Optimization of the global matching between two contours defined
by ordered points using an algorithm based on dynamic
programming
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Abstract. This paper presents a new assignment algorithm with order restriction, developed using the
paradigm of dynamic programming. The algorithm was implemented and tested to determine the best
global matching between two sets of points that represent the contours to be matched. In the experimental
tests done, we used the affinity matrix obtained via the method proposed by Shapiro based on geometric
modeling and modal matching.

The proposed algorithm revealed an optimum performance, when compared with the classic assign-
ment algorithms considered in this work: Hungarian method, Simplex for Flow Problems and LAPm.
Indeed, the quality of the matching improved when compared with these three algorithms, because the
crossed matching, allowed by the conventional assignment algorithms, disappeared. Besides, the compu-
tational cost of our algorithm is very low in comparison with the other three, resulting in lesser execution
times.
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1 Introduction instants, or between two similar objects, represented in
N ) o ~images, originated the emergence of many proposals, in
The recognition of objects represented in images is 0Rfe sense of accomplishment the best global correspon-
of the central problems in Computational Vision. Itisgence among the referred point&g], [16], [20], [9],
a challenging task, mainly due to the large number qf1 4] 14], [3], [13].
variations of projection of objects in_ _2D images; for in- Common approaches for shape matching in images
stance, due to changes of the p03|t'|ons of the CaMEraSnsist in dividing the matching process in three steps.
u;ed, or even because of deformations that the Obje‘ﬂ?the first step, a set of feature points from each shape
might suffer. is extracted, for example, using an edge detector on
Highly related with the problem of recognition of each image and then sampling some points from the
objects represented in images is the problem of identédges found. In the second step, pairs of correspond-
fying homologous elements in shapes, which are usihg feature points are determined from the two feature
ally defined by groups of points. points sets. Finally, in the last and third step, the corre-
The problem of determining the correspondencespondence information obtained is used to find an align-
among characteristic points of an object in two differentment transformation.



Finding the correspondence between points hd Previous work

been a subject of large and hard research. A usual_aphis work comes in the sequence of the project pre-

proach is to build a cost matrix that represents the SiMsanted in20], where methodologies for matching char-
ilarity between all possible pairs of points on the two

. . " -acteristic points of two shapes in images were imple-
shapes. In this case, the matching problem can be 'nt%'ented, using physical and geometric modeling, com-

preted as an optimization problem, where the objectiv, lemented with modal matching.g|, [16]. Thus, those
function to minimize is the sum of all costs associate ethodologies were used to determine the matching be-
_to trr:e delfmedfrrr]]atches. 'r? tr|1ese apprrc])afjhf(fas, the le:)rQWeen characteristic points from two shapes, through
Is the value of the sum, the larger Is the difference b&g,q -,nsiryction of an affinity matrix. Later, this cost
tween the shapes considered. Usually, assignment al%étrix was used to determine the desired correspon-

rithms are used to determine the best global matchingy o5 The solution presented to search for the match-

Such algorithms are frequently based on linear or ing, )54 4 pure local nature, in the sense that two points
teger programming .2, [3]; bipartite graph matching, were only corresponded if, for each one of the two,

[2], [3], [3], [15]; dynamic programming,7]; cONVeX 0 giher point was also the best candidate in terms

optimization, L1]; simulated annealing 19 etc. of matching cost. However, with this local approach
In the optimization of the correspondences betweeih frequently happened that some points were not suc-
two closed contours, each one defined by a set of ogessfully corresponded and sometimes crossed match-
dered points, could be included an important restrictioring occurred, see Figure 1.
the relative order of the points to be matched should be
maintained to guarantee the coherence of the match-
ing obtained This restriction guarantee that crossed
matches are not allowed.

Initially, this problem of determining the global
matching of minimum cost that respects the order of
the points became difficult to solve, because this order
is not absolute; that is, there are different ordinations
that define the same contour. In this work we present _ ) ’
the soluton developed that is based on dynamic prdfo™.* VA (ound bevieen tuo conoureary g
gramming and solves this problem in a simple and fagfe defined by 81 and 83 points, respectively.
way.

To trial and to compare the new dynamic program- Later, it was used the work previously referred,

ming algorithm developed with other usual asagnmerltZOL and implemented three global optimizations meth-

alg_onthms, the first one was integrated in a COMPLGgs to determine the best matching solution between
tational platform, already existent2ql, [8]. The re- shapes defined by point][[3] . In this new

SL.JItS |°f ';he Ié:lompslrlsbcl)n with LhiAl—Fl’ung?nan hmethOdapproach, the problem of determining the best global
Simplex for Flow Problems an m algorithms arematching was formulated as a classic assignment prob

also presen_ted in this Paper. The_ cost matrix used f(l)ém, being used three algorithms traditionally employed
the comparison was obtained using the modal matcl?

. : 0 solve this kind of problem,1]: the usual Hungarian
ing methodology proposed by Shapirdg], also al- :
ready implemented in the referred platforrag], [8]. method, B, the Simplex for Flow Problems_p), and

H ther kind of matchi t matri the LAPm, R1]. The results obtained, when those three
bg\a’;’:r’ another kind of matching cost matrix cou assignment algorithms were applied to the affinity ma-

trix calculated using physical or geometric modeling,
In this paper, after a reference to some previousad enhanced quality in comparison with the ones ob-
works developed to determine the best global matchained using the previous methodology based in pure
ing between two shapes, we approach the problem tocal aspects ], [3].
determine the best correspondence between two sets of As already referred, when the assignment algo-
ordered points that respect the order defined.. Afterithms were applied to match contours defined by or-
wards, comparative results between the developed alered point sets, we verified that, occasionally, the
gorithm and the classic assignment algorithms alreadypatching found appeared without sense; that is, the
referred are presented. The last section is dedicateddoder of the points was not respected and, this way,
some final conclusions and future work perspectives. crossed matches were obtained, see Figure 2. Thus,



the work here presented had as a main objective to de- and consider the next correspondences (given by
velop an assignment algorithm that respects the prede- columns):
fined orders of the points that define the two contours to

be matched. f= 123 4
1 2 3 4

/12 3 4
9=\ 34 1 2 )

When we observe the second line, which corre-
sponds to the second contour, we can conclude that
the correspondenck satisfies the absolute order
Figure 2: Matching of the contours of Figure 1 using global opti- but the correspondenaedoes not. However, the
mization. relative order is correct in both, because after point

1 comes point 2, after point 2 comes point 3 and so
forth (considering the sequence of points in circle).

and

2. Suppose now that we have two contours, one de-

3 Definition of the problem fined by 4 points and the other defined by 7 points,

Let us begin by defining what means in this woeka- respectively. Observe the next correspondences:
tive orderandabsolute ordeiof the points that define a

contour. From Figure 3, it can be extracted the sequence h— ( 1 2 3 4 )

of points: 1, 3, 4, 6, 7, 9. This sequence is monotonous 1 2 5 7 ’

increasing. Considering the same figure, it can also be
extracted the sequence: 4, 6, 7, 9, 1, 3. However, this . < 4 )
last sequence is not monotonous. o 1

Considering the Figure 3 as a closed contour, it can

; . and

be observed that the two previous sequences define ex- 1 92 3 4
actly the same contour. The difference between the two p= ( 6 7 4 5 >
is only the initial point considered. In this paper, we
will say that the first sequence respects the absolute or- Al respect the relative order, but only correspon-
der, because it is monotonous increasing, and that the denceh respects the absolute order.
second one just respects the relative order.

[\
= DN
D W

When equal number of points defines the contours,
the matching can be easily accomplished. It is enough
to observe that if point of contour 1 corresponds to
point j of contour 2, then point+ 1 of contour 1 has to
correspond to point+1 of contour 2, and so forth. This
way, considering that each of the two contours is de-
fined byn points; there exist just hypotheses of global
matching maintaining the relative order:

Figure 3: Sequence: 1, 3, 4, 6, 7, 9 placed on a circumference. 1 2 3 ... n
The same points of the circumference can also be represented, for 1 2 3 ... n ’
instance, by the sequence: 4,6, 7,9, 1, 3.
1 2 3 n
. . 2 3 4 1 ’
To illustrate our solution for the problem of match-
ing the points of two contours maintaining the relative 1 2 3 n
order of the matched points, let us begin to analyze the ( 3 4 5 9 ) 5

two following examples:

1. Suppose that we have two contours, both de- 1 2 3 ... n
fined by 4 points and numerated from 1 to 4, n 1 2 n—1



According to what was briefly explained, it is enough tamatching hypotheses is equivalent to count how many

calculate the cost of each one of thglobal correspon- subsets of 4 different elements we can get from the 6

dences and to choose the one that originated a minimustements of contour 2. Therefore, the number of global

cost. correspondences that respect the absolute order is in this
For contours defined by different or equal number oéxample given by:

points, we will present, afterwards, a new formulation

based in dynamic programming, which finds the best b — 6! _

global matching maintaining the absolute order of the t(6—-4)12!

matched points. Then, through the rearranging of the , . , ,

matched points and the comparison of the costs, the best N 9eneral, if a contour is defined bypoints and

global matching that respects the relative order will béhe other bym poinFs, withn < m, there are ex-
obtained. actly C7'* (combinations ofn elements in a set af

elements) matching hypotheses respecting the absolute
order. With regard to relative order, there are exactly
mC)" hypotheses, as we will explain later. b3 is
presented an optimal solution, with order restriction, to
4.1 General formulation the matching contours defined by the same number of
Let us begin this section with a simple example. Let ugoints.

suppose that we have contour 1 and contour 2 defined, Using a usual notation in dynamic programming,
respectively, by 4 and 6 points and the following cost12, [22], for the previous example, we will define 4
matrix of the matches between them: stages. In stage 1, the matching of smaller cost for point
1 of contour 1, subject to the matching hypotheses is

15.

4 Formulation as a dynamic programming
problem

1 0 1 4 5 1 chosen. In stage 2, the best matching for point 2 of con-
C = 0 3 1 5 2 1 7 tour 1 is selected, subjected to the matching hypotheses
g ; 3 ‘51 2 f derived from the matching of point 1 in stage 1, and so

forth. It is fundamental to refer that the definition of a

wherec;; represents the cost to match pdifiom con- matching between two points in a certain stage will af-
tour 1 wjith pointj from contour 2 fect the hypotheses of matching in the following stages.
To avoid the crossed matching, we require that the _TO help us understand the si'_cuation previously d_e-
absolute order of the matched points must be preserve%c.r:?ed' I_et us cf)bserve the follpwmg. Inhthﬁ exa_mple n
This way, we impose the monotony of the matching sextl y,fpomt 1 O;zmo]?r 1 can just r?atc. the pf>0|nts 1,2
quence; that is, if point of contour 1 corresponds to or3o contour 2; but, for instance, if point L of contour
pointj of contour 2, then point+ 1 (here,i + 1 means 1 matches point 3 of con_tour 2, then p0|_nt 2 of contour
the point that follows point in the sequence of points - haf] only oge hypo(;hess tohmatch —hpomtl4 otjconf:[rour
disposed in circle) of contour 1 must correspond to g T us, and according to the maiching already effec-
point j + & of contour 2, wheré is integer and: > 1. tuated in the previous sta_ges, for a certain _stagem
Thus, we have, for instance, among others, the foIIovJ—he example in study, poirk of contour 1 will match

ing valid correspondences: just a point of the following groups of points of contour
2:{k}, {k, E+1}or{k, K+ 1, k+2}.
1 2 3 4 To indicate if a point of contour 1 has 1, 2, or 3
( 1 2 3 4 ) ’ points of contour 2 available for matching, we will de-
fine the state variable For the previous example, we
( 12 3 4 ) haves € {1,2,3}. Ifin a certain stagk we haves = 1,
1.3 45 ’ then pointk of contour 1 has only one matching hypoth-
1 92 3 4 esis (with pointk of contour 2); ifs = 2, then pointk
< 9 3 4 6 ) of contour 1 has two matching hypotheses (with points
k or k£ + 1of contour 2), and so forth.
and Let us define now the function of minimum cost
( 1234 ) fx (s), wheres is the state variable already defined,
3 456 k represents the stage arfg(s) represents the mini-
with respective global costs: 11, 10, 6 and 7. mum cost to correspond points 1, 2,k3¢f contour 1,

In total, for the imposed hypotheses, we have exwhen pointk of contour 1 has matching hypotheses to
actly 15 possible correspondences, because to count ttfeose.



To best clarify our approach, we will apply this for- all the matching that respect the relative order and the
mulation to the example in study. Thus, we will build,respective minimum costs.
successively, an optimal correspondence that respects In the example in study, it is necessary to solve 6
the absolute order of the points. For such, on the lefiroblems of global matching that respect the new suc-
side of the arrow we indicate the minimum costs forcessive absolute arrangements of the points of contour
each stage and for each state, and on the right side 2f After applying this formulation, the correspondence

the arrow we define the correspondence: of minimum cost that respects the relative order of the
1 points is again the previously presented.
f1(1)=C11=1—>< 1 )
4.2 Algorithm and implementation
. 1 .

f1(2) =min{c11, c12} =0 — < 9 ) Before we present our new algorithm, let us observe
the example described in the previous section. In that

. 1 i :

£1(3) = min {c11, cra, c13) =0 — ( ) ) example, we have, for instance:

) f3(3) =min{c33 + f2 (1), c34 + f2(2),c35 + f2(3)}.

)—ll\Dl\D

fo(1) = con+ fr (1) =34+1=4— ( |
It seems that to calculatg (3) we have to calculate
f2(2) =min{cos + f1 (1), cos + f1(2)} = three values and later compare them to choose the lower
1 2 one. However, such is not necessary, because the values
( 2 3 ) cs3 + f2 (1) andcess + f2 (2) were already calculated
andesy + f2(2) < 33 + f2(1). According to this,
1 2 3 4 it is enough to calculatess + f» (3) and compare it
fa(3)=min{..} =2 — ( 9 3 5 6 ) with ¢34 + f2 (2). Thus, in each stage, only one sum
operation and one comparison operation for each state
As in the total there are 4 stages, if it is just intended tes effectuated, it > 1. If s = 1, then only one sum is
calculate the minimum cost, in the fourth stage it wouldlone.
not be necessary to calculate(1) and f4 (2) but, be- The algorithm presented starts from the hypothesis
cause it is necessary to keep relative information abottat is not knowra priori a singular matching or a group
the correspondence, such has to be done. Thus, we hafestrong candidates to be matched. For that reason, it
that the minimum cost to match the 4 points of contoudetermines all the possible global matches that respect
1 with 4 points of contour 2, respecting the absolute othe new successive absolute orders and later chooses
der of the points, is 2 and the associated correspondertte one of minimum cost. The chosen matching is the

is the last suitable. one of lower cost that respects the relative order of the
In general, for a costs matr@ of dimension: x m,  points.

withn < m, k <nands € {1, 2, ... m —n+ 1}, Our new algorithm can be described as follows:

fx (s) represents the minimum cost to correspond Algorithm:

points 1, 2, ...k of contour 1, when poink hass

matching hypotheses. With this formulation, we guar- 1. Read the dimension of contours to be matched and
antee that the best global matching that preserves the the matching costs matri®. Define the value of
absolute order is achieved. andmso thatn < m. If necessaryr{ > m), make
To obtain the best global matching maintaining the the transpose of matrig.
relative order, it is necessary to rearrange the points of
contour 2 (point 2 becomes point 1; point 3 becomes 2. Repeamtimes:
point 2 and so forth). Continuously, the correspondence
of minimum cost that respects this new absolute order (@ Tok=1,2,....,nands=1,2,....m—n+1,

and the respective costs should be computed. The re- calculate the values of;, (s), taking in con-

arrangement process and consecutive calculus are re- sideration what was referred before, avoiding

peated again, and so forth. repeated calculations already made. Keep
With the described approach, each new absolute or- the values off;, (s) in a table ofn rows and

der corresponds to a relative order, relatively to the ini- m — n + 1 columns; that is, the used table

tial arrangement. Thus, all of the possible relative ar- must have so many rows as stages and so

rangements of contour 2 are considered, being obtained many columns as states, (Table 1).



(b) Determine and keep the minimum costthe total,n x (m — n + 1) sums anch x (m — n) com-
which is the value kept in the position parisons, only counting the fundamental operations.

(n, m —n+ 1) of the table of values. (In 1o obtain the best global matching respecting the
the previous example, it is the value kept inre|ative order, we have to solve problems; therefore,
position(4, 3) of Table 1). there arem x n x (m —n + 1) sums andn x n x

(c) Define and keep the global correspondencén —n) comparisons. To choose the best global cor-
of minimum cost, which is made by making arespondence from among all the global ones, we have
search and selection of cells in the built tablemorem—1 comparisons. Thus, the computational com-
The selection of a certain cef, j) means Pplexity isO (m x n x (m —n + 1)).
that the point of contour 1 corresponds to From the exposed, we can conclude that the time
pointi + j — 1 of contour 2. (See the cells of execution will grow when the number of points that
used to define the matching in the example inlefines the contours grows and decreases when the dif-
study, Table 1.) ference among the number of points of the two contours

(d) Rearrange the columns of the mat@x so decreases too.
that column 2 becomes column 1, column 3
becomes column 2 and so forth.

5 Dynamic programming with restriction of
order versus Hungarian Method, Simplex
for Flow Problems and LAPm

3. Seek for the minimum cost between th&ept val-
ues and the respective correspondence.

5.1 Test conditions

Table 1: Minimum costs kept by the algorithm for the example in
study. The values are relative to the first problem (initial order) an
the cells marked with * are used to define the correspondence.

(?efore presenting some of the experimental results ob-
tained, it is important to refer that this comparison was
accomplished after the implementation of our new al-

State §) gorithm of dynamic programming in the computational
Stage k) 1 2 3 f . . }
1 FO=T [ h@ =01 A3 =0 platform for image processing and analysis already re

> f; 1) =1 f; @ =1 f; B =1 ferred, R0], [8]. To compare the optimization methods

3 f3(1)=6 | f3(2)=5 | f3(3)=1* — assignment algorithms without order restriction (AA-

4 fa@) =111 fa(2)=9 | fa(3)=2* WOR) and the dynamic programming algorithm with

order restriction (DPAWOR) — it was considered affin-
_ o o ity matrices obtained using a methodology integrated in
If one singular matching is knowa priori, then the  the same platform. This methodology is based on ge-

algorithm does not need to determine all the possiblgmetric mode”ng and modal matching, as proposed by
global matching as in the presented case. For instan@hapiro, L8], [20], [2].

let us suppose that it is known that poindf contour To compare the optimization algorithms based on

1 ghould correspond to poipbf contour _2' Then, the the Hungarian method, Simplex for Flow Problems and
points of both contqurs are rgarranged. poiat €ON= | APm with the new optimization algorithm based on
tour 1 becomes point 1, poifit+ 1 becomes point 2 gy namic programming, it is fundamental that the pro-

and so forth. The same is made in contour 2. NOW ifoqq 15 getermine the cost matrix associated to the
is enough to solve one single problem to determine tlg

i oints that define both contours is exactly the same.
best global matching that respects the new absolute Gfp, ;s in all of the experimental tests done, we accepted
der, instead o problems that the algorithm will have

e if inaul q K the configuration defined by default, in the computa-
to solve If no singular correspondence was Known. platform used, for the building process of the

affinity matrices.

In the definitions of the Simplex for Flow Problems
Considering a contour defined byoints and the other algorithm already integrated in the computational plat-
defined bym points, withn < m, for each global form adopted, the configuration defined by default was
matching that respect the absolute order theremarealso used, because itis, in general, the fastest, Figure 4.
stages anah — n + 1 states. For each stage, only oneTo get the time spent by each one of the optimization
sum for state is effectuated. For each state larger tharalgorithms considered, a function already available for
only one comparison is effectuated. Thus, we have, ithat purpose in the same platform was used.

4.3 Computational cost



5.2 Results

The quality of the matches obtained using AAWOR
and DPAWOR algorithms, in most of the contours
tested, weas exactly the same and of high quality. The
differences appeared when AAWOR present crossed
matches, what obviously does not happen with DPA-
WOR.

To illustrate the differences of the matches found by (a) (b)
the two types of algorithms considered in some experi-
mental cases, observe the Figures 2, 5, 6, 7, 8, 9 and Fayure 6: Matching of contoursfoot13 and “foot14, (pedobarog-
In those figures, the contours were aligned using th@Phy images, 7)) defined by 233 and 253 points, respectively: (a)
rigid transformation estimated from the matches found. atching using AAWOR, (b) matching using DPAWOR.
using unitaryquaternions [20]. In some of the same
figures, there are small differences in the positions of
the contours, because the angle of rotation of a contoarents of the matching cost matrix and this one depends
in relation to the other one is obtained after the matchen the contours and the values of the parameters consid-
ing process. Thus, bad matches can originate an inca@red in the Shapiro’s matching methodology. The time
rect estimation for the rotation angle involved. indicated is an average time, because small variations

were observed.

Simplex Pivot
+ Primal " Muliple Parcial Pricing

" Dual " Cycle-smallest index

" Maost invalid
™ Status

Output file:

=
M. =1
— =

(it desired)

Figure 4: Configuration defined by default in the computational plat-

form used for the optimization algorithm based on the Simplex algo- v h i
rithm. (a) (b)

Figure 7: Matching of contours fib1” and “rib2”, defined by 46
points each: (a) matching using AAWOR, (b) matching using DPA-

Figure 5: Matching of the contours of Figures 1 and 2 using the
dynamic programming algorithm.

In Table 2, we present the computational times
needed to determine the matching of several pairs of or-
dered contours and the respective matching costs. Some
of the matching indicated are not illustrated in this pa-
per because they were equal for the two types of alg(l):}gure 8: Matching of contours HeartB3 and “heartB2, defined

r'.thms in comparison, or present almost |mperceptlvgy 389 and 139 points, respectively: (a) matching using AAWOR, (b)
differences (as was the case of the matching betwee@ttching using DPAWOR.

contours footl3 and “foot2’). It is important to refer
that the cost of the global matching depends on the ele-




Figure 9: Matching of contours lieartB3 and “heartB4, defined

same restrictions. As only in very singular situations,
more than one matching of minimum cost exists, the
matching obtained by the three assignment algorithms
was always the same one.

The comparison between the results obtained using
AAWOR algorithms and DPAWOR algorithm allows us
to conclude the following:

1. Whenever the AAWOR reached a good matching
without crossed matches, the DPAWOR reached
the same matching; therefore, the global cost of the
matching was exactly the same for the two types of
algorithms.

by 389 and 417 points, respectively: (a) matching using AAWOR, (b)

matching using DPAWOR.

(2) (b)

Figure 10: Matching of contoursteartB3 and “heartB4, defined

by 389 and 417 points, respectively: (a) matching using AAWOR, (b)

matching using DPAWOR.

2. When the AAWOR reached a matching with some
crossed matches, the DPAWOR reached an iden-
tical matching but without crossed matches. Ob-
viously, the cost associated was superior because
the restriction of the order forced some crossed
matches to be substituted by matches of higher

costs but more coherent.

. In the situations where the matching obtained by
AAWOR was senseless, then the matching ob-
tained using DPAWOR also was. Itis important to
refer that those bad matching is not due to the opti-
mization algorithms adopted but to the methodol-
ogy used in the construction of the matching cost
matrix. Thus, any example of this situation was
not presented in this paper.

The execution time of the DPAWOR algorithm was
always inferior to the execution time of all the AAWOR

Table 2: Comparison between AAWOR and DPAWOR algorithms.algorithms, independently of the contours having been
(The experimental tests were done using the referred computationdefined for equal or different number of points, or com-

platform, running in a PC Pentium Ill, at 1GHz, with 256MB of RAM
and Microsoft Windows XP.

Number of points Execution times [s]
of the contours | Hungarian| Simplex| LAPm | Dynamic

28 28 4.29 0.02 0.01 <0.01
36 36 >60 0.04 2.36 <0.01
46 46 >60 0.06 2.77 <0.01
86 57 >60 0.20 1.33 0.01
81 84 >60 0.20 243 <0.01
233 67 >60 1.33 15.98 0.25
233 253 >60 2.01 >60 0.15
389 139 >60 5.42 >60 3.80
389 417 >60 9.86 >60 1.19

6 Conclusions and future work perspectives

posed by many points or just by few points. As it can
be observed in Table 2, there were situations in that
the computational platform indicated execution times
around 0 (zero) seconds for DPAWOR, meaning very
low computation times. Besides, the computer used is
very slow, when compared with the modern computers.

It can be verified that the execution times of the
DPAWOR algorithm varied in agreement with what was
anticipated in section 4.3. In other words, the time in-
creased when the number of points that defines the con-
tours increased, but it decreased when the difference
between the number of points that defines the two con-
tours vanished.

Finally, as perspectives of future work, we hope to
apply our DPAWOR algorithm to determine the match-

Relatively to the quality of the matches found, the AA-ing of characteristic points of objects represented in im-
WOR algorithms, obviously, always present a matchages using several methodologies for the determination
ing of minimum cost, because they are subjected to thaf the matching cost matrix, where the order of the



points, or other characteristics of the shapes or imaggk0] Ldbel,

involved should be considered and preserved.
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