in [2}.2 _ 190 A 20 < 2! < 60}; second,v; is not allowed to
We emphasize that this problem should not be confused WitBach the rectangular regiodés!, z2) : (45 < 2! < 55 A
a simple problem of weighted regions (e.g., [15]), since thg < ;2 < 10)}, {(z',22) : (10 < 2! < 38.5A85 < 22 <
duration of the coordinated mode depends on the dynamigg)} and {(z!,2%) : (42.5 < 2} < T0A 85 < 22 < 90)}

of vy (namely on its fuel consumption) and its trajectoryas jllustrated on Figure 4, the computation of the optimal
not on some predefined boundaries on the continuous Stafth shows the optimal departing point for. Also, the

space. implemented numerical algorithm has no problems in dealing

We start by computing the value function at discrete pointgith the obstacles. In this case, the computation/¢f;, v)
of a regular grid2 C S. The value function is computed {50k 1115 seconds.

by numerical methods (described below). Several destinati
points are then considered. The optimal trajectory to edch o

those destinations is computed much like as in standard DP 10
problems: by recursive backward in time integration of the \\&% g w/
system dynamics, with continuous input given by (8). The 2 YANAANY; 2 X
main differences reside on the need to detect the transition 80 \\\\é A.
between discrete states, reverting the state jumps (reeremb &‘,j’"’ \ \‘g
that the computation is performed backward in time) and, ,%0 .r;!% “\\ <
of course, selecting the value function accordingly to the x \‘,&‘ ///‘v’
discrete state. This procedure is also described below. 40 \ ) //‘y//l

For each example we present a figure displaying the //////// l
level sets ofV/(z), along with the optimal trajectories for o0 7 ""’II[/
arbitrarily selected destination points. The coordindligdht ,o\(,”,/////,/

. . L . SRS 4

phase is plotted on red (thick). The destinations for which ST (/
coordinated operation is the optimal choice are filled irygra % - 20 0 60 80 100

For discrete states andc we use a grid of 400x400 points. x
On discrete staté the grid has 400x400x480 points. ] . _ _
Figure 3 refers to example 2.1. It is possible to see tht':ég.' 4. Level sets ol/(z) for second example, along with the optimal
.. . . . rajectories for arbitrarily selected destination paints
length of the joint motion path (discrete staig varying
according to the selected destination point. The compurtati



A. Algorithms

The main difficulty in the DP approach for general non
linear problems is the computation of the solution of th
HJB PDE. We perform that task using ideas from [11] an

control problems. We use the hybrid systems framework to
model the problem. This allows a clear description of the
éogic of the problem and also the consideration of different
gimensions for each discrete state, with obvious advastage

[16]. Those papers describe a class of single-pass nurherity computational efficiency. This cla_sg of problems_fea-
algorithm for the static HIB PDE designated as «“Orderel}res autonomous and controlled transitions betweenatiscr
Upwind Methods” (OUM). The OUM are inspired by the states. We compute a value function for each discrete state.

Dijkstra algorithm, which is characterized by computingOWeVer. it must be remarked that these value functions
the value function in a monotonic fashion, i.e., from the?'® coupled, i.e., they may not be computed independently.

points with lower value to the ones with higher value. ThisThe solution of the resulting HIB PDE is computed through

characteristic is important for the efficiency of our apmina numerical methods. The global approach allows a systematic
namely on handling the controlled transition framto b qualitative and quantitative determination of whetherpgoo

However the theoretical analysis of the OUM takes the "m(_aration is advantageous or not, along with the respective
iting assumption thaf (x) = f(x,U) is a compact set with
the origin in its interior for everyr in the continuous state
space. Moreover, the performance of the algorithm degrade
asF(z) deviates from an hypersphere centered at the origird
The dynamics considered on the examples presented in this
paper fulfill the above mentioned assumption only on states
a andc. On stateb, due to the dynamics of the fuel variable, 4
that assumption is not mef(z) is a cone with vertex at the
origin and axis directed toward decreasing values¥9f In
order to deal with that case, we made a free adaptation of th%]
ideas of the OUM. The results are consistent with the ones
obtained by the “brute force” approach used for example 2.13!
in [2]. The current implementation does not follow all hints 4
presented in [16], therefore it might be possible to further
improve the computation times mentioned above. As carl
be seen in the previous subsection, the computation time of
the algorithm does not depend solely on the number of grid
points. This happens because, at each iteration, the gigori (6]
must manage a front of candidate points and also select the
lowest value point from it. The greater complexity of the
second example (obstacles, several starting points) leads [7]
a front composed of more points; therefore, the evaluation
of the front takes an average time greater than in the first
example. (8]

Given V(z,v), the computation of any optimal trajectory
takes negligible time. The backward in time integration is
performed using the Euler method. The procedure is a&!
follows (remember that*(¢) is given by (8)):

1) Start witht = 0. 2(0) is the destination point. Identify [10]
the respective optimal discrete state using (7).

2) Checkz(t) € Sp; if true, stop the procedure. [11]

3) z(t — At) = z(t) — At - f(z(t), u*(t)).

4) If in stateb, Cg(t — At) = Cg(t) — At - wo (,T(t)) [12]

5) t =t — At.

6) If in statec, check (7). If the new optimal state is 1]
resetes(t) to argmin,sV ((x(t), z%), b).

7) If in stateb, checkd — Va(x(t)) — ea(t) < 05 if true,  [14]
switch to stateu.

8) Go back to step 2 [15]

VI. CONCLUSIONS
[16]

We have shown how to use dynamic programming to
compute the optimal solution for a class of collaborative

] R. Bellman, Dynamic programming.

optimal trajectory.
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