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Abstract   The main goals of the present work are to auto-
matically extract the contour of an object and to simulate its 
deformation using a physical approach. In this work, to seg-
ment an object represented in an image, an initial contour is 
manually defined for it that will then automatically evolve 
until it reaches the border of the desired object. In this ap-
proach, the contour is modelled by a physical formulation us-
ing the finite element method, and its temporal evolution to 
the desired final contour is driven by internal and external 
forces. The internal forces are defined by the intrinsic charac-
teristics of the material adopted for the physical model and 
the interrelation between its nodes. The external forces are 
determined in function of the image features most suitable for 
the object to be segmented. To build the physical model of 
the contour used in the segmentation process, the isoparamet-
ric finite element proposed by Sclaroff is adopted, and to ob-
tain its evolution towards the object border the methodology 
presented by Nastar is used, that consists in solving the dy-
namic equilibrium equation between two consecutive in-
stants. 

To simulate the deformation between two different instances 
of an object, after they each have their contours properly 
modelled, modal analysis, complemented with global optimi-
zation techniques, is employed to establish the correspon-
dence between their nodes (data points). After this matching 
phase, the displacements field between the two contours is 
simulated using the dynamic equilibrium equation that bal-
ances the internal forces defined by the physical model, and 
the external forces determined by the distance between the 
two contours. 

keywords:  Image analysis, segmentation, deformable mod-
els, matching, simulation, finite element method, physical 

modelling, modal analysis, equilibrium equation. 

1 Introduction 

In the domain of Computational Vision, namely in image 
analysis, the identification of an object represented in an im-
age, usually designated by segmentation, is one of the most 
common and complex tasks. Usually, whenever it is intended 
to extract higher-level information from an image or even 
from image sequences, the used image analysis process starts 
by segmenting the input image(s). Thus, image segmentation 
is one of the working areas in Computational Vision with 
more research done and so it will probably continue to be 
throughout the times. 

There are several methods for segmenting objects represented 
in images; for example, active contours, level set methods, 
active shape models and deformable templates. Active con-
tours (also known as snakes), introduced by Kass, Witkin and 
Terzopoulos (1988), use an initial curve that is immersed in a 
potential field and is elastically deformed by a function of the 
image features that attracts the curve to the object border. 
The goal of this method is to minimize the total energy of the 
curve used in order to define the contour of the object to 
segment. 

With level set methods [Wang, Lim, Khoo and Wang (2007a, 
b, c), Wang and Wang (2006), Sethian (1999)], the deforma-
tion of the contour used in the segmentation task is formu-
lated as a propagating wave front, that is considered as a spe-
cific level set of an adopted function. This function has a 
term of speed defined by the object in the image that stops 
the propagation of the wave front as soon as it delimits the 
object. The main idea is to implicitly embed the moving con-
tour into a higher dimensional function and view the contour 
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as its zero level set [Ma, Tavares and Jorge (2008)]. 

Active shape models [Vasconcelos and Tavares (2006)] need 
a priori knowledge of the object: the object to segment is 
sampled by a set of keypoints in each of the images of a 
training set, as well as by the gray levels around each point. 
Then, the several sets of keypoints of the training images are 
aligned to minimize the distance between corresponding 
points and, analyzing the variation of that distance, the point 
distribution model is built and used to define an average 
shape for the object in question and to restrict its deformation 
during the segmentation process of that object in new images. 

Another method that also uses a priori knowledge on the ob-
ject to segment is the one based on deformable templates 
[Carvalho and Tavares (2006)]. The geometrical templates 
used are defined by parameters, which describe the expected 
geometrical shape of the object involved, and interact dy-
namically with the image data during the segmentation proc-
ess. As with snakes, an energy function is defined that at-
tracts the template to the object border, the minimum of this 
energy corresponding to the best possible segmentation that 
can be accomplished. 

As for simulation, the idea of considering physical con-
straints in object modelling has been suggested and used in 
Computational Vision by several authors. Terzopoulos, Platt, 
Barr and Fleischer (1987), for example, employed the elastic-
ity theory to model the behaviour of non-rigid curves, sur-
faces and solids. These elastically deformable models re-
spond to external forces and interact with neighbour objects. 
The dynamic equilibrium equation, also known as equation 
of motion, governs the dynamics of the deformable model 
under the influence of applied forces. 

Terzopoulos, Witkin and Kass (1988) proposed a physically 
based model for shape and motion reconstruction of deform-
able objects from images. In that work, the objects were 
modelled as elastically deformable bodies subjected to me-
chanical laws. 

Sclaroff and Pentland (1995) used the modal matching 
method to establish correspondences between objects physi-
cally modelled, and modal strain energy for object recogni-
tion – the lower the energy resulting from deforming a given 
object into another, the higher the similarity between them. 

Using the finite elements method together with modal analy-
sis, Pentland and Horowitz (1991) simulated the physics of 
elastic non-rigid motion obtaining good estimates for object 
shape and velocity. 

Pinho and Tavares (2004a) used the equation of motion to 
obtain 2D and 3D dynamic pedobarography transitional ob-
jects from two given images. 

These and other works have proven that when objects are 
represented according to physical principals the deformation, 
namely its non-rigid component, can be adequately modelled. 

One of the main goals of this work is to simulate the move-
ment and/or deformation of an object using two images of 
that object in different instants. For that, one starts by seg-

menting the object in the two images by extracting its con-
tour. To do so, an initial contour needs to be manually de-
fined, that will evolve throughout an iterative process until it 
reaches the border of the object. For that purpose, a deform-
able model is built for the contour using the finite elements 
method, namely Sclaroff's (1995) isoparametric finite ele-
ment, and its behaviour towards the object’s border is mod-
elled by the dynamic equilibrium equation, thus making it 
accordingly to physical principles, as proposed by Nastar 
(1994). 

To simulate the deformation between the two contours, 
Shapiro and Brady (1992) modal shape description is consid-
ered, complemented with the optimization search techniques 
proposed by Bastos and Tavares (2006) to match the nodes of 
the physical model of one contour to the other. Then, the de-
formations field is estimated using the approach proposed by 
Terzopoulos, Platt, Barr and Fleischer (1987) and 
Terzopoulos, Witkin and Kass (1988) to do realistic deforma-
tion simulations considering an elastic model based on the 
resolution of the dynamic equilibrium equation. 

In this paper, a solution to apply this physical approach to 
contours that do not have all nodes successfully matched is 
proposed – a common situation when complex objects or 
large non-rigid deformations are involved. 

The herein used methodology is briefly described in Fig. 1. 
The first step consists in drawing a rough contour on each of 
the two input images that is considered as the initial segmen-
tation contour for the object. Next, each contour is modelled 
according to physical principles using the isoparametric finite 
element proposed by Sclaroff. To move the physical model 
towards the border of the object in each input image, the dy-
namic equilibrium equation is solved describing the equilib-
rium between the internal and external forces considered. The 
internal forces are defined by the physical characteristics 
adopted for the model, determined by the adopted virtual ma-
terial and the selected level of interaction between the nodes 
of the model; and the external forces are computed by en-
hancing particular features of the object in the input image. In 
this work, we consider external forces based on intensity, 
edges and the distance from each pixel to its nearest edge. 
After the extraction of the two contours, the nodes of their 
physical models are matched and the deformation of one into 
the other is simulated by solving the dynamic equilibrium 
equation, considering now the external forces as a function of 
the distance between the two contours. 

The main contributions presented in this work are the follow-
ing: the adoption of the finite elements method to physically 
model the considered objects, instead of the usual method of 
the finite differences; the adaptive solution to determine de 
external forces applied to the model nodes on the segmenta-
tion task; and the solution to compute the external forces in-
volved in the simulation when the nodes of the model are not 
successfully matched. 

This paper is organized as follows: section 2 describes how 
the physical models are built; the next section explains how 
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objects nodes may be matched using the modal approach 
complemented with an optimization search algorithm; section 
4 refers to the equations that govern the segmentation and 
simulation tasks; in section 5 some experimental results are 
presented and analysed; and finally, section 6 concludes the 
paper and presents some perspectives of future work. 

 

Figure 1: Schema of the methodology used in this work to 
segment, match and simulate objects represented in images. 

2 Physical Modelling 

After defining the initial contour for the object to segment, it 
is time to computationally model it in physical terms; that is, 
to assign mass, stiffness and damp to each point of the con-
tour, i.e., to each node of the used model. 

To model the initial contour and simulate its elastic behav-
iour, Nastar (1994) used affine interpolation functions to-
gether with finite differences. Instead, Gaussian interpolants 
and the finite element method are used in this work for the 
same purpose. Namely, the isoparametric finite element pro-
posed by Sclaroff (1995) is considered to build the physical 
model. This finite element uses a set of radial base functions 

that allows an easy insertion of the data points in the model. 
Therefore, Gaussian interpolants are used and the nodes of 
the model do not need to be previously ordered. Adopting 
this isoparametric finite element, when an object is modelled 
it is as if each of its feature points are covered by an elastic 
membrane [Tavares, Barbosa and Padilha (2000), Sclaroff 
and Pentland (1995)]. 

Thus, starting with a collection of m sample points Xi(xi,yi,zi) 
of the object to be physically modelled, the interpolation ma-
trix H, which relates the distances between the object nodes 
and their interrelations, of Sclaroff’s isoparametric finite 
element [Sclaroff (1995), Sclaroff and Pentland (1995)] is 
built using: 

( )
2 22X X

X i

ig e
σ− −= , (1) 

where σ is the standard deviation that controls the nodes in-
teraction. As Shapiro and Brady (1992) put it, it is “like plac-
ing a small circle around a feature (…) and only allowing it 
to interact with those features (…) lying within the circum-
ference” with radius σ. 
Then, the interpolation functions, hi, are given by: 

( ) ( )
1

X X
m

i ik k

k

h a g
=

=∑ , (2) 

where aik are coefficients that satisfy hi = 1 at node i and hi = 
0 at the other m-1 nodes. These interpolation coefficients 
compose matrix A and can be determined by inverting matrix 
G defined as: 
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Thus, matrix H will be: 
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and the mass matrix of Sclaroff’s isoparametric element is 
defined as [Sclaroff (1995), Sclaroff and Pentland (1995)]: 

0

0

M'
M

M'

 
=  
 

, (5) 

where M'  is a sub-matrix m×m defined as 
2 2 1 1T - -M' A ΓA G ΓGρπσ ρπσ= = , as matrix A is symmet-

ric AT = A, ρ is the mass density, and the elements of matrix 
Г are the square roots of the elements of matrix G. 

On the other hand, the stiffness matrix is given by: 
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where Kij are symmetric m×m sub-matrices depending on the 
constants α, β and λ that are functions of the virtual material 
adopted for the object [Sclaroff (1995), Sclaroff and Pentland 
(1995)] defined as: 

2 2

11 2

 1

2 4,

ˆ ˆ

ij

kl kl

ik jl kl

k l

x y
K a a g

λλπβ
σ

 ++= − 
 

∑ , (7) 
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k l
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where ˆ
kl k l
x x x= − , ˆ

kl k l
y y y= − , ˆ

kl k l
z z z= − . 

In this work, as proposed, for example, by Pinho and Tavares 
(2004b), Rayleigh’s damping matrix, C, is used which is a 
linear combination of the mass and stiffness matrices with 
constraints, µ and γ, based upon the chosen critical damping 
[Bathe (1996), Cook, Malkus and Plesha (1989)]: 

C M Kµ γ= + . (10) 

3 Matching the Objects Nodes 

After having extracted the contours of the two instances of 
the desired object, called initial and target objects from here 
on, it is necessary to find the correspondences between their 
nodes. For that, a generalized eigenvalue/eigenvector prob-
lem is solved for each object using: 

KΦ ΜΦΩ= , (11) 

where ΦΦΦΦ is the modal matrix of the shape vectors (eigenvec-
tors) which describe the modal displacement (u,v) of each 
node due to vibration mode i, and ΩΩΩΩ is the diagonal matrix 
whose entries are the squared eigenvalues increasingly or-
dered. 

After building the modal matrix for each object, the nodes of 
the two objects can be matched comparing their displace-
ments in the respective modal eigenspace [Shapiro and Brady 
(1992)]. The main idea of modal matching is that low order 
modes of two similar shapes will be very close even in the 
presence of affine transformation, non-rigid deformations, 
local shape variations or noise. Thus, to match the nodes of 
the initial object, I, with the ones of the target object, T, an 
affinity matrix, Z, is built with elements defined as: 

2 2

, , , ,ij I i T j I i T j
Z u u v v= − + − , (12) 

where the affinity between nodes i and j is 0 (zero) if the 
match is perfect, and increases as the match worsens. 

In this work, two search methods are considered to find the 
best matches: a local method and a global one. The local 

search method was proposed by Shapiro and Brady (1992), 
and consists in searching each row and each column of the 
affinity matrix for their lowest values. If the lowest value of 
row i is in column j, and that value is also the lowest of its 
column, then node i of the initial object matches node j of the 
target one. This procedure has the main disadvantage of dis-
regarding the objects structure as it searches for the best 
match for each node [Bastos and Tavares (2006)]. 

On the other hand, the global search method proposed by 
Bastos and Tavares (2006) consists in describing the match-
ing problem as an assignment problem, and solving it using 
an appropriate optimization algorithm. In this matching ap-
proach, cases in which the number of nodes in the initial and 
target objects is different can also be considered: initially the 
global matching algorithm adds fictitious nodes to the object 
with fewer ones, and then the nodes that are matched with the 
fictitious elements are adequately matched with real nodes 
using neighbourhood and affinity criteria. Based on this 
work, a new optimization approach using dynamic program-
ming was proposed by Oliveira and Tavares (2008) to solve 
the same global matching problem, obtaining better results 
and in less time. 

4 Equilibrium Equation 

After having the initial contour transformed into an elastic 
physical model it is necessary to estimate its evolution in the 
direction of the object edges to achieve the desired segmenta-
tion; and after having both contours extracted from the initial 
and target objects it is necessary to simulate the deformation 
of one into the other. To achieve both of these goals, the sec-
ond order ordinary differential equation, commonly known as 
Lagrange’s dynamic equilibrium equation, is solved: 

MU CU KU F
t t t t+ + =ɺɺ ɺ , (13) 

for each time step t, where U , Uɺ  and Uɺɺ  are, respectively, 
the displacement, velocity and acceleration vectors, and F 
represents the external forces [Gonçalves, Pinho and Tavares 
(2006), Pinho and Tavares (2004a)]. This equation describes 
the equilibrium between the internal and external forces in-
volved on the model nodes. The internal forces are defined 
by the physical characteristics of the model, determined by 
the adopted virtual material and the level chosen for the in-
teraction between the nodes of the model, which is consid-
ered while building Sclaroff’s isoparametric finite element. 
The external forces depend on whether one is dealing with 
the segmentation or the simulation of objects deformation, as 
explained in the following sections. 

4.1 External Forces for the Segmentation 

To segment an object, the external forces, F, are determined 
by the image features that best describe the object to seg-
ment. In particular, the intensity value of each pixel of the 
initial image, the value of the pixels of the edges image, and 
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the distance from each pixel to the nearest edge. Thus, F is 
the sum of the forces due to the edges image, F

edg
, the inten-

sity original image, F
int
, and the distance image, F

dist
: 

F F F Fedg int dist= + + . (14) 

Here, the edges image is obtained by applying Shen and Cas-
tan's (1992) edge detection operator to the original image, 
and the distance image is obtained by calculating the distance 
of each pixel to its nearest edge using the chamfering algo-
rithm [Sonka, Hlavac and Boyle (2008)]. 

After the physical modelling of the initial contour defined by 
the user in the input image, the algorithm calculates the line 
orthogonal to the tangent at each node of the model. It is 
along each one of these orthogonal lines that the external 
forces are calculated. Denoting as Qi all the pixels belonging 
to the orthogonal line of node P, the edges force at point P is 
given by: 

( ) 1

N

i

i

edg

Edg Q

P r
N

==
∑ ( )

F , (15) 

where ( )iEdg Q  is the value of the pixel Qi in the edges im-

age, r is a stiffness constant and N is the number of pixels of 
the orthogonal line. The intensity and distance forces are 
analogously defined. 

If ( )PF  is less than a given threshold then the length of P’s 

orthogonal line will continually grow until ( )PF  reaches 

that threshold. Thus, each line has the necessary length to de-
termine a sufficient force to move its associated node. 

To determine the direction of the external forces, one consid-
ers that the pixels of line L (the orthogonal line at node P) to 
the right of the vertical line that intersects node P have nega-
tive values and the ones to the left have positive values, as 
can be seen in Fig. 2. Thus, if, for example, the sum of the 
negative values in the edges image is higher than the sum of 
the positive ones, then the direction of F

edg
 will be “down”, 

in the case illustrated in Fig. 3. If line L happens to coincide 
with the vertical line, then the values of the pixels below 
node P are considered negative. 

  

Figure 2: The pixels of line L to the right of the vertical line 
that passes through node P of the contour have negative val-

ues and the ones to the left have positive ones. 

 

Figure 3: The direction of F
edg

 if the sum of the positive 

pixels values in the edges image is higher than  
the sum of the negative ones. 

4.2 External Forces for the Simulation 

In the simulation task, to estimate the external force applied 
on each matched node i of the initial object, we consider that 
the force on each node is proportional to its associated dis-
placement [Pinho and Tavares (2004b)]: 

( ) ( ), ,
F X X

T i I i
i q= − , (16) 

where F(i) is the force applied on node i, XI,i the coordinates 
of node i in the initial object, XT,i the coordinates of the node 
corresponding to node i in the target object and q is a global 
stiffness constant. Because this equation is updated after each 
iteration of the resolution of the dynamic equilibrium equa-
tion, its generalized form is: 

( ) ( ), ,
F X X

T i J i
i q= − , (17) 

where XJ,i represents the coordinates of node i in the shape 
obtained in the Jth iteration. 

However, some nodes of the initial object may not be suc-
cessfully matched with any of the nodes in the target object. 
To overcome this problem, suppose that b is an unmatched 
node between nodes a and c, matched with nodes a’ and c’ of 
the target object, respectively (Fig. 4). Therefore, if b is the 
i
th node in the Jth shape, then the ith component of the external 
force vector is considered as: 

( ) ( )
 (nodes between

 and )

, ,
F X X

p F p J b

p
a´ c´

i q W

 
  = −   
 

∑ , (18) 

where Wp is the weight of node p, according to its matching 
affinity with node b provided by Eq. 12 – thus, the higher the 
matching affinity value, the lower the weight. 

If there are no unmatched nodes between nodes a’ and c’, 
then a’ and c’ will be considered in the computation of the 
external force on node b. 

5 Some Results 

To illustrate the experimental results of the methodology here 
proposed to segment an object represented in an image by 

L 

P 
Fedg 

contour L 

P 
- values 

+ values 
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identifying its contour, consider the images in Fig. 5. In the 
first one it is possible to see, in red, the initial contour manu-
ally defined for the object. The second image represents the 
segmentation obtained using a physical model with 122 
nodes (points) and made of rubber, and considering 
r=2,000N/m. In this case, the computational process took 15s 
to achieve the final result. (In this work a personal computer 
with an Intel Pentium D at 3GHz processor and 2GB of 
RAM was used, running with Microsoft Windows XP.) 

 

Figure 4: Estimation of the external forces  
applied on unmatched nodes. 

 

Figure 5: Initial contour (top); result of the segmentation 
process using r=2,000N/m and considering a  

rubber model (bottom). 

If the same initial contour is modelled with copper instead of 
rubber, using r=7,000N/m would make the segmentation 
process take over four hours to finish. Because copper is 
more rigid than rubber it can support bigger external forces, 
so if r takes bigger values the process continues to run with-
out numerically diverging. In fact, using r=1x106N/m in the 
122 nodes model made of copper, the segmentation is 
achieved after 11.5 minutes. Even with a much higher r the 
segmentation process using a copper model takes a lot longer 

to finish than using rubber as the adopted virtual material, 
which is consistent with the expected behaviour of real ob-
jects, because it is easier and faster to deform objects made of 
rubber than of copper. 

The initial contour in Fig. 5 was drawn close to the object to 
segment, but with our methodology, because of the adaptive 
approach considered for the external forces, that has not be 
so. The initial contour can be drawn further away from the 
object border, but that slows down the segmentation process 
because each pixel has a longer path to go through. The ex-
ample in Fig. 6 uses the same object and the same initial pa-
rameters to build the physical model as the one in Fig. 5, but 
uses an initial contour defined further away from the object 
to segment. In this case, the segmentation process takes 100s 
to finish. 

 

Figure 6: Initial contour defined further away from the ob-
ject (top); result of the segmentation process using 

r=2,000N/m and a rubber model (bottom). 

In the case of more complex segmentation cases, such as 
when the objects are partially overlapped, like the ones in 
Fig. 7, the final result may not be the expected one, because 
features belonging to other objects can be stronger than the 
ones of the object to segment, consequentially attracting 
some nodes of the model to the wrong object. 

The segmentation of the hand in Fig. 8 was obtained in 18s, 
using a physical model with 67 nodes and made of rubber, 
and considering r=2,000N/m. Fig. 9 shows the same hand but 
in a different configuration; its physical model had 66 nodes, 
r=2,000N/m, and was also made of rubber. Its segmentation 
took 18s. 

Using the global search method mentioned before in section 
3 to determine the correspondences between the nodes of the 
contours shown in Figs. 8 and 9, all the 67 nodes of the initial 
object are successfully matched to the 66 of the target object 
(Fig. 10). Using q=30,000N/m to calculate the external 

a 
a’ 

b

c 
c’ 
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forces, the intermediate shapes in Fig. 10 are estimated with 
Eq. 13 after 100s. 

 

Figure 7: Initial contour (left); result of the segmentation 
with r=2,000N/m considering a model with 50 nodes and 

made of rubber (right). 

 

Figure 8: Initial contour (top left); result of the segmentation 
with r=2,000N/m considering a model with 67 nodes and 

made of rubber (top right); nodes of the contour  
extracted (bottom). 

The local search method only matches 54 of the 67 nodes of 
the model of the initial contour; however, with q=30,000N/m 
and employing Eq. 18 instead of Eq. 17 to determine the ex-
ternal force applied to each unmatched node, the simulation 
of the deformation between the two instances of the hand is 
identical to the one with all the nodes matched (Fig. 11), but 
it takes 210s to finish. This behaviour shows that the present 
approach to compute the external forces applied to the un-
matched nodes seems to be adequate and valid as the results 
are very similar to the ones obtained with all the nodes suc-
cessfully matched. 

6 Conclusions and Future Work 

The experimental results obtained using the physically driven 
segmentation methodology presented in this paper are quite 

satisfactory and according to the physical behaviour expected 
for real objects. However, this approach still presents two 
drawbacks: 

• it becomes slower if the initial contour is not close to the 
object to be segmented; 

• the segmentation result can be compromised when the 
image in which the object is represented is complex, 
with noisy data or objects overlapped, for example. 

 

Figure 9: Initial contour (top left); result of the segmentation 
with r=2,000N/m considering a model with 66 nodes and 

made of rubber (top right); nodes of the contour 
extracted (bottom). 

 

Figure 10: Matching between the two contours in Figs. 6 and 
7 using global search (left); simulation obtained for the two 
contours (right – in black are the initial and target objects, 

and in grey five estimated shapes). 

 

Figure 11: Matching between the two contours in Figs. 6 and 
7 using local search (left); simulation obtained for the two 
contours (right – in black are the initial and target objects, 

and in grey five estimated shapes). 



 8 

To overtake these drawbacks, in the near future some 
changes to fasten and improve the segmentation process will 
be introduced, such as trying different approaches for the 
definition of the external forces. The use of finite elements 
more suitable for large and nonlinear deformations is also a 
subject to be addressed in the following stages of this work. 

In this paper a physical approach to simulate the deformation 
of objects represented in images was also described, and a so-
lution that enables the application of the used approach to ob-
jects that do not have all of their nodes successfully matched 
was proposed. 

The experimental results obtained in the matching process 
and in the estimation of the involved deformation are coher-
ent with the physically expected behaviour of the modelled 
objects, validating the used approach. Although the results 
are quite satisfactory, the computation process is not very 
fast. So, in the future, to solve the dynamic equilibrium equa-
tion faster, parallel implementations will be considered. Also, 
to determine the external forces in the unmatched nodes other 
approaches will be developed. 

To improve the matching process, Oliveira and Tavares 
(2008) approach will be used, that considers the order of the 
nodes of the contours preventing crossed matches, thus im-
proving the matching quality, and, additionally, the computa-
tion time decreases considerably [Tavares, Carvalho, 
Oliveira, Reis, Vasconcelos, Gonçalves, Pinho and Ma 
(2008)]. 

The tracking of objects along image sequences, using the 
methodology here proposed complemented with stochastic 
methods to estimate the involved motion, is also a task that 
will be addressed in the near future. 
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