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Abstract: Second-order necessary conditions for an abnormal local minimizer of nonlinear
optimization problem with equality and inequality constraints are presented and discussed.
These are the best possible optimality conditions that can be obtained for this class of
problems in that the associated set of Lagrange multipliers is the smallest possible.
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. INTRODUCTION

We consider the following optimization problem

Minimize f(z)
Fl (.’12) =0
Falz} <0

where f + X — R F : X — R™ and Fy o
X — R*2 are given mappings, X is a linear space,
R* denotes the k-dimensional arithmetical space, and
k1 and ks are fixed. The non-positivity of a vector
means that all its coordinates are non-positive. We
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shall assume that all functions f, F, and F5 are
smooth in the sense specified below.

In this article, we present and discuss second-order
necessary conditions of optimality for an abnormal
local minimizer of problem (P), which improve the
ones presented earlier in (Arutyunov, 1996; Aru-
tyunov, 2000).

For the sake of illustration, let us consider the follow-
ing particular instance of the problem (P) featuring
only equality type constraints:

flx) > min, Fi(z) =0, (N

where the space X is finite-dimensional, and f and
F} are twice continuously differentiable. Let zq be a
solution of problem (1). Two cases may arise.



Firstly, let us assume that im %i(xo) = R™ (here,
X

im denotes the range of an operator), i.e., zq is a
normal point. Then, the well-known first- and second-
order necessary conditions of optimality hold, see
(V.M. Alekseev, 1987). Denote by £, the Lagrange
function defined by

Li(z,A) = A% f(z) + (AL, Fy(z)).

These conditions guarantee the existence of a nonzero
Lagrangian multiplier A = (A% A!), with A° > 0,
such that

aL
'3—;(-’50,/\) =0,

2[:]

a2 {zo,A) is non-

and its second order derivative

. - . JF
negative definite on the linear subspace ker —i(mo).

Here, and in what follows, (-,-) denotes the scalar
product. Note that, in this case, A® > 0, and

aF
ker a—ml(:rg) is equal to the tangent subspace to the
set {z : Fi(z) = 0} at the point zq.

Now, let us assume zq to be abnormal, i.e.,
oF x
im——(z, R,
- (20) #

The following simple example illustrates that the
second-order necessary conditions stated above do not
hold in general. Indeed, let us consider the following
minimization problem

{a,z) — min
{E1) ¢ subjectio zyzs =0,
zi—af =0,

where z = (x1,22) € R% and @ € R? is any
given nonzero vector. Here, the point © = 0 is the
unique solution and it is abnormal. l-gowever, there is
&L,

B2 (0,A) >0
In order to address this issue, meaningful second order
necessary conditions for problem (P) were obtained
without a priori normality assumptions imposed at the
point zy in (Arutyunov, 2000). Next, we formulate
these resulis from (Arutyunov, 2000). For this, con-
sider the Lagrange function of problem (P} £ : X x
R x R* x R*2 — R! defined by

L{z, Ay = A°f(z) + (AL, Fi(2)) + (A2, Fa(z)).
A= (A9 2127,
A e R At e RM, A g pe,

Let 2o be a local minimizer for problem (P), and
the mappings F; and f be twice continuously dif-
ferentiable. For the sake of simplicily assume that
Fa(mo) = 0, and denote by A(xg) the set of all

no Lagrange multiplier A such that

936

Lagrange multipliers A = (A% A, A?) satisfying the
Lagrange multipliers rule at the point zg:

ac
-5;(3’0: A) - Ur

Al>0, A>0, |A=1.

Denote by Aq(xo) the set of alt Lagrange multipliers
A € A(xzg) for which there exists a linear subspace
I =TI{A) C X satisfying
3F1 BFE
- 1! =
I C ker o {zo) Nker e (za),
codim Il < ky + ko,
&L
@(IUQ,/\)[ZI?,.’L‘] 0, Vx e I,

where codim means codimension of a linear subspace.

In (Arutyunov, 2000), it was proved that for any fea-
sible descent direction for (P), i.e., any vector h € X
satisfying:

%(:Bo)h =10,

%%(:co)h < 0, and

af

(8ar
there exists a Lagrange multiplier A € Aq(zo) (de-
pending on ) such that

(.’1’}0), h‘) <0,

2

%(wg, N[k, b > 0.

These necessary conditions constitute a natural gener-
alization of the classical ones, (V.M. Alekseev, 1987),
in the abnormal case. Note that the non-emptiness
of the set A, (xg) is in itself a significant necessary
optimality condition.

With the help of the technigue in (Mordukhovich,
2006), the above mentioned result in (Arutyunov,
2000) was afterwards generalized in (A.V. Arutyunoy,
2006b) to a problem featuring more general set-
inclusion constraints of the type F(z) € C, where
the set C is assumed 1o be merely closed. On the other
hand, the necessary optimality conditions for problem
(1) with only equality type constraints were, under
the additional assumption of abnormality of the point
%o, strengthened in (A.V. Arutyunov, 2006a). More
specifically, in this reference, the following result was
obtained:

If the local minimizer zg of problem (1) is abnor-
mal, then, the set A,(zg) in the necessary optimality
conditions presented above can be replaced by the
smailer set that contains all A € A(zg) such that
IAl = 1 and for which there exists a linear subspace
I =II{A) C X satisfying:

IF
T C ker a—;('co)

codimll < & -1,



2
%(%J)[w: ] > 0,Vz eIl

The main goal of this article is to present an extension
of the above mentioned result to abnormal minimizers
of the mathematical programming problem (P} which
is more general than the one in (1) due to the consid-
eration of inequality type constraints. The approach to
prove this result is based on a perturbation method
developed in (Arutyunov, 2000) and on methods of
real algebraic geometry, see (J. Bochnak, 1988).

Some additional references on second-order necessary
optimality conditions, where (R. Hettich, 1977)isa pi-
oneer publication, can be found in (Arutyunov, 2000).
We also single out the second-order necessary opli-
mality conditions obtained in (Milyutin, 1981). An-
other approach to the first and second-order necessary
optimality conditions for problems with inequality
type of constraints for abnormal points is presented in
{Avakov, 1989; Izmailov, 1999; A F. Izmailov, 2001),
as well as in the more recent articles (E.R. Avakov,
2006; E.R. Avakov, 2007b; E.R. Avakov, 20074).

2. THE MAIN RESULT

In order 10 formulate the main result of this article, let
us introduce some notation.

First, let us equip the linear space X with the so
called finite topology. Denote by MM the set of all
linear finite-dimensional subspaces A/ C X. A set
is open in the finite topology if it has open intersec-
tion with every subspace A/ € M (the openness of
an intersection is meant in the sense of the unique
separated vector topology of finite-dimensional space
Af). A local minimizer with respect 1o the finite topol-
ogy is the weakest type of minimizers under consid-
eration in optimization theory. For more details, sec
(Arutyunov, 2000). In what follows, by the term local
minimizer we mean the local minimizer with respect
to the finite topology.

Let vector zp € X be a local minimizer in problem
(7). We assume mappings f, Fy, and 3 (0 be twice
continuously differentiable in a neighborhood of
with respect 1o the finite topology. This means that,
for any subspace Af € M containing the point x,
the restrictions of f, Fy, and Fy 10 A are twice
continuously differentiable in some (A -dependent)
neighborhood of vector zg.

Therefore, there exist a linear functional ¢ : X — R!,
abilinear form ¢ : X x X — R!, linear operators A;
X — Y, bilinear mappings @, : X x X — ¥, with
i =1,2,and, for j = 0, 1,2, mappings o; : X — R,
such that, ¥z € X,

flx) = f(zo) + (a.x ~ xo)

1
+3q[:r; — 20, % — To| + wolx — wo),
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Fi(z} = Fi(zo) + As{z — z0)
+%Qi[$ — xo, T — o] + e ( — z0),
and, for an arbitrary Af € M, such thatx € A, and
(T — p)
flz - 1‘0”%{

where || - )| as is a finite-dimensional norm in Af.

— 0, as z — Ty,

In what follows, we denote A; by F{(zy) = %(mo),

Qi by F/'(zg) = %{i(mo), respectively, the first-
and second-order derivatives of F; and similarly for
the derivatives of the function f and the Lagrange
function.

Consider the Lagrange function £ : X x R! x R*¥ x
R*2 — R defined by

L{m, ) = A°f(z) + (A}, Fy(2)) + (A%, Fa(a)),
A = (AUTA]} Ag)!
A" e RY, Ale RM, A% e Rbe.
Denote by A(zp) the set of all A = (A% A1, X2} that
satisty the Lagrange multipliers rule at the point xq:

aL

%(‘TO: ’\) = 01 (2)
(A%, Fy(o)) = 0, (3)
A >0, AZz0, |A=1 (4)

By virtue of this rule (see (Arutyunav, 2000)), the set
A{zg) is not empty. Elements A of this set are called
Lagrange multipliers.

Denote by I = I{xq) the set of all indices i ¢
{1,...ke} such that Fi(zo) = 0. (Fi(z) are the
coordinaies of the vector F,(x), s = 1,2). For an
integer nonnegative number r, we denote by A, (xg)
the set of vectors A € A(xzq) such that there exists a
linear subspace

aF, OF}
[T=IT(A) C ker -a—ml(:zrg) m(n ker —g('}:o))
iel ’
satisfying:
codimIT < r,
32

L
@'(IEO,A)[.’E,:B] > 0vVaeell

Consider the cone of critical directions at point zg:

K(xg) = {1 EX: <g—i(mg),m> <1,
aF

o (@0)z =0,

<%I;2i{.'l'o),.’1}> <0,i€ [}.

Put & = ky + |[I{zo)|, where [[| denotes the number
of elements in the set /.



We shall say that a point 2o is abrormal, if k > 0 and

) 1
the vectors %(mo),j ko, % {zo)i € [

are linearly dependent.

Theorem 2.1 Let the point zq be a local minimizer for
problem (P). Assume that xq is an abnormal point.

Then,

Ap_i(me) #0
and the following inequality holds for any vector h €
K{wo)

2L
32 (z0, A)[h, ] > 0. ()

max
AEAL—1(z0)

3. DISCUSSION

This theorem only deals with abnormal minimizers.
However if a minimizer is normal then second-order
necessary conditions are well known (see for example
(Arutyunov, 2000; V.M. Alekseev, 1987}, and also our
introduction) that we refer to by classical second-
order necessary conditions. Classical second-order
necessary conditions do not hold for abnormal mini-
mizers as it was clearly illustrated with the example
(£1) in the introduction,

So, the following question naturally arises:

When do classical second-order necessary conditions
still follow from our theorem?

Or, in an equivalent way, when is it possible to use an
universal Lagrange multiplier in (5), thus omitting the
maximim operation?

Some answers follow below.

The simplest application of Theorem 2.1 concerns the
case &k = 1, Indeed, the theorem states that if xg s
an abnormal minimizer of problem P and & = 1,
then there exists a Lagrange multiplier A such that
g 3 ’Lg,/\)[ﬂ? .’I?]
the abnormality, the classical second-order necessary
optimality conditions hold.

A less trivial application concerns the case of ab-
normal problems when & = 2 and Mangasarian-
Fromovitz constrained qualification (M FCQ) holds
at an abnormal minimizer zg.

Then, there exists a Lagrange multiplier A such that

& r
72 = (T, Az, ) 20, Yz € K(zo).
Let us prove it, Indeed, since the case £k = 1

was already considered, we can assume that ail the
constraints of the problem are active. In view of
(M FCQ) and of the abnormality, it follows that &, =
0. k3 = 2 (i.e. only inequality type constraints are

0, Vx € X. Hence, in spite of
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AFE .
present), and vectors —2(9;0) i = 1,2, are nonzero
af
and co-directional. ConS|der lwo cases: —-(.‘1:0) =0

and —(fco) # 0. If o (:ro) = 0, then, by Lagrange

prmapl(. the set A(zg) is singleton with Ay = 1,
= ( and our assertion is a trivial corollary of the

condition (5). Assume that E[)—f(:zo) # 0.

Then, by virtue of the Lagrange principle, we have that

Ap # Oand a—(mo) = —a%i(:zro) wherea is some

positive number. Therefore, K(zg) =

Now, since the codimension of the kernel is exact[y
L, our assertion follows directly from Theorem 2.1,
Thus, once again, in spite of the abnormality, the
classical second-order necessary optimality conditions
hold,

In the case & > 3, it is not possible to assert whether
classical second-order necessary conditions of opti-
mality hold even when the (M FCQ) is assumed (see
example ( F4) below).

The fact that Ag = @ in the example (E1) presented
in the introduction shows that Theorem 2.1 can not
be improved in the following sense. If & > 2, then,
in general, the set Ay_; can not be replaced by the
smaller set Ay _». Note that, in the example mentioned
above, there are only equality type constraints. In spite
of the presence of inequality type constraints in the
example (E2)} below, Ay_o = 0.

Z; — min
(E2) < subjectto z 30 =0,
:L‘f — ;v% <0

Here, the feasible set is the line {z : 2, = 0} and
hence x = 0 is a minimizer. Here, we have & = 2 and
Ag = 0.

In this example, equality and inequality type con-
straints are present. Now, let us provide an example
featuring only inequality type constraints.

T1Te — '1:% « min
(E3) ¢ subjectto —zyza <0,
b3 2
x; —xy 0.

It is a straightforward task to verify that z = CGis a
minimizer. However, once again k = 2 and Ay =
@. Note that, in this example, all the functions are
quadratic.

A simple modification of example (E3) shows that
even (A FCQ) does not allow us to replace A;_; by
Aj_o. Indeed, consider problem



—Z3 — min
(B4) subjectto =3 + xy20 — 22 < 0,
23 — 2172 < 0,
I3+ 'Eg - 11‘! <0,
where £ = 3, & = (x1,70,23) € R3. Since

{z1,22) = 0 is a solution to problem {E£3), then,
for any admissible point = of problem {£4) we have
Iy < 0.

Therefore, z = 0 is also a solution to problem (E4).
Obviously, (M FCQ) holds for this problem, and,
also, A = 0.
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