MONITORING COOPERATIVE BUSINESS CONTRACTS IN AN
INSTITUTIONAL ENVIRONMENT

Henrique Lopes Cardoso, Eugénio Oliveira
LIACC, DEI / Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
hlc@fe.up.pt, eco@fe.up.pt

Keywords:

Abstract:

Electronic contract monitoring, Contractual obligations, Deadlines, Rules

The automation of B2B processes is currently a hot research topic. In particular, multi-agent systems have been

used to address this arena, where agents can represent enterprises in an interaction environment, automating
tasks such as contract negotiation and enactment. Contract monitoring tools are becoming more important
as the level of automation of business relationships increase. When business is seen as a joint activity that
aims at pursuing a common goal, the successful execution of the contract benefits all involved parties, and
thus each of them should try to facilitate the compliance of their partners. Taking into account these concerns
and inspecting international legislation over trade procedures, in this paper we present an approach to model
contractual obligations: obligations are directed from bearers to counterparties and have flexible deadlines.
We formalize the semantics of such obligations using temporal logic, and we provide rules that allow for
monitoring them. The proposed implementation is based on a rule-based forward chaining production system.

1 INTRODUCTION

Technological support for B2B is increasing. A line
of research consists on automating (part of) the pro-
cess of creation and execution of e-contracts, through
multi-agent systems (MAS) technology: software
agents can be used as enterprise delegates, automat-
ing tasks such as contract negotiation and enactment.

We have formalized and developed an Electronic
Institution platform motivated by the need to develop
services that assist agents (representing real-world en-
tities) when interacting with the aim of establishing
business relationships. Contracts make the commit-
ments of parties explicit, and an institutional environ-
ment seeks to monitor and enforce those contracts.

In the B2B world (particularly in cases where a
business relationship is strategic) it is often the case
that parties cooperate in contract enactment. A con-
tract specifies obligations between contractual parties,
and provides legal options handling non-compliance
cases. When a business relationship is seen as a joint
activity that aims at pursuing a common goal, the suc-
cessful execution of the contract benefits all involved
parties, and thus each of them should try to facilitate

the compliance of their partners. In an agent-based
environment for contract monitoring, each party is
represented in the system by a software agent. Au-
tomated monitoring tools should take into account
that agents may be cooperative enough to allow, in
some circumstances, deviations from their counter-
parties. This is because group success also benefits
each agent’s private goals, which are not limited to the
ongoing business relationship, but also concern future
opportunities that may arise.

Our approach to contract monitoring is based on
real-world evidence from business contract legisla-
tions, namely the United Nations Convention on Con-
tracts for the International Sale of Goods — CISG
(UNCITRAL, 1980), which denotes a flexible and
even cooperative facet of trade contracts. In this paper
we present the model of contractual obligations that
we advocate — directed obligations with liveline and
deadline. We formalize the semantics of these obliga-
tions and provide an implementation concerning the
development of an institutional contract monitoring
environment.

The paper is structured as follows. In section 2
we introduce our approach to model contractual obli-

gations, and formalize their semantics using temporal
logic. In section 3 we translate this formalization to
a rule-based approach, and we provide an implemen-
tation using a rule engine. An example is given that
shows how a model of flexible deadlines can be ex-
ploited in a contract. Section 4 concludes.

2 MODEL FOR CONTRACTUAL
OBLIGATIONS

When reaching a business agreement, parties sign a
contract including norms that describe their commit-
ments. In our approach, an institutional normative
environment provides a contract monitoring service,
including contractual norms and monitoring rules.
Active monitoring requires recording contract-related
events in a so-called normative state, including:

e institutional facts: institutionally recognized facts
that are brought about by agents

e obligations: what agents should do
o fulfillments: obligations that are fulfilled
e violations: obligations that are not fulfilled

Elements other than institutional facts are envi-
ronment events, asserted in the process of norm ac-
tivation and monitoring. Obligations describe what
agents should do, and may be fulfilled or not. We
consider different violation states, as explained later.

In general terms, a norm prescribes, given a cer-
tain state of affairs, what an agent is obliged to do:
situation — prescription. The situation comprises
any combination of events that have occurred for a
given contract. Consider, for instance, a simple pur-
chase contract. We may have a norm indicating that
when the seller issues the invoice (modeled as an in-
stitutional fact), the buyer is obliged to pay. Further-
more, we may state that once the payment has been
fulfilled, the seller is obliged to send the receipt. We
may also define norms based on violations: if the
buyer does not pay within due date, an interest rate
will be applied.

2.1 Directed Obligations with Time
Windows

When specifying norms in contracts, deadline han-
dling is central to define the semantics of contractual
obligations!. We have developed a model for these

'Deontic operators include also permissions and prohi-
bitions, but we find obligations to be particularly relevant in
the domain of business contracts.

obligations inspired in the CISG convention (UNCI-
TRAL, 1980). Consider the following excerpts:

Article 48: (1) [...] the seller may, even after the
date for delivery, remedy at his own expense any
failure to perform his obligations, if he can do so
without unreasonable delay [...]; (2) If the seller
requests the buyer to make known whether he will
accept performance and the buyer does not com-
ply with the request within a reasonable time, the
seller may perform within the time indicated in his
request. [...]

Article 47: (1) The buyer may fix an additional pe-
riod of time of reasonable length for performance
by the seller of his obligations.

Article 63: (1) The seller may fix an additional pe-
riod of time of reasonable length for performance
by the buyer of his obligations.

Article 52: (1) If the seller delivers the goods before
the date fixed, the buyer may take delivery or refuse
to take delivery.

From this source we can see that even though a
deadline has been violated, the bearer may still be en-
titled to fulfill his obligation (Art. 48). Also, the coun-
terparty of an obligation may concede an extended
deadline to the bearer (Art. 47 and 63). Finally, antic-
ipated fulfillments are not always welcome (Art. 52).

Based on this background, we define the notion
of directed obligation with liveline and deadline —
Opc(f,1,d): agent b is obliged towards agent ¢ to
bring about f between [(a liveline) and d (a dead-
line). Directed obligations have been proposed in
(Herrestad and Krogh, 1995): obligations are seen
as directed from a bearer (responsible for fulfilling
the obligation) to a counterparty. We interpret obli-
gations of this kind as claims from counterparties to
bearers (as in (Tan and Thoen, 1998)): if b does not
bring about f between / and d then c is authorized to
react against b. Note that this reaction is discretionary,
not mandatory.

The temporal boundaries of obligations define a
time window within which the obliged fact should oc-
cur. However, not all obligations need livelines. In
fact, Art. 52 above is important only in the context of
trade transactions, where storage costs may need to be
considered. If, on the contrary, a deadline is enough,
we can fix / to the moment when the obligation arises.
We avoid using a fixed time reference for obligation
fulfillment (an obligation for bringing about f at time
t), which is suggested in Art. 52; we find it more con-
venient to define a fixed date as an interval, say, from
the start till the end of a specific date.

In order to accommodate the cooperative nature of
contract execution, the semantics of directed obliga-

Ob c(f: l: d)
1 d -
violation
f L f f Den,;
F ; v 4
@—pl[fulslled | [violated]
violation

Figure 1: Lifecycle of a directed obligation with liveline
and deadline.

tions with liveline and deadline is interdependent with
the notion of authorization. We consider that if fact f
is not yet the case when deadline d arises, the obli-
gation is not yet violated, but is in a state where the
counterparty is authorized to react. We emphasize the
case for a deadline violation (as opposed to obligation
violation). This comprises a flexible approach to han-
dling non-ideal situations: each deadline violation is
different, as each may have a different impact on the
ongoing business, and occurs between a specific pair
of agents with a unique trust relationship.

A deadline is meant to indicate when the counter-
party is authorized to react to the non-fulfillment of
an obligation directed to him. A possible reaction is to
declare the obligation as violated. However, the coun-
terparty might want to concede an extended dead-
line, by waiting further for the obligation to be ac-
complished. We introduce the element Den, ,(f,1,d),
which is a denounce from agent ¢ towards agent b re-
garding the failure of the latter to comply with his
obligation to bring about f before d. We consider
the achievement of facts to be common knowledge:
a party may only denounce the non-fulfillment of an
obligation while that obligation is not fulfilled yet.

Figure 1 illustrates the lifecycle of a directed obli-
gation with liveline and deadline: Oy .(f,l,d). When
[arises the obligation becomes pending, since only
then it may be fulfilled according to the terms of the
contract. In case of an anticipated achievement of f
(a liveline violation), we only need [to consider the
obligation as fulfilled. However, this does not prevent
the counterparty from reacting to this early achieve-
ment (although not by denouncing it). A deadline vi-
olation can be resolved in two ways: successfully by
achieving f, or unsuccessfully by a denounce.

2.2 Formalization

We define the following terms to signal the occur-
rence of specific obligation states:

e obligation O, (f,l,d): the obligation was pre-
scribed by a norm, and is therefore active

e liveline violation LViolj.(f,l,d): the fact being
obliged has been brought ahead of time

e deadline violation DViol, .(f,1,d): the fact being
obliged should have been brought already

e fulfillment Fulf, .(f,l,d): the obligation was ful-
filled

e violation Viol.(f,l,d): the obligation was vio-
lated and cannot be fulfilled anymore

Borrowing from temporal logic?, the following re-
lations express the semantics of our obligations:

e Op(f,1,d) N (f Bl) |= LViol, .(f,1,d)
Lifeline violation occurs when the obliged fact is
brought about before the liveline.

o Op (f,l.d) NIN(f Bd) = Fulfy, . (f,1,d)
Fulfillment occurs after the liveline and when the
obliged fact is brought about before the deadline.

e Op.(f,l,d) N(dBf) |= DVioly .(f,1,d)
Deadline violation occurs when the deadline
comes before the obliged fact.

e DVioly, .(f,1,d) A\ (f B Deny, +(f,1,d))
): Fulfb,c (f7 la d)
Fulfillment occurs after a deadline violation if the
obliged fact is obtained before a denounce.

e DVioly, .(f,1,d) N\ (Dencp(f,1,d) Bf)
= Viol . (f,1,d)
Violation occurs after a deadline violation if a de-
nounce is made before the obliged fact occurs.

We have two kinds of temporal violations: live-
line violations — LViol, . (f,1,d) — and deadline viola-
tions — DViol, o (f,1,d). Note that when the deadline is
reached we set the obligation to have a violated dead-
line, but not to be violated in itself. Only a denounce
establishes such a state.

3 AUTOMATED MONITORING
RULE-BASED ENGINE

The logical relationships expressed above provide us
a formalism to define directed obligations with live-
lines and deadlines. In order to develop appropriate
tools to monitor contracts at run-time, we ground this

2We will follow linear temporal logic (LTL) (Emerson,
1990), with a discrete time model. Let x = (s,51,52,...)
be a timeline, defined as a sequence of states s;. The syntax
X = p reads that p is true in timeline x. We write x* to denote
state sy, of x, and x* I= p to mean that p is true at state x*. We
use a weak version of the before LTL operator B, where g is

not mandatory: x = (p B q) iff 3;(¥/ |:p/\vk<j(xk = —q)).

Working Memory

Inference Engine

A
Institutional Facts

R
Time

Obligations

Liveline Violations

1)

2

Z ——

;E MOE“I‘“ ng Deadline Violations

2 ules

3 Fulfilments

‘g (E;Intl‘ﬂc;s Violations

k= orms 1
v Denounces

—_—

Figure 2: Monitoring as a rule-based production system.

semantics into a reasoning engine capable of respond-
ing to events as soon as they occur. A natural choice
we have made before (Lopes Cardoso and Oliveira,
2009) is the use of a rule-based forward-chaining pro-
duction system. These systems are composed of a
knowledge base (rules), a working memory (facts)
and an inference engine that matches rules’ conditions
with facts, producing changes in working memory.
Figure 2 instantiates these concepts to our purposes.

The following (forward-chaining) rules can be de-
fined to implement the semantics of directed obliga-
tions with livelines and deadlines:

o Ope(f,1,d) Nf Al — LViolyo(f,1,d)
o Opc(f,1,d) NINfAN—d — Fulfy, . (f,1,d)
o Op(f,l,d) Nd N—f — DViolp, .(f,1,d)
e DVioly o(f,1,d) Nf N—Deny, (f,1,d)

— Fulfy o(f,1,d)
e DVioly o(f,l,d) NDencp(f,1,d) N—f

— Violy o (f,1,d)

Each relation of the form (e; B e;) was translated
into a conjunction e; A —e,. This allows us to detect
the moment at which the before relation holds, and
consequently to reason about its consequences. We
assume an immediate assertion of facts and temporal
references when they come into being. Furthermore,
rules are expected to be evaluated in every working
memory update (e.g. right after a fact is asserted),
in order to produce the indicated conclusions. These
conclusions are added to the normative state.

3.1 Reasoning with Time

In business contracts deadlines are usually depen-
dent on the fulfillment dates of other obligations. In-
stead of having fixed (absolute) dates, these may at
times be relative, calculated according to other events.
CISG (UNCITRAL, 1980) expresses this by saying
that dates can be determinable from the contract:

Article 33: The seller must deliver the goods: (a) if
a date is fixed by or determinable from the contract,
on that date; (b) if a period of time is fixed by or
determinable from the contract, at any time within
that period [...]

Article 59: The buyer must pay the price on the date
fixed by or determinable from the contract [...]

It is therefore useful to timestamp each event.
Therefore, Fulf; (f,l,d)" will indicate a fulfillment at
time point ¢; similarly for Viol), .(f,1,d)". Since a fact
itself has now a timestamp attribute, for ease of read-
ing we will write fact f achieved at time point ¢ as
Fact(f)'. A denounce will be written Den, . (f,1,d)".

Norms will be based on these -elements
and time references in order to prescribe obli-
gations with relative deadlines. For example,
Fulfy, ¢(Deliver(x), -,-)" — Ocp(Pay(price),t,t+ 10)
would mean that once agent b has fulfilled his
obligation to deliver x to agent c, the latter is obliged
to pay to the former within a period of 10 time units.

Having timestamps also allows us to define rules
with a closer reading to the LTL before operator:

o Op(f,l,d) NFact(f) Nt < 1— LVioly o(f,1,d)
o Opc(f,l,d) NINFact(f)' Nt < d — Fulfy o(f,1,d)'

o Op(f,l,d) Nd N —(Fact(f)' Nt < d)
— DVioly o(f,1,d)

e DVioly (f,l,d) A\ Fact(f)' A
—(Dencp(f,1,d)" Nu < t) — Fulfy, .(f,1,d)"

e DVioly, .(f,1,d) NDenep,(f,1,d)" A
=(Fact(f)' ANt < u) — Violy o(f,1,d)"

This kind of approach has the benefit of relaxing
the rule evaluation policy, because we are checking
the timestamps of each event (see also (Lopes Car-
doso and Oliveira, 2009)).

3.2 Implementation with Jess

We have chosen Jess® (Friedman-Hill, 2003) to im-
plement our norm monitoring system. Jess is a very
efficient rule engine based on the Rete algorithm for
pattern matching. We start by defining appropriate
templates (through deftemplate constructs) for each
type of element in working memory. Jess facts follow
a frame-like notation, in which each fact has associ-
ated slots to be filled in. We have:

(deftemplate ifact
(multislot fact) (slot when))

(deftemplate time
(slot when))

3The code presented in this section includes some sim-
plifications in order to make it more simple to understand.

(deftemplate obligation
(slot bearer) (slot counterparty)
(multislot fact)
(slot liveline) (slot deadline))

(deftemplate liveline-violation
(slot obl))

(deftemplate deadline-violation
(slot obl))

(deftemplate fulfillment
(slot obl) (slot when))

(deftemplate violation
(slot obl) (slot when))

(deftemplate denounce
(slot obl) (slot when))

For simplification, we included a reference to the
obligation inside other templates. The time template
is used to assert the occurrence of time events (asso-
ciated with livelines and deadlines), which is done by
scheduling alerts using a system clock.

Implementing the monitoring rules in Jess is
straightforward. A Jess rule is written in the form
LHS => RHS, where LHS includes fact patterns that
will be matched against facts in working memory.
The RHS indicates actions to execute (such as assert-
ing new facts) when the rule is fired. The following
rules (defined with defrule constructs) translate di-
rectly from the monitoring rules shown above (identi-
fiers starting with a question mark are variables).

(defrule detect-liveline-violation
?0bl <- (obligation (fact $?f) (liveline ?1)
(ifact (fact $?f) {when < ?1})
=>
(assert (liveline-violation (obl ?obl))))

(defrule detect-fulfillment
?0bl <- (obligation (fact $?f) (liveline ?1)
(deadline 2d))
(time (when ?1))
(ifact (fact $?f) (when ?t))
(test (<= ?t ?d))
=>
(assert (fulfillment (obl 20bl) (when 2t))))

(defrule detect-deadline-violation

?20bl <- (obligation (fact $?f) (deadline ?d))

(time (when 2d))

(not (ifact (fact $?f) {when <= ?2d}))

=>

(assert (deadline-violation (obl ?obl))))
(defrule detect-belated-fulfillment

(deadline-violation (obl ?obl))

?20bl <- (obligation (fact $?f))

(ifact (fact $?f) (when ?t))

(not (denounce (obl ?obl) {when <= ?t}))

=>

(assert (fulfillment (obl ?obl) (when ?t))))

(defrule detect-violation
(deadline-violation (obl ?obl)
?20bl <- (obligation (fact $?f)
(denounce (obl ?0bl) (when ?u)
(not (ifact (fact $?f) {when <
=>
(assert (violation (obl 20bl) (when ?u))))

)
)
)

?u}))

These rules enable us to monitor the compliance
of agents with prescribed obligations. As explained
at the beginning of section 2, norms have a rule-like
format and are based on contract-related events, such
as those obtained by firing monitoring rules. Not sur-
prisingly, norms too are implemented in Jess as rules.
What makes them norms is that typically they will be
used to obtain new obligations (these will be asserted
in the RHS of norms), which will then be monitored.

The normative environment’s monitoring capabil-
ities may be used as a tool for alerting agents when
certain contract-related events occur. Further rules
may be defined with such a purpose. The RHS of Jess
rules may include function calls that implement the
desired level of responsiveness of the normative envi-
ronment in which notifications are concerned.

3.3 Example

In this section we show a simple example where the
concept of flexible deadlines is exploited in an elec-
tronically supervised business relationship. We have
a contract between two agents, say B and S, wherein
S commits to supply, whenever ordered, good X for
7.5 per unit. The norms below (implemented as Jess
rules) define the contractual relationship and are in-
cluded in the institutional normative environment for
monitoring purposes. Agent S is supposed to deliver
the ordered goods between 3 to 5 days after the order
(norm n1), and agent B shall pay within 30 days (norm
n2). Furthermore, if agent B does not pay in due time,
he will incur in a penalty consisting of an obligation
to pay an extra 10% on the order total (norm n3). Fi-
nally, if agent S violates his obligation to deliver, the
contract will be canceled (n4).

(defrule nl
(ifact (fact order item X quantity ?qg)
(when ?w)))
=>
(assert
(obligation (bearer S) (counterparty B)
fact delivery X gt ?q)
liveline (+ 2w 3))
deadline (+ 2w 5)))))

(defrule n2
(fulfillment (obl 20bl) (when ?w))
?0bl <- (obligation (fact delivery X gt ?q))
=>

(assert

(obligation (bearer B) (counterparty S)
(fact payment (* ?q 7.5))
(liveline ?w)
(deadline (+ 2w 30)))))
(defrule n3

(deadline-violation (obl ?0bl))

?0bl <- (obligation (fact payment ?p)
(deadline 2d))

=>

(assert
(obligation (bearer B) (counterparty S)
(fact payment (* ?p 0.10)
(liveline ?2d)
(deadline (+ 2d 30)))))
(defrule n4

(violation (obl ?obl))

?0bl <- (obligation (fact delivery X gt ?q))
=>

(cancel-contract ID123))

Note that the interest applied on payments is auto-
matic once a deadline violation is detected (norm n3).
On the other hand, a contract cancellation (norm n4)
requires that agent B denounces the inability of agent
S to fulfill the delivery. It is therefore up to agent B
whether to wait further and accept a delayed deliv-
ery or not. If the agreed upon contract conditions are
important enough, allowing a counterparty deviation
(and hence taking a cooperative attitude regarding the
compliance of the contract) may be a good decision.

Different kinds of situations may be easily mod-
eled using this kind of norms. Moreover, using flex-
ible deadlines also ensures a degree of freedom for
agents to make decisions in the execution phase of
contracts, which is important for dealing with busi-
ness uncertainty.

4 CONCLUSIONS

In B2B relationships contracts specify, through obli-
gations, the interactions between different partners,
and provide legal options to which parties can re-
sort in case of conflict. However, when this joint ac-
tivity aims at pursuing a common goal, the success-
ful performance of business benefits all involved par-
ties. Therefore, when developing automated moni-
toring tools, one should take into account that agents
may be cooperative enough to allow some counterpar-
ties’ deviations.

In this paper we have introduced a model for con-
tractual obligations. We defined them as directed obli-
gations with livelines and deadlines. The directed as-
pect concerns the need to identify the agent who will
be authorized to react in case of non-fulfillment. Obli-
gation violations are now dependent on the counter-
party motivation to claim them.

Our approach is based on real-world evidence
from business contracts (namely the United Nations
Convention on Contracts for the International Sale of
Goods), which denotes a flexible and even coopera-
tive facet of trade contracts. This extends to the con-
cept of B2B Virtual Organizations, wherein different
parties come together to share a business goal that
is achievable through the cooperative fulfillment of a
common contract.

Rule-based production systems allow applying
rules in a forward-chaining way. This data-driven ap-
proach is appropriate to model a norm monitoring en-
vironment based on events. Jess is a powerful rule en-
gine that allows a straightforward implementation of
our monitoring model. The easy integration of a Jess
engine with a Java application enables the develop-
ment of a full monitoring tool that aims at supporting
a cooperative model of business contracts enactment.
We envisage to apply this framework to more com-
plex business scenarios.

ACKNOWLEDGMENTS

The first author is supported by FCT (Fundagio
para a Ciéncia e a Tecnologia) under grant
SFRH/BD/29773/2006.

REFERENCES

Emerson, E. A. (1990). Temporal and modal logic. In
Leeuwen, J. v., editor, Handbook of Theoretical Com-
puter Science, volume B: Formal Models and Seman-
tics, pages 995-1072. North-Holland Pub. Co./MIT
Press.

Friedman-Hill, E. (2003). Jess in Action. Manning Publi-
cations Co.

Herrestad, H. and Krogh, C. (1995). Obligations directed
from bearers to counterparties. In Proceedings of the
Sth international conference on Artificial intelligence
and law, pages 210-218, College Park, Maryland,
United States. ACM.

Lopes Cardoso, H. and Oliveira, E. (2009). A context-
based institutional normative environment. In Hub-
ner, J., Matson, E., Boissier, O., and Dignum, V., ed-
itors, Coordination, Organizations, Institutions, and
Norms in Agent Systems [V, LNAI 5428, pages 140-
155. Springer.

Tan, Y.-H. and Thoen, W. (1998). Modeling directed
obligations and permissions in trade contracts. In
Proceedings of the Thirty-First Annual Hawaii Inter-
national Conference on System Sciences, Volume 5.
IEEE Computer Society.

UNCITRAL (1980). United nations convention on con-
tracts for the international sale of goods (cisg).

