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Abstract. The rational development of new drugs is a complex and ex-
pensive process, comprising several steps. Typically, it starts by screening
databases of small organic molecules for chemical structures with poten-
tial of binding to a target receptor and prioritizing the most promising
ones. Only a few of these will be selected for biological evaluation and
further refinement through chemical synthesis. Despite the accumulated
knowledge by pharmaceutical companies that continually improve the
process of finding new drugs, a myriad of factors affect the activity of
putative candidate molecules in vivo and the propensity for causing ad-
verse and toxic effects is recognized as the major hurdle behind the cur-
rent ”target-rich, lead-poor” scenario. In this study we evaluate the use
of several Machine Learning algorithms to find useful rules to the eluci-
dation and prediction of toxicity using 1D and 2D molecular descriptors.
The results indicate that: i) Machine Learning algorithms can effectively
use 1D molecular descriptors to construct accurate and simple models;
ii) extending the set of descriptors to include 2D descriptors improve the
accuracy of the models.

1 Introduction

The amount of information concerning chemicals that is available in databases
has been increasing at a considerable pace in the last years, changing the whole
process of discovery and development of new drugs. These databases have been
used as a starting point for screening candidate molecules, and enable the phar-
maceutical industry to produce over 100,000 new compounds per year [1]. The
promising compounds are further analysed in the development process, where,
among other investigations, their potential toxicity is assessed. This is a complex



and costly process that often requires years before compounds can be tested in
human subjects [2–4]. Additionally, about 90% of the initially considered drugs
fail to reach the market due to toxicological properties [5]. This fact highlights
the importance of determining as early as possible toxicological features.

Toxicity tests determine whether or not a candidate molecule is likely to
produce toxic effects in humans, usually involve the use of animal models at a
pre-clinical stage. As the number of of biological targets identified as relevant
increases (resulting from the humane genome project), and hence the demand for
drug screening campaigns there is a growing need of efficient in silico methods
for the prediction of toxicity of organic compounds. The problem is to identify
clear relationships between a molecule’s chemical structure and its toxicological
activity. These relationships can be used to build predictive models to apply to
new compounds [6]. Ultimately, this task can be regarded as a method to predict
Quantitative Structure-Activity Relationships (QSARs) [7] which considers a set
of structural features associated with a toxicity endpoint. These models offer an
inexpensive and fast way of estimating molecules toxicological properties [8, 9].

The problem of estimating the toxicity of drugs has been addressed, mainly,
from three methods: i) regression from physical-chemical properties; ii) expert
systems and; iii) machine learning [10, 11]. Some toxicity prediction programs
are commercially available including TOPKAT (toxicity-prediction by computer-
assisted technology), DEREK (deductive estimation of risk from existing knowl-
edge), CSGenoTox, MetaDrug and HazardExpert [12]. These programs have a
common characteristic, they are classified as ”global” models [8] since they were
developed using a non-congeneric set of chemicals. Actually it is not mandatory
that the chemicals in these data sets are congeneric, but they should share struc-
tural features. Besides the commercially available programs, other studies have
been published using machine learning approaches [3, 13, 10, 6, 11].

In this paper we compare the performance of classification algorithms in pre-
dicting the toxicity of compounds and present the results for data sets composed
of constitutional molecular descriptors exclusively (1D descriptors) and data sets
composed of both constitutional and topological molecular descriptors (2D de-
scriptors). Although similar studies have been reported [3, 4, 10, 14], they did
not assess the relevancy of molecular descriptors in terms of toxicity prediction.
We have applied the classification algorithms to predict the toxicity of com-
pounds for the estrogen receptor (DSSTox NCTRER DataBase), mutagenicity
using the carcinogenic potency database (DSSTox CPDBAS DataBase), the Fat-
head Minow Acute Toxicity (DSSTox EPAFHM DataBase) and the Disinfection
By-products Carcinogenicity Estimates (DSSTox DBPCAN DataBase).

In this study we aim at proving/disproving the following hypotheses:
HC0: 1D descriptors contain sufficient information for Machine Learning al-
gorithms to construct accurate and robust predictive models that can predict
whether a given molecule is toxic.
HC1: Extending the set of 1D descriptors with 2D descriptors improves the
accuracy of the models produced by Machine Learning algorithms to predict the
degree of toxic activity of molecules.



HR0: 1D descriptors contain sufficient information for Machine Learning algo-
rithms to construct accurate and simple predictive models of the degree of toxic
activity of molecules.
HR1: Extending the 1D set of descriptors of molecules with 2D descriptors
improves the models constructed by Machine Learning algorithms to predict the
degree of toxic activity of molecules.

The remaining portion of the paper has the following structure. Section 2.1
describes the data sets used, and Section 2.2 gives an overview on the Machine
Learning algorithms used in this study. Section 3 details the experiments under-
taken and discussed the results obtained. We compare our work with previously
published work in Section 4. Conclusions are presented in the last section of the
paper.

2 Material and Methods

2.1 Data Sets

We used four data sets available from the Distributed Structure-Searchable Tox-
icity (DSSTox) Public DataBase Network [15] from the U.S.Environmental Pro-
tection Agency5. The DSSTox database project is targeted to toxicology studies
and uses a standard chemical structure annotation. The data sets are charac-
terised as follows.

CPDB: The Carcinogenic Potency DataBase (CPDB) contains detailed re-
sults and analyses of 6540 chronic, long term carcinogenesis bioassays [16], which
currently contains 1547 compounds. For the purpose of this study the carcino-
genicity endpoint was evaluated concerning hamster, mouse and rat species. The
experimental results on the remaining species (cynomolgus, dog, rhesus) are in-
sufficient and were discarded. When the same compound was tested in more
than one specie, the experimental results for all species were stored in a single
entry. Thus, for this study, the database was pre-processed in order to expand a
single entry to produce an entry for each specie. This pre-processing resulted in
a total of 2272 entries.

EPAFHM: The Fathead Minnow Acute Toxicity database was generated
by the U.S. EPA Mid-Continental Ecology Division (MED) for the purpose of
developing an expert system to predict acute toxicity from chemical structure
based on mode of action considerations [14]. The database contains 614 organic
chemicals, for the prediction of acute toxicity endpoint of environmental and
industrial chemicals.

NCTRER: Researchers within FDA’s National Center for Toxicological Re-
search (NCTR) generated a database of experimental ER (estrogen receptor)
binding results with the purpose of developing improved QSAR models to predict
ER binding affinities. The NCTRER database provides activity classifications
for a total of 224 chemical compounds, with a diverse set of natural, synthetic
and environmental estrogens [17].

5 http://www.epa.gov/ncct/dsstox/index.html, accessed Dec 2008



DBPCAN: Water disinfection by-products database contains predicted esti-
mates of carcinogenic potential for 178 chemicals.The goal is to provide informed
estimates of carcinogenic potential to be used as one factor in ranking and pri-
oritising future monitoring, testing, and research needs in the drinking water
area [18].

The structures of chemicals in DSSTox are stored as SDF 6 files as well as
SMILES7 strings.

In addition to the original database entries, a number of 50 molecular de-
scriptors was calculated with the GenerateMD software8. Molecular descriptors
belong to a set of pre-defined categories [12, 19]. In our data sets we used
the constitutional-based descriptors, also known as 1D descriptors, and the
topological-based descriptors, also called 2D descriptors.

Furthermore, we generated molecular fingerprints of type FP49 using Open
Babel software [20]. These fingerprints were then converted into binary attributes
meaning the presence or absence of a particular chemical substructure in the
compound, such as, fused rings, alkene, lactone, enolether, in a total of 300
chemical substructures.

All the information was encoded in ARFF format which provides the neces-
sary information to run the classification and regression algorithms. The clas-
sification data sets were obtained from the regression ones by establishing a
threshold of 50% for the toxicity activity: below the 50 % the drug was not
considered toxic and above that value it was considered toxic.

data set active inactive

CPDB 1059 1213

EPAFHM 580 34

NCTRER 131 93

DBPCAN 80 98

Type of Number of
Features Attributes

1D 22

1D+FP 322

2D 564

(a) (b)
Table 1. Characterisation of the data sets. (a) Class distribution. (b) Number of
Attributes.

Table 1(a) summarizes the four datasets used in this study. Except for the
EPAFHM dataset all the datasets are balanced in terms of the number of ac-
tive and inactive compounds. In all the experiments, we used the same number
of attributes: 22 pure 1D descriptors, 300 molecular fingerprints, and 242 2D
descriptors (Table 1(b)).

2.2 Machine Learning methods

In this study we used classification and regression methods. The classification
methods used cover most popular methods in Machine Learning and include
6 Structure Data Format
7 Simplified Molecular Input Line Entry Specification.
8 http://www.chemaxon.com, accessed Oct 2008
9 a set of SMARTS queries



several variants of decision trees, Bayesian methods, instance base classification,
and a variant of Support Vector Machines (SVMs). We experimented with dif-
ferent decision trees as they are widely considered one of the most interpretable
methods, and interpretability may be of interest in this experiment. Regarding
regression, we used approaches based in trees and based on SVMs.

All the machine learning methods used in our study are implemented in the
Weka [21] software package. The classification methods used are enumerated in
Table 2 and the list of regression methods used is enumerated in Table 3. The
tree construction methods we have used are BF trees, CART, J48, ADTrees,
and Functional Trees. We used Breiman’s“random forests” as a popular methods
that benefits from some of the understandability of trees and has been shown
to achieve quite good accuracies. We also used two bayes methods: Naive Bayes
is usually a good reference, and the “Bayes Network” method uses a greedy
algorithm to construct the network. The K Star algorithm is a version of the
famous K−NN instance based classifier, and, last but not least, we used Weka’s
SMO SVM implementation.

Method (Weka name) Type

BF Tree Decision Trees.
CART Decision Trees
SVM SMO Support Vector Machines
Naive Bayes Bayesian classifier
Bayes Network Bayesian classifier
K Star Instance based classifier
AD Tree Alternate Decision Trees
FT Functional trees
J48 Decision tree
Random Forest (RF) Ensemble method

Table 2. Classification methods used in the present work

We have used four regression methods: M5P and M5rules are based on model
trees; in contrast, SMO is based on SVM technology, Linear Regression is a well
known statistical method.

Method (Weka name) Type

M5P Model Trees.
M5rules Model Trees.
SVM SMO Support vector machines
Linear Regression statistical method

Table 3. Regression methods used in the present work



2.3 Experimental Design

The experiments were carried out on a cluster of 9 nodes where each node has
two quad-core Xeon 2.4GHz and 32 GB of RAM and runs Linux Ubuntu 8.10.
The Weka [21] version used was 3.6.0.

To estimate the predictive quality of the classification models we performed
10 fold cross-validation. The quality of the regression models were estimated
measuring the Relative Absolute Errors (RAE):

RAE =

∑N
j=1 |Pij − Tj |∑N
j=1 |Ti − Tj |

in the formula, given the classifier i and the drug j, Pij is the prediction made
by i on j, Ti is the average value of actual activity over all drugs, and Tj is the
actual activity value of drug j.

To handle missing values we considered three approaches: i) let the ML al-
gorithm deal with the missing values; ii) use Weka pre-processing procedure for
missing values and; iii) remove entries with missing values.

All ML algorithms were applied for each combination of missing values ap-
proach, and dataset (using 1D descriptors, 1D descriptors and Finger Prints
(1D+FP) and all the information available).

3 Results and Discussion

3.1 Classification

Table 4 presents the average accuracy over 10 folds obtained by all classification
methods considered, in all data sets and with different sets of features (1D,
1D+FP, and 1D+FP+2D)10.

The last line in the table, for the ZeroR classifier, gives the baseline perfor-
mance for the other learning methods. The ZeroR simply predicts the majority
class in the training data. The values in bold are the best value for the column (for
a data set and set of features). Overall, the classifiers are quite accurate on DBP-
CAN, where they achieve over 90% accuracy. All classifiers (except bayesNet)
perform well in this dataset. EPAFHM is a very skewed dataset: predicting base
class would give 95% accuracy. Even so, all classifiers exceed default accuracy, in
fact the Functional Trees (FT) classifier achieves almost perfect accuracy. Per-
formance is also quite good for NCTRER, between 77–86%, with best results
for ft and rf. The hardest dataset was CPDBAS, where performance ranges
from 55% for naive bayes (a little better than default class) up to 73% with
random forests. Notice that in contrast to other datasets, nearest neighbor is
quite effective in this dataset.

10 The empty cells for NCTRER and BF tree and Cart are due to the incapacity of
those two algorithms to handle missing values and all examples of the NCTRER
data set have a missing value.



CPDBAS DBPCAN
Algorithm 1D 1D+FP 1D+FP+2D 1D 1D+FP 1D+FP+2D

J48 66.4 64.0 68.7 89.9 93.3 91.6

BFTree 66.1 63.9 66.2 85.4 92.1 89.3

cart 65.6 66.7 69.1 85.9 91.0 90.6

ibk 62.1 59.6 62.4 91.0 92.7 91.0

SMO 58.4 60.9 65.9 92.8 92.7 92.1

Nbayes 57.8 58.0 54.4 87.1 89.3 83.7

bayesNet 57.7 56.9 58.4 81.5 88.2 84.3

kStar 70.8 68.9 72.0 88.2 92.7 89.3

ADTree 61.3 60.8 63.3 90.4 93.8 92.7

ft 66.9 70.3 70.2 92.7 94.4 95.5

rf 71.8 70.3 72.8 92.7 93.8 92.7

ZeroR 53.4 53.4 53.4 55.1 55.1 55.1

EPAFHM NCTRER
Algorithm 1D 1D+FP 1D+FP+2D 1D 1D+FP 1D+FP+2D

J48 98.2 98.2 98.2 83.0 81.7 85.57

BFTree 97.9 97.9 97.5 - - -

cart 97.9 97.9 97.3 - - -

ibk 96.3 95.4 96.1 82.6 85.7 83.0

SMO 96.3 94.6 93.8 81.7 85.3 83.5

Nbayes 94.8 93.3 94.6 79.0 83.5 80.8

bayesNet 94.1 92.7 89.1 80.8 81.3 83.5

kStar 97.2 96.2 96.1 79.0 79.0 76.8

ADTree 98.5 98.2 98.2 83.9 81.7 84.4

ft 99.0 98.9 98.7 85.7 85.3 86.7

rf 98.7 97.6 97.2 83.9 85.3 87.1

ZeroR 94.5 94.5 94.5 58.5 58.5 58.5
Table 4. Performance of classification algorithms. The values are obtained from the
Weka package and are the average (over 10 folds) correctly classified instances obtained
by different learning algorithms using 1D, 1D plus finger prints (1D+FP) plus 2D
features (1D+FP+2D).



Functional trees (FT) performed quite well on these datasets. FT tend to
perform close to the best, and for the columns where FT performance is not the
best, it is the second or third best. In all cases, the performance obtained by FT
is better than the baseline.

Focusing on FT, the performance values for 1D descriptors in the four data
sets clearly supports the hypothesis that 1D descriptors contain sufficient in-
formation for Machine Learning algorithms to construct accurate and simple
predictive models to determine if a given molecule is toxic or not.

Extending the 1D set of descriptors to include fingerprints did not boost
performance. However, extending the set of features to include the 2D set of
descriptors improves the performance in most cases. The only exception is ob-
served in the EPAFM data set. However, in this case, it was difficult to improve
the performance obtained using 1D descriptors since it was already at 99%. Nev-
ertheless, the results support the second hypothesis that states that extending
the 1D set of descriptors of molecules with 2D descriptors improves the accuracy
of the models constructed by Machine Learning algorithms to predict the degree
of toxic activity of molecules.

(a) (b)

Fig. 1. Decision Tree to predict toxicity for the (a) DBPCAN and (b) NCTRER data
sets.

An interesting question is whether the models discovered are supported or
contribute to expertise in the area. Figure 3.1 shows two example trees obtained
by the J48 algorithm. We chose J48 because it is particularly easy for an exper-
iment to understand, and we chose two applications where J48 performs well.

The tree in Figure 3.1(a) presents a model for DBPCAN. The model is
based on halogenated hydrocarbons (e.g., alkylchloride, alkylbromide), which
are closely associated to toxicity. That such elements would be present in the
model is unsurprising. First, it is well known that organisms have difficulty in
metabolising halogens. Indeed the halogens such as fluorine, chlorine, bromine
and iodine are elements avoided by medical chemists. Second, halogenated hy-



drocarbons (and aromatic rings such as the ones in diphenol) are hydrophobic.
This property allows these molecules to cross biological membranes and deposit
in the the fatty tissue, where they eventually can be involved in cancer process
(a classical example is DDT).

More curious is that in this model the absence of halogenated hydrocarbons
in “active” molecules seems to be compensated by having close-by hydrogen
acceptors. (acceptor acceptor > 0). Donor groups seem to relate with the func-
tionality of drugs (and namely to specificity for certain targets). The existence of
a large number of accepting groups with hydrogen bonds (more than 10), that
seems to be contemplated in acceptor acceptor > 10 may be associated with
more promiscuous molecules, that is, with molecules connecting to a number of
different targets with secondary effects.

Regarding the J48 model for NCTRER, the Diphenol group associated to
molecules with a positive sharing coefficient between octanol and water seems to
explain molecule activity/toxicity, very much in line with the previous discussion
on hydrophobicity.

3.2 Regression

CPDBAS DBPCAN EPAFHM NCTRER

Algorithm 1D 1D+FP 1D+FP+2D 1D 1D+FP 1D+FP+2D 1D 1D+FP 1D+FP+2D 1D 1D+FP 1D+FP+2D

m5p 73.6 70.8 67.5 41.5 42.4 45.6 34.6 33.9 36.9 50.2 46.2 56.2

m5rules 72.4 68.8 66.8 39.3 41.6 44.4 26.6 27.8 24.3 47.9 51.2 46.1

l.regression 95.0 90.9 82.9 52.5 53.4 99.2 110.1 122.1 147.5 61.5 63.1 100.0

svm smo 92.4 89.9 63.0 52.8 47.9 51.3 53.2 51.3 68.4 43.1 52.6 63.0

Table 5. Performance of the regression algorithms. Results obtained in the regression
task by different learning algorithms using 1D, 1D plus finger prints (1D+FP) and
1D+FP plus 2D features (1D+FP+2D). Values represent RAE.

HR0: 1D descriptors contain sufficient information for Machine Learning algo-
rithms to construct accurate and simple predictive models of the degree of toxic
activity of molecules.
HR1: Extending the 1D set of descriptors of molecules with 2D descriptors
improves the models constructed by Machine Learning algorithms to predict the
degree of toxic activity of molecules.

The results of Table 5 show that the confirmation of HR0 depends on the data
set. For EPAFHM the m5rules algorithm achieves a RAE of 26.6% that is quite
good, whereas in CPDBAS data set the best score is 72%. A similar conclusion
may be reached as HR1 is concerned. In CPDBAS data set we see a systematic
reduction in RAE in all algorithms when the set of descriptors is enriched with
2D descriptors (with SVM algorithm it drops from 92.4% to 63.0%).

4 Related Work

In this study machine learning algorithms were applied to the task of predicting
toxicity endpoints. Other solutions to the prediction toxicology problem have



been published. In this section we report in related work. Notice that, to the
best of our knowledge, we are the first the report extensive comparison results
for these recent datasets.

In [22] decision tree models were constructed to select from a set of 20 at-
tributes the ones whose values best discriminate a set of 904 rodent bioassay
experiments. A classification system TIPT (Tree Induction for Predictive Toxi-
cology) based on the tree was then applied and compared with neural networks
models in terms of accuracy and understandability. The classification problem
was also the subject of investigation in [23] where the Support vector machine
(SVM) proved to be reliable in the classification of 190 narcotic pollutants (76
polar and 114 nonpolar). A selection algorithm was also used to identify three
necessary attributes for the compounds discrimination and the leave-one-out
cross-validation was the evaluated procedure. Again in [24] the problem is to
predict potential toxicity of compounds depending on their physico-chemicals
properties. It was used a wide variety of machine learning algorithms with Weka
(machine learning software), including classical algorithms, such as k-nearest
neighbours and decision trees, as well as support vector machines and artificial
immune systems. SVMs proved to be the best algorithm followed by a neural net-
work model. In [10] the ILP (Inductive logic programming) approach was used
with support vector machines to extends the essentially qualitative ILP-based
SAR to quantitative modelling. In this study a data set of 576 compounds with
known fathead minnow fish toxicity was used and the results were compared
with the commercial software TOPKAT. Furthermore, in [25] other machine
learning approaches was analysed, such as Particle Swarm Optimisation (PSO)
and Genetic Programming (GP), they are suitable for use with noisy, high di-
mensional data, as in commonly used in drug research studies. In [26] a literature
review was done focus in predictive models such as partial-least square (PLS),
support vector machines, neuronal nets, multiple linear regression and decision
trees. A novel model to simulate complex chemical-toxicology data sets was re-
ported in [27] and used to evaluate the performance of different machine learning
approach, neuronal networks, k-nearest neighbours, linear discriminant analysis
(LDA), naive Bayes, recursive partitioning and regression trees (RPART), and
support vector machines.

5 Conclusions

The work reported in this paper addresses the problem of constructing predictive
models of toxicity in a drug design setting. We have evaluated the usefulness
of Machine Learning algorithms to construct accurate and simple models for
toxicity. The study compared the usefulness of 1D and 2D molecular descriptors
not only in the prediction of the degree of toxic activity but also the classification
problem of predicting if a drug is toxic or not.

The results indicate that Machine Learning algorithms can effectively use
1D molecular descriptors to construct accurate and simple models to predict
compound toxicity. The experiments also show that extending the set of 1D



descriptors with 2D descriptors may improve the accuracy of the models, but
that further work is required to take full advantage of these features.
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