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Abstract

Bender element transducers are used to determine the small-strain shear stiffness,

G0, of soil, by determining the velocity of propagation of mechanical waves through

tested samples. They are normally used in the laboratory, on their own or incorpo-

rated in geotechnical equipment such as triaxial cells or oedometers.

Different excitation signals and interpretation methods are presently applied,

each producing different results. The initial assumptions of unbounded wave propa-

gation, generally used in bender element testing and inherited from seismic cross-hole

testing, are quite crude and do not account for specific boundary conditions, which

might explain the lack of reliability of the results.

The main objective of this study is to establish the influence of the sample

and transducer geometry in the behaviour of a typical bender element test system.

Laboratory and numerical tests, supported by a theoretical analytical study, are

conducted and the results presented in order to achieve this goal.

An independent monitoring of the dynamic behaviour of the bender elements

and samples is also carried out. Using a laser velocimeter, capable of recording the

motion of the subjects without interference, their dynamic responses can be obtained

and their mechanical properties verified.

A parametric study dealing with sample geometry is presented, where 24 samples

with different geometries are tested. Synthetic rubber is used as a substitute for soft

clay, due to the great number of samples involved and the necessity of guarantee the
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constancy of their properties.

The numerical analysis makes use of three-dimensional finite difference models

with different geometries. A regressive analysis is possible since the elastic properties

of the system are pre-determined and used to evaluate the results. A numerical

analysis also has the benefit of providing the response not only at a single receiving

point but at any node in the model.
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Chapter 1

Introduction

1.1 Prologue

In normal working conditions, most part of the soil mass around a structure is

subjected to small strains, less then 0.1%, with higher strains being achieved only

locally, (Burland, 1989). Besides, the relationship between strain and stiffness of

soils is generally non-linear, (Atkinson, 2000). Only at very small strains does the

correlation between strain and stiffness behaves in a linear fashion. It is at these

smaller strains that the shear stiffness reaches its maximum value, usually refered

to as G0 or Gmax. For this reason it is also known as small-strain shear stiffness. A

characteristic soil strain-stiffness curve is presented in figure 1.1.

When preparing a static or dynamic physical model of a geotechical structure it

is relevant to take into account the non-linear behaviour of the soil. It is therefore

necessary to obtain, among other properties of the medium, its small-strain shear

stiffness, (Arulnathan et al., 2000; Brignoli et al., 1996). Dyvik and Madshus (1985)

mentioned the relevance of using G0 in the prediction of soil and soil-structures be-

haviour during earthquakes, explosions, traffic vibration, machine vibration, wind

loading and wave loading. In analysis where large strains are considered, the knowl-
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Figure 1.1: Characteristic strain-stiffness curve of soil’s non-linear behaviour, col-

lected from Atkinson (2000).

edge of G0 is still relevant since it is one of the defining parameters when considering

the soil’s non-linear behaviour.

Stating the obvious, in order to obtain the small-strain stiffness, soils must be

tested at small strains. Despite increasing precision from static test equipment such

as local gauges, namely the use of LVDT1, (Brocanelli and Rinaldi, 1998; Cuccovillo

and Coop, 1997; Da-Re et al., 2001), dynamic methods remain the natural option

to test at small and very small strain ranges, (Atkinson, 2000).

Bender elements are piezoelectric ceramic instruments used in laboratory geotech-

nical dynamic testing. They work as cantilevers which flex or bend when excited by

the voltage differential of an electric signal and vice-versa, i.e., they generate a volt-

age differential when forced to bend. These transducers are generally used in pairs

where one bender element operates as a transmitter and the other as a receiver. The

transmitting bender element tip is generally embedded at one end of a soil sample

and the receiving bender element tip is, aligned with the transmitter, embedded at

1LVDT - Linear Variable Differential Transformer
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the other end. The transmitting bender element transforms the input electric signal

into a mechanical motion which disturbs the medium in which it is embedded. This

disturbance propagates through the medium in the form of mechanical waves. Some

components of these waves reach the other end of the sample where the receiving

bender element is at. Wave components with motion transversal to the receiving

transducer’s tip are capable of forcing it to bend, and consequently of generating

an output electric signal. An example of a pair of bender elements mounted on a

triaxial-cell apparatus is presented in figure 1.2

Figure 1.2: Pair of bender elements mounted in a triaxial-cell apparatus.

By comparing the input and output signals, it is presumably possible to obtain

the shear wave velocity, which is a characteristic of the medium. The characteristic

shear wave velocity can then be used to obtain the shear stiffness of the medium,

(Redwood, 1960), as given by:

G0 = ρ · Vs
2 (1.1)

where G0 is the small-strain shear stiffness, ρ is the medium’s density and Vs the

characteristic shear wave velocity.
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Other dynamic methods such as the cross-hole method used in situ, and differ-

ent piezoceramic transducers such as shear-plate transducers and compression-plate

transducers used in laboratory can also be used to determine wave travel times,

(Bodare and Massarsch, 1984; Brignoli et al., 1996). Resonant columns are another

laboratory dynamic device used to determine the shear-stiffness and the damping co-

efficient of the soil, (ASTM, 1978). Unlike the previous example, resonant columns

use the torsional or flexural resonance frequency, rather than a wave velocity, to

estimate the medium’s properties, (Stokoe et al., 1994).

Arulnathan et al. (2000) used a mini-hammer in a centrifuge model together

with a number of accelerometers to determine the propagation velocity of shear

waves in sand. The obtained results were in good agreement with equivalent bender

element results obtained for the same medium. AnhDan et al. (2002) have also used

accelerometers together with LVDT apparatus to obtain the small-strain stiffness of

coarse soils.

In Audisio et al. (1999) and Hope et al. (1999), another example can be found of

in situ dynamic testing, known as spectral analysis of surface waves, SASW. Using

surface waves, more particularly Rayleigh waves, to test soil as done with the cross-

hole method but with no need for bore-holes, makes the SASW testing method less

expensive than the cross-hole method, (Nazarian and Stokoe, 1984).

The advantages of using bender elements are that they are relatively cheap and

simple to manufacture. They can be used on their own or can easily be integrated

into existing and common geotechnical equipment such as triaxial cells, oedometers

or direct shear apparatus, (Arroyo et al., 2003a; Thomann and Hryciw, 1990). In this

way it is possible to dynamically test soil samples under controlled load conditions,

(Viggiani and Atkinson, 1997). They can be used together with other dynamic test

apparatus such as the resonant column, as done by Connolly and Kuwano (1999).

Bender elements versatility allows them to be wired so as to operate both as a
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bender and an extender, enabling the detection of compression waves as well as of

shear waves, as done by Lings and Greening (2001) and later followed by Dano et

al. (2003). When testing saturated soils, compression wave are able to propagate at

a faster velocity through the relatively incompressible fluid, which might interfere

with the detection of the media characteristic compression wave velocity, (Lings and

Greening, 2001).

Due to their versatility, bender elements are also used to study the anisotropy

of soils. If for the resonant column test one sample per direction needs to be ob-

tained to study the anisotropy of a particular material, (M. and Ko, 1994), when

using bender elements a pair of these transducers is needed for each chosen direc-

tion, while testing a single sample. Placing different pairs of bender elements with

different orientations, mounted on the sides of the sample for example, enables the

transmission of waves with different polarisations and/or different travel paths, to

obtain the different values of the soil’s shear stiffness. Nash et al. (1999) and Jovičić

and Coop (1998) in the study of clay, and Belloti et al. (1996), Zeng and Ni (1998)

and Kuwano et al. (2000) in the study of sand, for example, have used more than

one pair of bender elements in triaxial cell devices in order to study the anisotropy

at small-strains of those media. The influence of particle orientation, for example,

can be studied in such way, (Lo Presti et al., 1999). Figure 1.3 depicts two pairs of

bender elements placed orthogonal to each other and the resulting wave polarisation.

Clayton et al. (2004) also used side-mounted bender elements in a triaxial cell

but for different purposes. In this way he was capable of having more than one

receiver for a single transmitter, enabling the determination of a more complete

picture of the wave propagation properties.

The use of bender elements also carries some disadvantages. Their intrusive

nature, when embedded in the soil, means that they disturb the sample near the
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Figure 1.3: Study of soil anisotropy with vertical and horizontal bender element

placement and consequent wave polarisation.

region where they are placed. Besides, having been originally design to transmit

and receive shear wave components, if used in slender samples, and due to the anti-

symmetric nature associated with the transmitting bender element flexion, they are

expected to excite flexural modes of wave propagation rather than the simpler pure

shear waves, (Arroyo and Muir-Wood, 2003). Flexural modes of wave propagation

are dispersive in nature, (Redwood, 1960), which may difficult the detection of the

actual shear wave velocity, and consequently the estimation of the medium’s shear

stiffness.

About the intrusive nature of bender elements, Fioravante (2000) and Fioravante

and Capoferri (2001) attempted to use the inertia properties of the transducers by

attaching them to the outside of the sample and permitting their free vibration,

in air or in fluid but not embedded in the soil, both at transmitting or receiving

transversal waves. This variation in the use of bender elements is well suited for

the study of anisotropy, since in this type of test multiple pairs of bender elements

are usually placed at the sides of the sample. This positioning is difficult to achieve
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when the transducers’ tips are embedded in the soil, since they must go through the

protective latex membrane, which might jeopardise its impermeability.

Presently, some disagreement remains over the constitutive model of behaviour

of a general bender element test system. Also, issues such as the optimum type

of signal to excite the transmitting bender element or the best method of signal

interpretation are also still not agreed upon. A more traditional behaviour model

of bender element systems assumes the mechanical waves to propagate as if in a

unbounded medium, similar to a cross-hole test. In this case, there is no dispersion

caused by wave reflection and hence no added complexity from this factor. Another

constitutive model, considering the geometry of the tested sample and its dynamic

modal behaviour, the same as assumed in resonant column tests, is also possible.

The issue of sample geometry is central in this dissertation. Knowing that

bars with different geometries have different modal responses, (Clough and Pen-

zien, 1993), by establishing a relationship between sample geometry and general

dynamic behaviour of the test system, with consequent interference in the obtained

results, it is possible to establish this modal behaviour as the most suitable consti-

tutive model of bender element testing in general. Besides, if this is accomplished,

it is also possible to address the issues of optimum input signal and optimum result

interpretation in the context of optimum dynamic response.

1.2 Historical Overview

References to the study of dynamic phenomena such as waves and body vibrations

can be traced as far back as Pythagoras in 500 B.C., when he noticed the relationship

between the length of vibrating strings and the harmony of the sound they produced.

The history of dynamics cannot be separated from the history of physics itself, as

well as that of its most influential protagonists. Galileo’s study of the periodicity
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of celestial body orbits, Newton’s laws of motion, Euler’s ‘Theory of the Motions of

Rigid Bodies’ and Rayleigh’s ‘Theory of Sound’ are but a few distinguished examples.

Seismic events are a relevant type of dynamic phenomena. They receive signif-

icant attention from the engineering community due to their potential of causing

great impacts in human activity. Seismology is a well established field of study,

being an important driving force for the development of general dynamic theory.

Love’s ‘Some Problems in Geodynamics’ is a noteworthy example. The field of the-

oretical seismology is in constant progress, (Aki and Richard, 2002), from which the

dynamic testing of soils is but a part.

Burland (1989) and Atkinson (2000), have addressed the notion of non-linear

soil stiffness, focussing on the importance of its small-strain behaviour. In this way,

greater awareness was obtained for the testing of soils at small-strains, which could

mainly be achieved with dynamic testing.

The dynamic testing of soils in situ is traditionally made using the cross-hole

method, (Bodare and Massarsch, 1984). A number of sensors are placed in separate

boreholes and the records of received shear waves compared. The objective is to de-

termine the velocity of the shear wave, which in turn is used to obtain the medium’s

shear stiffness. In cross-hole testing the medium is generally assumed to be non-

dispersive because of the considerable distance between wave source and receivers,

and also because of the considerable distance between wave direct travel path and

medium boundaries, (Hoar and Stokoe, 1979), making the estimation of the wave

velocity a simpler task.

Laboratory dynamic testing, before the use bender elements, included the use of

piezoceramic crystal transducers and resonant columns. In the case of piezocrystals,

they too are used to directly measure the velocities of either compression or shear

waves, (Brignoli et al., 1996). Resonant columns tests are used according to a

different principle. The soil samples are excited, usually in torsion, and the resonance
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frequency of the first vibration mode is obtained and used to estimate the medium’s

shear stiffness, (Richart et al., 1970). In resonant column testing, the wave dispersion

on the soil sample is acknowledged. That is why the first mode of torsional frequency

is frequently used, since it is a well known non-dispersive mode of vibration, (Stokoe

et al., 1994).

Shirley and Hampton (1978) combined the properties of piezorecamic transduc-

ers with the principles of cross-hole testing by using a pair of piezoelectric ceramic

plates to transmit and receive mechanical waves. The use of shear wave transducers

was not unheard of, (Lawrence, 1963), the merit of Shirley (1978) was the develop-

ment of an innovative design for the transducers. Using relatively long thin plates

permitted the production and detection of transversal motion through their bend-

ing deformation rather than through a shear deformation as done by shear wave

transducers. Hence the name bender elements. This slender design significantly re-

duces the resonance frequency of the transducers approaching it to the frequencies

at which waves propagate in soft soil media without being excessively attenuated.

This bending design also permitted a better coupling between the medium and the

transducers.

Schultheiss (1981) further developed the design of bender elements, optimising

their dimensions so that they could be fitted into oedometers, triaxial cells and sim-

ple shear geotechnical apparatuses. Dyvik and Madshus (1985) presented with some

detail, a study on bender element performance related with their wiring, concluding

that parallel wiring suited the transmitting transducer and series wiring suited the

receiver transducer. Dyvik and Madshus (1985) also presented a comparative study

between bender element transducers and better established resonant columns, in

order to validate their results. The work of Dyvik and Madshus (1985) has become

a benchmark in the use of bender elements, and is amongst the most cited works

related to this type of testing.
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Dyvik and Madshus (1985) and Viggiani and Atkinson (1995) provided generally

accepted guidelines in the study of bender element testing. They gave some insight

about the issue of wave travel distance as well as having used a frequency domain

analysis, in the form of a cross-spectrum between the input and output signal, which

they then compared with time domain results.

Jovičić et al. (1996) and Brignoli et al. (1996) presented relevant work, focusing

on the phenomena related to bender element testing. Both have explored how best

to interpret time domain results and both give relevant consideration to near-field

effect as a cause of wave velocity dispersion. Jovičić et al. (1996) also looked at

the shape of the input signal and justified the use of an optimised sinusoidal pulse

signal. Brignoli et al. (1996) verified the results of bender element tests with those

of shear-wave transducers as well as also reflecting on the issue of travel distance.

Blewett et al. (2000) proposed the use of frequency domain technique, just as

Viggiani and Atkinson (1995) had. This time using continuous signals with the

objective of obtaining the response curves of the system. An interesting comparison

between bounded and unbounded sample behaviour was also presented.

Presently, bender elements use has increased despite test standards and generally

accepted guidelines not being established yet, (Viggiani and Atkinson, 1997), and

the non-agreement about the actual behaviour of the dynamic system. Consequently

there is no established method of interpreting the results. There is an ongoing debate

about the benefits of using time or frequency domain analysis, pulse or continuous

signals, about the relevance of different causes of dispersion, or even about the

feasibility of actually obtaining the shear wave velocity using bender elements.
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1.3 Strain Level

In normal working conditions most foundation structures cause strains lower than

0.1% to large volumes of the affected ground soil, only locally are higher strains

achieved, (Burland, 1989). Besides, soil has a non-linear elastic behaviour where at

small strains the stiffness is significantly higher than for larger strains, (Atkinson,

2000). Figure 1.1 ilustrates a characteristic strain level curve.

In situ soil testing, measuring strains above 10−1%, does not offer the capability

of determining soil stiffness at lower strain levels. In terms of laboratory testing,

static methods such as local gauges have a limited precision that does not allow them

to measure strains lower than 10−3% for which a maximum stiffness can generally

be obtained. Dynamic laboratory testing is then left as the single option to obtain

measurements for the lowest strains, ǫ < 10−2%, of which bender elements are a

suitable example, (Jovičić and Coop, 1997).

In terms of the shear strain levels involved in the use of bender elements, Dyvik

and Madshus (1985) estimated the transmitting transducer to be in the range of

ǫ ≈ 10−3%. Leong et al. (2005) estimated the strain level of the receiving bender

element to be in the range of ǫ ≈ 10−4%, when touching the transmitting bender

element. There is another estimate of strain level in the range of ǫ ≈ 10−4%, given

by Pennington (1999).

1.4 Monitoring of Bender Element Behaviour

When testing with bender elements, the transmitted and received electric signals are

used to characterise the system. When doing so, it is inherently assumed that the

transducers have a mechanical motion with a time history equivalent to the corre-

sponding input signal that forced their movement. This assumption is questionable

since the bender elements have non-zero mass and non-zero stiffness, then they must
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behave, mechanically, as a Newtonian system, where the effect of inertia is present.

If, for example, the body of the bender element is fixed to a cap and its tip

free to move, these are common boundary conditions usually described as those of a

cantilever. Clough and Penzien (1993) explain how the dynamic bending or flexural

motion of a cantilever can be analytically modelled as a single degree of freedom

system, SDOF, (section 3.10). The response of a generic SDOF to a harmonic

excitation is presented in section 3.8.5, and illustrated in figures 3.25 and 3.24. For

an excitation force of constant magnitude, the magnitude of the response varies with

frequency, (equation 3.84). Also, there is a phase difference between the excitation

and the response which also varies with the excitation frequency and can be as much

as 180o, (equation 3.84). The observation that such a system can vibrate not in phase

with the excitation force is well known in mechanical dynamics, but somehow not

generally assumed when dealing with the behaviour of bender elements.

In order to better understand the behaviour of bender elements, some authors

have monitored it. Shirley (1978) mentions the resonance frequency of the bender

elements used, but does not mention the method to obtain such a value. The

earliest reference about the monitoring of bender elements is given by Schultheiss

(1982). The method consisted of wiring the piezoelectric ceramic to two independent

electric circuits. One circuit is used to excite the transducer in the normal way

and the other to transfer its response back to an electric signal. This method of

monitoring initially appears to be quite ingenious, yet the results show a response

which is perfectly faithful to the excitation, thus not plausible. Such a result can

be explained by an electric leakage, where the exciting electric signal reaches the

wiring circuit responsible for the response monitoring directly. Since the received

signal corresponding to the actual mechanical bending of the transducer would have

a significantly lower amplitude than that of the input signal; if an electric short-

circuit does occur, it would dominate the received signal. One other possibility is
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for the input signal to be harmonic with a frequency comparatively lower than the

resonance frequency of the transducer, allowing a steady state response with barely

no phase delay, (Clough and Penzien, 1993).

Schultheiss (1982) used the same self monitoring method proposed by Shirley

(1978), and for two pulse signals with different frequencies obtained two distinct

responses. For a lower frequency of 2.96kHz the transducer is observed to emulate

the excitation signal perfectly. At a higher frequency of 29.6kHz, the transducer

has shown again to emulate the excitation signal but now with some discontinuities

in the response trace. This second behaviour, namely the observed discontinuities,

was called overshooting.

Brocanelli and Rinaldi (1998) used an accelerometer to monitor the response of

the bottom plate to which the transmitting bender element is mounted and fixed.

Hitting the bottom plate and inducing a pulse load and then exciting the bender el-

ement with a sinusoidal signal enabled the determination of the magnitude response

curve of the composed system. Such data allowed to distinguish and identify the

individual resonance frequencies of both the bender element and the plate. Nev-

ertheless, since the behaviour of the plate is dominant, the results concerning the

bender element are less reliable.

Greening and Nash (2004) have monitored the behaviour of a transmitting ben-

der element by placing a strain gauge in direct contact with the piezolectric ceramic

plate and encapsulating them together in epoxy resin. Using a random signal, the

response magnitude and phase delay curves were obtained for a comprehensive range

of frequencies. The obtained curves are characteristic of a simple mechanical de-

vice, indicating a magnitude peak and phase shift of equal frequency, believed to be

the resonance frequency of the bender element. See section 3.8.5 for details about

similar response curves.

Since bender elements can work both as transmitters and receivers, a logical
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step was to make a receiver bender element touch the transmitter and monitor it,

(Lee and Santamarina, 2005; Leong et al., 2005). The problem with this method

is that the monitoring data is the signal from the receiver bender element. So, the

receiving transducer is the one being directly monitored and not the transmitter.

The application of this method requires the assumption of a perfect coupling between

the tips of a pair of bender elements with the same electric wiring, series or parallel.

In normal testing, it is not possible to verify such boundary condition. Besides,

bender elements are used to excite and be excited by the soil through their much

larger lateral surfaces, and not just by their tip end.

By making the receiver bender element touch the transmitter bender element,

the dynamic behaviour of one transducer is influenced by the other. What is then

actually being studied is this composed system and not the independent behaviour of

one of the transducers. Neither Lee and Santamarina (2005) nor Leong et al. (2005)

thoroughly describe the test system and it is taken into account, when associating

the obtained results with the transducers’ properties. Nevertheless, it is possible to

compare the transmitted and received signals and estimate how faithfully the bender

elements react to the transmitted signal. Leong et al. (2005) found no significant

time delay between the transmitted and received signals. These were similar but

not the same, making clear that the received signal has a different time history than

that of the transmitted signal, with a different frequency and shape; particularly

after the transmitted signal has ended. the received signal indicates some further

movement from the transducers, as would be caused by inertia effects.

Lee and Santamarina (2005) mention another method of monitoring a bender

element transducer which is quite simple. A single bender element tip is left free

to vibrate, excited by an instantaneous impact and its response recorded, especially

its resonance frequency. In this work, the result were compared with an analytical

model allowing their association with the flexural stiffness of an equivalent beam,
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and consequently, the calculation of the Young modulus stiffness constant.

Arulnathan et al. (1998) conducted numerical work where the propagation of

waves in an elastic two dimensional medium is studied. The mechanical behaviour

of the transmitting and receiving bender elements was also considered in the model

and so their behaviour could be studied. A varying time delay between the applied

force and the tip displacement was detected and estimated between 3.0% and 8.5%

of the input signal period. No correlation was proposed between the observed time

delay and the phase delay that occurs in simple mechanical systems, and which

also varies with excitation frequency, (section 3.8.5). Therefore it is not possible to

determine how faithfully the numerical result comply with such particular theoretical

behaviour. It would also be interesting to compare the behaviour of the bender

element, and the surrounding soil, but such results were not presented.

1.5 Travel Distance

Concerning the travel time and travel distance, necessary to calculate the wave

velocity in bender element testing, the determination of travel distance is generally

considered the less problematic of the two. Although related with the introduction

of the use of bender elements, Shirley and Hampton (1978) did not elaborate on

the subject of travel distance, simply referring to it as the distance between the

transducers. Dyvik and Madshus (1985), followed by Brignoli et al. (1996) and

Viggiani and Atkinson (1995) have proposed and justified the measurement of travel

distance as the minimum distance between transducer tips, also known as tip-to-

tip distance. The tip-to-tip travel distance is commonly assumed by a variety of

authors, for instance Kuwano et al. (1999), Dano and Hicher (2002), Kawaguchi et

al. (2001) or Pennington et al. (2001), with or without explicit justification.
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Dyvik and Madshus (1985) compared the dynamic results from three different

clay samples, using the resonant column and bender element tests. They observed

that the results from the bender element test fitted best the resonant column re-

sults for travel distances measured tip-to-tip. An analysis of those same results can

indicate that the effective travel distance for higher soil stiffness, if all other things

remain equal, would in fact be even smaller than the tip-to-tip distance. The bender

element tests were conducted using a square pulse signal associated with significant

uncertainty in the interpretation of results, (Jovičić et al., 1996), which must extend

to the proposed conclusion of correct wave travel distance.

Viggiani and Atkinson (1995) used bender elements to test 3 samples with differ-

ent heights, between 35mm and 85mm. For each sample, three travel time estimates

were obtained for different stress states using square and sinusoidal pulse signals.

The chosen linear relationship between the results from different samples, at similar

stress states, indicate the correct travel distance to be the tip-to-tip distance. Brig-

noli et al. (1996) also came to the conclusion that the correct travel distance must

be measured between tip-to-tip. Samples with different heights were tested with

bender elements as well as with shear-plates which support his conclusion. Brignoli

et al. (1996) used an alternative reference to sample and embedment heights by

using the relative embedment heights of the transducers in relation to that of the

samples. The two cases referred to were for relative embedment heights of 3% and

14%.

Alternatives to the tip-to-tip travel distance are not commonly proposed. Fam

and Santamarina (1995) used the distance between mid-embedded height but did

not justify it.

When dealing with direct wave travel times and imagining the wave first arrival,

it seems intuitive to picture the receiver being first excited at its tip end. If the

same principle is applied to the transmitter, even though it is forced to move as
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a single body, again it is easy to picture the disturbance caused by the tip end to

propagate ahead of other wave components. If, on the other hand, all the signal

content is considered, and not just its first arrival, then both the transmitting and

receiving transducers are fully engaged in a mechanical sense. One could suggest

for the travel distance to be measured between the centres of applied and received

pressure. Also, since the estimation of travel time is itself problematic, it cannot be

used to undoubtedly verify the travel distance.

1.6 Scope of Thesis

Chapter 2 describes the different signals used to excite the transmitting bender ele-

ment. Each type of transmitted signal and consequent received signal are commonly

associated with a particular method of interpreting the results. These methods are

also explained.

Chapter 3 presents the relevant theoretical background used to support the in-

terpretations made of the bender element related phenomena. Wave propagation

theory, body vibration theory, wave radiation and dispersion are some of the sub-

jects referred to.

Chapter 4 explains the use of synthetic rubber as a replacement for soft soil

samples. The properties of polyurethane rubber are explained and compared to

those of soft soils.

In chapter 5 the dynamic properties of bender element transducers are studied

in detail. The results from an independent monitoring of their behaviour is carried

out and the results compared with simple numerical and analytical models.

Chapter 6 presents the results from the geometry parametric study. The sample

geometry is related with the differences in results, according to established theory

of body motion and wave propagation.
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In chapter 7 the bender element and soil sample test system is modelled using

specific numerical tools. Again the geometry of the sample is varied in order to

establish a relationship with its dynamic behaviour.

Chapter 8 contains the relevant conclusions made from the observation of the

presented results and consideration of relevant theoretic background.
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Chapter 2

Signal Properties and Processing

Methods

In this section, different types of input signals used when testing with bender ele-

ments are explained. These are electric signals which excite the piezoelectric ceramic

plate by applying a voltage differential, forcing it to flex or bend. The electric sig-

nals are generated and transmitted by a function generator or similar device. Both

a function generator and a personal computer, more specifically its sound card, are

used henceforward.

There are a number of different methods of signal processing available, each

permitting, in principle, the estimation of the desired wave velocity. A clear distinc-

tion between these methods can be placed at the domain in which the results are

processed, time domain or frequency domain.

2.1 Pulse Signal

The impulse or pulse signal is a type of signal commonly used in dynamic testing.

This type of signal has been employed since the beginning of testing with bender

elements, (Shirley, 1978). It is possible to interpret pulse signal results in the fre-
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quency domain, as done by Mancuso et al. (1989), for cross-hole test results for

example. Still, pulse signals offer an intuitive interpretation of results in the time

domain. The wave travel time can be measured directly in a graphic representation

of the transmitted and received signals’ time histories, (figure 2.2).

A well known dynamic geotechnical test, the cross-hole method, (Bodare and

Massarsch, 1984; Hoar and Stokoe, 1979), uses the same method of wave travel

time estimation, serving as a theoretical basis for its use in bender element testing.

The cross-hole test method also uses impulse loads, and the response is measured

at one or more points positioned away from the source. Even though the bender

element and cross-hole test methods have similarities, especially when pulse signals

are used to obtain results in the time domain, there are obvious differences between

the two. Such differences relate to the boundary conditions and properties of the

input signal. Bender elements are most used in somewhat small samples of relatively

soft soil where the amplitude of the initial disturbance is small, with strains in the

range of ε ∈ [10−3 10−5]%, (Dyvik and Madshus, 1985). In the cross-hole method

the transducers are placed much further apart and the impulse loads created by a

significant impact of some kind. So, not only the dimensions and geometry of the

media in which the waves propagate are significantly different, but in the cross-hole

method the properties of the transmitted signals are limited due to their impact

nature.

Because of the established use of the cross-hole test method, testing with bender

elements ‘inherited’ some of the assumptions concerning the dynamic behaviour of

the wave propagation. One such assumption is the consideration of unbounded wave

propagations in bender element testing as for the cross-hole method, (Bodare and

Massarsch, 1984). In this way the influence of the sample boundaries is disregarded.

Such assumption of unbounded wave propagation is challenged with the results

presented in chapter 6.
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Pulse signals are characterised by their finite duration, implicit in their name.

This finite nature of the pulse signals in the time domain means that the dynamic

phenomena related with the consequent body vibration and wave propagation are

transient, (Clough and Penzien, 1993). The relationship between transient and

steady-state body responses, and specific benefits of each for testing with bender

elements, is explored in theoretical terms in section 3.8 and in practical terms in

chapter 5.

One property of the pulse signal is its shape or form. In figures 2.1(a) and

2.1(b) are represented two typical shapes of pulse signals, one sinusoidal and an-

other square, commonly used in bender element testing, (Dyvik and Madshus, 1985;

Pennington, 1999).

time

vo
lta

ge

(a) sinusoidal

time
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(b) square

Figure 2.1: Sinusoidal and square pulse signals representation.

It became a matter of some discussion which of the two shapes of pulse signal,

sinusoidal or square, is more appropriate for bender elements testing. The square

pulse signal, (figure 2.1(b)), as used by Bates (1989), Viggiani and Atkinson (1995)

or Shibuya et al. (1997) for example, has a very well defined start but no other

noticeable features. The start of the square signal is point from which the travel

time is measured, Jovičić et al. (1996). Square signals resemble the impact loads
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used in the cross-hole test method, (Bodare and Massarsch, 1984), as does the

direct time domain method used to estimate the wave travel time. A mathematical

representation of a square pulse signal is given,

y(t) = a for t0 ≤ t ≤ (t0 + T )

y(t) = 0 for t < t0 and t > t0 + T

(2.1)

where a is the amplitude, t is the time, T is the period of the signal and y(t) its

magnitude.

Problems concerning the use of square pulse signals are related to its sharp initial

rise. An instantaneous variation can be expressed analytically as done in equation

2.1 and even reproduced as an electric signal by a digital function generator. But,

mechanic devices with finite mass and stiffness, also known as Newtonian systems,

cannot respond in such manner. Due to the presence of inertia forces it is not possible

to obtain instantaneous variations in motions, equivalent to infinite accelerations.

Therefore, when using square signals a discrepancy between the input signal and the

actual movement of the transducer must be expected. Consequently, the correlation

between the input signal and the transducer’s motion is not straightforward and

neither is the overall correlation between the input and output signals.

Due to their instantaneous variation in the time domain, square pulse signals

have a very broad frequency content with no particular main or central frequency.

This means that frequency dependent dispersion phenomena, such as the near-field

effect, explained in section 3.6, and modal wave propagation, explained in section

3.2, cannot be avoided. This is another reason why the use of square pulse signals

has gradually become less common in bender element testing, where the boundary

conditions of the test system are more prone to the mentioned dispersive phenomena,

(Arroyo, 2001; Jovičić et al., 1996).

53



Sinusoidal pulse signals, as the one represented in figure 2.1(a), are also com-

monly used in bender element testing. Examples can be found in Brignoli et al.

(1996) or Fioravante (2000). This type of pulse signal is defined,

y(t) = a sin(ωt+ θ) − a sin(θ) for t0 ≤ t ≤ t0 + T

y(t) = 0 for t < t0 and t > t0 + T

(2.2)

where a is the amplitude, ω is the pseudo-frequency, given by ω = 1/(2πT ), and θ is

the phase origin. Generally, the phase step is set at 0o, as in figure 2.1(a), but other

values can also be used, (figure 2.3). The frequency of the signal is referred to as

a pseudo-frequency because it is not he actual frequency of the signal, serving only

as a reference. The sinusoidal pulse signal does not follow a Dirac function, with a

single frequency, having instead a broad frequency content, accounting for he signal

initial and final accelerations.

When using a pulse signal to excite the transmitting transducer, the time his-

tories of the transmitted and received signals are used to obtain directly the wave

travel time. An example of a transmitted and received pulse signal is given in figure

2.2. The input sinusoidal pulse signal has a phase of 0o hence the equilibrium. This

example is similar to several other results from similar test set-ups and clay mate-

rials, (Hardy et al., 2002). The travel time can be measured in the horizontal time

axis between two characteristic points of the input and output curves.

In figure 2.2 some characteristic features of the transmitted and received signal

curves are marked. From these a number of travel time estimates can be obtained.

Features A, B and C mark the start, the first local maximum and the first local

minimum of the transmitted signal. On the received signal the characteristic features

marked are D - first deflection, E - first local minimum, F - first through zero, G - first

maximum and H - second local minimum. Assuming that features in the transmitted
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Figure 2.2: Transmitted sinusoidal pulse signal and correspondent received signal

time histories, and relevant signal features for travel time estimation.

signal are related with features in the received signal, the time difference between

such features gives the desired wave travel time. Table 2.1 presents the travel time

estimates obtained using the time differences between the mentioned points which

might possibly be related.

Peak Features Travel Time

A-D 0.76ms

A-E 1.36ms

A-F 1.54ms

B-G 1.81ms

C-H 1.98ms

Table 2.1: Pulse signal travel time estimates from signal features given in figure

2.2.

It is clear, just by looking at the input and output curves, that the received

signal is a distorted version of the transmitted signal. Plausible sources for the

observed signal distortion are wave dispersion and particular mechanical response
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from the system components. The tested system included a kaolin soil sample, a pair

of bender elements, both connected in series and places at each top of the sample,

aligned with each other, a function generator and a oscilloscope with a link to a PC.

These test components are described with detail in chapters 5 and 6. Consequently

the direct estimate of the wave travel time might not be as straightforward as for an

ideal case, where the received signal would be a scaled copy of the transmitted signal.

The discrepancy registered in table 2.1 between the travel time estimates reinforced

this observation. For the present example, the difference between the longest and

shortest travel time estimates is of 1.22ms, 62% of the maximum estimate.

The determination of the wave travel time, when measured directly from the

signals’ time histories, is clearly not as simple as it might have appeared initially.

Redwood (1960) described the propagation of a pulse through a solid medium as

complex, and Achenbach (1973) mentioned the complications caused by reflections

of the transient wave motion at the bounding surfaces. The understanding of these

phenomena and how to overcome the complications they introduce in the interpre-

tation of the results is one of the main objectives of this dissertation.

Some effort has been made in the pursuit of a convenient method of interpreting

time domain results from bender element testing in soil samples. One of the signal

properties considered was the shape of the transmitted sinusoidal pulse signal. Fig-

ure 2.3 contains two sinusoidal pulse signals where the phase θ as given in equation

2.2 is established at -90o and +30o. The aim of using these variants of the sinusoidal

pulse signal is to obtain results that provide a clearer, less ambiguous, determination

of travel time, (Jovičić et al., 1996).

Results obtained using variants of the sinusoidal input signal, as those seen in

figure 2.3, were explored by Jovičić et al. (1996) and again by Greening et al. (2003)

and Pennington et al. (2001). The objective was the optimisation of the input

signal in order to obtain an output signal with none or minimum distortion, and
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Figure 2.3: Variations of sinusoidal pulse signal with voltage phase shifts of -90o

and +30o.

in particular with no early first arrival. In practical terms, and using figure 2.2

as a reference, the main objective of using variations of the sinusoidal pulse signal

is to obtain a received signal where features D, E and F coincide. Even though

the resulting received signal can be made to look clearer, the manipulation of the

transmitted signal does not address the reasons for which such distortions occurs.

The central frequency and the frequency range of the different pulse signals are the

same and so frequency dependent dispersion phenomena cannot be assumed to vary

significantly with relative phase of sinusoidal pulse signals.

A sinusoidal pulse signal, such as the one presented in figure 2.1(a), has a broad

frequency content. In equation 2.2, only a single frequency is defined, but since the

transducer starts its movement from a still position, it has to accelerate to reach

the desired frequency and decelerate to return to its initial rest condition. The

mentioned sinusoidal pulse signal has a central frequency of 3.0kHz, but its actual

frequency content is much broader as seen in figure 2.4.

The frequency content presented in figure 2.4 was obtained using a Fast Fourier

Transform function, FFT. This method consists of numerically decomposing the
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Figure 2.4: Frequency content of sinusoidal 3.0kHz pulse signal, obtained using a

FFT method.

signal into a finite number of Fourier series, (Cooley and Tukey (1965)). It can be

observed that the pulse signal has quite a broad frequency spectrum.

Because of the transient nature of a pulse signal, the discrete Fourier transform

has some limitations concerning its decomposition as a series of continuous sinu-

soidal functions, (Doyle, 1977). A more recent method of signal decomposition and

consequent processing is the wavelet analysis. In broad terms, the wavelet method

uses finite length or fast decaying oscillating waveform to decompose a signal. This

method is ideal to deal with finite signals such as the pulse signal, (Kumar and

Foufoula-Georgiou, 1997). Its potential is acknowledged but is not pursued further,

because of its extra degree of complexity and lack of accessible numerical tools.

Returning to the issue of interpreting wave travel time from the time histories

of the signals, the discrepancy found between the results presented in table 2.1 is

not an isolated case. A number of tests performed independently from a number of

authors came up with similar results, (Kawaguchi et al., 2001) for example. When

dealing with wave propagation a relevant aspect of such phenomenon is the wave
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front, the virtual varying position which marks the discontinuity between excited

and ‘at rest‘ particles. The travel time of the wave front could then, in principle,

be measured between the transmitted and received signals first offsets. But, with

the presence of wave dispersion, the wave front travels at the phase velocity of the

fastest wave component, which is not necessarily the same as the group velocity of

the wave centre, (Redwood, 1960).

The estimate travel time obtained from the received signal first offset is com-

monly judged to underestimate the travel time, thus overestimating the wave veloc-

ity and the medium’s stiffness. For this reason, an explanation is sought as to why

the received signal could arrive earlier than it should, or why the wave front trav-

els at a velocity higher than the characteristic shear wave velocity of the medium.

Sanchez-Salinero (1987) proposed the near-field effect as a plausible explanation.

The near-field effect is a wave radiation phenomenon which states that a prop-

agating wave is formed by up to four different components, compression and shear

far-field wave components and compression and shear near-field wave components.

The near-field effect received such a name because its influence is significant near

the source of the disturbance, dissipating quite rapidly as the wave propagates away

from it. The subject of wave radiation is explored with more detail in section 3.6.

The near-field wave components are dispersive, with different propagating velocities

at different frequencies as well as at different distances from the source. If such near-

field wave components are present, and since they propagate at velocities different

than the characteristic wave velocities, the received wave has more than one propa-

gation velocity. The higher propagation velocity of the near-field wave components

could then provide a plausible explanation as to why the wave front can arrive early.

The distinction between the near-field and the far-field wave components in ben-

der element analysis in the time domain has been attempted, (Brignoli et al., 1996).

The first out-of-phase or negative offset, described as feature E in figure 2.2, is usu-
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ally assumed to be caused by the near-field effect. Eventually, it comes down to the

experience and assumptions of the test operator. If both near and far-field wave

components are present, they become overlaid throughout all of the response sig-

nal’s length. Therefore, there is some degree of wishful thinking in the assumption

that a clear distinction can be consistently made directly in the time history of the

response.

Once the notion of a simple, undistorted received signal is questioned, it is rel-

evant to indicate other wave components that might contribute to the distortion of

a wave form. The case of a compression wave component, which takes a different

propagation path to reach the receiving transducer is one such case, (Santamarina,

2001). Such propagation paths could involve the wave reflection at the sample’s

lateral or end boundaries, for example.

Wave reflection is related with a modal behaviour of sample, where the trans-

mitted wave is propagated in a series of wave propagation modes, see Arroyo et

al. (2002). This modal interpretation of wave propagation is also dispersive, with

phase and group velocity varying with frequency. This subject is explored further

in section 3.1.7.

2.2 Continuous Signals

A continuous signal can be used to excite the transmitting bender element transducer

with no discernible beginning or end. If this signal is harmonic, i.e., is defined by

a periodic sinusoidal function, it is possible to establish a steady state vibration

of the system. Shirley (1978) and Redwood (1960) mention continuous harmonic

signals in the fields of structure vibration and of wave propagation respectively. A
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mathematical description of such a signal is given,

y(t) = a sin(ωt+ θ) (2.3)

where a is the amplitude, ω the frequency of excitation and θ a phase step.

Harmonic continuous signals can be used to obtain travel time results directly,

in the same way pulse signal are. But, it is their potential to provide results in the

frequency domain which makes their use interesting. The transmitted and received

signals can be manipulated in the frequency domain to indirectly obtain the wave

travel time. These type of results can be used on their own or can complement the

direct readings of travel time from pulse signals, in the time domain.

An example of a continuous signal with an amplitude of a = 10V, an angular

frequency of ω = 3 × 2πrad.s−1 and a phase step of θ = 0rad is given in figure 2.5.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

−10

−5

0

5

10

time − ms

m
ag

ni
tu

de
 −

 V

Figure 2.5: Example of a 3.0kHz sinusoidal continuous signal.

The frequency content of the 3.0kHz signal is given in figure 2.6. Again, the

frequency content was obtained numerically using a FFT. The theoretical frequency

content of a continuous signal, with no start and end, would be represented in figure
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2.6 as a straight vertical line, but since a finite and discrete signal was used, the

obtained frequency content is an approximation of the mentioned straight line.
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Figure 2.6: Frequency content of 3.0kHz sinusoidal continuous signal obtained

using a FFT.

It is interesting to compare the frequency contents of the continuous signal with

that of the equivalent 3.0kHz pulse given in figure 2.4. Note that the frequency

content of the continuous signal is much narrower and its magnitude peak also

coincides better with the desired frequency of 3.0kHz.

If a harmonic continuous signal is used to excite the transmitting bender ele-

ments, a steady state of body vibration can be obtained, which is terms of wave

propagation is also known as a standing wave, (Achenbach, 1973). In this case the

transmitted and received signals have the same frequency but different amplitudes

and as phase delay between them. By determining the magnitude and phase delay

of a number of received signal, for transmitted signals with different frequencies, the

response curves of the system can be obtained, (section 3.8). Figure 2.7 presents

an example of the same 3.0kHz sinusoidal signal being transmitted in a synthetic

rubber sample.
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Figure 2.7: Example of transmitted and received sinusoidal continuous signal with

3.0kHz.

The curve features marked as A, B, C, D, E and F indicate local maximums

and minimums of the transmitted and received signals. The x and y subscripts

indicate the horizontal time axis, x, and the vertical magnitude axis, y, respectively.

The indicated features can be related with each other in order to obtain a number

of properties of the transmitted and received signals as well as to relate the two

signals.

• Ay−By = at, magnitude of the transmitted signal.

• Dy−Ey = ar, magnitude of the received signal.

• Cx−Ax = Tt, period of the transmitted signal, ft = 1/Tt.

• Dx−Fx = Tr, period of the received signal, according to figure 2.7 and more

generally with Clough and Penzien (1993), fr = ft = f .

• (Ax−Dx) × f × 2π = ∆θ, phase difference between transmitted and received

signal.
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If the magnitude of the transmitted signal is kept constant, and different pre-

determined frequencies are used to excite the system, a magnitude response curve

can be obtained. This curve is formed by the amplitude values of all the received

signals. Figure 2.8 provides an example of such a magnitude curve.
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Figure 2.8: Magnitude curve constituted by a collection of received continuous

signals with different frequencies.

Excitation signals with constant amplitude but different frequencies produce

responses with different phase delays. The other component of the response curve is

given by such results, comprising the phase difference between the transmitted and

received signals. The transmitted signals used to obtain the magnitude response

curve in figure 2.8 are used to obtain the correspondent phase delay curve, plotted

in figure 2.9.

One relevant characteristic of the curve presented in figure 2.9 is its gradient,

since a travel time can be obtained from it. Equation 2.4 describes the decomposition

of the gradient units into time units. Dividing the gradient, in radians per Hertz,
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Figure 2.9: Phase delay curve constituted by a collection of received continuous

signals with different frequencies.

by 2π leads to the determination of a time value in seconds.

∆phase

(2π)∆frequency
≡ rad

(2π)Hz
≡ s (2.4)

The time obtained from the curve gradient is assumed to be that of the corre-

sponding wave. In fact, at each frequency two gradients can be obtained, one of the

curve tangent and another of the curve secant. Each of these two gradients possesses

a different physical meaning. The gradient of the curve tangent is related with the

group velocity and the gradient of the curve secant is related with the phase velocity.

Resonant torsional columns are an example of another dynamic geotechnical

testing method which can be used to obtain the magnitude curve of a soil sample

system. The magnitude response curve can also be used to estimate the damping

coefficient of the medium, as seen in section 3.9.2. Further elaboration on testing

with resonant columns can be found in Drnevich et al. (1978) or in section 3.11.
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2.3 Pi-Points

The pi-points method is a variant of the continuous signal method described in

section 2.2. With the continuous signal method, the frequency of the signals is pre-

selected and the magnitude and phase difference of the corresponding responses are

recorded. With the pi-points method, the opposite takes place; as the phase differ-

ences are pre-selected and the frequencies at which they occur are recorded. With

this method a response phase delay curve can also be obtained and the correspon-

dent travel time. Normally, the chosen phase differences are multiples of π, so the

frequency of the signals are recorded when the transmitted and received signals are

in and out-of-phase which is easily identifiable, hence the name pi-points method.

The use of this method is common, for it can be performed with the same equipment

as the time domain pulse testing, (Ferreira et al., 2004; Greening et al., 2003).

Unlike measuring the phase difference between the transmitted and received

signals, which requires a small amount of calculus, the pi-point method can be

obtained directly from an oscilloscope reading. Figure 2.10 provides an example of

how to identify the pre-selected phase differences between two signals from a typical

oscilloscope reading in the time domain.
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time

(b) other (c) out of phase

Figure 2.10: Relative position of two sinusoidal continuous signals in the time

axis.
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The oscilloscope can also be used to provide readings where the signals are pre-

sented in superposition, known as Lissajous curves. Using this feature, the added

signals are represented as an ellipse, which varies in shape with relative phase differ-

ence. This ellipse eventually takes the shape of a straight line when the two signals

are in or out-of-phase, enabling an easy identification of the particular relative phase

differences, (figure 2.11). By varying the frequency of the transmitted signal and

annotating the frequencies at which the signals are in and out-of-phase, a discrete

response phase delay curve is constructed for the covered range of frequencies. The

obtained response curve is similar to that shown in figure 2.9, and a wave travel

time can be obtained from its gradient, just like in section 2.2.
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Figure 2.11: Typical oscilloscope displays of two superimposed sinusoidal contin-

uous signals.

2.4 Sweep Signals

Sweep signals, in the context of bender element testing, are non-harmonic sinusoidal

continuous signals, Greening and Nash (2004). These signals are similar to the

continuous signals described in section 2.2, but have variable frequency with time.
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Such a signal is described,

y(t) = a sin(ω(t) × t) where ω(t) = ω(0) +
∂ω

∂t
t (2.5)

where a is the amplitude and ω(t) is the angular frequency. Figure 2.12 presents a

typical time history of a sweep signal.
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Figure 2.12: Example of a sweep signal time history.

The purpose of using sweep signals is the same as for the use of harmonic sinu-

soidal continuous signals, i.e., to obtain the response of the system in the form of

its magnitude and phase delay curves. In the case of harmonic continuous signals,

each used signal provide the response information concerning a single frequency,

hence only one point of the response curves can be obtained. In order to obtain

the response curves covering a broader range, more than one signal needs to be

used in what becomes a time consuming process. The sweep signal contains a much

broader frequency spectrum, and so has the potential of providing a near-continuous

response curve from a single signal, (figure 2.13).

The use of a sweep signal is dependent on the numerical effort necessary to
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Figure 2.13: Frequency content of sweep signal.

process the signal and obtain the response curves from it. Greening and Nash

(2004) have prepared a very useful automatic signal processing tool which, using a

sweep signal to excite the transmitting bender element, handles the received signal

and calculates the response curves of the system as well as the wave travel time.

This numerical tool comprises a capacity for signal generation, using the computer

sound card to transmit it. This enables to obtain the magnitude and phase delay

curves in a few seconds and with a relatively high frequency sampling rate in the

range of results at every 20Hz for example. A dynamic analysis using continuous

signal method or the pi-points method would take at least a few minutes for a much

lower sampling rate.

The harmonic continuous signals, the pi-points and the sweep signals are all used

to obtain equivalent result, i.e, the response curves of the system, all three methods

being used in the present study. The objective of using different methods is to obtain

a certain degree of redundancy in order to consolidate the confidence in the results,

especially the less intuitive sweep signal results. The sweep signal method is less

intuitive, since the bulk of the processing is done numerically. But, it is also more
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powerful, providing results concerning a much greater number of frequency points

with just one signal. Besides it is also possible to obtain not only the magnitude

and phase delay response curves but it is also possible to obtain a measure of the

coherence between the transmitted and received signals. These results, which relate

the transmitted and received signals, are also known as the transfer function of the

system, (Arroyo et al., 2006).

The transfer function used in the processing of the sweep signals can also be

calculated for pulse signals and harmonic continuous signals. The obtained results

have the same theoretical capacity of describing the system. But, these signals

have a narrower frequency content than the sweep signal, compare the results in

figures 2.4 and 2.6 with the results in figure 2.13. Therefore, the proposed numerical

analysis is less reliable, than if sweep signals were used.

2.5 Cross-Correlation

The cross-correlation is a mathematical tool used to measure similarities between

two numerical entities, capable of finding patterns between them. It can be used to

compare the transmitted and received signals and to obtain a time delay between the

most closely related features in the two signals. These time delays can be assumed

to express a wave travel time, (Arulnathan et al., 1998; Clayton et al., 2004). This

numerical method is able to compare pulse and continuous signals, harmonic or not,

as is the use of the response phase delay gradient.

Assuming the transmitted and received signals to be represented by Sin and

Sout respectively, the cross-correlation operation, represented by ⋆, also described

by Arulnathan et al. (1998), is given,

(Sin ⋆ Sout) (∆t) =

∫

T

S∗

in (t+ ∆t)Sout (t) dt (2.6)

70



considering ∆t to be the time delay between the two signals, T the time length

of each signal and S∗

in the complex conjugate of the input signal. Note that ∆t

corresponds to the maximum of the cross-correlation function,

The cross-correlation is the most complex signal processing methods presented

so far, it can only be obtained with the help of numerical processing tools, unlike

the other time and frequency domain methods. The cross-correlation will not be

used in the following analysis, where the phase delay curve gradient is chosen as the

frequency domain wave velocity determination method.

2.6 Noise

Dynamic testing making use of bender elements involves the handling of electric

signals, in the form of the transmitting and received signals. All of the electric

circuit involved in the test set-up is potentially capable of picking up noise from the

environment such as electro-magnetic signals. The bender elements can both serve

as receivers of any residual vibration that might reach them, not only the vibration

intended by the controlled excitation of the sample. As for example the vibrations

from nearby roads traffic, people walking in or near the lab, any form of sound,

etc. For these reasons, different forms of noise can be, and were indeed present in

the laboratory work conducted. Three distinct sources of noise were distinguished

during most of the experimental tests. These noises were classified as background

electro-magnetic noise, residual vibrations and cross-talk.

2.6.1 Background Noise

Background noise from electro-magnetic signals is omnipresent in normal urban

environments such as the one found at the civil engineering laboratory where the

tests were carried out. Because the electric circuit is quite extensive, no reasonable
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amount of secondary earthing circuit was capable of preventing some amount of

electro-magnetic noise from being picked up. It was picked up at amplitudes of 50mV

which makes its presence quite significant in the received signal and insignificant

in the transmitted signal. This type of background noise, when compared with

the transmitted and received signals, is random in nature and can therefore be

eliminated by consistently averaging the results. This was the procedure of choice

to eliminate background noise.

2.6.2 Residual Vibration

Residual vibration is also noticeable in the received signal. The laboratory where

most of the tests were conducted is located in the vicinity of a busy road where a

significant amount of traffic, including buses and other heavy vehicle, go through.

Noticeable vibration from the building structure due to students and staff walking by

is also present. As with electro-magnetic background noise, this type of disturbance

is random in nature, thus the same process of averaging the received signal results

is valid to eliminate it.

2.6.3 Cross-Talk

Cross-talk was observed between the transmitted and received signals where the

transmitted signal ‘leaks’ into the received signal. Santamarina (2001) has frequently

mentioned electromagnetic coupling phenomena related with bender element test-

ing. These exit when the transmitting and receiving bender elements protrude into

a conductive medium, such as a water saturated soil. The transmitted electric signal

is potentially capable of reaching the received bender element by being electrically

conducted through the sample water almost instantaneously. An example of electro-

magnetic coupling is explored by Lee and Santamarina (2005) and associated with
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the different wiring of the transducers. The solution for this type of cross-talk in-

volves the grounding of the bender element pair or the use of an ideal parallel/series

bender element combination.

Cross-talk can occur at different points of the circuit but in the considered test

cases it is believed to occur at the oscilloscope. This conclusion was achieved,

through a process of trial and error, by handling the different elements of the circuit.

The cross-talk takes place inside the oscilloscope equipment and could not be avoided

by any amount of grounding the circuit. The wiring of the bender elements were also

not observed to interfere with this form of noise. Figure 2.14 contains an example

of such cross-talk.
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Figure 2.14: Example of specific oscilloscope cross-talk noise for an input signal

with an amplitude of 20V and a frequency of 4.0kHz.

Cross-talk, being a signal leakage between the transmitted and received signal

channels, contaminates the received signal with the content of the transmitted signal.

The noise caused by cross-talk is frequently in the same range of amplitude as the

received signal and its influence is therefore a considerable source of error. This type

of noise is not random in its nature. It mirrors the transmitted signal, except for a

different amplitude and slight shift in phase. If the ratio between the transmitted
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signal amplitude and that of the cross-talk is constant and known, b, as well as

the phase shift, ∆t, it is then possible to calculate the cross-talk signal component,

Sct(t), and to subtract it from the received signal, Sout(t),

S∗

out(t) = Sout(t) − Sct(t) where Sct(t) = bSin (t− ∆t) (2.7)

where Sin(t) is the transmitted signal and S∗

out(t) is the received signal with the

cross-talk noise removed.

After a careful analysis of some preliminary results, the cross-talk parameters

were determined at b = 1/(3.7 × 104) and ∆t = 1/(sampling rate). Using these

parameters the cross-talk is numerically removed from the received signal. In figure

2.15(a) are given three examples of received pulse signals cross-talk. These signals

were obtained using the same test set-up and sample and only the amplitude of the

input signal was varied, at 20V, 10V and 5V. The equivalent filtered signals are

presented in figure 2.15(b). In figure 2.15 is possible to confirm that the cross-talk

noise is proportional to the input signal amplitude. It is also possible to confirm the

efficiency of the proposed method of reducing the cross-talk in the received signals

by a ratio of 10.

The proposed method of filtering cross-talk was generally applied to the results

obtained in chapters 5 and 6, since all were obtained using the same oscilloscope

equipment and hence all have been equally contaminated.
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Figure 2.15: Example application of cross-talk filtering for pulse signals with

central frequency of 4.0kHz and amplitudes of 20V, 10V and 5V.
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Chapter 3

Theoretical Background

This chapter explores the theoretical concepts necessary to offer a better understand-

ing of bender elements and soil sample dynamic systems. The mentioned theoretical

concepts address basic dynamic mechanics. Wave propagation theory is at the basis

of seismology studies and body vibration theory is most frequently used in structural

analysis.

If the dynamic aspects of a mechanical system are analysed, it is necessary to

distinguish between two important notions, each one describing a different aspect of

body motion: wave and vibration.

‘Vibration is an oscillation of the parts of a fluid or an elastic solid

whose equilibrium has been disturbed.’

‘Wave is a disturbance of the particles of a substance which may be

propagated without net movement of the particles, as in the passage of

undulating motion or sound.’

Concise Oxford English Dictionary

In other words, vibration relates to the oscillation movement of a particle or body,

and wave relates to the propagation of such disturbance along the body.
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The use of bender elements to determine soil’s shear stiffness makes use of wave

propagation theory, explicit in equation 1.1. The application of equation 1.1 has its

origins in the development of generic wave equations, (section 3.1). The application

of the mentioned equation must assume a wave propagation context which might

not be compatible with the bender element-soil system. Equation 1.1 is valid for

bulk solids, (Podesta, 2002), which might not always be the case, depending on the

tested sample geometry.

The wave and vibration theory presented in this chapter aim to describe some

of the simpler relevant cases, for which the following mechanical assumptions need

to be made:

• The studied properties are assumed to vary continuously with position in the

medium, placing the present analysis in the discipline of continuum mechanics.

• The studied medium is assumed to have a constant and linear stress-strain

behaviour, where the relationship between stress, τij, and strain, γij, is ruled

by an elastic constant cij, enabling the general application of Hooke’s law,

τij = γij · cij.

• The studied medium is assumed to be a solid with constant elastic properties

in all directions, i.e., it is an isotropic solid.

3.1 Planar Waves

The theory presented in this section considers planar wave propagation, which is a

particular case of general wave radiation, where the wave properties are considered

independent from the nature of the source. More general concepts of wave radiation

are presented in section 3.6.
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The concepts of strain and stress are addressed in order to bring them into

context with the definition of the governing wave equations of the dynamic system.

3.1.1 Strain

Consider two points defining a three-dimensional body, point A with coordinates

(x, y, z), and point B with coordinates (x+ δx, y+ δy, z+ δz). Now consider point

A is displaced by (u, v, w) and point B by (u + δu, v + δv, w + δw). Since the

displacements of the two points are not equal, a strain is applied to the body. A

two-dimension analogy, in an orthogonal plane x and y, is illustrated in figure 3.1.

Figure 3.1: Two-dimension body strain.

If the terms of higher order are neglected, the displacement of point B is, ac-

cording with Taylor’s theorem, equivalent to:

u+ δu = u+
∂u

∂x
· δx+

∂u

∂y
· δy +

∂u

∂z
· δz

v + δv = v +
∂v

∂x
· δx+

∂v

∂y
· δy +

∂v

∂z
· δz (3.1)

w + δw = w +
∂w

∂x
· δx+

∂w

∂y
· δy +

∂w

∂z
· δz
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3.1.2 Stress

In its general form, nine components of stress are necessary to describe a force acting

on a portion of area, (τxx, τxy, τxz, τyx, τyy, etc.). Each one is a linear function of

six components of strain (∂u
∂x

, ∂v
∂y

, ∂w
∂z

, etc), resulting in 54 elastic constants (e11, e12,

etc) necessary to provide the complete elastic relationship between stress and strain

of a solid volume. Because only six stress components are independent, (τxy = τyx,

τxz = τzx, τyz = τzy), then only 36 elastic constants would be needed. Even so,

according to Love (1944), from these 36 elastic constants, only 21 are co-independent

and only them are need to be determined.

Since the assumption of isotropy is made, the number of necessary elastic con-

stants can be reduced to two, λ and µ, known as Lamé’s constants. µ is also known

as shear modulus G. The relationship between Lamé’s two elastic constants and

three other well known elastic constants, Young’s modulus E, bulk modulus K and

Poisson’s ratio ν is convenient.

λ =
νE

(1 + ν)(1 − 2ν)
; µ =

E

2(1 + ν)

(3.2)

E =
µ(3λ+ 2µ)

λ+ µ
; ν =

λ

2(λ+ µ)
; K = λ+

2

3
µ

The linear correlation between stress and strain, ruled by the elastic constants

such as the ones presented by Lamé, are presented in equations 3.3 next.

τxx = λ∆ + 2µ · ∂u
∂x

; τyy = λ∆ + 2µ · ∂v
∂y

τzz = λ∆ + 2µ · ∂w
∂z

; τyz = µ

(

∂w

∂y
+
∂v

∂z

)

(3.3)

τzx = µ

(

∂u

∂z
+
∂w

∂x

)

; τxy = µ

(

∂v

∂x
+
∂u

∂y

)
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The concept of cubical dilatation ∆, representing the volume variation with

displacement, is useful to make the equations notation simpler.

∆ =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
(3.4)

3.1.3 Equations of Motion

The equations of motion contain the basic relations between inertia forces, displace-

ment, stiffness and time. They are necessary to understand and describe both wave

and vibration theory.

Next is presented a version of the equation of motion best suited for handling

the notation of planar wave propagation theory,

ρ · ∂
2u

∂t2
= (λ+ µ)

∂∆

∂x
+ µ∇2u

ρ · ∂
2v

∂t2
= (λ+ µ)

∂∆

∂y
+ µ∇2v (3.5)

ρ · ∂
2w

∂t2
= (λ+ µ)

∂∆

∂z
+ µ∇2w

∇ is the Laplace operator, expressed as:

∇ =

√

(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

(3.6)

In equation 3.5 the only medium properties referred to are its density and elastic

constants, ρ, λ and µ. Damping characteristics and external forces have been left

out for now, making the equations independent from the source of the disturbance,
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where the initial force or displacement is applied. Other versions of the equation

of motion, best suited for the study of wave radiation near its source and particle

and body vibration are presented in sections 3.6 and 3.8 respectively, including the

mentioned damping and external forces.

3.1.4 Wave Equation

In order to express the wave equations in a practical and simple notation, one scalar

potential function, φ, and a vector potential function, ψ, are used. Their relation

with the displacement components, u, v and w, is given in equations 3.7 and 3.8.

u =
∂φ

∂x
+
∂ψz

∂y
− ∂ψy

∂z

v =
∂φ

∂y
+
∂ψx

∂z
− ∂ψz

∂x
(3.7)

w =
∂φ

∂z
+
∂ψy

∂x
− ∂ψx

∂y

∇2φ =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
(3.8)

In equations 3.9 and 3.10, is expressed, in rectangular coordinate, the wave

propagation in an unbounded elastic solid,

∇2φ =
1

cd2
.
∂2φ

∂t2
(3.9)

∇2ψi =
1

ct2
· ∂

2ψi

∂t2
, i = x, y, z (3.10)

where cd and ct are the characteristic compression and shear wave velocities given
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by:

cd
2 =

λ+ 2µ

ρ
(3.11)

ct
2 =

µ

ρ
(3.12)

ρ is the density of the medium and λ and µ are Lamé’s elastic constants, presented

before in equation 3.2.

Equation 3.12 is identical to equation 1.1, which has been at the base of the

dynamic study of soil using bender elements. It is then possible to start describing

equation 1.1 integrated in its theoretical context.

3.1.5 Planar Waves Types

Two simple types of planar waves, dilatational and distorsional, can be said to

propagate in an infinite medium, (Graff, 1975). Equations 3.11 and 3.12 describe

these two distinct waves. One type, represented by potential function φ, propagates

with a characteristic velocity cd, and can also be described as a longitudinal or

compressional wave. This type of planar wave is also known, in seismic notation,

as a P wave. The other type of planar wave, represented by potential function ψ,

propagates with a characteristic velocity ct and can be described as a transversal or

shear wave. In seismic notation, this type of wave is also called S wave.

Longitudinal waves are characterised by particle oscillation in the same direction

as the wave propagation. Transversal waves are characterised by particle oscillation

perpendicular to the direction of wave propagation, (figures 3.2(a) and 3.2(b)).

There is a key difference between waves propagating in elastic fluids and solids.

Perfect fluids have no shear stiffness, µ = 0, and therefore only P waves are able to

propagate in them, unlike in elastic solids, where both P and S waves are able to

propagate.
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(a) P wave

(b) S wave

Figure 3.2: P and S wave propagation, and corresponding directions of particle

oscillation.

3.1.6 Orthogonally Polarised Shear Waves

When dealing with anisotropic media, it is useful to divide plane transversal waves

into two subtypes, each capable of propagating independently, according to their

polarisation. These subtypes or modes are known, in seismology terms, as SV and

SH waves. The particle oscillation for each mode is orthogonal to each other, as

well as to the direction of wave propagation. Both modes travel with velocity ct,

which is constant along any direction in an isotropic solid. It can also be said that

with a SV wave mode the particles oscillate within the vertical plane; and with a

SH wave mode the particles oscillate within the horizontal plane.

Together with P waves, SV and SH form a orthogonal, three-dimension plane

wave system, capable of describing other, more complex, types of wave.
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Figure 3.3: SV and SH transversal wave types.

3.1.7 Wave Propagation

After a body, or part of a body, has been disturbed either by the application of a

displacement or stress, such disturbance is then propagated along the body, away

from its source. The properties of how this propagation takes place are a function

of both the initial disturbance properties and of the body properties, in which the

propagation takes place. When it comes to describe the initial disturbance it is

necessary to introduce the concept of wave source and wave front; and when it comes

to describing the way in which the wave propagates it is necessary to introduce the

concepts of wave reflection and waveguide.

The assumption of a linear elastic medium enables the application of linear super-

position. This assumption has the potential of permitting the description of periodic

disturbances as the sum of time-harmonic waves, through the use of a Fourier series.

Pulse disturbances can also be decomposed into the sum of harmonic waves through

the use of Fourier integrals even though not as efficiently, (Graff, 1975).

The nature of the wave source influences directly the shape of the propagating

wave front. The wave front is an imaginary surface at which a discontinuity between

the particles that have already been disturbed and the particles that are still at rest
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is located. Considering geometric simple wave fronts with spheric, cylindrical and

plane shapes, it is easy to associate these to point, line and surface wave sources,

respectively.

(a) spheric wave front (b) cylindrical wave front (c) planer wave front

Figure 3.4: Wave sources and corresponding wave fronts.

In practice it is difficult to find wave sources that are exact matches of theoretical

points, lines or planes, like the ones described so far, but at a certain distance the

wave sources can be perceived as such. The radiation of a wave away from its source

is a complex problem from which the planar wave propagation mentioned here is

a particular case, also known as the far-field. Wave propagation near its source is

a dispersive phenomenon, where wave components travel at different velocities at

different frequencies and at different distances from the source. This problem is

addressed with more detail in section 3.6.

3.2 Waveguides

Wave propagation in a bounded medium is influenced by the reflection of wave

components that encounter the boundaries. Considering the system to have a linear

behaviour, reflected wave components do not interfere, in theory, with the non-

reflected ones, nevertheless they might be perceived as if they did, when observing

the composed wave front. For example, when analysing the pressure distribution
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at any given cross-section of the waveguide, the observed stress is the sum of all

the present wave component, and despite their independence of each other, it might

not be possible to distinguish between them. The boundaries of a medium guide

incident waves back into the medium, conditioning the general wave propagation in

that medium, hence the notion of waveguide. A mechanical waveguide is a bounded

medium which not only permits the propagation of vibration waves but also, due to

the present of its boundaries, influences and guides this propagation.

Since the wave fronts are continuous, as are the interfaces where reflection occurs,

it is not practical to calculate the resulting wave pressure in terms of each reflected

and non-reflected component at each point of the surface and wave front.

Figure 3.5: P wave multiple reflection inside a solid with finite cross-section.

This problem becomes even more complex if the body has a finite cross-section

where a reflected wave is able to be reflected back and forwards between surfaces as

it propagates. One P wave component propagating along a thin plate can produce

up to 8 different wave components after 3 reflections. For each wave component,

such as the one pictured in figure 3.5, it is convenient to consider not only its actual

‘zig-zag‘ propagation directions, but also the general propagation direction along

the axis of the waveguide.
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3.3 Wave Reflection

When a wave propagating inside a body meets an obstacle, defined by a boundary

between two different media, its interaction with this interface causes the original

wave to change. The processes through which these changes take place are called

wave reflection and refraction. Reflection addresses the case of an incident wave en-

ergy which is returned from the boundary back into the body. Refraction addresses

the case of an incident wave energy transferred into the other medium. Diffraction

is a particular case of wave disturbance, where the boundary or obstacle is smaller

than the wave front. In this case some of the wave energy is reflected, some en-

ergy is refracted and some remains unaltered. The most relevant of the mentioned

processes, for the analysis of a bender element test system, is the wave reflection,

since it is concerned with the transformations of waves within one continuous body.

Figure 3.6: P wave reflection from a solid-vacuum boundary.

Wave reflection is a complex process that varies with the nature of the media

at the interface as well as with the nature of the incident waves. The boundary, or

interface, between two media causes different reflection and refraction phenomena
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of incident waves, depending on the nature of each of the two media. Possible

combinations of media defining a boundary between them are possible. Considering

that a solid medium is capable of propagating P and S waves, a fluid medium is

capable of propagating P waves and in vacuum no wave propagation is possible,

then each case presents a different solution for the reflection problem.

The relevant cases for the present study involve a boundary with an interface

between solid and either fluid or vacuum media. In most cases, laboratory soil

samples, studied in apparatus such as triaxial cells and oedometers, are surrounded

by a fluid such as water or oil, and raped by a latex membrane. In other cases, the

samples can be tested directly on a bench for which the consideration of a solid and

vacuum interface is appropriate. For either case the refracted waves are disregarded

and only the reflected waves are considered. The solid-vacuum interface is enough

for a first description of reflection of this type.

3.3.1 Solid-Vacuum Interface

Consider the case of wave reflection at the interface between a solid body and a

vacuum medium, i.e., a surface of the solid medium, such as pictured in figure 3.6.

This case is simpler than the more general solid-solid interface and can be applied

to cases where the refracted part of the wave does not interfere with the reflected

one, which is commonly assumed when testing soils samples in different apparatus.

Three simple independent planar wave types, P , SV and SH, are each reflected

differently from a body surface. In order to interpret the reflection phenomenon

using the same notation as the one used in wave equations 3.9 and 3.10, the boundary

conditions at the interface must be satisfied. The normal and parallel stresses must

be zero, τxx = τxy = τxz = 0 at x = 0. The axes definition are presented in figure

3.6. These boundary conditions force a particular solution on wave equations, as
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presented by the following equations.

φ = φ0 (x) · exp (−jk0z) · exp (jωt) (3.13)

ψi = ψi0 (x) · exp (−jk0z) · exp (jωt) (3.14)

The wave equations solution take the form:

φ0 (x) = Di exp (−jkdx) +Dr exp (+jkdx) (3.15)

ψi0 (x) = Ti exp (−jktx) + Tr exp (+jktx) (3.16)

i = x, y or z

where

kd
2 =

(

ω

cd

)2

− k0
2 (3.17)

kt
2 =

(

ω

ct

)2

− k0
2 (3.18)

Di and Dr are the amplitudes of the incident and reflected P wave, and Ti and Tr

are the amplitudes of the incident and reflected S wave; kd, ks and k0 are constants

of wave propagation and will be mentioned later in the development of particular

solutions of the wave equations, and ω is the circular frequency.

3.3.2 P Wave Reflection

A P wave has a complex reflection from a solid-vacuum interface, as it is reflected as

both P and S waves. According to figure 3.6, and considering the particle movement

due to the incident P wave to be in the xz plane, then the reflected waves will also
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only have particle movement in the same plane xz. In the present context, SV

waves are assumed to have particle polarisation in the xz plane and that SH have

particle polarisation in the y direction.

Three properties must be determined for each of the reflected wave components,

the angle of reflection, the phase change and the amplitude. The angles of reflection,

adr and atr, are the angles the reflected wave components propagation direction make

with a plane orthogonal to the interface. Their relationship with the incidence angle,

adi, is:

adr = adi (3.19)

sin atr =
ct
cd

· sin adi (3.20)

where adi, adr and atr are the incident P wave, reflected P wave and reflected SV

wave angles respectively.

Phase change describes the delay between oscillation movements of different wave

components. The phase change that takes place between the incident P wave and

the reflected SV wave, according to equations 3.19 and 3.20, can be either π for

Dr/Di > 0, or takes another value function of the medium’s Poisson ratio ν, and

the angle of incidence adi. The phase change between the incident P wave and the

reflected SV wave is zero for all cases.

The amplitude of the reflected waves is again a function of adi and ν. An example

of the reflected wave amplitude variation can be seen in figure 3.7, obtained as a

particular solution of equations 3.15 and 3.16, where Ti = 0.
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Figure 3.7: Reflected P and S waves amplitude from a incident P wave, at a

solid-vacuum interface.

3.3.3 S Wave Reflection

The properties of the reflection of S waves from a solid-vacuum interface varies

according to the S wave polarisation. The reflection of SH waves is the most simple

of the three plane wave components, they are reflected as SH waves with the same

horizontal polarisation and a symmetric incident angle of atr = ati. Besides, the

reflected SH waves have the same phase and amplitude as the incident SH waves.

The SV waves, with particle oscillation in the xz plane, are reflected into SV and

P wave components. The reflected SV wave component has a symmetric angle of

the incident wave, atr = ati. The reflected P wave component angle, adr, can be

obtained using equations 3.19 and 3.20. The phase change between the incident

SV wave and the reflected P and SV waves, as with the reflection of P waves,

can either be π or 0, depending on the medium’s Poisson ratio and the angle of

incidence. The amplitudes of the reflected waves are determined by a particular

solution of equations 3.15 and 3.16, making Di = 0.

It is now possible to obtain values of reflected wave angles of adr < 0, according
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to equations 3.19 and 3.20, using incident wave angles between 0o and 90o. In such

cases, the reflected P waves do not behave as longitudinal waves, but as surface

waves, which adds another degree of complexity to the wave reflection phenomenon.

3.3.4 Surface Waves

A surface wave is a wave that propagates along the surface of a medium. It is char-

acterised by an exponential decrease in amplitude with distance from the surface.

Even if the wave source is not at the body’s surface, or close to it, it is also possi-

ble to obtain surface waves from the reflection of P and SV waves within specific

ranges of incident angles. SH waves can also be reflected into surface waves, known

as Love’s waves.

Rayleigh waves, theoretically predicted by Lord Rayleigh in 1885, (Rayleigh and

Lindsay, 1945), are surface waves which propagate along a free surface of an elastic

medium, such as the interface between an elastic solid medium and vacuum. This

type of surface wave is well known in the study of seismic phenomena, (Aki and

Richard, 2002). It is characterised by a particular velocity of propagation, cR, lower

than the characteristic shear wave velocity, ct, of the medium. The particle oscilla-

tions are elliptical and have relatively high amplitudes, which decays exponentially

with distance from the surface.

A particular characteristic of the particle oscillation movement of this type of

surface wave is its retrograde elliptical motion at the surface, pictured as a clock-

wise movement in figure 3.8. At depths of more than x > Λ/5 an opposing prograde

movement of the particles can be observed, where Lambda is the wavelength. The

value of Rayleigh wave propagation velocity, cR, can be obtained with a good ap-

proximation as a function of ν and ct, as given in equation 3.21, (Achenbach, 1973).

cR =
0.862 + 1.14 ν

1 + ν
· ct (3.21)

92



Figure 3.8: Particle motion of Rayleigh surface wave.

3.4 Modes of Wave Propagation

The pressure distribution in a cross-section of a simple waveguide, such as a layer

of an homogeneous elastic solid medium, due to the propagation of a mechanical

wave can be described as the sum of simple characteristic pressure distribution cases.

Each one of this cases corresponds to a mode of propagation.

Figure 3.9: Simple cases of pressure distribution along the cross-section of a layer

of fluid in vacuum.
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In figure 3.9 are pictured four simple pressure distribution cases, in a cross-

section of a fluid layer surrounded by vacuum. The odd modes, m = 1 and m = 3,

have a symmetric pressure distribution, and the modes m = 2 and m = 4 have an

asymmetric pressure distribution.

The modes of pressure distribution presented in figure 3.9 are also known as fun-

damental modes. They can be used to decompose less regular pressure distributions,

in the same way as with a Fourier or Taylor series.

3.4.1 Continuous Waves in Solid Cylinders

The theoretical analysis presented is concerned with infinitely long solid cylinders.

The study of wave propagation grows exponentially more difficult with body geom-

etry increased complexity. Even for simple cases such as square cross-sections bar,

the handling of the general wave equations is much more difficult than for circular

cross-section, (Redwood, 1960). Numerical solutions often are the only suitable tool

to handle complicated analysis. Fortunately, simple bounded media such as plates

and cylinders can be analytically modelled with reasonable analytical effort. Even

though the analysis of cylinders is not as simple as the analysis of plates, it still

benefits from the symmetry about its axis.

It is an advantage that bender elements are often used with soil samples with

cylindrical shapes. The expression of the wave equations in cylindrical coordinates

z, r and θ, enables their simplification for particular waves with a symmetry about

the z axis. This simplification also makes cylindrical waveguides a well documented

case of wave propagation, (Fan et al., 2003).

The equations describing the propagation of an harmonic wave along the axis of

an infinitely long cylinder of a solid medium can now also be expressed in cylindrical
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Figure 3.10: Cylindrical axis system.

coordinates. The correspondent displacement equations of motion are:

∇2u− u

r2
− 2

r2

∂v

∂θ
+

1

1 − 2ν

∂∆

∂r
=

1

ct2
∂2u

∂t2
(3.22)

∇2v − v

r2
− 2

r2

∂u

∂θ
+

1

1 − 2ν

1

r

∂∆

∂θ
=

1

ct2
∂2v

∂t2
(3.23)

∇2w +
1

1 − 2ν

∂∆

∂z
=

1

ct2
∂2w

∂t2
(3.24)

∇2 is the Laplace operator, and ∆ the volumetric dilatation, now also expressed in

cylindrical coordinates:

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
+

∂2

∂z2
(3.25)

∆ =
∂u

∂r
+

1

r

(

∂v

∂θ
+ u

)

+
∂w

∂z
(3.26)

The relation between stress and strain is now expressed as:

τr = λ∆ + 2µ
∂u

∂r
(3.27)

τrθ = µ

[

1

r

(

∂u

∂θ
− v

)

+
∂v

∂r

]

(3.28)

τrz = µ

(

∂u

∂z
+
∂w

∂r

)

(3.29)
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Potential functions φ and ψ are useful to describe displacements in z, r and θ,

as was shown in equations 3.7 and 3.8. The scalar potential φ and vector potential

component ψz enable the use of uncoupled equations 3.30 and 3.31.

∇2φ =
1

cl2
∂2φ

∂t2
(3.30)

∇2ψz =
1

ct2
∂2ψz

∂t2
(3.31)

Still, the remaining vector potential components ψr and ψθ, need to be deter-

mined as a pair of coupled equations.

∇2ψr −
ψr

r2
− 2

r2

∂ψθ

∂θ
=

1

ct2
∂2ψr

∂t2
(3.32)

∇2ψθ −
ψθ

r2
− 2

r2

∂ψr

∂θ
=

1

ct2
∂2ψθ

∂t2
(3.33)

In order to proceed with the handling of the wave equations, it is necessary to in-

troduce boundary conditions according to the geometry and nature of the waveguide.

Logically, the boundary conditions are concerned with the surface of the cylindrical

waveguide, for which a constant value of radius r = a is assumed. The cylindri-

cal surface defines an interface between a solid medium and vacuum and is free of

tension, therefore τr(a) = τrθ(a) = τrz(a) = 0.

3.5 Wave Propagation in a Solid Cylinder

An infinitely long solid cylinder waveguide has three different families of wave prop-

agation modes, that can be used to describe harmonic wave propagation along the

main axis z. The fundamental modes of wave propagation are either longitudinal,

torsional or flexural, as pictured in figure 3.11.

Concerning the symmetry of the proposed fundamental modes of wave propaga-
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(a) longitudinal (b) torsional (c) flexural

Figure 3.11: Fundamental modes of wave propagation in a cylinder waveguide.

tion, the longitudinal and torsional modes are symmetric about the cylinder main

axis and and the flexural modes are asymmetric.

Each type of mode of wave propagation has a specific set of wave equations,

generally obtained by simplifying the general wave equations 3.30 to 3.33. Applying

each mode properties to the manipulation of the wave equations leads to the specific

solution in the form of a characteristic frequency equation.

3.5.1 Longitudinal Modes of Propagation

Longitudinal modes of wave propagation describe waves with symmetry about the

z axis that are independent from θ, making ∂
∂θ

= 0. A schematic graphic represen-

tation is given in figure 3.11(a).

The solution of the wave equations is a complex and time consuming process,

thus only a summarised version of the condensed equations is presented, in order

to introduce relevant variables. A more comprehensive solution can be found in

Redwood (1960) or Achenbach (1973).
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The radial and axial displacements are:

ur =
∂φ

∂r
+

∂2ψ

∂r∂z
(3.34)

uz =
∂φ

∂z
− ∂2ψ

∂r2
− 1

r

∂ψ

∂r
(3.35)

These permit a differential solution to the wave equations, making use of Bessel

function Jn(x), the potentials φ and ψ can now be expressed as:

φ = AJn−1(kdr) exp[i(k0z − ωt)] (3.36)

ψ = CJn(ktr) exp[i(k0z − ωt)] (3.37)

n = 1, 2, 3, ... (3.38)

where n is the mode number.

Solving equations 3.36 and 3.37 permits the elimination of the constants A and

C and the determination of a characteristic frequency equation.

k0
2 · ktJn−1 (kt a)

Jn (kt a)
− 1

2

(

ω

ct

)2

+

{

1

2

(

ω

ct

)2

− k0
2

}2
Jn−1 (kd a)

kd Jn (kd a)
= 0 (3.39)

The frequency equation 3.39 introduces a number of relevant parameters.

• k0 is the wave-number of a particular wave mode for a given direction and a

given frequency.

• kd is a longitudinal wave propagation constant and can be obtained from equa-

tion 3.17.

• kt is a transversal wave propagation constant and can be obtained from equa-

tion 3.18.

• ω is the circular frequency in rad · s−1, obtained from the frequency, f , in Hz:
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ω = 2π · f

• Jn(x) is the Bessel function obtained from a series expansion.

Jn(x) =
∞

∑

i=0

(−1)i ·
(

1
2
x
)n+i2

i! (n+ i)!
(3.40)

• n is the mode number, taking integer values of n = 1, 2, 3, .... Each mode

number is associated with a specific pressure distribution along the cross-

section of the waveguide, (figure 3.9). The mode number is associated with the

number of nodes, through zero points, in each pressure distribution diagram.

• a is the cylinder radius, a = r.

3.5.2 Phase Velocity

The ratio between circular frequency, ω, and wavenumber, k0, produces a velocity.

This velocity is known as phase velocity, cp.

cp =
ω

k0

(3.41)

The phase velocity is the velocity at which a wave component with unaltered

shape, i.e., constant phase, propagates through a medium. In a linear system, a

periodic wave can be described as the sum of a number of harmonic waves, each with

its characteristic phase velocity. Each mode of wave propagation has a characteristic

pressure distribution to which is associated a characteristic phase velocity.

The frequency equation 3.39, when solved in order of k0 and making n = 1 or 2 in

equation 3.41, enables the calculation of cp. Since cp varies with frequency, (equation

3.41), the obtained curves are known as dispersion curves. Figure 3.12 presents the
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dispersion curves of the phase velocity in a solid cylinder relative to the wave length,

Λ, and cylinder radius, r.
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Figure 3.12: Phase velocity dispersion curves of the 3 first longitudinal modes of

wave propagation.

Figure 3.12 was obtained using numerical routines developed by Seco et al.

(2002). These routines were programmed to solve the frequency equations as the

one given in equation 3.39. In figure 3.12 only the first three modes of wave propaga-

tion are presented for simplicity purposes, where in the reference L(i, j), L describes

a longitudinal mode, the first index, i = 0, describes a symmetric mode, and the

second index, j = 1, 2 or 3, are the mode numbers.

The dispersion curves shown in figure 3.12, such as the remaining dispersion

curves shown next, show how the wave velocity becomes more stable with cylinder

radius and frequency.

The dispersion curves were obtained for dimensionless axis such as
(

x→ a
Λ

)

and
(

y → cp

c0

)

; but in the present case, to gain some sensitivity of soft medium’s

behaviour, the curves are presented for a particular material. The physical and

geometric properties of the soft material used are given in table 3.1 and were chosen
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to be similar to the properties of the synthetic material tested in chapter 6.

Property Symbol Units Value

Bulk modulus K Pa 18.4E6

Poisson coefficient ν no units 0.45

Density ρ kg.m−3 1000

Radius a mm 38

Table 3.1: Cylinder waveguide model material properties.

In figure 3.12 only the far-field wave components are considered and so the ob-

served dispersion is due to the presence of the wave reflection at the lateral bound-

aries of the cylinder. In practice, boundary conditions are more complex than those

considered for an infinitely long bar. The geometry of non-infinite samples and the

presence of other components of the testing system are some of these boundary con-

ditions. For this reason, the dispersion detected on real tests might not be possible

to correlate directly with the geometry of the sample. Nevertheless, dispersion does

have a theoretical explanation related to the present of geometric boundaries, as

observed, and should also be evaluated in those terms.

The dispersion curves of the longitudinal modes of wave propagation have other

relevant characteristics worth mentioning. The curve of each longitudinal mode,

except the one corresponding to the first mode, tend to infinity, ∞, with decreasing

frequency. These higher modes have a limit frequency below which no real values of

cp can be obtained. These limit frequencies are called cut-off frequencies and are a

characteristic of the waveguide.

The velocity of the first mode of longitudinal wave propagation tends to the

Rayleigh surface wave velocity, c ⇒ cR, with increasing frequency. In the same

conditions, all the other higher modes tend to the characteristic S wave velocity ct.
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3.5.3 Group Velocity

The gradient of the phase velocity, cp, dispersion curves can be used to obtain the

group velocity, cg, see equations 3.42 or 3.43. Group velocity is the velocity at which

the energy is propagated through the medium, and is not necessarily the same as

cp. It can be correlated with the modulation of a group of harmonic waves, and the

average velocity at which the group as a whole propagates,

cg =
dω

dk0

(3.42)

or

cg = cp + k0
dcp
dk0

(3.43)

Figure 3.13 presents the first three modes of propagation group velocity disper-

sion curves.
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Figure 3.13: Group velocity dispersion curves of the 3 first longitudinal modes of

wave propagation.

The dispersion curves representing group velocity have similar characteristics to

those of phase velocity, especially with increasing frequency and radius, i.e., the first
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mode of wave propagation tend to the Rayleigh wave velocity and the higher modes

tend to the characteristic S wave velocity. At lower frequencies, the differences

between group and phase velocities dispersion curves become more apparent. The

most noticeable difference is how in the group velocity dispersion curves tend to zero

at the cut-off frequencies.

3.5.4 Torsional Modes of Propagation

Torsional modes of wave propagation are symmetric, as seen in figure 3.11, and

are characterised by circular particle displacement, again independent of θ, which

can be expressed as ur = uz = 0. The wave equations concerned with the torsional

modes of wave propagation can be reformulated into a much simpler form as a single

equation,

∂2u(r)

∂r2
+

1

r

∂u(r)

∂r
− 1

r2
u(r) +

∂2u(z)

∂z2
=

1

c2t

∂2u(r)

∂t2
(3.44)

if

uθ = u(r) exp(−ik0z) exp(iωt) (3.45)

The frequency equation then becomes:

Jn−1 (kta)

Jn (kta)
=

2

kta
(3.46)

for which the Bessel functions Jn and Jn−1 have been described in equation 3.40.

The dispersion curves for the torsional modes of vibration are presented in figures

3.14 and 3.15 for the same cylinder beam described in table 3.1.

The only non-dispersive mode of wave propagation in infinitely long cylinders

is the first torsional mode. It is worth noting how the values of phase and group

velocity given by curve T(0,1) in figures 3.14 and 3.15 remain constant with varying

frequency and sample radius. This characteristic is appreciated in geotechnical
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Figure 3.14: Phase velocity dispersion curves of the 3 first torsional modes of wave

propagation.
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Figure 3.15: Group velocity dispersion curves of the 3 first torsional modes of

wave propagation.

dynamic testing when testing with torsional resonant columns. Resonant columns

are a laboratory device used to excite soil samples in torsion and read their responses.

A classic citation of its normalised use is found in Drnevich et al. (1978). Further

information about their use is also given in section 3.11.
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3.5.5 Flexural Modes of Propagation

The flexural modes of wave propagation present the most elaborate solution of the

three proposed fundamental types of wave propagation modes. Since these modes

are asymmetric about the cylinder main axis, the particle motion is dependent of

all three coordinates, r, z and θ. Therefore, the solution to the governing wave

equations is more general than the previous longitudinal and torsional ones.

The application of the boundary conditions at the cylinder surface, r = a, is

expressed by making the local tension equal to zero, τrr(a) = τrz(a) = τrθ(a) = 0.

The development of the frequency equation for the present case has to make use of

the general wave equations 3.30 to 3.33, and takes the form of the determinant:

n2 − 1 − a2k0
2(x− 1) n2 − 1 − a2k0

2(2x− 1)

γn(kda) − n− 1 γn(kta) − n− 1

γn(kda) − n −(x− 1)[γn(kta) − n]

2(n2 − 1)[γn(kta) − n] − a2k0
2(2x− 1)

2n2 − 2[γn(kta) − n] − a2k0
2(2x− 1) = 0

n2

(3.47)

for which

γn(kia) =
kiaJn−1(kia)

Jn(kia)
(3.48)

x =
1

2

cp
2

ct2
(3.49)

n = 1, 2, 3, ...

The dispersion curves of the phase and group velocity, for the medium described

in table 3.1, are pictured in figures 3.16 and 3.17 respectively.

105



0 0,1 0.2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1.0
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

r/Λ

c p/c
0

F(1,1)

F(1,2) F(1,3)

c
t
/c

0

c
R
/c

0

Figure 3.16: Phase velocity dispersion curves of the 3 first flexural modes of wave

propagation.
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Figure 3.17: Group velocity dispersion curves of the 3 first flexural modes of wave

propagation.

As with the dispersion curves of the longitudinal and torsional modes of wave

propagation, the presence of cut-off frequencies is apparent. The velocity of the first

mode curve, n = 1, tends to cR with increasing frequency and the velocity of the

higher modes tend to ct.
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3.6 Wave Radiation

The wave theory presented so far is applicable to the case of planar far-field wave

propagation, which is a particular case of the general wave radiation theory. Testing

with bender elements requires the understanding of the general wave radiation for

relatively short wave travel lengths. Also, the understanding of wave radiation is

important to determine how far away from a wave’s source it becomes valid to

replace general wave radiation theory with planar wave propagation theory.

The simpler case of a single isolated impulsive force acting at an isolated point

in an infinite medium, which disturbed the medium and causes a wave to radiate

from it, is presented. Such a wave source permits the presentation of the wave radi-

ation phenomenon in simpler terms and is comparable to the bender element wave

source. Assuming a linear behaviour from the test system permits the consideration

of combinations of the mentioned load case to obtain more complex load cases.

Figure 3.18: Wave source and wave radiation diagram.

A Lagrangian description of the problem is ideal, studying a specific particle

movement. Assuming, as in figure 3.18, point O to be the source of the wave

radiation, at which a single isolated impulsive load in the form of vector b(t) is

applied; and point O’ with relative position to the origin determined by vector r(r, θ)
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and point O’ movement history is given by u(r,b). The used notation distinguishes

between vector values in bold fonts and scalars in normal fonts. Because the wave

radiates from a single origin point into an unbounded medium, it is convenient to

use a system of spheric coordinates.

The description of this problem presents a transformation function that assumes

the impulsive load at the origin and that is capable of determining the oscillation

properties of a particular point at a particular time and at a particular position in

the system. A mathematical fundamental solution provides the base for the deter-

mination of such transfer function, (Stokes, 1845). A known practical application

of the fundamental solution can be found in Sanchez-Salinero (1987).

It is necessary to take as starting point the differential equation of motion for an

homogeneous and isotropic medium, as in Aki and Richard (2002) or Arroyo (2001),

given as:

ρü = b + (λ+ µ)∇ (∇ · u) + µ∇2u (3.50)

where λ and µ are Lamé’s elastic constants presented previously in equation 3.2, ρ is

the medium’s density and ∇2 the Laplace operator also previously given in equation

3.6. In order to solve the differential equation 3.50, a mathematical tool known as

the Green function GR is used.

The assumed boundary conditions state that every point in the system starts its

movement from its equilibrium position u(r, 0) = 0, and that every point, except the

origin, is at rest when the impulsive load is first applied, u̇(r, 0) = 0 for r 6= 0. The

displacement can now be expressed as a convolution ∗ between the Green function

and the applied load.

u = GR ∗ b (3.51)

In the interest of this study, the particle oscillation is decomposed into two

orthogonal polarisations, parallel and perpendicular to the direction of the wave
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propagation. The particle movement can then be expressed in terms of two simple

wave modes, uP and uS, in reference to P and S waves.

uP = (u · r)r = (r · b) ∗ [2N + FP ]r (3.52)

uS = u ∧ r = r ∧ b ∗ [FS −N ] (3.53)

When considering the characteristics of wave radiation and the relation between

its simpler orthogonal wave modes, uP and uS, and the impulsive load at the source

properties, the following conclusions can be obtained:

• propagation in the direction of the source impulse load has particle oscillation

with no shear component because (r ∧ b) = 0.

• propagation in the direction perpendicular to the source impulse load has

particle oscillation with no compression component since (r · b) = 0.

• generally, only when far-field coefficients Fp and Fs become much higher than

near-field ones, N , i.e., N/F → 0, can P wave components be associated with

P wave velocity, cl, and S wave components associated with S wave velocity,

ct.

The last point poses the principal condition for which plane wave propagation be-

comes an appropriate model of dynamic behaviour, (Aki and Richard, 2002).

3.6.1 Wave Field Components

In equations 3.52 and 3.53, N , FP and FS, represent the near-field, compression far-

field and shear far-field wave components. They can be obtained in the frequency

domain in the form of a complex exponential, enabling a more intuitive description
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of the problem,

u = a+ ib ≡ u = M e iF (3.54)

and the relation between these two expressions is expressed in

M =
√
a2 + b2 and F = arctan

b

a
(3.55)

For the mentioned complex exponential, M is the modulus and F the phase of

the function. Returning to the field problem at hand, the expression of the field

components are expressed as:

N = NS −NP (3.56)

and

FP =
k

cl2
e−i nP (3.57)

FS =
k

ct2
e−i nS (3.58)

where the near-field component N can be separated into its compression and shear

parts, NP and NS. It is not always convenient to express the near-field components

separately, (Aki and Richard, 2002), but for the sake of coherence with the expression

of the far-field components, such decomposition of the near-field is presented,

NP =
k

cl2

√
1 + nP

2

nP
2

e−i[nP−arctan(nP )] (3.59)

NS =
k

ct2

√
1 + nS

2

nS
2

e−i[nS−arctan(nS)] (3.60)

k is a function constant at each point, given by:

k =
1

4πρ r
(3.61)
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and nP and nS are dimensionless coefficients which contain the relation between

frequency and wave velocity, also known as wavelength.

nP =
ω

cl
r and nS =

ω

ct
r (3.62)

Of especial interest for this study are the properties of the shear wave mode, uS.

The function that rules its behaviour, after equation 3.53, was given by Jovičić et

al. (1996) and Arroyo et al. (2003a) as the sum of the field wave components.

Γ = Γ1 + Γ2 − Γ3 or = FS +NP −NS (3.63)

The manipulation of these field components enables a better understanding of the

radiation phenomenon and why it might be relevant in interpreting bender elements

test results. The expressions of the far field components, FP and FS, attenuate with

r−1 and a have a constant wave propagation velocity equal to the bulk velocities

cl and ct respectively. The expressions of the near-field components, NP and NS,

attenuate with a higher order value of r−2. This means that the far field components

of the radiation function become dominant as r → ∞ and the near-field components

are dominant as r → 0, hence the name. For these near-field components the wave

propagation velocity is not constant but varies with distance from the source, r.

3.6.2 Near-Field Amplitude

The study of the modulus of the field components and the calculation of the ratio

between the amplitudes of the near and far-field components is performed to the soft

material described in table 3.1 and presented next in figures 3.19(a) and 3.19(b).
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Figure 3.19: Ratio between near and far-field wave components.

The pictured curves present the ratio between near and far-field components at

different distances from the wave source, r = 1, 4 and 7cm. At 1cm from the source

the near-field is significant up to 5kHz for its P component and up to 2kHz for its

S component but it decays rapidly because at 4 and 7cm from the source the same

ratio seems to stabilize and dive under 25% near 0.5kHz.

3.6.3 Near-Field Wave Velocity

When considering the influence of the near-field components, or the near-field effect,

it is important not only to consider its ratio with the far-field components, but also

the different phase velocities of each component. The far-field components are non-

dispersive, i.e., they have a constant propagation velocity, regardless of the distance

to the source and from the frequency of the source signal. The velocity of the P

and S wave modes are the same as the characteristic equivalent wave velocities, cd

and ct. The expression of the phase velocity can be obtained as the phase parcel

derivative in r. The expression of the phase velocities is given below, after Arroyo
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(2001).

far-field: V ff
d = cd V ff

s = ct (3.64)

[1ex]near-field: V nf
d = cd

(

1 +
1

np
2

)

V nf
s = ct

(

1 +
1

ns
2

)

(3.65)

Next are presented the dispersive curves for the values of the near-field NP and

NS components, V nf
d and V nf

s with varying frequency and at increasing distances

from the wave source, obtained from equation 3.65 using the material properties

given in table 3.1.
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Figure 3.20: Near-field components velocity.

Figures 3.20(a) and 3.20(b) show how dispersive the near-field components are.

The near-field compression component NP is not only dispersive but tends to the

characteristic P wave velocity cd, with increasing distance from the source, r → ∞,

and with increasing frequency, f → ∞. Therefore, at small distances from the

source and at low frequencies its presence has the potential of disturbing the pursuit

of the characteristic shear wave velocity. The near-field S wave component NS is

also dispersive, tending to the characteristic shear wave velocity ct, with increasing

distance to the source r → ∞, and with increasing frequency f → ∞.
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According to the results presented so far, the importance of the near-field effect

as a significant component of a travelling wave in particular domains of lower fre-

quencies and short distances from the source becomes apparent. The near-field effect

can have an amplitude of more than twice the amplitude of the far-field components

and propagate with twice its velocity. Significant contributions from near-field wave

components will therefore disturb the identification of the characteristic shear wave

velocity.

Sanchez-Salinero (1987) studied the notion of near-field effect relating it to ben-

der element testing by the use of the medium’s wavelength and travel distance. He

correctly observed that the dispersion due to the near-field effect diminished with

increasing wave travel distance and with decreasing wavelength. These two fac-

tors can be combined to produce a ratio Rd which can serve as an indicator of the

potential near-field effect,

Rd =
td

Λ
= td · fj

Vs

(3.66)

where Rd is the near-field effect indicative ratio, td is the wave travel distance, fj

is the signal frequency and Vs the characteristic shear wave velocity.

Jovičić et al. (1996) and Brignoli et al. (1996) in their studies of bender element

testing have also referred to the near-field ratio and have used it to evaluate their

results. A distinction is made in their analysis, Brignoli et al. (1996) noted a differ-

ence between the frequencies of the transmitted and received signals, and chose the

received signal’s frequency as the value fj used to calculate Rd. Jovičić et al. (1996)

did not distinguish between input and output signal frequencies, for pulse signals,

and hence used the input frequency as the value fj. More recently reference to the

near-field ratio is also made in the work of Dano et al. (2003), for example.

In studying the near-field effect on bender element testing Arroyo et al. (2003a)

went further and proposed a simple method of determining a frequency limit, after
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which the near-field effect might be disregarded. The wave velocity of the near-

field shear wave component is selected as the main parameter used in the method,

and not its relative magnitude, (figures 3.19(b) and 3.20(b)). This is because the

wave velocity of the near-field wave components decreases faster than its amplitude,

both with signal frequency and distance to source. So, even though the near-field

effect might still have a significant magnitude, its velocity becomes similar to that

of the far-field shear wave components sooner, diminishing its influence in terms of

dispersion. The proposed frequency limit is set so that difference between far and

near-field wave components is lower than 5%,

V nf
s

V ff
s

< 1.05

then the frequency limit becomes

fnf >
Vs

1.6 td
(3.67)

where V nf
s is the near-field shear wave velocity, V ff

s is the far-field shear wave

velocity, also known as the characteristic shear wave velocity Vs, td is the distance

from the wave source also known as travel distance, which in the bender element test

is usually measured between tip-to-tip, (Viggiani and Atkinson, 1995), and fnf is the

minimum frequency for which the proposed limit velocity ratio can be observed.

The frequency limit fnf proposed by Arroyo et al. (2003a) can be related to the

ratio Rd mentioned by Sanchez-Salinero (1987), for a single frequency signal, i.e., a

harmonic continuous signal, as follows:

f >
Vs

1.6 td
≡ 1.6 >

Vs

tf f
≡ Rd >

1

1.6
> 0.625 (3.68)
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3.7 Dispersion

Dispersion is the phenomenon in which a wave is decomposed into different fre-

quency components, each has a different characteristic propagation velocity. When

considered dynamic test methods involving wave propagation, to determine the elas-

tic properties of a medium, such as its elastic constants or damping characteristics,

dispersion must be considered. So far, two causes for dispersion have been dis-

cussed, the waveguide dispersion, caused by the reflection of wave components at

the boundaries of the medium, and the near-field effect, where the near-field wave

components have a different amplitude and propagating phase wave velocity than

the far-field wave components.

The structure of the soil can be another source of dispersion, (Mah and Schmitt,

2001). Soils, being granular materials are locally heterogeneous, therefore causing

a heterogeneous interaction between particles with wave propagation. One aspect

of this heterogeneous wave propagation is the possibility of local dispersion caused

by differentiated particle interaction. Still, for the present study the studied media

are considered to be homogeneous. The other aspect of heterogeneity is related to

how certain particle structures may cause more general specific anisotropic wave

propagation. The subject of soil anisotropy has also been studied using bender

elements, (Belloti et al., 1996; Nash et al., 1999), but is also not primary subject for

the present study.

After acknowledging the existence of dispersion, the understanding of the con-

cepts of group and phase velocities is also important. A mathematical interpretation

has already been given in section 3.4.1 for different modes of wave propagation in

a solid cylinder. Further, the analogy presented by Graff (1975), quoting from

Rayleigh and Lindsay (1945), concerning a pool of still water and the propagation

of waves due to an intense local disturbance is well worth repeating.
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‘It has often been remarked that, when a group of waves advances into

still water, the velocity of the group is lower than that of the individual

waves of which it is composed; the waves appear to originate at the rear

of the group, propagate to the front, and disappear. Thus, the ripples

have a higher velocity than the overall group.’

This example illustrates how a group of waves appears to propagate with a

‘central‘ or group velocity different from the actual velocity of each of its components,

where each component is characterised by its own frequency and phase velocity.

3.8 Body Vibration

Dynamic phenomena can be interpreted through the perspective of the travelling

disturbance or through the perspective of the disturbed particles. A critical analysis

of the use of bender elements indicates a closer relationship to wave propagation

theory. Wave propagation is well suited to study transient states of response of the

system. On the other hand, when establishing a dynamic steady state, by the use

of continuous harmonic signals for example, the study of the vibration behaviour

is better suited to providing theoretical support, in which is also known as the

establishment of a standing wave, (Redwood, 1960). Also, if the focus is shifted

from the primary quest of wave velocity to the particular behaviour of parts in the

dynamic system, such as the behaviour of a bender element, then the study of the

vibration behaviour can again provide suitable theoretical support.

The following vibration theory is not meant to be extensive; it is chosen to be

simple and directly applicable to describe some dynamic phenomena associated with

the use of bender elements, namely the behaviour of the bender elements themselves,

as presented in chapter 5.
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3.8.1 Reformulation of the Equation of Motion

A version of the equation of motion has already been presented in sections 3.1.3

and 3.6 in the form of equations 3.5 and 3.50. A third more popular version of

the equation of motion is presented next with a notation suitable for the particular

handling of vibration related phenomena.

mü+ cu̇+ ku = p(t) (3.69)

Equation 3.69, here presented in its scalar form, is suitable for single degree of

freedom, SDOF, systems. This equation is used to describe a linear behaviour of

the system with constant mass and stiffness in the time domain.

Figure 3.21: SDOF body vibration scheme.

In equation 3.69, u represents the position of the body, for which u̇ and ü are the

first and second order time derivatives, better known as velocity and acceleration

respectively; m is the body mass, k is the spring stiffness, c is the damping of the

system and p(t) is an external force applied to the body.

3.8.2 Vibration of SDOF

A SDOF system provides a simple example of dynamic behaviour with several ap-

plications to testing with bender elements. It is most commonly used to describe
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a lumped mass system concentrated in a single point. It is also possible to apply

SDOF equations to simple multiple degree of freedom, MDOF, bars where the mass

and elastic properties are uniformly distributed along the bar’s length.

3.8.3 Undamped Free Vibration

The vibration of a system where no external force is applied and there is no damping

is known as undamped free vibration. This vibration is usually started either by

an initial displacement, u(0) 6= 0, or an initial velocity, u̇(0) 6= 0; and the value of

the damping coefficient is made equal to zero, c = 0. The frequency at which the

system vibrates, in these circumstances, is a property of the system itself known as

its natural frequency. The natural circular frequency of the system is a function of

the square root of the ratio between the spring’s stiffness and the system’s mass, k

and m.

ωn =

√

k

m
(3.70)

The natural circular frequency is expressed in radians per second and is related

to the natural frequency in Hertz when divided by 2π, fn = ωn

2π
. The undamped free

response of a SDOF system is expressed as an harmonic oscillation,

u(t) = a cos(ωnt+ θ) (3.71)

where a is the amplitude of the oscillation and θ is the phase angle. Both are a

function of the natural circular frequency, ωn, the mass initial position, u(0), and
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initial velocity, u̇(0).

a =

√

u(0)2 +

[

u̇(0)

ωn

]2

(3.72)

θ = tan−1

[

−u̇(0)

ωnu(0)

]

(3.73)

3.8.4 Damped Free Vibration

When a mechanical system is damped, then it is worth considering the value of the

damping coefficient c > 0. The damping coefficient can be so high as for the system

to becomes incapable of oscillating. Such value of c is called the critical damping

coefficient, cc. The value of cc is also a property of the system.

cc = 2mωn (3.74)

The most relevant case of damped systems, for the present study, occurs when

some oscillation remains possible, meaning c < cc, in which is known as an under-

critically damped system. Such a system is characterised by its damping ratio and

by the damped free-vibration frequency, here represented by ξ and ωD respectively.

The damping ratio ξ is given by:

ξ =
c

cc
(3.75)

and the damped free-vibration frequency by

ωD = ω
√

1 − ξ2 (3.76)
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The response of the undercritically damped SDOF system is given by:

u(t) = a cos(ωDt+ θ)e−ξωt (3.77)

for which the amplitude and phase angle, a and θ, are now also functions of ξ and

ωD.

a =

√

u(0)2 +

(

u̇(0) + u(0)ξω

ωD

)2

(3.78)

θ = − tan−1

[

u̇(0) + u(0)ξω

ωDu(0)

]

(3.79)

An example of the response of a SDOF system undercritically damped free vi-

bration is ilustrated in figure 3.22 for an initial body velocity at the origin, u̇ 6= 0

and u = 0.

time
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Figure 3.22: Time history of a SDOF damped free vibration.
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3.8.5 Harmonic Loading

The application of an harmonic load to the system is a useful load case worth

considering, especially when considering the possibility of applying a Fourier series

to decompose more general signals into a sum of harmonic ones. The periodic nature

of an harmonic loading enables its expression in similar terms as those used so far

for the system’s response,

p(t) = a0 sin(ωt) (3.80)

where the amplitude of the loading is given by a0 and the frequency by ω.

The response of the system to the harmonic loading has the contribution of a

particular solution, up(t), where it is forced to move in direct response to the load

and its properties, and has a complementary solution uc(t), where it tries to move

as if it were free.

u(t) = up(t) + uc(t) (3.81)

The complementary solution is also known as a transient response that sees its

influence diminish in time, due to damping, until it disappears. The particular

solution is known as the steady-state harmonic response. This second response is

usually the more interesting as it can be isolated as soon as the transient response

dies out. Again, the oscillation of the system can be expressed in the form of a

sinusoidal function,

up(t) = a sin(ωt− θ) (3.82)

where the response amplitude a and phase angle θ are given by:

a =
a0

k

√

(1 − β2)2 + (2ξβ)2 (3.83)

θ = tan−1

[

2ξβ

1 − β2

]

(3.84)
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for which β is the ratio between the load frequency, ω, and the system natural

free-vibration circular frequency, ωn,

β =
ω

ωn

(3.85)

An example of the transient and steady-state responses, as well as the total

combined response, is given in figure 3.23.
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steady state response

transient response

total response

Figure 3.23: Steady-state, transient and total responses of a simple mechanical

system.

In equation 3.84 it can be seen how the phase of the response, θ, varies with

the load frequency. Given its somehow counter-intuitive nature of the response, it

is important to keep in mind that a body does not always vibrate in-phase with

an harmonic load being applied to it. The phase delay response curves for SDOF

system with different damping coefficients are given in figure 3.24.

The damping of the system also influences the response magnitude. The mag-

nitude response curves for a generic SDOF system are presented in figure 3.25 for
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Figure 3.24: Phase difference between load and response of a SDOF system, for

different damping coefficients.

different damping coefficients, ξ. The response magnitudes are presented as a ratio

between the magnitude of the dynamic displacement and the equivalent static dis-

placement, Df . This ratio is known as the dynamic magnification factor, (Clough

and Penzien, 1993).

Df =
a

a0/k
=

[

(

1 − β2
)2

+ (2ξβ)2
]

−
1

2

(3.86)

3.9 Damping

Real physical systems always have some form of inherent damping. The concept

of damping refers to the dissipation of vibration energy as waves travel through a

medium. The damping phenomenon is applicable both to wave propagation and

particle vibration dynamic phenomena. In the study of wave propagation, damping

is also referred to as attenuation.
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Figure 3.25: Magnitude response curves of a SDOF for different damping coeffi-

cients.

The concept of damping is not simple to define. Damping can be attributed

to internal particle friction, plasticity and viscosity phenomena such as slippage at

particles interfaces, (Graff, 1975). For simple systems, the actual damping that takes

place can be associated, for simplicity purposes, to an equivalent mechanical viscous

damping. This idealised viscous damping induces dissipation forces proportional to

the velocity of the oscillating particles, and is therefore only frequency dependent,

(Muscolino et al., 2005).

A more realistic model of damping is provided by the notion of hysteretic damp-

ing. This form of damping is related to the actual properties of the system, such

as its mass and stiffness, and is independent from the frequency of excitation. The

particular cases of soils and rocks are good examples of occurrence of natural damp-

ing is largely of hysteretic nature, Gemant and Jackson (1937); Wegel and Walther

(1935).

The force due to linear hysteretic damping, for an harmonically loaded system,
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is provided in equation 3.87,

fD(t) = iζku(t) (3.87)

where ζ is the hysteretic damping ratio, k the system elastic stiffness and u(t) the

system’s response. The imaginary constant i enables the damping force to be in

phase with the velocity. Through its use, a complex stiffness of the system need also

to be defined.

k̂ = k(1 + iζ) (3.88)

This form of hysteretic damping leads to an equation of motion that is imprac-

tical to handle for simple analytical studies such as those carried out, and therefore

will not be pursued further. Nevertheless, it can be said that even though viscous

damping is frequency-dependent and hysteretic damping is amplitude-dependent,

the response of the system’s models are identical when excited at resonance fre-

quency, (Clough and Penzien, 1993).

The equivalent viscous damping will be used henceforward rather than the hys-

teretic damping due to producing simpler analytical models and of being well ac-

cepted in the study of body vibration, (Clough and Penzien, 1993). Viscous damping

is assumed to be a property of the medium but also a function of the particle os-

cillation velocity. Its determination is useful because it enables the use of the cu̇

component of equation 3.69 which is the start point to characterise vibration be-

haviour of simple dynamic systems. Due to the added degree of complexity of using

hysteretic damping, it will not be used in relation to the present study of testing

with bender element.

The determination of the equivalent viscous damping coefficient, c, for a SDOF

system can be made in a different number of ways. The methods for its determi-

nation make use of the system’s response to different vibration and load conditions
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and are presented next.

3.9.1 Free-Vibration Decay Method

In order to determine the damping of a simple mechanical system, one of the most

intuitive methods is the free-vibration decay method. It consists of disturbing the

system with a short duration impact and letting it oscillating freely afterwards. In

this way, the main cause of decay is the system’s own damping. An example of a

decaying time history of such a free oscillation response is given in figure 3.26 which

regards the free oscillation of an idealised damped SDOF system.
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Figure 3.26: Time history response of damped SDOF system.

The decay takes a form of a logarithmic decrement, δ, given by:

δ = ln
ui

uj

=
2(j − i)πξ
√

1 − ξ2
(3.89)

which, as described in Clough and Penzien (1993), allows an approximation to the
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value of the damping ratio, ξ, by

ξ ∼=
ui − uj

2nπuj

where n = j − i (3.90)

The estimated damping ratio obtained using the free-vibration decay method is

higher than the actual exact value. The error of this approximation goes up to 25%

for values of damping higher than 10%. The quantification of this error is given

with more detail by Clough and Penzien (1993).

3.9.2 Half-Power Bandwidth

Another method of determining a system’s equivalent viscous damping, c, is called

half-power bandwidth method. It makes use of the frequency-response curve of the

system, which is obtained by determining the amplitude of the response at different

frequencies. An example of such a curve is given in figure 3.27.
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Figure 3.27: Magnitude frequency response of a damped harmonic-loaded SDOF

system.

At the response curve in figure 3.27 it can be noted that for lower frequencies,
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the amplitude of the response starts from the value of the static amplitude, which

is given by the ratio of the initial load over the stiffness of the system, a0/k. With

increasing frequency the magnitude of the response is amplified until it reaches a

maximum near the natural frequency, ω. Past the natural frequency the amplitude of

the response diminishes, eventually becoming lower than the initial static response.

The half-power bandwidth method focuses on the response band around the

maximum response, in the frequency range for which the response of the system is

higher than at least u(t) >peak/
√

2. The value of the damping ratio, ξ, can then

be obtained by approximation, for low values of ξ, using the relation between the

frequencies that limit the half-power bandwidth, as given by:

ξ ∼=
f2 − f1

f2 + f1

(3.91)

The obtained approximation to the value of the equivalent viscous damping

contains an error. The approximated results are also higher than the exact value,

although not as high as the approximation obtained using the free-vibration decay

method. This means the half-power bandwidth can be used to estimate the value

of damping with less error for systems with relatively higher values of damping.

3.10 Distributed Parameter Systems

3.10.1 Generalised SDOF Systems

The theoretical principles that apply to SDOF systems can, in some circumstances,

be generalised to multiple degree of freedom, MDOF, systems, (Clough and Penzien,

1993). Two examples of MDOF systems which can be modelled using the dynamic

principles of a SDOF system are:

• Systems with linked rigid bodies where the mass is concentrated in arbitrated
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rigid bodies and the elastic behaviour is associated with weightless spring

elements, and

• Systems with distributed mass and elastic properties. These systems can be

described by generalised SDOF principles if the displacements are monotonic,

i.e., the deformed body can only assume one deformed shape or form.

Systems with elastic properties and distributed mass are of special interest for the

present study, since the dynamic principles of SDOF can be generalised to provide

simple analytical tools, that can be used to model their dynamic behaviour. Bars

with simple boundary conditions, such as bender element transducers and particular

slender soil samples, can both be assumed to behave as distributed mass and elastic

properties MDOF systems, (Lee and Santamarina, 2005; Richart et al., 1970).

A system with distributed flexibility has an infinite number of degrees of freedom.

The application of SDOF principles is possible for a number of simple deformed

shape or modes of the vibrating body. The properties of the system that must be

considered are its distributed stiffness, EI(x), and its distributed mass, m(x).

It is convenient to fragment each monotonic displacement into its amplitude that

is function of time, Z(t), and its shape, which is a function of position, η(x).

u(x, t) = η(x) · Z(t) (3.92)

Because the amplitude of the displacement function varies with time, it can be

used to produce an equation of motion more general than that presented by equation

3.69, and which takes the form:

m∗Z̈(t) + c∗Ż(t) + k∗Z(t) = p∗(t) (3.93)
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where m∗ is the generalised mass, c∗ is the generalised damping coefficient, k∗ the

generalised stiffness and p∗(t) the generalised load function of the system.

Considering a bender element fixed to the end plate of a triaxial cell, it is possible

to relate the generalised properties of the SDOF system to the actual properties of

a cantilever beam system and actual load function, m, c, k and p, by integrating

them along the bar’s length. Figure 3.28 illustrates such a system,

m∗ =

∫ L

0

m(x) η(x)2dx (3.94)

c∗ =

∫ L

0

c(x) η(x)2dx+ C1

∫ L

0

EI(x) η′′(x)2dx (3.95)

k∗ =

∫ L

0

k(x) η(x)2dx+

∫ L

0

EI(x) η′′(x)2dx (3.96)

p∗(t) =

∫ L

0

p(x, t) η(x)dx (3.97)

where C1 is a damping constant. Equations 3.94 to 3.97 describe the generalised

mass, damping, stiffness and load for the cantilever beam with no axial force applied

to it.

3.10.2 Partial Differential Equations of Motion

Partial differential equations can be used to formulate the equations of motion of

a dynamic system with distributed parameters such as a cantilever. A cantilever

beam provides a suitable example with potential application to bender element test

analysis.

Consider the vertical cantilever beam, with section properties EI(x) and m(x),

represented in figure 3.28, in a free-vibration state of motion. The relevant load cases

for the present analysis are those involving flexural deformation. The properties of

the beam section are considered to be constant along its length, i.e., its flexural
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stiffness and its distributed mass become EI(x) = EI and m(x) = m.

Figure 3.28: SDOF system of flexed cantilever.

According to the Bernoulli-Euler theory, which takes into account the transverse

inertia forces and neglects the effects of shear deformation and rotational inertia

forces, (Karnovsky and Lebed, 2001), the equation of motion can be expressed as:

EI
∂4u(x, t)

∂x4
+m

∂2u(x, t)

∂t2
= 0 (3.98)

Other more complete and complicated theories could also be named. Timo-

shenko’s theory, for example, takes into account the rotational inertia and the shear

deformation of the beam, (Karnovsky and Lebed, 2001). Even though the Bernoulli-

Euler theory is not the best to model an exact solution, it provides simpler analytical

tools and is it produces first order results with sufficient precision, (Karnovsky and

Lebed, 2001).

The beam displacement u(x, t) is again divided into an amplitude and shape

functions, Z(t) and η(x), as in equation 3.92. Equation 3.98 can now be expressed
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in the form of two differential equations,

Z̈(t) + ω2Z(t) = 0 (3.99)

ηiv(x) − δ4η(x) = 0 (3.100)

where ω is the vibration circular frequency and δ is a function of the boundary

conditions. The frequency equation 3.101 expresses the relation between ω and δ

and is at the base of modal analysis, according with the Bernoulli-Euler theory.

ω = (δL)2
n

√

EI

mL4
for n = 1, 2, 3, . . . (3.101)

Different solutions for the value of δ correspond to independent modes of vibra-

tion of the beam, which occur at different frequencies ω, and are associated with

different shapes. The frequency of each mode of vibration, as well as its corre-

sponding shape are dynamic characteristics of the system and are also known as

eigenvalues, ω2, and eigenvectors.

The expressions for the determination of δ for simply supported beams and

cantilever beams with a mass at the free end are presented in equations 3.102 and

3.103 respectively.

• Simply supported beam:

sin δL = 0 (3.102)

• Cantilever with mass at the free end:

δL =
1 + cos δL cosh δL

α (sin δL cosh δL− sinh δL cos δL)
(3.103)
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where α is the ratio between the mass at the free end, M , and the mass of the

beam.

α = M/ (mL) (3.104)

A simple cantilever with no concentrated mass is a particular case of the

cantilever beam with a mass on top where M = 0 and therefore α = 0. Its

corresponding value of δ can be calculated using the simplified equation 3.105.

• Simple Cantilever:

cos δL = − (1/ cosh δL) (3.105)

3.11 Resonant Column

Resonant columns are well known laboratory devices for the dynamic testing of soil

samples. Their use is related to the use of bender elements because they are also

designed to determine the small-strain shear-stiffness of soils. It is therefore relevant

to understand their application as well as its supportive theory, and to distinguish

the differences and the similarities with bender element testing. A short summary

of the application of bar vibration theory, as presented in section 3.10.2, is presented

in the context of resonant column testing.

The resonant column apparatus is generally used to excite longitudinal or tor-

sional modes of vibration of soil samples, (Richart et al., 1970). Only the case of

torsional excitation is discussed, for cylindrical columns of soil samples, since it is

the most commonly used mode of excitation. The first mode of torsional vibration

is favoured because it is the only mode of vibration where waveguide dispersion is

not present, (section 3.5.4). When used this way, resonant columns are also known

as torsional shear apparatus, (Kim and Stokoe, 1994). A generic schematic repre-
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sentation of a resonant column is given in figure 3.29.

Figure 3.29: Generic resonant column model.

The sample can be excited in a torsional mode and its response monitored. The

dynamic behaviour of the soil can be expressed as a response curve. This response

curve contains the amplitude and phase delay of the response at each frequency

of excitation. The properties of the response curve and its components enable the

determination of the shear-stiffness of the sample’s constitutive medium, as well as

its attenuation in the form of a damping coefficient.

Soil stiffness is strain level dependent, (figure 1.1), except at low and very low

strains, (Atkinson, 2000), where the elastic relation appears to be linear. The study

of the first torsional mode of vibration of a cylindrical soil sample, applying small-

strains, was devised to overcome some of the complexities of general soil dynamic

behaviour.

The determination of the medium’s shear stiffness is made by the application

of the torsional equation of vibration, 3.44, (Rix and Meng, 2005). The boundary
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conditions must be considered to enable the application of the main equation of

vibration equation in a specific form. Primarily, these boundary conditions relate to

the fixity of the ends of the cylindrical sample, the inertia of the caps attached to

the free ends, which participate and influence the system dynamic response, and the

torque driving the oscillation, (figure 3.29). Two types of end fixity are considered

in the relevant literature, fixed-free and free-free ends, (Ashmawy and Drnevich,

1994).

3.11.1 Fixed-Free Boundary Conditions

The fixed-free boundary condition is the traditional set-up of the resonant column

apparatus, as presented by Drnevich et al. (1978), and stated initially in ASTM

(1978) geotechnical testing standards. In such a set-up, the mobility is restricted

to one of the ends of the cylindrical sample, and torque load applied to the other

end, also known as passive and active ends respectively. Referring back to figure

3.29, and according to ASTM-D-4015 (2000), the fixed end is assumed to be the

bottom end A. This translates into the following boundary condition: θ(0, t) = 0.

The torque load, pT , is then applied at the other end of the sample, in this case, the

top rigid mass at end B. Again according to ASTM-D-4015 (2000), the geometry

ratio height-diameter, of the cylinder sample must be of 2:1 with the sample placed

vertically.

The torque load can either be impulsive or continuous, creating transient or

steady-state responses from the system respectively. If the load is impulsive, the

sample is left to rotate freely, in what is a damped free vibration response, as

described in section 3.8.2. The sample is expected to assume a torsional mode of

oscillation at its respective natural torsional frequency. Using an impulsive load and

obtaining a damped free vibration allows to determine the natural frequency of the

system, which is used together with the equation of vibration 3.44 to obtain the shear
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stiffness of the sample. The determination of the viscous damping coefficient could

also be obtained from the observation of the decrease of the oscillation amplitude,

applying the method of free-vibration decay described in section 3.9.

If the torque load is harmonic continuous, then the sample response assumes a

steady-state of vibration, oscillating at the same frequency as the load. By varying

the load frequency, the magnitude and phase delay response curves of the sample

can be obtained, making this the ideal load case to obtain the complete response

curves of the system. When using a fixed-free configuration, the continuous harmonic

oscillation is usually driven by a coil-magnet device, (Drnevich et al., 1978). Some

error can occur in the readings due to the nature of this test equipment. The coil-

magnet, used to drive the oscillation of the sample, uses a magnetic field that adds

extra damping to the system, which is known as the back electromagnetic force,

back-EMF, (Wang et al., 2003). If the damping of the medium is low to start with,

the back-EMF can be a significant source of error, (Cascante et al., 2005; Meng

and Rix, 2003). Nevertheless, it does not significantly affect the determination of

stiffness since the resonance frequency is little affected by damping, as expressed in

equation 3.70.

The desired properties of the system are its stiffness and the damping. In order to

determine them, other relevant properties of the cylindrical sample and rigid masses

need to be determined prior to the use of the frequency equation 3.107. For a general

resonant column test system, such as the one pictured in figure 3.29, the relevant

properties to the determination of the shear-stiffness of the sample are presented in

table 3.2.

The continuous harmonic torque imposing the torsional oscillation of the system

can take the form of well known sinusoidal function,

pT (t) = a0 exp(iωt) (3.106)
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Part Property Symbol

rigid mass at end A polar moment of inertia IP1

rigid mass at end B polar moment of inertia IP3

sample height H

radius r

volume V = πr2H

density ρ

mass M = V ∗ ρ

mass polar moment of inertia IP2 = πR4

2
·M

(to be determined) natural frequency ωn

(to be determined) shear stiffness G

(to be determined) damping ratio ξ

Table 3.2: Relevant properties of the sample and rigid masses of a resonant column

apparatus according to figure 3.29.

where a0 is the amplitude and ω the forced circular frequency of the oscillation.

The dynamic response of the system is obtained by measuring the rotation at

the free end B, θ(H, t). The theoretical frequency response equation translates the

ratio between the harmonic torque and the angular response as given in Rix and

Meng (2005),

ωn = β

√

G

ρH
= β

ct
H

(3.107)

where β is a parameter which reflects the boundary conditions. It is worth not-

ing the similarities with the Euler-Bernoulli beam frequency equation 3.101, where

essentially the flexural stiffness, EI, is replaced by a torsional stiffness.

Equation 3.108 describes a non-damped system, where ξ = 0. For such systems,

the amplitude of the oscillation tends to infinity as the load frequency nears the

characteristic frequencies of the system. The ratio between the load and the torsion
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amplitude is given in equation 3.108:

pT (t)

θ(H, t)
= IP2

β

tan β
ω2 − IP3ω

2 (3.108)

which in the limit becomes

lim
ω→ωn

θ(H, t) = ∞ ⇒ lim
ω→ωn

pT (t)

θ(H, t)
= 0 (3.109)

giving

β tan β =
IP2

IP3

for ω = ωn and n = 1, 2, 3, . . . (3.110)

where ω is the load frequency and ωn is the characteristic first mode torsional fre-

quency of the system.

It is possible, knowing the torsional resonant frequency, to obtain the shear wave

velocity and consequently, using equation 3.12, to obtain the shear stiffness of the

medium. The torsional resonance frequency corresponds to the first mode of tor-

sional vibration, (Richart et al., 1970). Equation 3.107 is therefore the governing

equation of resonant column testing in torsional with fixed-free ends boundary con-

ditions, (Cascante and Santamarina, 1997).

3.11.2 Free-Free Boundary Conditions

More recently, resonant columns capable of free-free ends boundary conditions have

also been used, (Stokoe et al., 1994). This configuration was devised to provide an

alternative to the fixed-free configuration and its inherent complexity due to the

use of a coil-magnet device needed to drive the system, (Kalinski and Thummaluru,

2005). With the free-free set-up, a simpler torsional excitation device can be used

to drive the system, which must now be placed horizontally.

The torsional frequency equation of a system with these boundary conditions is
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the same as for the fixed-free boundary conditions provided by equation 3.107. The

difference in analysis can be found in the determination of parameter β. With the

free-free set-up, both mass inertias at each end of the sample participate in the oscil-

lation of the system and must therefore be considered, (Kalinski and Thummaluru,

2005). Equation 3.111 is used to calculate β for the free-free torsional vibration

case,

tan β =
(µ1 + µ2)β

µ1µ2β2 − 1
(3.111)

where

µ1 =
IP1

IP2

and µ2 =
IP3

IP2

(3.112)
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Chapter 4

Synthetic Soil Samples

4.1 Introduction

Polyurethane synthetic rubber was chosen as replacement of soft clay soil for the

geometry parametric study presented in section 6. The parametric study required

different 32 samples with varied geometries and constant mechanical properties.

The main practical advantage in the use of synthetic materials over real soil is the

stability of its mechanical properties, particurlaly when compared with soft soils.

The process of natural soil sampling can disturb the original fabric of the soil.

During the sampling process, the stress state and the moisture content of the soil

are undoubtedly modified, (Craig, 1997). This might lead to reconfigurations of

the particle skeleton but also to alterations in chemical-related phenomena such as

leaching, ageing and cementation, (Nagaraj and Norihiko, 2001). During the han-

dling and storage of the samples, similar aspects of physical and chemical alterations

might also occur, (Head, 1998). The nature of these disturbances is random since

they are not intended and besides, most can go undetected prior to testing the sam-

ples. Even if the disturbances to the soil were kept to an acceptable minimum, the

heterogeneity found in the soil deposits can also lead to variations in the properties
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of distinct samples samples.

For the parametric study natural or artificial clays, such as kaolin, where con-

sidered unsuitable due to the inherent difficulty of handling such a great number of

samples, as well as to ensure their homogeneity, or even of being able to measure,

quantify and control their heterogeneity. The differences in mechanical properties

between samples would become an unwelcome source of error. It was therefore im-

portant to find a suitable alternative to soft clay which could behave in a similar way

for the range of stresses and strains applied during bender element testing and which

could overcome these inherent uncertainties. Synthetic rubber was a straightforward

choice.

Appropriate synthetic materials can overcome the difficulties posed by actual

soils concerning uniformity and consistency of the samples, which is one of the main

requirements of a parametric study. The chosen synthetic material from which the

tested samples were obtained was polyurethane rubber. This material is known for

its elasticity, mechanical resilience and chemical stability, (Doi, 1996). Also, there

was some history of using such materials in geotechnical laboratory studies by Stokoe

et al. (1990) and Kim and Kweon (2000). Polyurethane rubber can be casted into

moulds, facilitating the production of samples with the desired range of geometries,

even including a slot to place the bender element transducers. Polyurethane rubber

is commercially available at very reasonable prices.

4.2 Polymers

Polymers are one of the most common type of materials found in nature or in

present human activity. The term polymer indicates a certain chemical configuration

characterised by the inclusion of certain types of macromolecules in the molecular

structure. These macromolecules are formed by chains of smaller molecules known
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as monomers.

A monomer is a molecule, usually carbon based, with the potential of forming

four chemical links. Two of these chemical links are usually with hydrogen atoms.

One of the most common basic monomers is the hydrocarbon CH2, also represented

as:

C

H

H

Figure 4.1: Typical monomer hydrocarbon molecule.

There are two types of chemical link between monomers forming a polymer. The

main chemical link, and the one responsible for forming the polymer chain, is the

covalent bond. The covalent bond is a strong chemical link involving the sharing

of electrons between monomers, (Tabor, 1991). This bond forms a two-dimensional

string macromolecule. A typical polymer formed by covalent bonds between CH2

monomers is presented in figure 4.2.

C

H

· · ·
H

C

H

H

C

H

H

C

H

H

C

H

H

C

H

H

· · · ≡ C

H

H

C

H

H
n

Figure 4.2: Typical polymer molecule.

The second possible chemical link between monomers, which is not universal for

all polymers but is present in rubber-like materials such as the ones considered, is

the cross-link bond, (Warner and Terentjev, 2003). This bond is weaker than the

covalent bond and is responsible for some of the properties that make polymers have

a rubber-like behaviour. Cross-links bonds between monomers of a polymer chain

form a three-dimensional network skeleton. If it was not for these cross-link bonds,
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the polymer would be in a liquid state, (Tabor, 1991).

Polymers are usually characterised by a particular monomers, nevertheless, their

properties depend on a number of factors:

Skeleton Linearity describes the configuration of the macromolecule chains. The

chain can be linear, or non-linear. A linear skeleton is a simple chain with two

ends. Non-linear skeletons are either branched, forming a two-dimensional

structure with more than two ends, or are organised as a network, forming a

three-dimensional complex structure. The distinct skeleton organization is due

to the functionality of the monomers present in the polymerization reaction.

For monomer functionality of two or less, each monomer can only bond with

two others. Monomer functionality higher than two permits the formation

of non-linear skeletons of complex chains. Non-linear network skeletons have

not only covalent bonds between monomers but also have, at certain junction

points, cross-link bonds. The ratio of cross-link bonds is variable and actually

plays an important role in the properties of the polymer.

Monomer Diversity is a simple differentiation between homopolymers and copoly-

mers. Homopolymers have only one type of monomer, which can include one

or more sub-types of monomers. Copolymers have more than one type of

monomer.

Crystallinity describes the regularity of the polymer chain arrangement. In terms

of regularity, a polymer chain varies between crystalline and amorphous arrange-

ments. Polymer chain regularity, or lack of it, can be expressed in two senses,

either referring to the intrinsic monomer disposition along the chain, and/or

to the regularity of the chain arrangement in space.

Polymerization describes the reaction in which the polymer chains are formed.

There is more than one way of distinguishing between polymerization reac-
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tions. The activity potential of the monomers and polymer chains, where

they can be classified either as step-polymerization or as chain-polymerization,

(Feldman and Barbalata, 1996). In step-polymerization, any two monomers

or molecules can react with each other which leads to the disappearance of

monomers in the reaction. In chain-polymerization, monomers can only be

added to active chain ends. The other characteristic of polymerization reac-

tions is given by the concepts of poly-condensation and poly-addition. Poly-

condensation is a reaction where small molecules are released during the poly-

merization and do not become part of the macromolecule. In poly-addition

the reactions take place with no loss of molecules.

4.3 Polyurethane Rubber

Polyurethanes are a type of synthetic polymers relatively recently added to the

polymer family, (Saunders and Frisch, 1962). Polyurethane rubbers have a low

density network skeleton, are copolymers, have an amorphous molecule configuration

and are formed by a step-polymerization of poly-addiction, (Feldman and Barbalata,

1996). Polyurethane rubber can contain a number of functional monomer groups

but is characterised by the a monomer know as urethane, (Feldman and Barbalata,

1996).

[ NH CO O]

Figure 4.3: Representation of urethane monomer.

The development of polyurethane production is credited to Professor Otto Bayer.

Through a chemical process of poly-addition, polyurethanes are generally obtained

by the reaction of a diisocyanate group with a diol.

Such polymerization reaction is complex, involving a multi-step chemical process
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CH2

NCO

NCO

(a) diisocyanate

H O CH2 CH2 O H

(b) diol

Figure 4.4: Polyurethane main molecular groups.

which eventually leads to the formation of the polyurethane. Besides the polymer-

ization reaction, where monomer molecules are added to the polymer chain, the

chemical reactions that lead to the formation of cross-linking must also occur. The

cross-linking reactions are also known as vulcanization, (The British Association of

Synthetic Rubber Manufacturers, 1970). The chemical representation of a simple

polyurethane monomer is given in figure 4.5.

C

O

N

CH2

N

H

C

O

O CH2 CH2 O
n

Figure 4.5: Chemical representation of a simple polyurethane monomer.

The properties of the polyurethane rubber depend on the density of cross-link

bonds and on the rotation potential of the covalent bonds between monomers,

(Warner and Terentjev, 2003). The reason why polyurethane can act like rubber

or an elastomer is because of the ability of sliding between the monomer strings,

enabled by flexible cross-link bonds and the capacity for molecular rotation at the

covalent bonds. A representation of a polymer chain with cross-link bonds is given

in figure 4.6.

The notion of elastomer derives from the capacity of a rubber-like material to

withstand very large elastic strains which can go well over 100%, (Treloar, 1958).
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Figure 4.6: Polymer chain with covalent bonds in thin lines between monomers

and cross-link bonds in thicker lines, forming an amorphous network skeleton.

Rubber-like materials are in fact viscous liquids with a solid behaviour due to the

presence of the cross-links bonds, (Tabor, 1991). At small strains, rubber-like ma-

terials behave like liquids being near incrompressible, having a Poisson ratio near

to 0.5, (Doi, 1996). For strains higher than 100% the Poisson’s ratio varies with

the elongation, (Claxton, 1958). Nevertheless, for the present study only small-

strain behaviour is relevant and hence only contant Poisson ratios around 0.5 are

considered.

4.4 Synthetic Rubber and Soft Soil

Besides the inherent practical advantages of using a synthetic material as a soil

replacement to perform the parametric tests, it is important that a significant degree

of comparability exists between the chosen material and actual soil. The mechanical

behaviours of polyurethane rubber and soft soils are similar, for small-strains, since

both can be assumed to be linear-elastic.

4.4.1 Soft Soil Consolidation

Time delayed strains are commonly referred to in the study of soft soils, for exam-

ple when studying foundation settlements the application of a load to a soft soil

enables the observation of instant and time delayed deformations, (Terzaghi and
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Peck, 1967). In geotechnical terms the instant deformation is referred to as being an

elastic deformation. The delayed deformation, or consolidation, is divided in two,

known as primary and secondary consolidations, (Smith, 1990), where the secondary

consolidation is also known as creep.

The primary consolidation is the deformation of soft soils due to the dissipation

of the fluid phase pressure gained with the application of the load. The dissipation

of the fluid pressure is accompanied by its flow according with the pressure gradient,

being implicit that the soil is drained. The creep is the rearrangement of soil parti-

cles to accommodate the pressure transferred by the fluid. It is intuitive to assume

that primary consolidation on its own is reversible and creep is not, and therefore

is assumed to be a type of plastic deformation. Both primary and secondary con-

solidations can occur simultaneously if the soil structure has not experienced the

applied stress before, or just primary consolidation, on what is referred to as an

over-consolidated soil, (Smith, 1990).

The influence of time delayed deformation behaviour of soft soils is associated

with what can also be understand as of viscous nature, (Marques et al., 2004). Such

viscous-like behaviour is influenced by temperature and strain level, (Campanella

and Mitchell, 1968; Mitchell, 1964).

4.4.2 Viscosity

Viscosity is a concept usually applied in the Newtonian context of fluids resistance

to flow, (Tabor, 1991). It can be observed when the shear for a given stress is not

accomplished immediately but distributed in time. Some viscous-type behaviour is,

to a lower degree, present in solid materials as well. Coincidently, both rubber-like

materials and soft soils have considerable viscous behaviour. In fact, rubber-like

materials are also known as non-Newtonian fluids, (Podesta, 2002).

The characteristics of rubbers viscous behaviour can be expressed by the decom-
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position of strain into two components, making use of a differential equation relating

stress σ, strain ε, and time t, (Maxwell and Niven, 1890),

dε

dt
=

1

K

dσ

dt
+
σ

β
(4.1)

where K is a constant modulus of elasticity and β a viscosity constant, characteristic

of the material, (Treloar, 1958). The elastic and viscous components of the equation,

in which the strain and the rate of strain increase, are proportional to the stress.

Synthetic rubbers and soft soils are both commonly described as having visco-

elastic dynamic behaviour. Their complex behaviour has been studied making use of

empiric mechanical models. A common reference in the modelling of both materials

is made to the independent work of Kelvin (1887) and Voigt (1887) where such

mechanical model is described.

A classic visco-elastic model for soft soil dynamic behaviour was given in Biot

(1956). Since then further models have been developed, (Bardet, 1992). The key

for the analysis of soft soil behaviour is the consideration of the two distinct solid

and liquid phases of a nearly saturated soil, making the consideration of porosity

fundamental. So much so that Biot (1956) described the visco-elastic behaviour

of clays as poro-elastic, porosity being the percentage of soil volume occupied by

the liquid phase, usually water. Polyurethane rubber is also known for its viscous

behaviour, not due to the presence of two phases as in soft soils but due to its

molecular configuration, (Warner and Terentjev, 2003).

To observe the significant time delay of a polyurethane rubber deformation, a

simple compression test under constant load was carried out. Figures 4.7(a) and

4.7(b) show the deformation values of the compression of a cylindrical polyurethane

rubber sample, during time interval past the initial load. The sample has a diameter

of D = 38mm, a height of H = 76mm, a density of ρ = 1000kg.m−3 and is under a
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constant load of 1.0kg.
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Figure 4.7: Simple compression load test on polyurethane cylinder.

The sample deformation is presented normalised in relation to the initial elas-

tic displacement of 8.20mm. After 103s, the differential deformation increased by

around 40% of the initial deformation.

The dynamic loading of rubber-like materials within a frequency range of f ∈

[0.5 20.0]kHz means that the duration of the load is quite small, in the range of

t ∈ [0.5 20.0] × 10−4s. Considering the solution of equation 4.1 in the form:

ε =
σ

K
+

∫ t

0

σ

β
dt (4.2)

such a short load duration makes the viscous term of the strain equation negligible,

in comparison with the elastic term. So, for such short duration loads, the viscous

component becomes negligible and can be omitted.

The duration of the load for soft soils and rubber-like materials is important

to determine the extent of the consolidation and other viscous phenomena. The

considered dynamic load frequencies result in stress being applied to the media for

relatively short durations of time. Therefore, the viscous component of strain can
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be assumed to be negligible, ∆t ∼= 0 ⇒
∫ t

0
σ
β
dt ∼= 0, thus enabling the application of

linear-elastic models of behaviour.

4.4.3 Molecular Structure

Soft soils, when saturated, have two phases, solid and liquid. That is the reason

for its strong visco-elastic or poro-elastic behaviour, (Biot, 1956). The solid and

liquid phases are not independent from each other but interact to form what can

be considered, to some extent, a composite material. The cohesion between the

solid particles can be obtained due to geometric nature of the solid particles and

ionic nature of fluid particles. As the size of a particle decreases the ratio between

the surface and the volume increases. Small enough particles, such as clay particles

D < 2µm, have electrically charged surfaces, enabling a ionic bond between the solid

particles and ionic fluid particles, such as water molecules. Some bonds between solid

soil particles are also possible. For example, due to ageing chemical alterations can

lead to the formation of new bonds in what is known as cementation, (Dano et al.,

2004; Sørensen et al., 2006).

Even though rubber-like materials do not have two or three distinct phases as

soils do, they would behave as viscous fluids if it was not for the cross-link monomer

bonds. In fact, their molecular amorphous structure is more similar to that of a

liquid than to that of a solid.

Both the cross-link bonds and the soft-soils ionic bonds are quite weak and flex-

ible, despite the exact nature of the bonds being different, the similarities between

the two materials molecular structure is worth mentioning.
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4.4.4 Strain Level

Soil has a non-linear relation between stress and strain, (Burland, 1989). A constant

maximum stiffness is found at a range of low strains, as seen in figure 1.1. When

solicited at strain levels lower than 10−3% to 10−4%, depending on the soil properties,

the apparent constant value of stiffness observed allows to consider the soil as a linear

elastic medium.

Rubber has an elastic behaviour up to much higher strain levels than soils do.

Nevertheless, this does not mean that it has a linear-elastic behaviour. Rubber-

like materials, despite being elastic up to much higher strains than soft soils or even

hard solids, have in fact a non-linear elasticity, (Treloar, 1958). The non-linear elastic

behaviour of rubber-like materials is apparent for very large strains, ǫ > 100%, (Doi,

1996). For smaller strains, such as the strains considered in bender element testing,

rubber-like materials can be considered to have linear-elastic behaviour.

4.4.5 Temperature

Rubber-like materials are quite sensitive to temperature. In fact, they have a unique

counter-intuitive characteristic; unlike crystalline solids, their stiffness modulus in-

creases with temperature, (Tabor, 1991). The stiffness modulus of rubbers not only

increases with temperature, but is believed to be approximately proportional to

absolute temperature, (Doi, 1996). Remembering the amorphous molecular config-

uration of such materials, when tension is applied to them, the polymer chains are

pulled and tend to align with each other, thus increasing its degree of crystallinity.

Due to their amorphous molecular configuration and because of the nature of the

molecular cross-link bonds between polymer chains, the more energy is added to the

system, the higher its entropy. For higher entropies the polymer chains resist more

at being aligned. So, by increasing the temperature of a rubber-like material, the
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energy and entropy of the system also increase, adding to the resistance of polymer

chain alignment, and consequently, increasing the resistance to deformation of the

material, i.e., stiffening it.

Rubber-like materials can be expected to behave as springs with a spring constant

of K:

K =
3kBT

Nb2
(4.3)

where kB is the Boltzmann constant, T is the absolute temperature in oK, N is the

number of monomers in the polymer chain and b is the bond length.

4.5 Sample Preparation

The polyurethane samples used in the parametric study presented in chapter 6 were

prepared in the geotechnics laboratory at UCL. A polyurethane rubber that goes

by the commercial name of Poly RTV liquid rubber was chosen as the polymer to

be used as soil replacement. This synthetic rubber is acquired in the form of two

liquid components which, when mixed in the right proportions, vulcanize at room

temperature; hence the abbreviation ’RTV’.

The density of the two liquid parts was known, and so the correct proportion

of each part to use in the mixture was obtained by weighting it. After starting the

mixture, a time window of ten minutes was available during which the rubber parts

could be mixed and poured into the moulds, after that either of these operations

became impractical or even impossible since the mixture quickly becomes too viscose

to handle.

The moulds, seen in figure 4.8, are made of aluminium. They are composed by a

fixed cap, to which two side parts can be screwed. Positioned inside the side parts is

a movable cap. The position of the movable cap determines the sample height. One

of the two side parts of each mould is perforated to allow the liquid rubber mixture
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Figure 4.8: 4 moulds used to prepare the polyurethane rubber samples.

to enter the mould and to exhaust the air previously contained in it.

Figure 4.9: Male bender element mould in fixed cap.

Both the fixed and movable cap have a male bender element mould, as seen in

figure 4.9, with thickness and width dimensions slightly smaller than the dimensions

of the bender elements used in the parametric test, 1.0×5.5mm < 1.5×6.0mm (UCL-

BE in figure 5.7(a)). These smaller dimensions of the male bender element moulds

were chosen to guaranty a tight fit between the transducers used in testing and the
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corresponding gap left in rubber samples.

The liquid rubber mixture was prepared in quantities to guaranty the moulding

of four cylindrical samples simultaneously. In each set of four samples, three of them

had the same height and diameters of 38, 50 and 75mm, obtained from mould A, B

and C respectively (figure 4.8). The fourth sample had, for all sets, constant diam-

eter of 38mm and height of 76mm, being obtained from mould D. The justification

for this choice of sample dimensions is given in section 6.1.1.

4.6 Repeatability

In order to verify the degree of repeatability offered by the use of polyurethane

rubber as a soil replacement, a polyurethane sample was tested. For the repeatability

test, a synthetic sample of polyurethane rubber with a commercial name of poly76

was tested six times with bender elements, during a period of 81 days counting

from the time it was first casted. The sample used for this purpose was chosen

from a group of samples used in the parametric study presented in section 6 and its

geometry is described in table 6.2, being referred to as sample S08.

For each of the six tests the equipment was reset so that any error caused by

variations in its installation and configuration could also be observed. Another

parameter controlled, besides the sample age, was the room temperature of the

laboratory during each test, due to the supposed sensitivity of polyurethane rubbers

to it, as described in section 4.4.5.

The tests on the chosen sample where conducted in exactly the same way as

each one of the parametric bender element tests. A detailed description of this

test procedure is provided in section 6.1. For each test six velocity estimates were

obtained using different input signals and signal processing methods. A summary

of each velocity estimation method and the used parameters is given in table 4.1. A
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detailed explanation of each of the used input signal properties and signal processing

method is given in section 2.

Reference Signal Type Processing Method Frequency

sweep1 sweep signal phase delay gradient f ∈ [250 650]Hz

sweep2 ........ ........ f ∈ [1000 4000]Hz

ps1 pulse signal direct travel time f = 400Hz

ps2 ........ ........ f = 1200Hz

pip pi points phase delay gradient f ∈ [1500 4000]Hz

cs continuous signal ........ f ∈ [1500 4000]Hz

Table 4.1: Detailed notation of figure 4.10.

Figure 4.10 contains each of the 36 velocity estimates, according with the test

type and the age of the sample when tested. The average velocity for each test type

as well as the variation about that average is given are table 4.2.
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Figure 4.10: Estimated wave velocities from bender element testing on one sample

over 81 days, determined with different input signals and different signal processing

methods.

There are three parameters which might vary with each test, the sample age,

the room temperature in the laboratory and the test set-up. The sample age is
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Sample Age Temperature Wave Velocity Estimates (m.s−1) / Deviation From The Average (%)

(days) oC sweep1 sweep2 ps1 ps2 pip cs

7 26.0o 25.4 / 2.7% 39.1 / -1.6% 32.9 / -3.2% 38.9 / -1.0% 38.9 / -0.8% 39.1 / -0.8%

12 26.0o 23.9 / -3.4% 39.8 / 0.2% 34.7 / 1.9% 39.3 / 0.1% 38.9 / -0.7% 39.1 / -0.8%

14 23.5o 25.1 / 1.5% 40.3 / 1.5% 33.7 / -0.8% 39.5 / 0.7% 39.8 / 1.4% 40.9 / 3.8%

16 23.5o 24.4 / -1.3% 40.6 / 2.2% 34.1 / 0.4% 39.5 / 0.7% 39.8 / 1.5% 39.3 / -0.2%

79 25.5o 24.6 / -0.5% 39.2 / -1.4% 34.1 / 0.4% 39.1 / -0.5% 39.8 / 1.5% 38.9 / -1.3%

81 24.5o 25.0 / 1.1% 39.3 / -1.0% 34.5 / 1.4% 39.3 / 0.1% 38.1 / -2.8% 39.1 / -0.7%

average 24.7 39.7 34.0 39.3 39.2 39.4

Table 4.2: Wave velocity estimates and deviation from average of each sample for each of the repeatability tests.
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the factor with greater potential at indicating how stable the sample is to repeated

testing at different times. The temperature, although being relatively stable, suffered

variations from test to test. The maximum temperature difference for any two tests

was 2.5oC; it will also be analysed together with the wave velocity results.

The test equipment was set-up always in the same way, but some human error

cannot be avoided and so, if any variations occurred in the test set-up, they were

undesired and consequently unaccounted for. The test equipment set-up must there-

fore also be considered a source of error, but that unlike the room temperature and

sample age, cannot be directly monitored.

Of the two known variable parameters, the sample age was the first to be

analysed. Figure 4.11 contains the representation of the variation about the av-

erage of each test for different test methods.

The observation of the results directly in figure 4.11 lead to no objective conclu-

sion. Even though some variation does occur, it does not seam to be correlated with

the sample age for any of the test methods. A linear regression curve was correlated

with each set of results with no significant relation being observed either.

The variation of wave velocity with temperature is presented in figure 4.12.

Again, the variation about the average is represented for each test method.

There seems to be no relation between room temperature and the wave veloc-

ity results. In figures 4.12(a) to 4.12(f), no noticeable trend in wave velocity can

be seen with increasing temperature. If the stiffness of rubber materials is in fact

approximately proportional to the absolute temperature, it was not possible to ob-

serve this phenomenon for the range of studied room temperatures. The maximum

temperature difference observed was of 26.0oC−23.5oC= 2.5oC, which in terms of

absolute temperature, is equivalent to a variation of ∆temp = 0.85%,

∆temp =
2.5oK

273oK + 25oK
∼= 0.85% (4.4)
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Figure 4.11: Repeatability of synthetic sample testing with sample age.
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Figure 4.12: Repeatability of synthetic sample testing with room temperature.
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where 273oK + 25oK is the average temperature. Such temperature variation could

only, as expressed in equation 4.3, justify a stiffness variation of the same im-

portance and consequently a velocity variation of around 0.9%. The observed

velocity variation of 2.0% could only be explained by a temperature variation of

∆temp = 4% ≡ ∆temp = 11oC.

In terms of repeatability, having tested the samples over a period of 81 days, and

with a room temperature within a range of 2.5oC, obtaining 36 velocity estimate

results, the highest deviation from average was of 3.8%. 31 of those results had a

deviation which falls below the 2.5% mark. These results present a good case of how

reliable synthetic rubber samples are. All things being equal, and considering the

calculation effort necessary to obtain the results, an average deviation of 1.5% was

obtained. This value of velocity deviation must be atributed in bulk to human error,

room temperature and sample age since no particular relation could be atributed to

any single parameter.
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Chapter 5

Bender Element Behaviour

This chapter presents experimental work concerning the monitoring of the dynamic

behaviour of bender elements and its correlation with analytical and numerical mod-

els.

Electric signals are used to excite (transmitting) bender elements, which trans-

form them into mechanical vibration, and vice-versa. A specific correlation between

the exciting electric signals and the actual mechanical oscillation performed by the

bender elements is commonly neither mentioned nor assumed. Nevertheless, the

transmitted and received electric signals time histories are usually compared as

though they were the actual vibration of the bender elements, (Schultheiss, 1981).

This assumption of similarity facilitates, and in fact enables, the direct correlation

between the, otherwise unknown, transmitted and received vibration time histories,

since only the electric signals are known. It is important to know the actual behav-

iour of the bender elements so that a possible error inherited from the use of the

mentioned assumption can be determined.

An introduction to the study of bender elements by other authors has already

been given in section 1.4. Shirley (1978) had referred to the dynamic properties

of bender elements, namely how they influence the coupling with the medium. A
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number of different methods have been used so far, such as the complementary

wiring of the transducer, (Jovičić et al., 1996; Schultheiss, 1982); the monitoring of

the plate to which the bender element is clamped using an accelerometer, (Brocanelli

and Rinaldi, 1998); by making the receiver bender element touch and monitor the

transmitter, (Lee and Santamarina, 2005; Leong et al., 2005); or by placing a strain

gauge on the piezoelectric ceramic plate, (Greening and Nash, 2004). A numerical

study was also conducted by Arulnathan et al. (1998), that considered the response

of the bender element to a sinusoidal load.

Schultheiss (1982) found that the bender elements vibration and the exciting

electric signal matched each other. These results can either be obtained for a par-

ticular case of a general mechanical simple system vibration, or they can be due to

an error caused by the nature of the testing. The transmitted electric signal might

have leaked to the complementary wiring, creating a received signal that is a copy

of the transmitted one. Jovičić et al. (1996) found that for two different frequencies

the transducer emulated the excitation signal, even though the response signal was

not so clear for the highest frequency.

The remaining authors, Brocanelli and Rinaldi (1998), Lee and Santamarina

(2005), Leong et al. (2005), Greening and Nash (2004) and Arulnathan et al. (1998),

have observed a dynamic bender element behaviour that does not exactly match the

excitation signals but indicates that the transducer may be behaving as a simple

mechanical system, such as the detection of a resonance frequency. Lee and Santa-

marina (2005) go as far as proposing a theoretical mechanical model to explain the

observed behaviour.
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5.1 Dynamic Behaviour

It is important to separate two distinct phenomena concerning body vibration, the

transient response and the steady-state response to a mechanical disturbance. When

a body is initially disturbed, its movement goes through a transient stage and keeps

doing so as long as the load is not tuned to the body movement. A body can

eventually reach a steady-state if the load is continuous, harmonic and is applied

long enough for the transient response to dissipate, (Clough and Penzien, 1993),

(section 3.8.5). The total response of a linear system can be decomposed into the

sum of the transient and steady-state responses, as described in equation 3.81 and

illustrated in figure 3.23.

In simple terms, the steady-state response is thus a state in which a system’s

vibration is in tune with the applied load and vibrates at its frequency. During the

transient response, a body’s movement is strongly influenced by its own dynamic

properties. The frequency of vibration that characterises the transient stage is the

resonant frequency of the body and not the frequency of the load, as illustrated in

figure 3.23.

A system vibrating freely, with no load acting on it, does so at its natural fre-

quency for which the amplitude of the initial response decays due to damping. The

properties of such a damped free vibration, its resonance frequency and rate of decay,

are present in the transient component of the response of simple mechanical systems.

An example of a transient response, both alone and combined with a steady-state

response, is presented in figure 3.26.

The application of a short duration load, such as a pulse signal, to a transmitting

bender element does not have enough time to force the system to reach a steady-

state of vibration. Therefore, it will only behave in a transient state and vibrate at

its own natural frequency, (Clough and Penzien, 1993).
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During the steady-state response of a simple mechanical system, its response

does not necessarily emulate the load function. The response of a system to a

harmonic continuous load can be described as a complex curve with two components,

magnitude and phase. The properties of the magnitude and phase of the steady-

state response were described in equations 3.82 to 3.84. These equations are for a

SDOF system but can be generalised to simple MDOF systems. Figures 3.25 and

3.24 illustrate the variation of the response magnitude and phase delay with the load

frequency respectively. The relationship between the load and consequent response

is also not straightforward even when a system vibrates in a steady-state. It is even

less correlated during a transient response, such as the ones obtained when using

pulse loads.

The experimental work presented addresses the relation between the actual re-

sponse of the bender elements with the electric signals used to excite them. The

monitoring of the bender elements was carried out using a laser velocimeter. The ob-

tained results are presented and evaluated using well known theoretical mechanical

vibration models. The dynamic vibration theory necessary to interpret the results

was presented in section 3.8.

When using a laser velocimeter to monitor the transducers, the oscillation time

histories can easily be recorded without influencing the bender elements behaviour.

The non-contact nature of this type of monitoring is its main advantage, (Heymann

et al., 1997). The self-monitoring method presented by Schultheiss (1982), is techni-

cally simple to achieve and, in principle, does not modify the mechanical behaviour of

the transducers significantly. This method appeared to lead to invalid results, where

the response of the transducers is a scaled copy of the excitation signals, which is

not possible for a mechanical Newtonian system. The other self-monitoring method,

of using a strain gauge, presented by Greening and Nash (2004), requires a difficult

manufacture procedure to attach the gauge to the piezoelectric ceramic plate. Fur-
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thermore, since bender elements are generally very delicate pieces of equipment, the

presence of the strain gauge can significantly alter the overall mechanic behaviour

of the system. The accelerometer used by Brocanelli and Rinaldi (1998), connected

to the plate rather than to the to bender element, provided results predominantly

dominated by the plate’s response. Even though it is possible to obtain some infor-

mation from the bender element dynamic behaviour, it is strongly contaminated by

the behaviour of the plate.

Touching bender elements is a simple monitoring method, as done by Lee and

Santamarina (2005) and Leong et al. (2005). This method is possible to perform

without the use of any extra equipment, which is a great advantage. However, it is

not ideal since the boundary conditions of the monitored transducer are significantly

altered in this way. The mechanical boundary conditions of fixity of touching bender

elements are quite different from those of transmitting and receiving bender element

transducers in a normal set-up. The obtained response is that of two touching

bender elements and not that of a single operating bender element.

The main obstacle for the use of the laser velocimeter concerns its use when

monitoring the behaviour of a bender element embedded in a sample. To work

properly the laser beam needs to be reflected from the body it is monitoring and

then be capable of reaching its source without obstacles. If the transducer’s tip is

embedded in the sample, the sample presents an unsurpassable obstacle to the laser

beam. A compromise was achieved by cutting a small hole in the sample to allow a

correct reflection of the laser beam from the monitored transducers

5.1.1 Boundary Conditions

Bender elements are commonly used in triaxial cells and oedometer devices, with

their tip embedded in the soil sample and their body fixed to the top and bottom

plates and porous stones. When placed in this manner, the bulkier part of the bender
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element body is mounted on the plate, restricting its freedom of movement. This

means that only the tip of the bender element is capable of mechanical vibration.

A diagram of a typical bender element set-up in a triaxial cell with the mentioned

boundary conditions is given in figure 5.1.

Figure 5.1: Bender element embedded in triaxial cell cap.

In normal testing conditions, the tip of the bender element protrudes into the

soil sample by a variable length. The gap between the sample and the bulkier part

of the bender element is usually filled with some impermeable flexible material such

as silicone rubber.

The deformation of a bender element tip is usually assumed to be regular and

with no axial strain, as illustrated in figure 5.2(a). Because of its significant width,

a bender element can be expected to actually have a three-dimensional flexural

deformation, as illustrated in figure 5.2(b). For a section with constant properties,

the bending stiffness is lower near the lateral edges and so they are expected to flex

more then near the centre.

A two-dimensional plane deformation can be decomposed into simple flexural

and longitudinal modes, as for a simple cantilever rod. The consideration of a

three-dimensional behaviour also needs to consider torsional and complex torsional-
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(a) ideal plane deformation (b) complex 3D deformation

Figure 5.2: Flexural deformation of a bender element tip.

flexural modes of deformation. It is reasonable to simplify the analysis by assuming

that, in the range of excitation frequencies used, the bender elements does behave

as a simple plane cantilever.

The laser velocimeter is used to monitor the bender elements in two distinct sets

of boundary conditions. In both cases the bulk body of the bender element is fixed.

The difference is in the tip boundary conditions. In one case the tip is left free to

vibrate in air and in the other case the tip is embedded in a sample. The first case,

with the free tip, is used to study the actual properties of the bender element. This

study is better done with the simplest case of boundary conditions where only the

properties of the bender element influence its behaviour. The second case serves to

understand how the bender element tip interacts with the medium in which it is

embedded.

The two different cases of boundary conditions are each modelled by a simple

mechanical model. The free bender element tip is modelled as a simple plane can-

tilever, (figure 5.3(a)). The embedded bender element tip is modelled as a simple

plane cantilever with a damped spring at the embedded end, (figure 5.3(b)). The

damped spring replaces the reaction offered by the sample to the lateral surface of

the embedded tip in normal testing conditions. The relevant dynamic properties

of the free cantilever are its mass per unit length, m, and flexural stiffness, consti-
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tuted by product of the medium’s Young modulus, E, and the section’s moment of

inertia, I. The properties of the damped spring are its stiffness, k and its damping

coefficient, c.

(a) free cantilever (b) cantilever with spring

Figure 5.3: Boundary conditions for oscillating bender element.

These two cantilever models can be treated as simple MDOF systems. The the-

oretical background of the dynamic behaviour of simple MDOF mechanical systems

is provided in section 3.10.1.

5.1.2 Load Conditions

When an electric signal is used to excite a bender element, it expands one of the

two piezoelectric ceramic plates in its plane and shrinks the other. If one of the

piezoceramic layers expands and the other shrinks uniformly, this type of load con-

dition forces the system to bend in two directions, with a constant bending moment

along the element. This behaviour is equivalent to the application of a temperature

gradient. When considering the equivalent two-dimensional flexural deformation,

such a load condition can be equally obtained by the application of a concentrated

bending moment at the free end of the bender element tip, causing a constant bend-

ing moment along its section, (figure 5.4). For analysis purposes, it is convenient to
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establish the load to the bender element in the form of such a concentrated moment.

(a) piezoelectric load (b) thermic gradient (c) bending moment

Figure 5.4: Driving load of a transmitter bender element.

5.1.3 Dynamic Response

The dynamic behaviour of the two proposed cantilever models, that are subjected

to the proposed load, can be theoretically described. The free cantilever model was

the subject of theoretical analysis in section 3.10.1, (Clough and Penzien, 1993). It

is convenient to determine a suitable equation of motion for this model. Referring

back to equation 3.93 and assuming the following:

• constant flexural stiffness along the axis, ∂EI(x)
∂x

= 0.

• constant mass along the axis, ∂m(x)
∂x

= 0.

• constant damping along the axis, ∂c(x)
∂x

= 0.

• localised moment load at the tip, p(x, t) = 0 for x 6= L and p(x, t) = M(t)

when x = L.

• considering a parabolic shape function of the cantilever of the form:

η(x) =
x2

L2
(5.1)
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The parabolic shape given in equation 5.1 describes a constant curvature, as

consequence of having a constant bending moment along the length of the cantilever.

A specific version of the generalised equation of motion 3.93 can be calculated by

replacing equation 5.1 in equations 3.94 to 3.97,

m∗ = m

∫ L

0

(

x2

L2

)2

dx =
mL

5
(5.2)

c∗ = a1EI
16

L4
=

4C1EI

L3
(5.3)

k∗ = EI

∫ L

0

(

2x

L2

)2

dx =
4EI

L3
(5.4)

p∗ = p(t)

∫ L

0

(

x2

L2

)

dx =
mL

3
· p(t) (5.5)

producing a equation of motion now expressed as:

(

mL

5

)

Z̈(t) +

(

4C1EI

L3

)

Ż(t) +

(

4EI

L3

)

Z(t) =
mL

3
· p(t) (5.6)

Equation 5.6 can now be used to calculate the dynamic behaviour of the free can-

tilever model under a concentrated moment load at the top.

In terms of modal behaviour, if the free cantilever is assumed to be undamped

and linear-elastic, then its dynamic behaviour can be decomposed as the sum of

characteristic modes of flexural vibration. Each mode of flexural vibration is as-

sociated with a characteristic frequency, being the first mode associated with the

resonance frequency. The frequency equation and respective boundary condition pa-

rameters have been presented in section 3.10.2 as equations 3.101 and 3.103. From

the mentioned equations simpler frequency equations can be expressed, (Chopra,

1995; Clough and Penzien, 1993). Equation 5.7 is one such equation for the first

mode of flexural vibration.

ω = (1.875)2

√

EI

mL4
(5.7)
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Lee and Santamarina (2005) were able to develop a similar equation for a can-

tilever with a spring on top representing the soil stiffness, as illustrated in figure

5.3(b). Obtaining a composed mass and stiffness for an equivalent free cantilever it

was possible to use a similar frequency equation:

ω = (1.875)2

√

EcI/L3 + ηEsL

mL+ (ρsb2L) β
(5.8)

where Ec and Es are the Young modulus of the cantilever and sample respectively,

L is the effective length of the cantilever, η is displacement influence factor at the

interface, m is the mass per unit length, b is the width of the transducer, ρ is the

density of the sample and β is an experimentally determined factor.

5.2 Laser Velocimeter

One of the main problems posed by the use of bender elements in the determination

of a medium’s dynamic properties is that they become an integrated part of the

system they are supposed to be testing. For this reason, bender elements have

a direct influence on the system’s overall behaviour. This aspect of the use of

bender elements raises difficulties in the determination of the actual properties of

the medium targeted for study. It is therefore relevant to determine the transducers

own properties to better understand how they might influence the overall behaviour

of the system.

The use of a non-disturbing monitoring device to study the dynamic behaviour

of piezoceramic transducers was chosen. An optical technique making use of a

single point Laser Doppler velocimeter, LDV, was selected to perform the monitoring

of the bender element dynamic behaviour, as done another type of piezoceramic

transducers by Ahn et al. (2001) and for local displacement transducers by Heymann
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et al. (1997). Using the LDV it was possible to monitor the behaviour of the bender

elements without any physical contact between the monitoring equipment and the

monitored subject, (Podesta, 2002).

An LDV is an equipment which is capable of sending a laser beam and collecting

the light components, reflected from the target, that reach the source. The wave-

length difference between the transmitted and received beams allows it to determine

the velocity at which the target was moving, (Durst et al., 1981). A single point LDV

uses only a single point beam, meaning that it can only determine the movement

velocity of one specific target point on a chosen body.

The LDV optical equipment used was an Ometron VH300+. This equipment is

a single body LDV with both the transmitter and receiver integrated in the same

piece of equipment. Relevant characteristics of the LDV equipment are presented

next in table 5.1.

Ometron VH300+

signal output velocity

calibration 1V = 100mm.s−1

velocity range 2µm.s−1 to 425mm.s−1

frequency range 0.1Hz to 25kHz

recommended distance from tar-

get

385mm up to 10m, at intervals of 140mm

Table 5.1: Ometron VH300+ LDV properties, given in Image (2000).

The calibration given in table 5.1 enables the correlation between the amplitude

of the electric signal in Volts and velocity in mm.s−1.
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5.3 Experimental Proceedings

5.3.1 Laboratory Set-Up

The basic experiment set-up consists of the monitored bender element, a function

generator, the single point LDV, an oscilloscope and a personal computer. This

equipment is configured so that the function generator sends an electric signal both

to the bender element, forcing it to vibrate, and to one of the channels of the

oscilloscope. The laser beam is pointed at the tip of the bender element monitoring

its velocity time history, which in turn is sent to a second channel of the oscilloscope

also in the form of an electric signal. The oscilloscope sends both channel inputs to

the personal computer where the information is visualised, processed and stored. A

representation of this set-up is given if figure 5.5.

Figure 5.5: Bender element behaviour monitoring set-up, with a laser velocimeter.

Both the laser beam and received reflected light beam go through the same

lens of the LDV. Special care was taken in levelling the LDV so that the incident

laser beam was horizontal and perpendicular to the target surface, maximising the

amount of light successfully reflected back to the LDV. Because of the laser beam’s

own modulation or wavelength, the working distance between the target and the

lens can be arbitrated so as to optimise the quality of the reflected light beam.
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The optimum working distance advised by the manufacturer is multiple of 140mm,

(Image, 2000). A distance of 3.360 metres, 24 times the reference distance, was used.

After pointing the laser at the bender element, it is necessary to focus the beam

properly so that the reflected spot on the target’s surface is as small as possible,

enabling the minimisation of scattering from the reflected light and improving the

quality of the reflected beam.

5.3.2 Test Programme

A set of dynamic tests was performed on two different pairs of bender elements.

One of these bender element pairs was part of a set manufactured and supplied

by Cambridge Insitu Ltd. The second tested pair of bender elements was designed

and manufactured at University College London, where the tests were carried out.

These two different pairs of bender elements have different geometries, which enables

the proposed comparison to address the issue of bender element geometry influence

on its performance. Conveniently, because the two distinct sets of bender elements

were manufactured independently, the similarities between their dynamic behaviours

might consolidate the knowledge of some of their general dynamic properties.

Image of transducers belonging to the UCL-BE and CIS-BE pairs are given in

figure 5.6. The characteristics of each bender element set are illustrated in figure

5.7 and described in table 5.2.

Name Manufacturer Wiring Dimensions (mm)

UCL-BE UCL’s Civil and Environmental

Engineering Department

series 1.5 × 6.5 × 8.0

CIS-BE Cambridge Insitu series 1.5 × 12.0 × 10.0

Table 5.2: Description of the two tested bender element transducers.

The bender elements were tested with two different boundary conditions. Ini-
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(a) UCL - UCL-BE (b) Cambridge InSitu - CIS-BE

Figure 5.6: Tested UCL-BE and CIS-BE transducers.

(a) UCL-BE (b) CIS-BE

Figure 5.7: Illustration of the tested UCL-BE and CIS-BE transducers, dimensions

in mm.

tially they were tested with their tips in air, with unrestricted movement and capable

of free vibration. They were then tested with their tips embedded into a sample

to better understand their behaviour under normal test conditions. A synthetic

sample made of polyurethane rubber was used, its properties are detailed in sec-

tion 4. The synthetic sample was similar to those used in the geometry parametric

study presented in chapter 6. The motives for using a synthetic rubber sample were

its availability, its similarities with soft viscous soils and to ensure the compatibility

with the results obtained for the parametric study. This way, the dynamic behaviour

of the complete system could be decomposed into the separate dynamic behaviours
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of the transducers and synthetic samples.

A small hole had to be carved out of the rubber sample so that the laser beam

could reach, unobstructed, its target at the bender element tip surface. This hole

was made as small as possible so as to minimise the disturbance it might cause to

the coupling between the bender and the sample.

In summary, there are two different test set-ups for each of the two bender

elements studied, the UCL-BE and CIS-BE. This gives a total of four distinct test

set-ups. A summarised description of each test set-up is given in table 5.3.

Number Bender Element Tip Embedment

1 UCL-BE free

2 UCL-BE embedded

3 CIS-BE free

4 CIS-BE embedded

Table 5.3: LDV monitoring test summary.

5.3.3 Hardware

Different pieces of hardware played different roles in the experiment: a function gen-

erator, an oscilloscope, a laser velocimeter and a personal computer. The personal

computer was used both to store and process data and to serve as a function gen-

erator, not a conventional use. This method was first explored in a bender element

testing context by Greening and Nash (2004) .

Each piece of equipment handles electric signals in a different way, namely the

frequency range in which it is capable of operating and the sampling rate of the

signal. These characteristics of the equipment might influence the range of results

that can be obtained. They are presented in table 5.4.

The information about the sampling frequency and frequency range was obtained
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Hardware Name Sampling Rate Frequency Range

transmitted received

function generator TTi TG1010 not given —— up to 10MHz

oscilloscope Picoscope ADS-216 —— 166kHz up to 25kHz

LDV Ometron VH300+ not given —— up to 25kHz

PC sound card Intel 82801 AC97 44.1kHz —— 11kHz

Table 5.4: Hardware frequency range of the equipment used in the laser monitoring

of bender element behaviour.

in the user manuals or other product documentation, (Image, 2000; Intel, 2004; Pico,

2005; Thurlby, 1994).

5.3.4 Signal Properties

The function generator and the personal computer sound card generate the signals

used to excite the bender element transducer. Three types of signals were chosen to

perform the tests:

• sinusoidal impulsive signals, provided by the function generator. These signals

had a constant amplitude of 20V, and frequencies arbitrated between 0.2kHz

and 24kHz.

• sinusoidal continuous signals, provided by the function generator. These sig-

nals had an amplitude of 20V, and frequencies arbitrated between 0.2kHz and

24kHz.

• sinusoidal sweep signals, provided by the personal computer sound card. These

signals had an amplitude of up to 4V, and a continuously varying frequency

between 0.0Hz and 20.0kHz.

The mentioned signals will henceforward be referred to, in simpler terms, as

continuous signal, pulse signal and sweep signal. The signals generated either by
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the function generator or sound card are called transmitted signals, and the signals

received by the LDV and bender element are called received signals.

Continuous Signal

The LDV readings give the velocity time history of the transmitting bender ele-

ment. Its displacement time history can be obtained by integrating the velocity

time history, as given by equation 5.9 for a continuous signal.

u(t) =

∫

u̇(t)dt =

∫

au̇ cos(ωt) =
au̇

ω
sin(ωt) + C1 (5.9)

The displacement response amplitude, au, is provided by:

au =
au̇

ω
(5.10)

The constant of integration, C1, adds a step shift in the magnitude curve. This

shift does not interfere with the frequency, phase or intrinsic magnitude of the signal

and therefore can be dismissed. There is a constant phase shift of π
2

between the

velocity and displacement curves, as is the case between equivalent cosine and sine

functions. Figure 5.8 provides an example of the relation between the velocity and

displacement sinusoidal continuous curves.
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Figure 5.8: UCL-BE’s monitored velocity and corresponding displacement, u̇(t)

and u(t), for a 4.0kHz harmonic continuous signal excitation.

Pulse Signal

The use of pulse signals in these tests enabled the observation of the system behaving

in a free damped vibration. After the pulse signal was finished, the system carried

on vibrating with no other external loading. This is a well-known case of theoretical

dynamic behaviour, (section 3.8.4).

Another important reason to use pulse signals to excite and monitor the behav-

iour of the transducers in the present study is that pulse signals are popular when it

comes to testing with bender elements. It is relevant to observe the bender elements

actual behaviour under such load conditions, and determine the differences between

its real and assumed behaviour.

Figure 5.9 presents an example of the monitored behaviour of a free bender

element excited by a single pulse signal with a central frequency of 4.0kHz. The

time history of the velocity was numerically integrated to obtain the time response

of the displacement.
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Figure 5.9: UCL-BE’s monitored velocity response and corresponding numerically

integrated displacement, for a 4.0kHz input pulse signal excitation.

Sweep Signal

Sweep signals will also be used to obtain the system’s response curves. Greening

and Nash (2004) have used a similar signal, also by transmitting it from a personal

computer sound card. The properties of the used sweep signal are listed in table

5.5, and an introduction to the use of sweep signals is presented in section 2.4.

Property Description

source PC sound card

amplitude 2V

frequency range from 0.0kHz to 20.0kHz

length 80ms

cycles two cycles of 0.0Hz → 20.0kHz → 0.0Hz

cycle rate 10−6Hz.s−1

Table 5.5: Sweep signal properties
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5.4 Results for Free Transducers

The results from the dynamic testing of the UCL-BE and CIS-BE are presented in

this section. Having used sinusoidal pulse, continuous and sweep signals to excite

the bender elements, time and frequency domain results are presented separately.

Even though the time domain results are intuitive and easier to analyse, the fre-

quency domain results will be presented first, because they provide information

which introduces an interesting perspective to the time domain analysis.

5.4.1 Frequency Domain

The magnitude and phase response curves of the free UCL-BE are used to describe its

behaviour. Figure 5.10 presents these two response curves obtained using continuous

signals. The continuous signals used had different frequencies, at steps of 100Hz, and

with even smaller steps near the frequency of the first resonance observed. Similar

results were obtained using a sweep signal.
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Figure 5.10: Free UCL-BE’s response function estimate from continuous signal

dynamic excitation.

Figure 5.10 presents results which are quite similar to classic textbook responses

of multiple degree of freedom systems with each of the presented peaks, at 3.4kHz
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and 8.4kHz, corresponding to a different mode of vibration. Greening and Nash

(2004) present a pair of magnitude and phase response curves quite similar to those

presented in figure 5.10. The main difference is the value at which the main resonance

frequency occurs, 1.1kHz. This difference can be explained by the different geometry

of the transducer and by different boundary conditions. Details of this test and those

of other authors are presented in table 5.6.

The magnitude is expressed in distance units, µm, obtained by using the calibra-

tion ratio of the laser velocimeter, given in table 5.1, and then by differentiating the

velocity curve. In this manner it is possible to present an almost direct estimate of

the actual amplitude of the bender element oscillation. So, when its tip is subjected

to no lateral constraints and excited by a continuous signals with an amplitude of

20V, the maximum amplitude of the oscillation is of ua = 37.0µm≡ ±18.5µm.

The natural frequency of the system is easily identifiable in figure 5.10(a). It

takes the value of fa = 3.4kHz and corresponds to the first peak of the magnitude

curve. The resonance frequency is confirmed by a phase shift at that same frequency

observed in the phase curve, (figure 5.10(b)), and as is expected in such simple

dynamic systems. The second observed peak at 8.4kH is also accompanied by a

phase shift.

An estimate of the damping ratio can be obtained from the magnitude response

curve applying the half-power bandwidth method, (section 3.9), or (Clough and Pen-

zien, 1993). For the case of the UCL-BE, the magnitude of the peak corresponding

to the natural frequency was identified as ua = 37µm. The frequencies at which the

magnitude is ua/
√

2 ≈ 26.2µm are approximately f1 = 3244Hz and f2 = 3404Hz.

Equation 3.91 is then used to estimate the viscous damping ratio.

ξucl =
3404 − 3244

3404 + 3244
≡ 2.5%
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Similar results can be obtained for the CIS-BE. The necessary response curves

are presented in figure 5.11.
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Figure 5.11: Free CIS-BE response function estimate from sweep signal dynamic

excitation.

The flexural natural frequency of the free CIS-BE appears to occur at 2.2kHz.

This response is not as clear as was the response of the UCL-BE, in the sense that

there are some other peaks occurring close together. The proximity between these

peaks imply that they might interfere with each other, i.e., that more than one

mode of vibration might be excited at a single frequency. The transducer might

then behave not in a single, more simple, mode of vibration but in a more complex

mode. The CIS-BE clearly has a more complex response than the UCL-BE. This

increased complexity can be explained by the geometry of the transducer’s tip. The

CIS-BE tip has a relatively large width, even larger than its own height. Knowing

also that the electric signal causes the bender element to bend, or flex, not in a

planar manner but in a more complex three-dimension manner, (figure 5.2). This

might explain why, for such a large width of the transducer’s tip, other modes of

vibration other than the flexural modes can be excited, such as torsional modes

and flexural-torsional modes. A study of both the UCL-BE and CIS-BE modal
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behaviour is presented in section 5.6.

The maximum magnitude of the response, occurring at the resonance frequency,

is of ua = 5.9µm. This value is around 6 times smaller than the free maximum

magnitude of the UCL-BE response. This might indicate that its flexural response

is not as efficient, either due to a more complex modal behaviour or maybe due to

other parameters, such as the piezoelectric capacity of the ceramic plate, or due to

a stiffer section.

A similar calculation of the CIS-BE damping ratio, for the corresponding main

mode of vibration, using the magnitude curve, gives ξcis = 8.0%. This value is

higher than the one obtained for the free UCL-BE, it is even relatively high from

what could be expected from a simple cantilever dynamic system with no added

damping. Again this could signal a possible interference of the vibration mode .

5.4.2 Time Domain

The time domain results are obtained directly from the time histories of the trans-

mitted sinusoidal pulse signals and corresponding received signals. This way, it is

possible to observe the behaviour of the bender elements both during the period

when the excitation signals are still acting on them, and also during the period

when there is no more external excitation and the bender elements are left to vi-

brate freely. The natural frequency of both the UCL-BE and CIS-BE have already

been estimated at 3.4kHz and 2.2kHz. Pulse signals with a central frequency lower,

similar and higher than the mentioned resonance frequencies are used in order to

observe possible differences in the responses.

The time histories of the UCL-BE transducer are presented in figure 5.12 for

pulses with central frequency lower equal and higher than 3.4kHz.

The response caused by an exciting signal with a central frequency equal to the

natural frequency of the system, 3.4kHz, reaches higher amplitudes than in cases

185



0  0.5 1.0 1.5 2.0 2.5

6.0kHz

5.0kHz

4.0kHz

3.4kHz

3.0kHz

2.0kHz

1.0kHz

time − ms

input

output

Figure 5.12: Free UCL-BE’s time responses to pulse signals with various frequen-

cies.
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where the input signals had lower and higher frequencies, thereby strengthening

the observation that 3.4kHz is in fact the resonance frequency of the system. It is

relevant to note that the bender element oscillation reaches its maximum amplitude,

not while the input signal is still acting, but after it has finished, at a value of

ua = ±4µm. This can easily be explained by the existence of inertia. According to

Newton’s second law of motion, F = ma, it would take an infinite force or a zero

mass to be able to obtain an instantaneous or infinite acceleration. Therefore, the

system cannot pass instantaneously from a stationary state to an oscillating state

with the desired frequency, either using continuous or pulse signals. The same can be

said of the amplitude of the oscillation, meaning it might only reach its maximum

value after a number of oscillation cycles. This is evident by the relation of the

maximum oscillation obtained using, at the resonance frequency, a pulse signal,

ua = ±4.0µm, and a continuous signal, ua = ±18.0µm.

Considering the response time histories for input signals with frequency signifi-

cantly lower than the resonance frequency, for example f = 1.0kHz and f = 2.0kHz,

during the load stage it can be observed that the UCL-BE oscillation was not able to

emulate the input signals precisely. In the case of f = 1.0kHz, it can be clearly ob-

served that the oscillation is characterised by two distinct frequencies. One frequency

that seems to be the frequency of the input signal, and another higher frequency

that must be the resonance frequency of the system. This response, during the load

stage, is quite similar to the composed steady-state and transient state responses

given in figure 3.23.

For excitation with frequencies higher than the natural frequency, and again

during the loading stage, there is a clear phase difference between input and response.

Also, the frequency of the response seems to be lower than the frequency of the input.

The difference in frequencies can again be explained by a transient state of vibration

and the significant phase difference is characteristic of an excitation frequency higher
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than the resonance frequency, (figure 3.24).

After the input signal is no longer acting on the transducer, all of the responses

assume an oscillation that, although with different initial amplitudes, resemble each

other in that they are similar to a free damped vibration, (section 3.8.4). Indepen-

dent from the frequency of the now passed input signal, in all cases the UCL-BE

assumes a vibration with constant frequency, equal to the resonance frequency, and

decaying amplitude.

If the UCL-BE does behave as a damped SDOF, then the observed amplitude

decay can be assumed to be logarithmic. It is thus possible to apply the free-

decay method to evaluating the system’s damping ratio. The free-decay method is

described in section 3.9 and can be achieved by the application of equation 3.90.

Taking the response of the system for an input signal with f = 3.4kHz, and using

the magnitude of the 3rd and 7rd positive peaks, the estimation of the damping ratio

goes as follows:

u3 = 2.95µm, u7 = 1.84µm, and n = j − i = 7 − 3 = 4

giving

ξ
.
=
ui − uj

2nπuj

=
2.95 − 1.84

2 × 4 × π × 1.84
= 2.4%

This estimate was obtained independently from the one made using the half-

power bandwidth method presented in section 5.4.1, which gave a value of ξ = 2.5%,

and using different input signals. However they are reassuringly similar.

It has already been observed that, once the input signal is over, the system seems

to vibrate at a constant frequency, believed to be its resonance frequency. In order

to verify the actual frequency content of the pulse induced responses, an analysis of

their time histories in the frequency domain is carried out. For this purpose a fast

Fourier transform is performed on the time histories of both the input signals and
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respective responses and presented in figure 5.13.

Some of the observations made possible by the analysis of time histories are

confirmed by the frequency content of the pulse signals. The most apparent property

of the FFT’s is the common resonance frequency shared by all the responses, f ≈

3.4kHz. It is also possible to observe how the frequency content of the responses is

much narrower than the frequency content of the excitation.

A pulse signal is normally referred to by its known central frequency. But it is

worth remembering it has a broad range of frequency content. This is a consequence

of it having to accelerate from an immobility state up to the desired frequency,

assuming every frequency in between. Once the signal is over, the opposite occurs,

and the signal has to decelerate from its main frequency back to 0Hz, again assuming

every frequency in between.

In figure 5.13, the signals with frequency lower than the natural frequency of the

UCL-BE have responses with a significant range of frequencies, beyond the natural

frequency. The case of exciting frequency f = 1.0kHz is the best example, since

the free UCL-BE can be found to have the most significant response at frequencies

lower than the natural frequency. As the exciting frequency increases, the response

frequency content of the system at lower frequencies decreases. When excited above

the natural frequency, the system apparently stops having any response at that

initial range of lower frequencies. As the excitation frequency increases it is possible

to start observing some response at a frequency range which corresponds to a second

mode of vibration, at around 8.5kHz also detected in figure 5.10.

The pulse excited transducer behaviour described so far points to a response

with a considerable degree of independence from a pulse signal exciting it. This

observation is quite important for anyone operating a bender element testing system.

It serves to reinforce the notion that the driving frequency of an exciting pulse signal

might not be the frequency of the vibration actually being transmitted to the sample.
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The consequence is that the test operator, not having control over the frequency of

the vibration, cannot avoid dispersive phenomena, which are frequency dependent.

Unlike for the UCL-BE, the response curves of the CIS-BE transducer indicate

a system behaving in a more complex manner than a simple cantilever would be

expected to. The time histories of the response to excitation pulse signals are studied

further to better understand such behaviour.

Figure 5.14 presents the mentioned time histories for a number of input signals

with different frequencies, higher and lower than the resonance frequency. The

observations made previously for the free UCL-BE in figure 5.12 can be made once

again. For input signals with lower frequencies, the transducer apparently emulates

the excitation signal while it lasts. For input signals with frequency higher than the

resonance frequency, a significant phase difference exists between the input and the

response. After the input signal is over, the response in all cases, even though with

different magnitudes, tunes into the resonance frequency of the transducer.

The frequency content of the pulse input and response time histories are pre-

sented in figure 5.15. The resonance frequency of the system is observed to occur at

3.4kHz. This natural frequency is different from the value obtained using a contin-

uous signal, 2.2kHz, (figure 5.11(b)). Besides, the same response curve appears to

have a local minimum at this same frequency. When using continuous harmonic or

sweep signals, the transducer is forced into a flexural vibration. However, the res-

onance frequency observed in figure 5.15, referring to the system’s free oscillation,

is not that of the flexural mode of vibration. It can be conclude that the flexural

resonance occurs at 2.2kH and that if left to vibrate freely, the CIS-BE transducer

does so at another mode of vibration. The local minimum in the magnitude re-

sponse curve in figure 5.11(a), which appears to coincide with the flexural resonance

frequency 3.4kHz, might be an anti-resonance feature of this curve, which occurs at

the interference of the main mode of vibration with a neighbouring mode, (Ewins,
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Figure 5.13: Free UCL-BE input and output signals’ frequency content.
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2000). This other mode of vibration, which occurs when the transducer vibrates

freely, is probably a more complex flexural-torsional mode of vibration favoured by

the relatively large width of the transducer.

The magnitude of the maximum oscillation, when in a free vibration is of a =

±3.3µm, higher than the maximum amplitude achieved when forced to oscillate in

a flexural mode, a = ±2.9µm. Again, this is a sign of the importance of the free

vibration mode.

The estimation of the damping ratio using the free decay component of the time

history of one of the responses can be obtained using equation 3.90. The value of

the damping ratio is calculated to be ξ = 8.8%. This method of determining the

damping ratio produces a value higher than the exact value, Shirley (1978) proposes

a correction to the estimated damping ratio, which for the present case is of 75%,

giving ξ = 0.75 ∗ 8.8 = 6.6%.

The damping ratio of the CIS-BE obtained from a time history curve provides

a significant final clue for why, when left to oscillate with no interference from an

excitation signal, the frequency of the oscillation differ from that of a forced vibra-

tion. Dominant modes of vibration have lower damping ratios, so since the damping

ratio for the free vibration mode is lower than the damping ratio associated with

the forced flexural vibration, 6.6% < 8.0%, this is further proof of the importance

of the free vibration mode. The presented complexity of the modal behaviour of

the CIS-BE acts as a warning about the need to consider the geometry of bender

element transducers when designing them. In this case, the geometry of the CIS-

transducer leads to a free mode of vibration which is not a flexural mode. This

raises doubts about the efficiency of the transducer at performing bending motions

and hence producing shear waves, when excited by pulse signals.
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Figure 5.14: Free CIS-BE’s time responses to pulse signals with various frequen-

cies.
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Figure 5.15: Free CIS-BE input and output signals’ frequency contents.
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5.5 Results for Embedded Transducers

The results concerning the behaviour of the UCL-BE and CIS-BE with their tips

embedded 3mm in the synthetic rubber sample are now presented . This will enable

the study of the transducers dynamic behaviour in conditions similar to normal

testing conditions.

5.5.1 Frequency Domain

Figure 5.16 presents the magnitude and phase components of the response of the

UCL-BE when excited with continuous signals.
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Figure 5.16: Embedded UCL-BE’s response function estimate from sweep signal

dynamic excitation.

The response curve in figure 5.16(a) enables the observation of a resonance fre-

quency of 5.0kHz for the UCL-BE. The phase shift at 5.0kHz seen in figure 5.16(b)

confirms this observation. Remembering that the resonance frequency of the free

UCL-BE was at 3.4kHz, it can be noted how the presence of the sample in contact

with its tip stiffens its overall behaviour.

The maximum magnitude of the oscillation of the embedded tip of the UCL-

BE is now 2.3µm, much smaller than when it was free, 37µm. The decrease in
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the maximum oscillation magnitude is a logical result since, having used the same

magnitude of load, the sample acts as an obstacle to the transducer’s movement.

The sample adds stiffness to the system, which implies an increased resistance to

deformation forces. There is also the question of increased damping, which decreases

the maximum dynamic motion magnitude, (figure 3.25).

The estimation of the viscous damping ratio for the embedded UCL-BE, using

the half-power bandwidth method and equation 3.91, produces a damping ratio

value of ξ = 25.0%. This value is significantly higher than the 2.5% found for the

free UCL-BE. Nevertheless, it is still quite distant from the 100%, which would

mean the transducer would behave as a critically damped system, (section 3.8.4).

This observation is important because only for a critically, or overcriticaly damped

system could one expect the response of the transducer not to last after the action

of a transient pulse load, (Clough and Penzien, 1993).

The response curves of the CIS-BE system, obtained using sweep and continuous

signals, are presented in figure 5.17.
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Figure 5.17: Embedded CIS-BE’s response function to sweep signal dynamic ex-

citation.

As with the UCL-BE, the behaviour of the CIS-BE changes drastically when its
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tip is inserted in the sample. In the CIS-BE case, in the considered frequency range,

f ∈ [0 12]kHz, the magnitude curve now has a single broad single peak where before

it had a number of narrower peaks. The system response to flexural excitation has

a natural frequency of 3.2kHz.

It is clear that the damping ratio of the system has increased by embedding the

tip of the transducer in the sample, as it had with UCL-BE, since the corresponding

peak feature of the magnitude curve is now much broader. The estimation of the

damping ratio, using equation 3.91, produces ξ = 50%. The magnitude curve con-

tains a second, less noticeable, peak near 4.2kHz with a lower magnitude of 2.4µm.

This means that the observed peak covering a frequency range of f ∈ [0.5 11.5] is

composed by more than one mode of vibration, rendering the proposed damping

ratio calculation meaningless.

The amplitude of the oscillation is a = 2.9µm. Even though the frequency

domain results shown so far are ambiguous for the CIS-BE embedded test set-up,

the shift in behaviour of the system when the tip of the transducer is inserted in the

sample is similar to the UCL-BE on three aspects, namely: the natural frequency

increase, the damping ratio increase and the magnitude of the oscillation decrease.

5.5.2 Time Domain

Figure 5.18 presents the input signals and the embedded UCL-BE time history oscil-

lation responses. When compared with equivalent responses for a free tip boundary

conditions, they can be observed to take around 1.2ms for the bender element to

return to a stationary state. Before it took well over 5.0ms. This is a clear indication

in the increase of the system’s damping, as calculated in section 5.5.1.

The maximum amplitude of the response for pulse excitations with 5,0kHz is

ua = 2.5µm, which is almost the same value found for a continuous signal excita-

tion with the same frequency, ua = 2.3µm. It is in fact slightly higher for pulse
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excitations. This observation appears to contradict the explanation given for the

difference in steady and transient maximum oscillation magnitudes, when the UCL-

BE tip was free. With a free transducer tip, the continuous signal produced higher

oscillations magnitudes, since it took the system more than one cycle to achieve its

limit state and the pulse signal did not have enough time to achieve the same mag-

nitudes. The observed shift in oscillation magnitude for the embedded transducer

tip is due to the much higher damping of the system. The maximum oscillation

magnitude is now relatively lower, compared with the free boundary conditions,

but most importantly compared with the equivalent static displacement, (Clough

and Penzien, 1993). Therefore it now takes the transducer less time to reach the

maximum oscillation magnitude.

The transducer’s response is quite similar to the input signal with 1.0kHz. For

3.0kHz and 5.0kHz the response seems to have a similar frequency to the input signal

but a significant phase delay. For the 7.0kHz and 9.0kHz cases, the response has a

significant phase delay but is also clearly not at the same frequency as the input.

Once the input signal is over, the frequency of the response is that of the resonance

frequency in all cases.

The response can be observed to decay to a near stationary state in around 1ms

past the end of the input signals in all cases. The determination of the damping

ratio using the time history of the received signals, as done in section 5.4.2, estimates

a value of ξ = 31%, using the peaks features at 0.325ms and 0.535ms. This value

is misleading since the free-vibration decay method becomes inaccurate for high

values of damping ratios. In fact, Clough and Penzien (1993) do not even propose

a correction factor for damping ratios higher than 20%. If a corrected value had to

be estimated extrapolating the correction curve proposed by Clough and Penzien

(1993), it would point to a value of around ξ = 20%. This result is somewhat

consistent with the result obtained in the frequency domain.
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The observations of the time histories are well corroborated by their frequency

content, (figure 5.19). The resonance frequency can be observed to occur at 4.8kHz,

quite near the 5.0kHz value obtained when using continuous or sweep signals. The

frequency content response peaks are now broader than for the free UCL-BE case,

confirming the increased damping. A certain independence of the response frequency

in relation to the input frequency content is again present, more so for input signals

with frequencies higher than the resonance frequency of the system.

The results concerning the time domain responses of the embedded CIS-BE are

presented in figure 5.20. The high values of damping obtained with the frequency

domain results can also be observed in the form of some magnitude decrease for

all the presented responses. If the free tip was observed to oscillate 3ms past the

input signal end, it becomes stationary after approximately 1ms. The damping ratio

using the free-vibration decay method is not possible to apply because there are no

comparable decaying peaks. Further, it has already been shown that for high values

of damping ratio, ξ < 20%, the mentioned method is not reliable.

The magnitude of the maximum oscillation, in the case of the 3.0kHz input signal

is ua = 2.6µm. This value is similar to the value found for a steady-state load at

3.2 ua = 2.9µm in section 5.5.1. As before, a high damping ratio can explain the

similarities between maximum oscillation magnitude for a transient and steady-state

responses.

Comparing the analysed test set-ups, the response of the embedded CIS-BE at

low frequencies is the one apparently most capable of emulating the input signal,

for input signal frequencies lower than the resonance frequency. Above the system’s

resonance frequency, a significant phase delay between input and response is again

noticeable. For high input frequencies, the response of the transducer seems to be

not a perfect sinusoidal signal, but the sum of two signal components with different

frequencies.

199



0  0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

9.0kHz

7.0kHz

5.0kHz

3.0kHz

1.0kHz

time − ms

input

output

Figure 5.18: Embedded UCL-BE’s time responses to pulse signals with various

frequencies around the natural frequency.
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Figure 5.19: Embedded UCL-BE responses frequency content to pulse signals

with various frequencies.
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The frequency contents of the time responses of the pulse signals are presented

in figure 5.21. The quality of the frequency contents is quite poor. This has to

do with the nature of the Fast Fourier Transform. The FFT is in theory best

suitable to handle long continuous signals, being less capable of processing short

signals. In figure 5.20 it can be seen that the response time histories are quite short.

Nevertheless, it is clear that more than a single response frequency is being picked up

by the system. One peak at 3.2kHz and another peak at around 4.3kHz provide the

highest responses for excitation pulses with central frequencies higher than 3.0kHz.

This observation is in agreement with the results presented in figure 5.17.

Unlike the results from the free CIS-BE, there is no significant difference of

behaviour detected for a steady-state vibration, obtained using sweep and continuous

signal, and a transient state response, obtained using pulse signals. Both indicate a

resonance frequency at 3.2kHz and at 4.3kHz. It is not possible to evaluate, without

some form of modal analysis, if either or both resonances are related with which

particular modes of vibration, either flexural or of a more complex mode.

It is finally possible to confront the assumption stating that the transmitting

bender element transducer perfectly emulates the transmitted pulse signals. From

the observations made of the actual behaviour of bender element transducers, it is

plain that the transmitting bender element behaves as a dynamic multiple degree

of freedom system with a certain degree of independence from the transient input

pulse signals. Observed aspects of the oscillation behaviour of bender elements

different from the input signal are its frequency, significant phase shifts and sufficient

inertia to maintain oscillation movement after the exciting signal is over. Therefore,

when operating a bender element testing system, the operator must acknowledge

the different mechanical response of bender elements to transient and steady-state

excitation signals, especially the differences between the transmitting signal and the

transmitting transducer behaviour when using pulse signals.
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Figure 5.20: Embedded CIS-BE’s time responses to pulse signals with various

frequencies around the natural frequency.
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Figure 5.21: Embedded CIS-BE responses frequency content to pulse signals with

various frequencies.
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5.6 Bender Element Model

Having monitored the behaviour of the UCL-BE and CIS-BE, with their tips either

free and embedded, it is possible to present the natural frequency, maximum os-

cillation magnitude and values of damping ratio, (table 5.6). Using these values

together with simple analytical and numerical models the elastic properties of the

transducers can be estimated. It is also possible to analyse some aspects of the

excitation signals, such as their exerted force on the transducer or the properties of

the medium in which the transducer tips were embedded.

Both transducers were manufactured using similar piezoelectric ceramic plates,

supplied by the same company and with the same piezoelectric capacity. The plates

used in the test were wired in series for both pairs of transducers.

In table 5.6 the oscillation amplitude, a, the natural damped frequency of the

system, fD, and the estimated damping ratio, ξ, are presented for the monitored

bender elements, UCL-BE and CIS-BE, in the two tested scenarios, with free and

embedded tips. Similar results available in relevant literature are also presented.

The observed natural frequency of the free transducer, ω = 2πf , its dynamic

maximum displacement, a, and the damping coefficient, ξ, are all used to charac-

terise the system. The free bender element transducers are assumed to behave as

simple cantilevers. The natural frequency is used with frequency equation 3.101

and boundary condition equation 3.105 to estimate the flexural stiffness of the free

system, EI. The damping ratio is used to obtain the dynamic magnification factor,

Df , which is used to obtain an estimate of the equivalent static displacement, as,

from the dynamic displacement, a, as described by equation 3.86 in section 3.8.5.

With the flexural stiffness of the system, as well as with other properties such as

its length, L, and mass per unit length, m, a numerical model is used to estimate

the necessary static load, M . This is the load necessary to produce the same pre-
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determined static displacement obtained from the dynamic displacement and the

magnification factor.

Transducer Tip Fixity Properties

body tip a fD ξ

UCL-BE clamped free 37.0µm 3400Hz 2.5%

(1.5×6.5×8.0mm)1 clamped embedded 2.3µm 5000Hz 25.0%

CIS-BE clamped free 5.9µm 2200Hz 8.0%

(1.5×12.0×10.0mm) clamped embedded 2.9µm 3200Hz —–

Shirley (1978) unspecified free —– 8000Hz —–

(0.5×6.4×25.4mm)

Dyvik and Madshus (1985) clamped free —– 2000Hz —–

(1.0×10.0×12.0mm) clamped embedded —– 4000Hz —–

Brocanelli and Rinaldi (1998) clamped free2 —– 3170Hz —–

(no dimensions)

Greening and Nash (2004) free embedded —– 1100Hz —–

(1.5×12.0×10.0mm)

Lee and Santamarina (2005) clamped free —– 1500Hz —–

(0.6×8.0×12.7mm)3 clamped embedded —– 5000Hz —–

Table 5.6: Summary of dynamic properties of tested bender elements.

Figure 5.22 shows the mechanical model of the bender element with tip embedded

in soil used in the numerical model analysis. A similar numerical model is used for

the free cantilever but with no spring stiffness, making K = 0N/m.

The embedded system is modelled as the free UCL bender element plus a number

of springs at the corresponding embedded tip end. The flexural stiffness of the

cantilever itself is the same as the one estimated for the free system. The load

capable of producing the free static displacement, M , is considered to be the same

for the case with embedded tip, since the boundary conditions of the transducer tip

1(Thickness×Width×Length)
2The transducer’s tip is not embedded in soil but is partially embedded in silicone rubber.
3Tested with different free lengths. The value presented is for a free length of 11.5mm.
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(a) bender element in soil (b) mechanical model

Figure 5.22: Mechanical model of bender element tip embedded in soil.

surface have no influence over the electric signal and the equivalent bending action

it provides. Taking the equivalent static displacement obtained from the observed

dynamic displacement and the acting moment load into account, the stiffness of the

springs can be evaluated using a static numerical model.

Knowing the relevant properties of the embedded system, such as the flexural

stiffness and the spring stiffness, two distinct verifications can be done. A dynamic

model can be used to verify the embedded transducer resonance frequency and a

static model can be used to verify the produced static displacement, applying the

previously determined moment load, M .

The static and dynamic numerical models were calculated using a finite ele-

ment program, (CALFEM, 1999). These numerical models, specifically the dynamic

model, do not consider the damping ratio. In summary, the static models are used

to correlate the flexural stiffness, the static displacement, the moment load and the

spring stiffness. The dynamic models are used, together with all of the already

estimated properties, in a regressive analysis to verify the natural frequency of the

system. Figure 5.23 presents a diagram of the multi-step procedure to characterise

the transducers and verify the results.
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Thus, the natural frequency of the transducer, ω1, is used to obtain its flexural

stiffness, EI, (1a to 2a). The dynamic amplitude of displacement, a, and the damp-

ing ratio, ξ, are used to obtain the equivalent static displacement, as, (1b to 2b).

With the flexural stiffness and the static displacement, and using a static numer-

ical model, the moment load, M , necessary to force such a static displacement is

estimated, (2a and 2b to 3). Using the moment load, the flexural stiffness of the

cantilever and the equivalent static displacement, a numerical static model is used

to estimate the stiffness of the 6 springs, K, evenly distributed along the embedded

3mm height, (3 to 4). Finally, the two verification steps are performed. Using the

spring stiffness together with the flexural stiffness of the cantilever, the resonance

frequency of the embedded transducer is calculated by a numerical dynamic model,

and compared with the monitored value, (4 to 5a). Using the spring stiffness and a

static numerical model, a static displacement is calculated and compared with the

estimated value, (4 to 5b).

(1a/5)
natural frequency

ω

frequency equation

ω1 = 1.8752
√

EI
mL4

(2a)
flexural stiffness

EI

static model
free cantilever

(3)
moment load

M

static model
with springs

(4)
estimate spring

stiffness K

dynamic model
with springs

(1b)
dynamic displacement a

damping ratio ξ

dynamic magnification
factor Df = 1/

√
2ξ

(2b/5b)
static displacement

as = a/D

Figure 5.23: Scheme of multi-step bender element transducers modelling using

the observed properties from the laser velocimeter monitoring
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The mass per unit length is calculated considering the transducer tip to be a

composed section. It is composed of piezoelectric ceramic and of epoxy resin. The

epoxy resin used as coating in the manufacture of bender element has a density

of around 1000kg.m−3, (Vosschemie, 2002). The density of piezoelectric ceramic

is around 7800kg.m−3, (Piezo, 2005). Knowing the partial area of each section

component, it is then possible to calculate the equivalent density and mass per

length unit of the composite section. These calculations are presented in equation

5.11 for the tips of the UCL-BE and CIS-BE transducers.

epoxy piezoceramic bender element

UCL-BE
ρ = 1000kg.m−3

A = 6.8 × 10−6m2

ρ = 7800kg.m−3

A = 3.0 × 10−6m2

⇒

ρ = 3100kg.m−3

A = 9.8 × 10−6m2

m = 3.02 × 10−2kg.m−1

CIS-BE
ρ = 1000kg.m−3

A = 13.0 × 10−6m2

ρ = 7800kg.m−3

A = 5.0 × 10−6m2

⇒

ρ = 2900kg.m−3

A = 18.0 × 10−6m2

m = 5.22 × 10−2kg.m−1

(5.11)

The piezoelectric plate ceramic used to manufacture the CIS-BE is from the same

maker as the one used to manufacture the UCL-BE and has the same thickness of

0.5mm. The densities of the composed sections of the UCL-BE and CIS-BE are

calculated to be 3100kg.m−3 and 2900kg.m−3 respectively, giving mass per length

unit values of 3.02×10−2kg.m−1 and 5.22×10−2kg.m−1.

The estimated values of flexural stiffness, equivalent static displacement, equiva-

lent static load and equivalent springs stiffness are presented in table 5.7. Damping

causes the system to resonate at frequencies slightly lower than the actual charac-
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teristic frequencies, (Clough and Penzien, 1993). The necessary relation between

the damped and undamped natural frequencies is given in equation 3.76. The cal-

culation procedure steps defined in figure 5.23 are also presented in table 5.7.

It was not possible to obtain a satisfactory value of equivalent damping coeffi-

cient for the embedded CIS-BE, due to complex model behaviour expressed in the

respective magnitude response curve, (figure 5.17(a)). Two distinct modes of vibra-

tion occur at close frequencies, possibly interfering with each other. The equivalent

damping ratio obtained for the UCL-BE is used in the calculations concerning CIS-

BE, since the transducers are constituted by similar materials. The value of damping

ratio is only used to estimate the equivalent maximum static displacement. The dy-

namic verification of the natural frequency is made without considering any damping

at all.

UCL-BE CIS-BE step

free embed. free embed.

damped natural frequency fD Hz 3400 5000 2200 3200

natural frequency fn Hz 3401 5164 2207 3305

ω rad.s−1 21370 32446 13867 20766 1a

flexural stiffness EI N.m2 4.57×10−3 8.12×10−3 2a

Young modulus E Pa 2.50×109 2.41×109

dynamic displacement a µm ±18.00 ±1.12 ±2.95 ±1.41 1b

damping coefficient ξ — 2.5% 25.0% 8.0% 25.0% 1b

magnification factor Df — 20.0 2.0 6.3 2.0

static displacement as µm ±0.90 ±0.56 ±0.47 ±0.71 2b

moment load M N.m 1.95×10−4 1.60×10−4 3

spring stiffness (×6) K N.m−1 —– 10500 —– 8100 4

verification

natural frequency fn Hz —– 5164 —– 3305 5a

static displacement as µm —– ±0.38 —– ±0.31 5b

Table 5.7: Estimated flexural stiffness, static displacements, moment load and

equivalent spring stiffness for UCL-BE and CIS-BE, using the observed natural

frequency, dynamic displacement and damping ratio.

210



The estimated flexural stiffness of the free UCL-BE, using the observed natural

frequency of 3.4kHz, is of EI = 4.57×10−3N.m2, which for the respective section

produces a Young modulus of E = 2.50×109Pa. A similar calculation is carried

out for the free CIS-BE, now with a natural frequency of 2.2Hz, and considering

its different section geometry, A = 1.5 × 12.0mm2, and cantilever height, L =

10mm, produces a Young modulus of E = 2.41×109Pa. These two values of Young

modulus are relatively similar, confirming the initially assumed similarities between

the transducers, namely the CIS-BE mass per unit length. They also demonstrate

how well the Bernoulli-Euler flexural model is capable of relating the beam properties

with their first flexural mode of vibration.

The observed maximum dynamic displacement of the UCL-BE, at resonance, was

of ±18.00µm and the equivalent damping ratio was estimated at 2.5%. These values

were obtained from a clear resonance peak of the magnitude response curve in figure

5.10. The dynamic magnification factor was estimated at Df = 20.0 using the given

damping ratio and knowing the dynamic displacement is the maximum displacement

obtained when exciting the transducer at its resonance frequency, giving β = 1. The

equivalent static displacement of as = ±0.90µm is therefore obtained. Using the

static model of a free cantilever, the concentrated moment load at the top end of

the transducer’s tip which produces such static displacement isM = 1.95×10−4N.m.

Two new numerical models are used, one static and the other dynamic, in which

6 springs of identical stiffness, K, equally distributed at the top 3mm of the bender

element tip, are located. These springs model the resistance to displacements offered

by the medium in which the transducer is embedded. The obtained static load is

used in the static model to obtain the spring stiffness, which, all other things being

equal, produces the static displacement of as = ±0.56µm for the UCL-BE. The

dynamic model is used to independently estimate the spring stiffness, which results

in an undamped first flexural mode of vibration frequency of 5.2kHz. A spring
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stiffness of (6×)K = 10500N.m−1 was necessary to produce a natural frequency of

5.2kHz. Using this spring stiffness the static spring model gives a static displacement

of ±0.38µm. No value for spring stiffness could match both the natural frequency

and static displacement of the system. The spring stiffness that matches the natural

frequency is valued above the static displacement since there is a greater degree of

uncertainty about the viscous damping ratio, about its estimated value but also

about its nature, (section 3.9), where for simplicity a viscous damping is assumed

when a closer concept is that provided by a more complex linear hysteretic damping.

The natural frequency of the CIS-BE was determined from a more complex

magnitude response curve, (figure 5.11); in fact, the continuous and pulse signals

produce different natural frequency estimates, f = 2.2kHz and f = 3.4kHz, (table

5.6). Of the two, the natural frequency at f = 2.2kHz is the one that produces a

flexural stiffness and static load that best match the values obtained for the UCL-

BE. For this reason, they are preferred to characterise the CIS-BE transducer simple

two-dimensional flexural behaviour. For a characteristic frequency for the first mode

of flexural at 2.2kHz, a mass per unit length of 5.22×10−2kg.m−1, a flexural stiffness

of EI = 8.12×10−3N.m2 is obtained. This value of flexural stiffness, in turn, can be

decomposed to obtain the Young modulus, E = 2.41 × 109Pa. To obtain values of

Young modulus for the two transducers so similar, using independently monitored

resonance frequencies, validates the assumption of similarities between them as well

as increases the confidence in the methods used to obtain those values.

The dynamic maximum displacement of the free CIS-BE at resonance is ±2.95µm

and the related damping ratio 8.0%. A static displacement is then estimated at

±0.47µm. This value of static displacement can also be obtained in the correspond-

ing static numerical free model by a load of M = 1.60×10−4N.m. This load is in the

same range as the one obtained for the UCL-BE. Even though the transducers have

different sections they are excited using similar signals, with the same amplitude
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and using the same equipment. It is not clear whether the loads for each differ-

ent transducer should be similar or proportional to the piezoelectric ceramic plates

dimensions and capacities.

The piezoelectric ceramic capacity of the plates, being from the same maker, is

equivalent. Therefore, only their dimensions or lifetime could justify a difference

in electric capacity. According to the estimated values of moment load, it appears

that this load is similar for both transducers, independent of the dimensions of the

piezoelectric plate. If the load was proportional to the piezoceramic plate, then

the moment load for the CIS-BE would be significantly higher then the one for the

UCL-BE. In fact, it is slightly lower. The two transducers have different origins, the

piezoelectric ceramic plates have different lifetimes, and both factors can influence

the piezoelectric capacity, therefore no conclusive remarks can be made about the

actual relation between excitation and response capacity of the piezoelectric ceramic

plates.

Leong et al. (2005) presented an equation to determine the maximum force gen-

erated by a bender element. Equation 5.12 is presented for the acting force of a

series polarised and wired bender element,

Fmax =
3

8
Ed31

(

T

lb

)

W

(

1 +
ts
T

)

V R (5.12)

where E is the Young modulus, d31 is the piezoelectric strain constant, T is the

thickness, lb is the embedment length, W is the width of the transducer, ts is the

thickness of the centre metallic shim between piezoelectric plates, V is the applied

voltage and R is an empirical weighting factor. In Piezo (2005) a slightly different

version of this expression is presented, here given by equation 5.13.

Fmax =
2

3

VWT

Lg31

(5.13)
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where L is the length of the piezoceramic plate and g31 is a piezoelectric voltage

constant.

According to either equation 5.12 and 5.13, and considering that the properties

for the two transducers are the same, except for their width and slightly different

lengths, then a force proportional to their widths is expected. The force exerted by

the CIS-BE would be around twice as high as the force exerted by the UCL-BE. The

obtained results do not confirm this prediction. The observed lack of efficiency of

the first flexural modes of vibration of the CIS-BE, (section 5.5), could also explain

the relatively low value of dynamic displacement from which, after several steps, the

moment load was estimated, hence making a comparison in the linear static terms,

presented by Leong et al. (2005), invalid.

An important point about equations 5.12 and 5.13 is that they refer to a static

loading, and in the case of equation 5.12, the length of the piezoceramic plate is not

even considered. This renders the comparison with values from a dynamic analysis

impractical. Also, it is worth noting that the mentioned equations do not consider

the piezoceramic plate coating, generally in epoxy resin, that contribute significantly

to the overall mechanical behaviour of the bender element, both static and dynamic.

The estimated spring stiffness for the embedded CIS-BE was ofK = (6×) 8100N.m−1

obtained from the dynamic model first flexural mode characteristic frequency of

3.3kHz. This estimate of spring stiffness gives, in the static model, a displacement

of as = ±0.31µm. The obtained value of static displacement is lower than the esti-

mated value using the observed dynamic displacement and damping ratio, ±0.71µm.

With the UCL-BE, the verification of the static displacement produced a value also

in the same range as the initially estimated value at around half that value. This

might indicate that a consistent error might be associated either with the initial

estimate, with the verification calculations or with both procedures.

The spring stiffness result, as estimated from the natural frequency, is preferred
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to that of the damping coefficient, since this second result is more susceptible to

error. This has to do with the use of an estimated damping ratio, from the magnitude

response curve, which is, among the initial presented values, the one most prone to

error, particularly if using a response curve with a resonance response which is

not very clear, as was the case of CIS-BE, (figure 5.17). Even though the resonance

frequency can be influenced by the damping of the system, this influence is relatively

low. The error associated with the damped resonance frequency is the square root

of the error associated with the damping ratio, (equation 3.76). Besides, the results

concerning the natural frequency of the systems agree quite well with each other,

for example, when estimating the Young’s modulus of the transducer’s tip sections.

5.6.1 Bender Element Displacement

The laser velocimeter monitoring the bender elements was pointed towards the cen-

tre of the embedded height, 1.5mm from the transducer’s tip end, out of a possible

3mm. The displacement of other points along the transducer tips are estimated

using the observed displacement and the static model with springs, (figure 5.22).

The displacement distribution of the nodes, obtained from the numerical model, is

used to estimate the dynamic maximum displacement of those nodes, proportional

to the value obtained by direct observation. The respective displacement results of

the UCL-BE and CIS-BE are presented in figure 5.24

The maximum displacements estimated for the top ends of the UCL-BE and

CIS-BE tips are in the range of ±2µm for a driving voltage of 20V. It is important

to acknowledge that this is the single largest strain forced on the sample caused by

bender element testing. As the disturbance created by the transmitting transducer

propagates through the sample, the related strains attenuate, and so never equal the

magnitude of the initial forced strain. In terms of actual displacement it is not possi-

ble to make the same observation because some modes of vibration actually amplify

215



0  0.5 1.0 1.5 2.0 2.5
0

1

2

3

4

5

6

7

8

9

10

11

displacement − µ m

tip
 h

ei
gh

t −
 m

m

maximum

laser target

UCL−BE

CIS−BE

embedded

in air

Figure 5.24: Dynamic displacement amplitudes of UCL-BE and CIS-BE tips.

displacements felt at the source. Shirley and Hampton (1978) predicted a maximum

displacement of ±0.56µm for the bender elements used in their testing. This dis-

placement was calculated using the piezoelectric constant, d31 = 5.8 × 10−11m.V−1,

relating mechanical strain with the applied voltage, 100V. The boundary conditions

for the mentioned maximum displacement, free or embedded, were not specified but

are assumed to have been for the free case. Then, the obtained displacement is

in the same range as the equivalent static displacement for both the UCL-BE and

CIS-BE, ±0.90µm and ±0.47µm respectively. Nevertheless, Shirley and Hampton

(1978) used a higher voltage, 100V>20V, for a much bulkier transducer with 8.5

times the thickness of UCL-BE and CIS-BE, 12.7mm>1.5mm.

Piezo (2005) presented an equation, also proposed by Leong et al. (2005), which

enables the calculation of the maximum displacement of the receiving bender ele-

ment,

xmax =
3L2Vrd31

2T 2
(5.14)

where L and T are the length and thickness of the piezoceramic plate respectively,
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V is the applied maximum voltage and d31 is a piezoelectric strain constant.

The obtained equivalent static displacements for the free UCL-BE and CIS-BE,

0.90µm and 0.47µm, do not agree with equation 5.14. In both cases, all the relevant

parameters are the same except for the free length, 8mm and 10mm, assuming that

the coating for both transducers has an equivalent influence on their mechanical

behaviour. Thus equation 5.14 would provide a displacement for UCL-BE around

1.6 times lower than for CIS-BE. Equation 5.14 therefore does not provide a sat-

isfactory explanation for the observed displacements. In this case, the transducers

and respective boundary conditions are not formally contemplated by equation 5.14

and therefore no comparison can be performed.

Equation 5.14 was observed to have little applicability at estimating the flexural

displacement of an embedded bender element. If this is the case then it can be

assumed that, as the pressure under which the medium is confined increases, such

as during the consolidation of a soil sample in a oedometer, equation 5.14 looses

even more meaning, since the medium will therefore hold the bender element even

tighter.

5.6.2 Pressure Distribution

Having calculated the displacement of different nodes along the bender element tip,

both for the 3mm embedded length and along the remaining not embedded length,

and having estimated the equivalent spring stiffness at the embedded part, the next

logical step is to calculate the pressure exerted by the transducer on the embedding

medium. The dynamic displacements, obtained as described in section 5.6.1, are

used together with the springs stiffness to estimate the maximum dynamic pres-

sure exerted by the bender element tip on the embedding medium. The maximum

pressure results for the UCL-BE and CIS-BE are presented in figure 5.25.

The maximum pressure exerted by UCL-BE, as presented in figure 5.25(a), varies
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Figure 5.25: Pressure exerted by bender element against the embedding medium

for a maximum dynamic displacement.

between 2200Pa at the bottom node of the embedded height and 6400Pa at the top

of the tip. For the CIS-BE these values are of 1400Pa and 3100Pa, about half of

those provided for the UCL-BE. This difference can be explained, since the dynamic

displacements are relatively similar, at 1.12µm and 1.41µm, by the different width

and consequent areas of contact of each transducer with the medium, one being

roughly two-fold the other.

5.6.3 Strain Level

The strain level caused by the displacement of the transmitting bender element tips

on the sample can be obtained from the observed and calculated dynamic displace-

ments, being the ratio of deformation over length. Assuming the transducer’s tip is

well coupled with the sample, as in Shirley and Hampton (1978), the deformation

of the sample is equivalent to the displacement of the transducer.

The laser monitoring of the embedded bender elements was performed with the

tip embedded on a rubber sample with a diameter of 38mm. The calculation of the

shear strain could be made assuming the displacement of the transducer tip to be
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a shear displacement in relation to the sample height, or could be assumed to be

compressional displacement in relation to the sample radius. The second case would

produce a compressional strain which could then be multiplied by the Poisson’s ratio

to obtain a shear strain, as in equation 5.15. It is not possible to easily estimate the

strain at the top of the sample, and much less assume it to be non-existent. There

remains the possible assumption of a null lateral surface strain in the radial direction,

where it is unrestrained in this direction. The second solution for the calculation

of strain level is then preferred. Equation 5.15 presents the simple relation between

compressional strain, shear strain and Poisson’s ratio,

εs = νεd (5.15)

where εs and εd are the shear and compression strains respectively and ν is the

Poisson’s ratio, (Gere, 2001). The Poisson’s ratio was assumed to be ν = 0.45, close

to the maximum value, for rubber-like materials, (Feldman and Barbalata, 1996).

From the maximum dynamic displacement of the UCL-BE, as = 1.9µm, results a

compression strain of εd = 1.9µm× 19mm ≈ 1× 10−2%. Then using equation 5.15,

one obtains εs = 0.45 × 1 × 10−2 ≈ 5 × 10−3%.

A number of shear strain level ranges have been proposed by Dyvik and Madshus

(1985), Leong et al. (2005) and Pennington (1999), (section 1.3). Dyvik and Madshus

(1985) and Leong et al. (2005) used a force conversion ratio relating the signal voltage

with displacement. Leong et al. (2005) presented a shear strain estimate method

making use of a equation used initially by White (1965),

εs =
u̇s

Vs

(5.16)

where u̇s is the velocity of the transducer and Vs the estimate of the characteristic
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shear wave velocity.

Using equation 5.16, again for the maximum displacement of the UCL-BE, and

knowing it occurred at a vibration frequency of 5.0kHz, (table 5.6), then integrating

the displacement back into a velocity, u̇s = us×f , one obtains u̇s = 5.6×10−3m.s−1.

Assuming the shear wave velocity of the rubber to be Vs ≈ 50m.s−1, (section 6.2),

one obtains ε = 11.2 × 10−3%. For the CIS-BE, a similar process can be achieved,

where a maximum dynamic displacement of us = 1.41µm produces strain level values

of 3.3 × 10−3% and 9.0 × 10−3%, using equations 5.15 and 5.16 respectively.

The method of strain level evaluation proposed by Leong et al. (2005), using the

equation provided by White (1965), estimates the shear strain level to be roughly

twice as large as the values obtained through the calculation of the compression

strain level along the radius. It is reassuring to know the values obtained using the

compression strain are in the same range as the values obtained using the shear wave

velocity, providing further confidence to the laser velocimeter monitoring method.

The difference between the values is nevertheless significant, although being con-

sistent. This would indicate that this difference is not due to an observation error

but probably due to an error in the assumptions used to calculate the compression

shear rate. It could indicate that this compression strain decreases to zero before

the lateral surface, as soon as half that length.

Figure 5.26 contains the initial assumption of linear displacement distribution

between the transducer and the lateral surface, reaching a zero displacement only

at that surface, pictured on the left. On the right side of the figure is the linear

and parabolic displacement distribution, which sees the displacement reduced to, or

near to, zero at half the length between the transducer and the lateral surface, as

predicted by the use of equation 5.16.

Considering either the first or second case of shear strain estimation, the obtained

values are significantly higher than the proposed strain level range for which soft
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Figure 5.26: Displacement distribution from flexed bender element tip to lateral

surface along radius.

soils are considered to have linear elastic behaviour, (figure 1.1) or (Atkinson, 2000).

The shear strain level values obtained by Dyvik and Madshus (1985), Pennington

(1999) and Leong et al. (2005), appear to have been obtained not using a direct

observation of the oscillation velocity but through indirect methods, for example

by estimating the displacement using equation 5.14 and then differentiating the

obtained value to obtain a velocity and finally by using equation 5.16. The problem

with using such a method instead of obtaining the velocity directly is that first and

foremost, equation 5.16 and other similar equations provided by Piezo (2005) are

for static cases, therefore they underestimating the actual dynamic strain. Also,

there might be some unverifiable error associated with the use of the piezoelectric

constants, the boundary conditions of the base and tip are not considered and the

epoxy resin coating is also not considered, and neither is its influence on the overall

mechanical behaviour of the transducers.

Having observed shear strain level values which are relatively high, rising above

the linear elastic limit for soft soils, there are nevertheless some circumstances which
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might explain why such large values were obtained and provide a reasonable justi-

fication for still use bender elements and considering a linear elastic behaviour of

soils. The rubber used for the synthetic samples is quite soft, even when compared

with soft clay soils, so a harder soil might provide more resistance to the trans-

mitting transducer oscillation, which would imply lower strains. Furthermore when

testing in a triaxial cell, the sample is contained by hydraulic pressure and a latex

membrane.

The mechanical model was based on the observations of the transducer’s tip

embedded in a rubber sample. To achieve this, a small opening had to be cut from

sample so that the laser beam could be successfully reflected from it. This opening,

although small, might significantly affect the coupling between the sample and the

transducer, and also offer less sample surface to resist the transducer’s oscillation.

The signal amplitude diminishes significantly from the transmitter to receiver, so

its amplitude is expected to fall well inside the accepted linear elastic range not far

from the source. Finally, when inserting the bender element tip in a soil sample,

disturbances with consequent strains rates higher than 1.0% are caused, which are

at 3 orders of magnitude higher than possible disturbances caused by the dynamic

oscillation of the transmitting transducer. This means that if the dynamic oscillation

of the transmitting bender element does disturb the soil’s elastic behaviour, is to a

far lesser degree than the actual insertion of the transducer, and only locally since

such disturbance is not significantly felt along most of the wave travel path.

5.7 Tip-to Tip Monitoring

A similar set-up as the one used by Lee and Santamarina (2005) and Leong et al.

(2005) was attempted, with a receiving transducer touching the transmitter. Apart

from obtaining the response values from the receiver, the laser velocimeter was also
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aimed at a point on its tip, this time outside the embedded height. Both transmitter

and receiver transducers have their tips embedded 3mm into a 6mm height rubber

sample. The transducers tested with this set-up are characterised as UCL-BE, (table

5.2). An illustration of the basic set-up is presented in figure 5.27.

Figure 5.27: Touching bender elements set-up, both tips embedded, with laser

beam monitoring the behaviour of the receiving transducer.

A mechanical model of the embedded touching bender elements is proposed in

figure 5.28 where a hinge couples the transmitting and receiving transducer can-

tilevers. The hinge provides a mechanical link between the transducers compatible

with the assumption that the receiver transducer tip is capable of perfectly emu-

lating the bending or flexural movement of the transmitter. This assumption was

not explicit in the works of Lee and Santamarina (2005) and Leong et al. (2005),

but without it any analysis would be meaningless. Since the bender elements are

embedded in the sample, again a number of equally distributed springs are placed

evenly along the respective embedded modelled lengths.

The signals obtained by the laser velocimeter have a very low amplitude and are

significantly affected by noise. In figure 5.29, the results of one of the few discernible
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Figure 5.28: Mechanical model of two bender element tips touching, both embed-

ded in an elastic medium.

results, namely its time history and correspondent magnitude response curve, are

presented. These results concern a transmitted sweep signal.
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Figure 5.29: Time history and magnitude response of receiving UCL-BE, touching

the transmitter, both embedded in a short rubber sample.

Even though the interpretation of the results, as presented in figure 5.29, is not

straightforward, it is possible to estimate the maximum oscillation of the targeted

point to be in the range of a = ±4mV≡ ±0.15µm and the resonance frequency

of the system to be around 3.0kHz. The results from the signal produced by the

receiver are presented in figure 5.30 in the form of the magnitude and phase delay

response curves.
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Figure 5.30: Response magnitude and phase delay curves of the output signal of

the receiving bender element touching the transmitter.

The results from the receiving transducer confirm the observations made using

the laser velocimeter, namely the resonance frequency of the system, 3.0kHz, (figures

5.30(a) and 5.30(b)).

The sample used is similar to the samples tested so far in this section. The

mechanical model described in table 5.7 of a cantilever beam with springs is again

used to determine the displacement at the middle of the receiving transducer’s tip

and estimate the corresponding displacement of the tip end. In this way the same

flexural stiffness of the beam and the spring stiffness are considered for the new

double-hinged cantilever model. The estimated maximum dynamic displacement of

the receiving transducer is then a = 0.97µm. This value is around half the value

estimated for the tip end of the single transmitting bender element, a = 1.9µm.

Using equation 5.16, a shear strain level of εs = 5.8 × 10−3% can be obtained from

the dynamic tip end displacement.

The difference in displacement and strain observed between the results for the

transmitting transducer and the receiving transducer touching the transmitter can

be attributed to loss of energy due to an imperfect mechanical transmission process,
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or to different mechanical boundary conditions introduced by making the transduc-

ers touch each other, or a combination of these two. For this reason, the strain

level obtained from the touching transducers is considered to be less reliable than

the one obtained monitoring the transmitting with a laser beam. Not only are the

touching transducers less reliable but, it is a clear case where the monitoring process

significantly alters the subject being monitored.

It is worth noting the resonance response of the system at around 3.0kHz in fig-

ure 5.30. This frequency value is lower than the corresponding resonance frequency

of the single transmitting bender element at 5.0kHz. The numerical model of the

embedded touching bender elements, as illustrated in figure 5.28, estimated the nat-

ural frequency of the complex system at 5.9kHZ, significantly higher than the value

observed. A corresponding dynamic amplitude of displacement of a = ±0.37µm was

also calculated using the numerical model. This value of displacement amplitude is

smaller than the one estimated from the observed response, a = 0.97µm.

Clearly, as demonstrated by the difference in the natural frequencies and dy-

namic displacements, the real contact between the elements is not a perfect hinge

as modelled in the corresponding numerical model. The proposed numerical model

is therefore not suitable to predict the real behaviour of touching embedded trans-

ducers. It also means that the touching transducers are not an appropriate method

of monitoring the behaviour of bender elements. Not only does the contact between

the transmitting and receiving transducers change the actual individual behaviour of

each bender element, but the contact between the two is not a perfect hinge, which

disproves the assumption that the receiver perfectly emulates the transmitter.

226



5.8 Discussion

The monitoring of the dynamic behaviour of bender element transducers confirms

that they behave, as expected, as Newtonian mechanical systems. The transducers

responded with characteristic magnitude and phase delay curves, enabling the iden-

tification of the resonance frequencies for different modes of vibration. In light of

these observations, any assumptions of a bender elements response which perfectly

emulates the electric signals can no longer be pursued.

When used to determine the small-strain shear stiffness of soil or any other

medium, the mechanical properties of the bender elements must be taken into ac-

count. Several aspects of their mechanical behaviour are worth mentioning, in terms

of the influence on the overall performance of the test system, i.e., they have a charac-

teristic mechanical response to an external excitation and they behave as frequency

filters.

If bender elements behave as mechanical frequency filters, this means that either

left free to vibrate or with their tips embedded in a sample, in either case there is a

maximum frequency after which the response is no longer discernible. The value of

such maximum frequency is a property of the bender elements themselves, but also of

the medium in which they might be embedded, since when embedded in a medium,

the overall mechanical response of the bender elements is stiffened proportionately

to the stiffness of the medium and to the degree of coupling obtained between the

medium and the bender elements. The overall conclusion is that when testing with

bender elements, this maximum frequency must be taken into account.

If behaving as a Newtonian mechanical system, with finite mass and stiffness,

and therefore with significant inertia, bender elements have different responses to

excitations with short and long duration. If pulse signals are used to excite a bender

element, then only a transient response can be obtained, which is dominated by
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the natural frequency of the transducer rather than the frequency of the signal.

Because dispersive phenomena are frequency-dependent, this means that if pulse

signals are used to excite the bender elements, such phenomena cannot be effectively

controlled. The establishment of a steady-state of vibration, can be achieved when

using harmonic continuous signals, and so the use of this type of signal is therefore

advisable.

In all four set of tests with the two different bender element transducers, free

to vibrate or embedded in a rubber sample, an apparent initial time delay can

be observed. In figures 5.12, 5.14, 5.18 and 5.20 0.02ms separate the recorded

beginning of the input and received signals, independent of input signal frequency.

Therefore, such a time delay can only be attributed to a loss in the group of electric

and electronic devices that compose the test circuit, i.e., the bender element cable,

the light travel time to and from the target and the processing time of the laser

velocimeter. Such a time difference can be quite significant in terms of determining

wave travel times, since for shorter samples it represents about 10% of the travel

time ≈ 0.17ms, section 6.6.1). For higher samples, with longer travel distances and

hence longer travel times, the observed time delay is less significant, contributing

about 2% of the total travel time.

Considering the mechanical behaviour of bender elements, more specifically the

time and phase delays between load and response, the use of bender elements to di-

rectly compare the transmitted and received signals in the time domain is not ideal.

A actual time delay is added by the necessity of the eletric signals to travel along

the circuit as well as frequency dependent phase delay is added at each mechanical

interface of the bender element test system. In a normal bender element test, four

such interfaces exist, and as a consequence any direct time comparison between the

transmitted and received electric signals is inevitably affected. A signal comparison,

done in relative terms by comparing different received signals in the frequency do-
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main, is capable of overcoming the effect of the mentioned delays at each interface,

and its use is therefore advisable.

The mechanical limitations of bender elements as dynamic transducers must be

acknowledged if they are to be used effectively.
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Chapter 6

Parametric Study of Synthetic Soil

In an unbounded and unloaded elastic solid medium, wave propagation depends

only on the intrinsic properties of the medium itself such as its density, stiffness and

damping coefficient. When studying a soil sample in the laboratory, using triaxial

cells or oedometer, a number of boundary conditions can interfere with its dynamic

behaviour including the properties of the wave propagation, which might render the

behaviour model of unbounded wave propagation unsuitable.

The testing of a soil sample in a triaxial cell apparatus with bender elements

depends on a great number of parameters, medium properties and boundary condi-

tions. Some of these are listed in table 6.1.

One of the listed boundary conditions which is believed to have a significant

effect on the dynamic behaviour of the system is the sample’s geometry, (Arroyo et

al., 2006; Rio et al., 2003; Santamarina, 2001). A parametric study was conducted

with the main objective of observing, understanding and quantifying the influence of

sample geometry on bender element test systems’ behaviour and consequent influ-

ence on the results. Other objectives are the study of radiation phenomena such as

the near-field effect, the study of the correct wave travel distance and the comparison

between results from the time and frequency domains.
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Soil Properties

void ratio

current effective stress state (confining pressure and anisotropic stress state)

degree of saturation

sedimentation environment

post sedimentation stress-strain history, including mechanical overconsolidation

anisotropy

cementation

particle size distribution, particle shape, particle crushability, mineralogy, etc.

mechanical properties

stiffness

Poisson’s ratio

density

damping

triaxial cell controlled conditions

axial load, confining pressure and pore water pressure

load history and path

drainage of sample

excitation signal and wave properties

signal amplitude (proportional to strain)

signal frequency

signal wave form

wave polarisation and direction

bender element

geometry (length, width, thickness)

stiffness

density

other boundary conditions

sample geometry (shape, height, width, etc.)

latex membrane

fixity of sample to end plates

fixity of bender element to end plates

fixity of end caps

coupling between sample and bender element tip

existence and length of protrusion

other measurement instruments attached to the sample

Table 6.1: List of soil properties and triaxial cell bender element test parameters

and boundary conditions.
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6.1 Test Description

6.1.1 Sample Properties

Synthetic samples of polyurethane rubber were used to conduct the geometry para-

metric study. The advantages of using a synthetic material such as polyurethane

rubber instead of real soil are discussed in chapter 4. In summary, when testing with

bender elements, soft soils are assumed to have a linear-elastic behaviour only at

low levels of shear strain, in the order of 10−3% and 10−4%, (Burland, 1989). Rub-

ber materials are also considered elastic at such strain ranges and even up to much

higher strains, ε > 100%. There is also the issue of viscosity, with both soft soil

and rubber-like materials being recognised for having viscous-like behaviour, (Fodil

et al., 1997). When disturbed at high frequencies, being a time-dependent phenom-

enon, viscosity becomes less relevant in the overall behaviour of the disturbed media.

The tested samples are excitated at frequencies in the range of f ∈ [0.2 20.0]kHz

or higher, at which their viscous properties become less relevant, and so can be

expected to behave as incompressible non-viscous solids.

The parametric study is conducted using bender elements to test a number of

synthetic rubber samples with different geometries, in a similar fashion to soil sam-

ple testing. All the samples have a cylindrical shape with different diameters and

heights. The cylindrical shape was selected for three main reasons. First because it

is a sample shape commonly used in triaxial cells and oedometers apparatus, (Head,

1998). Secondly, because due to the symmetry around the central axis, the dynamic

behaviour of cylinders is theoretically well studied and understood, (Achenbach,

1973; Graff, 1975; Redwood, 1960). The third reason has to do with the moulding

process of the samples. It was easier to prepare cylindrical moulds with set diame-

ters in which the height of the samples could be varied and from which the samples

could be easily demoulded.
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The cylindrical samples were of three different diameters, 38mm, 50mm and

75mm. These diameters were chosen because both D = 38mm and D = 75mm are

commonly used for soil samples tested in triaxial cells and oedometer1 apparatus

respectively. The 50mm diameter was chosen so that an intermediate diameter could

be studied. The third and larger diameter of 75mm was the maximum achievable

diameter for which polyurethane rubber could be easily moulded. It was not possible

to manufacture moulds with larger diameters hence the chosen maximum diameter

of 75mm. The time it takes for the liquid rubber to vulcanize and set also limits the

volume of the samples since once the vulcanization process begins, there are only

10 minutes left to proceed with the mixing and pouring of the liquid mixture into

the moulds. The dimensions of all the tested samples are presented in table 6.2.

Figure A.1 contains a graphic representation of these samples which can be used as

a companion to this chapter.

At the moulding stage, sets of four different samples were prepared simultane-

ously where the moulds were filled from the same batch of liquid rubber mixture.

This group of 4 samples consists of 3 samples with different diameters and the same

height and a fourth sample with fixed dimensions of h76×d38mm. Henceforth each

one of these groups is referred to as a ‘set’.

Apart from comparing samples from the same set, with the same height and

different diameters, the influence of the sample height is also studied. Different

sets of samples were therefore moulded with different heights. From each set, the 3

samples with different diameters and constant height were used in the parametric

study itself. The fourth sample, with 76 × 38mm, was used for control purposes

in order to normalise the results from each set. This control and normalisations

procedure exists because even though synthetic rubber was used to obtain constant

1The standard diameter for oedometers is 76mm and not 75mm.
2Sample used for repeatability testing.
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Height Travel Distance Diameter (mm) Control

(mm) (mm) 38 50 75 h76 × d38

06 00 S01 S02 S03 S04

10 04 S05 S06 S07 S082

20 14 S09 S10 S11 S12

30 24 S13 S14 S15 S16

40 34 S17 S18 S19 S20

50 44 S21 S22 S23 S24

60 54 S25 S26 S27 S28

76 70 S29 S30 S31 S29

Table 6.2: Dimensions and reference of rubber samples. Figure A.1 contains a

graphic representation of the samples and can be used as a pull-out to accompany

the reading of this chapter.

properties for all samples, some minor variation might exist between sets, due to

factors unaccounted in the samples moulding process, and can be henceforward

taking into account

Synthetic rubber is a very resilient material, (Feldman and Barbalata, 1996), and

hence it is quite difficult to cut the gaps in which to insert the bender element tips.

For this reason, a pair of gaps needed to be moulded in each sample. These gaps

were designed with dimensions slightly smaller than those of the bender element tips

to achieve a closer fit, and the coupling maximised between the transducers and the

sample. The moulded gaps allow the bender element tips to protrude the sample

3.0mm each. At the first stage of the parametric study, the wave travel distance was

assumed to be measured from tip-to-tip, (Viggiani and Atkinson, 1995). Therefore,

for each sample, the travel distance was obtained as the difference between sample

height and two times the embedment height, td = H − 2 × 3.0, (table 6.2).
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6.1.2 Laboratory Set-Up

The laboratory set-up for the parametric study is illustrated in figure 6.1. A pair

of bender elements was used, one at each end of the cylindrical sample, fixed to

steel plates. A function generator and a computer sound card were used to generate

the transmitted signal. Both the transmitted and received signals were captured by

the oscilloscope, which then sent them to the personal computer, to be visualised,

stored and processed. The input signals were determined prior to the testing and

remained the same for all of the samples, (section 6.1.3).

Figure 6.1: Typical bender element test set-up used in the parametric study.

The configuration of the system was kept constant during the test, so as to

minimise any possible influence over its behaviour and consequently the results. This

translated into using the same pair of bender element transducers for all samples,

each consistently performing the function of transmitter or receiver. The transducers

were placed always with the same polarisation, i.e., facing the same way relative to

each other and to the remaining equipment of the test system such as the top plates.

The sample was consistently placed in the vertical position, with the transmitting
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bender element placed on the bottom plate and the receiving bender element on the

top plate.

The bender elements used during the parametric study have been described in

table 5.2, where they were referred to as UCL-BE. These bender elements were

designed and manufactured at UCL to take part in this study. Their dynamic

behaviour, on their own or in a normal test set-up, is described in chapter 5. These

transducers, when fixed, have a resonance frequency of 3.4kHz with their tips free,

and of 5.0kHz with their tips embedded in a synthetic rubber sample, (table 5.6).

6.1.3 Signal Properties

In order to understand the influence of sample geometry in bender element testing,

the dynamic behaviour of each sample must be consistently determined to enable a

thorough comparison of results. A useful representation of each system’s dynamic

behaviour is given by its response curves. The response of a dynamic system is

complex, being usually described by two curves, one containing the magnitude and

the other containing the phase delay of the response.

A total of three types of input signals were used. They were the sinusoidal pulse

signal, the harmonic sinusoidal continuous signal and the sinusoidal sweep signal.

The general use of these signals is described with detail in sections 2.1 to 2.4. The

specific characteristics of the signals used during the parametric test, such as their

frequency and amplitude, are shown in table 6.3.

The pulse and continuous signals were supplied by the function generator. The

sweep signal was supplied by the computer sound card, hence its lower signal am-

plitude. These pieces of hardware equipment are described in table 5.4.

3The signal amplitude is the maximum provided by the respective hardware source.
4In the case of pulse signals, the values refer to the central frequency of the pulses.
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Signal Source Amplitude3 Frequency4

pulse function generator ±10V [0.2 5.0]kHz in steps of 0.2kHz

[5.0 10.0]kHz in steps of 0.5kHz

[10.0 20.0]kHz in steps of 1.0kHz

continuous function generator ±10V [0.2 5.0]kHz in steps of 0.2kHz

[5.0 10.0]kHz in steps of 0.5kHz

sweep sound card ±2V twice the cycle from 0.0kHz to

20.0kHz and back, with a variation

rate of ω̇ = 2π × 106rad.s−2

Table 6.3: Properties of the signals used to excite the transmitting bender element

during the parametric study.

6.1.4 Overview

The parametric study consisted of three parts. In the first part, a repeated test

of the same sample, S08 - h76 × d38mm, was carried out. This was to verify the

repeatability of the testing procedure and the variation of the synthetic rubber

sample properties with time and room temperature. During the second part of the

parametric study, a control sample from each set was tested and the obtained results

compared. The objective of this second procedure was to evaluate the dissimilarities

between the synthetic rubber properties from each set. The third and main part

of the parametric study dealt with the testing of 24 samples, each with different

geometry. This was to evaluate the influence of sample geometry on their dynamic

behaviour, namely their body vibration and wave propagation properties.

The repeatability study focused on sample S08. This sample was selected arbi-

trarily from all the control samples with standard dimensions of h76 × d38mm. It

was tested repeatedly and the results compared. There were 6 tests in total over

a period of 82 days from the time the samples were first casted. Each test was

independent from the others in the sense that both sample and equipment were

reset each time. All the tests had the same laboratory configuration and used the
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same signal combination, equal to the main parametric study. The parameters,

which were known to vary between control tests, were the age of the sample and the

room temperature. Besides these two factors, the repeatability control testing also

served to evaluate possible human error related with the equipment set-up and the

interpretation of results.

At the control sample study, a sample from each set was tested and the results

compared. From each set of samples, one was moulded with the aim of taking

part in this control study. Each tested sample has the same dimensions of h76 ×

d38mm. Slightly different material properties might exist between sample sets, due

to variations during the moulding stage, (section 4). So, the objective of this study

was to analyse the difference in the properties of each set of samples in the form of

bender element test results so that the results could later be normalised.

An independent monitoring of the samples’ dynamic response was also con-

ducted. With the same laser equipment used in chapter 5, it was possible to monitor

without interference the dynamic response of various samples to external excitations.

In this was it was possible to estimate the elastic properties of the medium which

could later be compared with the estimates obtained from the actual bender element

testing.

6.2 Torsional and Flexural Resonance

An independent monitoring of the dynamic behaviour of three of the rubber samples

is presented in this section. The tested samples were subjected to an impact torsional

load and left to vibrate freely. Their dynamic response in terms of torsional and

flexural motion was monitored using a laser velocimeter. While vibrating freely, the

samples are expected to oscillate mainly at their torsional natural frequencies. From

the value of resonance frequency, it is then possible to evaluate the shear stiffness of
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the samples using the respective frequency equations, as in resonant column testing,

(ASTM-D-4015, 2000).

The main objective of this test was the excitation of the natural torsional mode

of vibration of the samples, since the impact load is primarily torsional. But, since

the load is applied manually, it was not possible to avoid some flexural excitation

as well. For this reason both the torsional and flexural response of the samples are

analysed, as done previously by Cascante et al. (1998) and Fratta and Santamarina

(1996).

6.2.1 Test Set-Up and Description

A scheme of the torsional resonant column set-up is presented in figure 6.2. The

samples were set up in the same way as when tested with bender elements with a

few exceptions. These exceptions are the laser beam pointed at the top end of the

sample, a small target with 5mm in diameter painted on the sample and a small steel

rod attached to the top end plate where the forces were applied. The mentioned

differences do not significantly influence the behaviour of the system compared with

its set-up for the parametric study since the laser beam has no measurable influence

on the behaviour of the sample, and neither does the small painted target. The rod

attached to the top plate weights 0.9g, which is less than 0.5% of the weight of any

of the used plates, and was therefore also assumed to be insignificant.

The laser velocimeter used to monitor the behaviour of the samples is the same

as the one described in section 5.2, also known as LDV. The LDV can only detect

movement in a direction collinear with the direction of the laser beam. For it to

detect the torsional movement of the sample, it had to be aimed at a point deviated

from the main axis of the samples, (figure 6.2). Only points which are not in the

plane formed by the sample axis and the laser beam have movement that can be

detected when the sample is oscillating in torsion. This set-up of the LDV enables
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Figure 6.2: Resonance test of rubber samples set-up, monitored with laser ve-

locimeter.

the detection not only of the torsional motion but also of the flexural motion of

the sample, since both motions have movement components collinear with the laser

beam. The LDV measures the oscillation velocity rather than displacements. Never-

theless, the signal’s frequency properties are revealed in the velocity time history of

the oscillation, just as they would be at the equivalent displacement time histories,

(equation 5.9).

The samples chosen to be tested were S21 - h50×d38mm, S22 - h50×d50mm, S23

- h50× d75mm and S24 - h76× d38mm, described in table 6.2. These 4 samples are

from the same mould set, and therefore assumed to have exactly the same material

properties.

The resonant column test system is fixed at one end and free at the other end,

behaving as a cantilever with a mass at the free end. A suitable dynamic model of

behaviour is the Bernoulli-Euler beam, capable of relating the resonance frequency of

the beam with its stiffness, (Karnovsky and Lebed, 2001). The necessary analytical
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tools to model the first mode of torsional and flexural vibrations are presented

in sections 3.8 and 3.11. The torsional vibration of the system is described by

equation 3.107 and the specific boundary conditions expressed in equation 3.110.

The flexural vibration behaviour of the system was modelled using equation 3.101

and its boundary conditions expressed by equation 3.103.

The system was characterised by its equivalent shear-wave velocity, Vs rather

than by its Young’s modulus, E, shear-stiffness, G, or Poisson’s ratio, ν. The

relations between these values are given in equations 3.12 and 3.2. In these models

the Poisson’s ratio was assumed to be ν = 0.45, since rubber-like materials are highly

elastic and suffers next to no volume variation with strains up to 100%, (section 4.3)

or (Doi, 1996).

6.2.2 Results

An example of a typical result obtained by LDV monitoring is presented in figure

6.3, for sample S22 - h50× d50mm. The actual time history of the observed motion

is presented in figure 6.3(a) and the corresponding response magnitude, also known

as frequency content, obtained using a fast Fourier transform FFT, is presented in

figure 6.3(b).

The response in figure 6.3(a) resembles the undercritically damped free vibration

of a simple mechanical system, (section 3.8.4). If that is the case, the natural

frequency of the system can be obtained directly by measuring the time difference

between some of the observed peak features. The damping coefficient could also be

estimated using the free-vibration decay method mentioned in section 3.9.1. The

uncharacteristic sharp variations in figure 6.3(a) can be attributed to environment

noise such as ground vibration due to people moving near the equipment.

The magnitude response in figure 6.3(b) describes a more complex response case

than that of a SDOF system. Two peaks, corresponding to two resonance frequen-

241



0 10 20 30 40

−5

0   

5

−5

0   

5

−5

time − ms

vo
lta

ge
 −

 V

(a) time history

0  40 80 120
0   

5

10

15

20

25

frequency − Hz

m
ag

ni
tu

de

(b) FFT

Figure 6.3: Time history and corresponding frequency content of resonant column

response of polyurethane rubber sample S22, as monitored by a laser velocimeter.

cies, can be observed, the clearest one occurring at 67Hz and another at 31Hz. Each

one of these resonance frequencies is associated to a different mode of vibration. As

will be subsequently confirmed, the resonance frequency at 67Hz corresponds to the

initially intended first torsional mode of vibration. The other resonance at 31Hz

corresponds to the first flexural mode of vibration.

Being characterised by a lower frequency, is seems likely that the sample started

out oscillating in a torsional mode as initially intended. Since it was vibrating freely,

it then reverted to its ‘more natural’ flexural mode, a similar process to the one

observed by Fratta and Santamarina (1996). The samples was manually disturbed,

so it was not possible to guarantee a perfect torsional input; therefore they might

be expected to have been excited at other vibration modes. Also, the excitation was

impulsive, meaning it had a relatively broad frequency content, making possible the

excitation of more than one mode of vibration, (Ewins, 2000).

Using the magnitude components of the response, it is possible to detect the

damped resonance frequencies of the system and to estimate their correspondent

damping coefficient, using the half-power bandwidth method, (section 3.9.2). The

damped resonance frequencies ωD, are associated with the natural resonance fre-
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quencies ω, (equation 3.76), which can be used in the Bernoulli-Euler beam analysis

to obtain the elastic stiffness properties of the sample, (Clough and Penzien, 1993).

Figure 6.4 presents the estimated equivalent shear-wave velocities obtained from

the torsional and flexural resonance frequencies.
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Figure 6.4: Equivalent shear wave velocities obtained from the torsional and flex-

ural resonance frequencies for samples S21, S22, S23 and S24.

The velocities presented in figure 6.4 vary between 42m.s−1 and 50m.s−1 for the

torsional mode, and between 21m.s−1 and 29m.s−1 for the flexural mode. There is a

discrepancy in velocity results of about 8m.s−1 between the maximum and minimum

torsional results. A similar discrepancy of 8m.s−1 between the flexural results is also

present. The discrepancy between the torsional and flexural results is much greater,

around 20m.s−1. The interference between the torsional and flexural modes might

explain the observed discrepancies. If these two distinct modes of vibration occur

at similar frequencies, their expression in terms of local peaks in the magnitude

response curve might shift due to presence of the other, resulting in a curve that is

harder to interpret.

To better understand the possible interference between the first modes of tor-
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sional and flexural vibration, their characteristic frequencies for an equivalent can-

tilever model, with the properties of the rubber samples, are presented in figure 6.5.

The characteristic frequencies for each mode are determined for equivalent shear-

wave velocities of Vs = 30m.s−1 and Vs = 50m.s−1, so that a significant range of

values can be compared.

Figure 6.5(a) contains the characteristic frequencies of Bernoulli-Euler beam flex-

ural and torsional first modes of vibration for a cylindrical cantilever with a height

of 50mm and diameters varying between 30mm and 80mm. Figure 6.5(b) contains

the characteristic frequencies of a similar model with a height of 76mm and the same

range of diameters. The characteristic frequency curves are identified by references

T30, T50, F30 and F50 where T and F indicate the first torsional or flexural mode of

vibration and 30 and 50 identify the equivalent shear-wave velocities of Vs = 30m.s−1

and Vs = 50m.s−1.

30 40 50 60 70 80
20

30

40

50

60

70

80

90

100

diameter − mm

fr
eq

ue
nc

y 
−

 H
z

S21 S22 S23

T30

T50

F50

F30

(a) H = 50mm

30 40 50 60 70 80
10

20

30

40

50

60

70

diameter − mm

S24

F30

F50

T50

T30

(b) H = 76mm

Figure 6.5: First flexural and torsional modes of vibration characteristic frequen-

cies for sample heights of H = 50mm and H = 76mm and varying diameters.

For samples S22 and S23, the torsional and flexural modes occur at very similar

frequencies. For samples S21 and S24, the ones with higher slenderness ratios, the

torsional and flexural modes occur at more distinct frequencies. The results of
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sample S22 - h50×d50mm, presented in figure 6.3, can serve as an example of mode

interference. In the time history presented in figure 6.3(a) a subtle shift in signal

frequency at around 22ms can be observed. The frequency content of the signal was

obtained a second time, now separately for two time histories, before and after the

22ms mark. The frequency content of the two separate time histories are presented

in figure 6.6, marked as M1 and M2. The original magnitude response of sample

S22 is also presented, marked as M0.
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Figure 6.6: Frequency content of sample S22 - h50×d50mm partial and total time

histories.

In figure 6.6, the separate peak features of each time history segment are now

much more clear than that of the complete signal. The peak features found in M0 at

67Hz, related with the torsional mode, shifted to 77Hz in M1. The peak feature at

31Hz in M0, related with flexural mode, is now located at 50Hz in M2. These results

are a clear indication of mode interference and of how the sample oscillation does

shift from one frequency to another. The two corrected characteristic frequencies

now estimate the shear wave velocity at Vs = 50m.s−1 and Vs = 44m.s−1 for the

torsional and flexural modes respectively. The corrected estimate for the torsional
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mode of sample S22 is closer to the value obtained for sample S24, where possible

mode interference is less significant, (figure 6.5(b)). The corrected value of the

estimated shear wave velocity given by the flexural mode is even more significantly

changed, from Vs = 27m.s−1 up to Vs = 44m.s−1. This value is now much closer to

the torsional mode estimates.

The local minimum feature in curve M0 at 45Hz roughly corresponds to the peak

feature of M1. The peak feature of M2 at 77Hz also roughly corresponds to a local

minimum of M0. These local minima of the composed modal curve M0, coinciding

with the actual resonance frequencies of each separate mode, are a well known

property of mode interference known as anti-resonance, (Ewins, 2000), confirming

the proposed hypothesis of mode interference.

The time histories of remaining samples S21, S23 and S24 do not present such a

clear breakpoint in their vibration time histories. For this reason, it is not possible

to calculate their frequency contents for separate modes of vibration. Nevertheless,

a fair estimate of Vs = 50m.s−1 is proposed, considering the results from the tor-

sional modes of samples S21, S24 and the corrected estimate of sample S22. The

velocity estimates obtained from the first torsional mode are selected rather than

those obtained from the first flexural mode. This is because the torsional mode was

the one initially intended to be excited. This is revealed in its dominance over the

flexural mode, (figure 6.6). It is also, because the first torsional mode of vibration,

according to linear vibration theory, is the only non-dispersive mode of vibration,

(section 3.4.1). This is the reason why the first torsional mode is chosen in resonant

column geotechnical testing, (section 3.11) or (ASTM, 1978).
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6.3 Repeatability and Control Sample Tests

Repeatability test results have already been presented in section 4.6, but are worth

revisiting, and compared to the control sample results, providing a benchmark from

which to evaluate the variations observed at the control sample tests. During the

repeatability tests the parameters known to have varied are the sample age and the

room temperature. Other sources of error were associated with the equipment set-

up and human factors in result interpretation. During the control sample tests, the

most important varying parameter was the use of different samples from different

sets. The sample age and the room temperature were again controlled and the

possible sources of error acknowledged. The controlled test parameters are listed in

tables 6.4 and 6.5.

For each test, a large number of results were collected. From these, various tech-

niques of evaluating the wave travel time were used both in the time and frequency

domains. The results presented in this section, for the repeatability and control

sample tests, were obtained using estimates from the time and frequency domain

techniques, namely the direct travel time measured between pulse signals and the

gradient of the phase delay curves. The same signal processing parameters were

used for all the estimates.

For a general error estimation, the set of composed results, as presented in figures

6.7 and 6.8, provides a simple and coherent tool. A distinction between results

obtained using different signal processing techniques, together with an explanation

of the choice of processing parameters, are given with detail in sections 6.4 and 6.5.

5Sample age is expressed in days.
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Repeatability Tests

Test Sample Age5 Temperature

1 S08 7 26.0o

2 S08 12 26.0o

3 S08 14 23.5o

4 S08 16 23.5o

5 S08 79 25.5o

6 S08 81 24.5o

Table 6.4: Repeatability study pa-

rameters.

Control Sample Tests

Test Sample Age Temperature

1 S04 <60 24.5o

2 S08 <60 26.0o

3 S12 <60 25.5o

4 S16 <60 24.5o

5 S20 <60 25.0o

6 S24 <60 25.0o

7 S28 <60 25.0o

8 S29 <60 24.0o

Table 6.5: Control sample study

parameters.

6.3.1 Repeatability

An estimate of the wave travel velocity for each of the repeatability tests is given in

figure 6.7.
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Figure 6.7: Wave travel velocity estimates for the repeatability study.

The velocity estimates for the repeatability tests, in figure 6.7, have a maximum
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value of 40m.s−1 and a minimum value of 39m-s−1. This means there is a maximum

difference of 1m.s−1 between any two estimates of wave velocity. The mean devia-

tion from the average wave velocity estimates, considering all the repeatability test

results, is of ±1.5%. As discussed in section 4.6, there are no particular relationships

between the estimated wave velocities and the sample age or room temperature. The

repeatability results therefore indicate a wave velocity estimate somewhat affected

by an error attributed, in bulk, to sample age, room temperature and possibly to

human error setting up the equipment and processing the results. This estimate of

error obtained for the repeatability study will henceforth be referred to as ‘baseline

error’.

Arroyo et al. (2003b) obtained surprisingly high uncertainties of around 30%

and 50% in the determination of the medium shear stiffness for pulse signal tests.

Bodare and Massarsch (1984) obtained similar uncertainty values for cross-hole tests.

The estimate of baseline error is not entirely compatible with these uncertainty

results since it is concern with the repeatability of the tests and not with the actual

determination of the shear stiffness. Nevertheless, since for this study the sample’s

properties were comparatively maintained constant it was possible to isolate the

error or uncertainty due primarily to the test-set up and other aspects such as room

temperature and sample age.

6.3.2 Control Sample

The estimated wave velocities for each of the control sample tests are given in figure

6.8.

The wave velocities obtained for the control sample tests, (figure 6.8), vary be-

tween 36m.s−1 and 41m.s−1. This constitutes a maximum difference in velocity re-

sults in the range of 5m.s−1, approximately 13% of the average velocity of 39.2m.s−1.

The density of each of the rubbers constituting the control samples is given in
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Figure 6.8: Wave travel velocity estimates for the control sample study.

table 6.6 together with the obtained wave velocity. No relation could be established

between the two presented characteristics of the tested rubbers meaning the degree

of variation in wave velocity results can not be attributed to the rubber density.

Sample Density (kg.m−3) Velocity (m.s−1)

S04 1052 36.5

S08 1076 39.1

S12 1046 39.3

S16 1053 41.0

S20 1046 40.5

S24 1045 39.8

S28 1040 39.9

S29 1037 37.2

Table 6.6: Control Sample Density.

During the repeatability study, the tested samples were all 81 days old or younger,

the room temperature varied between 23.5o and 26.0o and the maximum difference

obtained between wave velocity estimates was 1m.s−1, with no particular relation
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between sample age, room temperature and equipment set-up detected during the

study. During the control sample study, the tested samples were all under 60 days

old and the room temperature varied between 24.0o and 26.0o. These values of

sample age and room temperatures for the control study are within the range of

values covered during the repeatability study. Moreover, in both the repeatability

and control sample studies, the equipment set-up remained constant, with the same

care applied into the handling the equipment and the data. This means that any

difference between wave velocity estimates higher than 1m.s−1, for the control sample

study, must be attributed to the medium properties of the samples.

In summary, when results are compared between samples from the same set, the

baseline error must be considered together with the difference in sample geometry.

When results are compared between samples of different sets, the variations obtained

during the control sample study must also be considered. This consideration can be

made in the form of result normalisation, using the differences between estimated

wave velocities presented in figure 6.8

6.4 Frequency Domain

A dynamic system can be described by its response to a given excitation. The sys-

tem’s response is complex and can be defined by two curves, that of the phase delay

and that of the magnitude. The phase delay curve describes the phase difference

between the excitation and the response at each frequency. In the case of bender el-

ement testing, the excitation and the response of the system are usually given by the

input and output signals. The magnitude curve describes the ratio between the am-

plitudes of the excitation and the response at each frequency. The response curves

describe the system, but also provide a tool to determine the wave travel time. For

example, the gradient of a tangent of the phase delay curve is directly related with
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the wave’s phase velocity at that frequency. The equivalent curve secant is related

with the wave’s group velocity, (section 2.2). The detection of resonance frequencies

in the form of peak features at the magnitude response curves can also be associated

with certain modes of vibration and with the respective stiffness properties of the

medium, as was done in section 6.2

Different responses from different samples to the same signal excitation are

presented in figures 6.9 and 6.10. In this example, the response curves of three

polyurethane rubber samples with different heights and diameters were chosen, sam-

ples S15 - h30 × d75mm, S22 - h50 × d50mm and S29 - h76 × d38mm, (table 6.2).

The response curves for all three samples were obtained by exciting each sample

with the same sweep signal, similar to the one described in table 6.3.
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Figure 6.9: Example phase delay curves for samples S15, S22 and S29.

The dynamic behaviour of the three samples have apparent differences. The

phase delay curves of the three samples, (figure 6.9), have different gradients. The

phase delay gradient of sample S29 is clearly higher than the gradient of S22, which

in turn is higher than S15. Knowing that the higher the gradient the higher the travel

time, the observed difference is primarily an expression of each sample’s height, and
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Figure 6.10: Example magnitude curves for samples S15, S22 and S29.

therefore of its different travel path length.

The three phase delay curves flatten from a certain frequency onwards. The

frequency at which this occurs coincides with the frequency at which the magnitude

curve nears zero. These features of both phase delay and magnitude curves enable

the evaluation of the maximum frequency that can be successfully propagated along

each sample.

The magnitude response curves, (figure 6.10), are also different for each sample.

The magnitude curves are plotted with a vertical offset from each other for clarity

purposes. Knowing that a peak in the magnitude curve corresponds to a particular

resonance of the system, different resonances at different frequencies can be detected

for each of the samples. At frequencies lower than 1.0kHz each magnitude curve has

three or four peaks at distinct frequencies. For higher signal frequencies notice the

very damped peak for sample S15 is near 3.1kHz, a similar peak at 2.6kHz for sample

S22, and no similar noticeable peak for sample S29.

The mentioned features of the response curves are explored with more detail in

sections 6.4.1 and 6.4.2. At this stage, it is sufficient to point at the noticeable
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differences in behaviours of each sample, expressed in the differences between their

responses. This observation raises the possibility of such differences in behaviour

being attributed to the sample’s different geometries.

6.4.1 Maximum Frequency Content

As seen in figures 6.9 and 6.10, the response curves of each sample show different dy-

namic behaviours. One such difference is the observed maximum frequency content

or cut-off frequency. The notion of maximum frequency is related with the frequency

at which the received signal is no longer significant. The maximum frequency or

cut-off frequency is an important factor, since it translates the dynamic capacity of

each sample in allowing, or impeding, waves with different frequencies to propagate

successfully through it.

A number of parameters can be used to determine such maximum frequency. One

such parameter is the signal-to-noise ratio, the concept of which is self-explanatory.

When this parameter approaches a predetermined minimum value, it is possible

to declare that the maximum frequency has been reached, (Bendat and Piersol,

2000). For the present study, another set of combined parameters is going to be

used. Thus, in this study, the maximum frequency is said to be attained when

both the gradient of the phase delay curve and the value of the magnitude curve

approach a value of zero. In order to gain some objectivity, a value lower than

10% of the maximum magnitude, if it coincides with a null gradient of phase delay

curve, is proposed. Figure 6.11 illustrates an example of the maximum frequency

determination for sample S21 - h50 × d38mm. The frequency at which the phase

curve becomes horizontal coincides with the frequency at which the magnitude curve

reaches zero.

Using this combined analysis of the response curves, the maximum frequency

content was determined for all samples that took part in the parametric study.
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Figure 6.11: Maximum frequency determination for sample S21 - h50 × d38mm

using the phase delay and magnitude response curves.

The obtained results are presented in figure 6.12 according with sample height and

diameter.
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Figure 6.12: Maximum frequency detected at response curves of synthetic rubber

samples.

The analysis of the maximum frequency results in figure 6.12 leads to relevant

observations. The downward trend with sample height is observed for all three dif-
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ferent diameters. The highest maximum frequency contents are detected for the

lowest samples, 10mm height, reaching value between 5.5kHz and 8.0kHz. The

lowest maximum frequencies are detected for the highest samples, with maximum

frequency values between 2.5kHz and 4.0kHz. This translates into a maximum differ-

ence of up to 100% between the capacity of maximum frequency wave transmission

of two samples. It is worth remembering that the samples are made of the same

material, their geometry is the main difference between them. From the presented

results, there appears to be no clear relation to sample diameter.

At this point, a clear indication of the influence of sample geometry has been

established. The sample height influences the maximum frequency content capable

of being transmitted through a given cylindrical sample. The higher the sample the

lower the maximum frequency content. This verification confirms that the samples

work as mechanical frequency filter, as any solid with mass should, (Doyle, 1977),

where the lower the flexural stiffness the lower the maximum frequency able to

propagate. It is then justifiable, for anyone wishing to set-up a bender element test,

to establish if the tested samples are capable or not of propagating a signal with a

desired frequency, or which signal frequencies can be successfully propagated along

the studied sample.

6.4.2 Dynamic Response

The peaks observed at the magnitude response curves indicate particular resonances

of the system. The tested system, composed by one rubber sample, a pair of bender

elements and the end plates is relatively complex. The equipment set-up is main-

tained constant and only the rubber samples change with their different geometries.

Since the geometry of the samples is the main parameter varying during the tests,

the possible observed differences in the responses can be attributed to it.

If the bender element test system, pictured in figure 6.13(a), is to be studied
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using an analytical model, the boundary conditions which need to be considered

are those of a cantilever with a mass at its free end, (figure 6.13(b)). The dynamic

behaviour of such a cantilever system can be modelled with some simplicity as a

Bernoulli-Euler beam, (Clough and Penzien, 1993). It is even possible to model the

system as having a single degree of freedom, SDOF, or a simple multiple degree of

freedom, MDOF. This is possible if the beam properties are evenly distributed along

its length, (section 3.10).

(a) sample, bender element and steel plates (b) MDOF cantilever with mass at free end

Figure 6.13: Bender element test system and equivalent mechanical model.

The flexural motion of the bender element is anti-symmetric in relation to the

sample and any possible shear and compressional wave components that reach the

lateral boundaries of the samples are assumed to be reflected back into the medium.

For these reasons, the bending motion of the transmitting bender element is as-

sumed to excite the system mainly into modes of flexural vibration, (section 3.4.1)

or (Redwood, 1960). This means the most influential parameter of the sample, in

terms of its vibration behaviour, is its flexural stiffness, given by EI/L. All other

things being equal, slender samples, higher H/D, have less flexural stiffness than

bulkier samples. Therefore, slender samples might be expected to resonate at lower
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frequencies, and bulkier samples to resonate at higher frequencies. An example of

how the response magnitudes vary between samples with different heights is given

in figures 6.14.
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Figure 6.14: Peak features of response magnitude curves of samples S21, S25 and

S29.

Figure 6.14 contains the response magnitude curves of samples S21, S25 and S29.

These samples all have the same diameter of 38mm and different heights of 50mm,

60mm and 76mm respectively. Three local peaks from each magnitude curve were

marked as A, B and C. Considering the marked peaks to indicate curves features

related with each other, where A marks the same feature as A* and A**, etc. For

each feature, the related frequency decreases with sample height. These tendency

is compatible with the expected dynamic behaviour of a MDOF system, where the

respective resonance frequency of a particular mode of vibration increases with bar

stiffness, which is what happens to the flexural or torsional stiffness of the samples

with decreasing height.

A second example is given in figure 6.15 where the sample diameter is the varied

geometric parameter. The response magnitude curves of samples S29, S30 and
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Figure 6.15: Peak features of response magnitude curves of samples S29, S30 and

S31.

S31 are presented. These samples all have the same height of 76mm, but different

diameters of 38mm, 50mm and 75mm. Once again, three peak features on each

magnitude curve were marked. A tendency of increased resonance frequency with

increased diameter is noticeable for each of the features. Since for a constant height,

the flexural stiffness of a beam increases with its diameter, namely its moment of

inertia I, the observation of system stiffening made in figure 6.15 is also compatible

with the dynamic behaviour of an MDOF system.

The two examples presented for varying sample height and diameter are another

indication that the studied samples have a relatively normal dynamic behaviour. As

observed, their behaviours is so far explained by the analytical model predictions,

such as the proposed Bernoulli-Euler beam. Since the given examples showed en-

couraging signs of predictable dynamic behaviour, this subject is explored further

for the remaining samples.

Figure 6.16 presents the relationship between the frequency of magnitude curve

peak features and sample height for samples with constant diameter, D = 38mm.
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These samples have varying heights ranging between 20mm and 76mm. The pre-

sented peak features are consistent with the ones seen in figure 6.14, and are marked

using the same references: A, B and C. By using a logarithmic scale is appears that

the results vary exponentially with sample height.
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Figure 6.16: Response magnitude peak features from samples with constant di-

ameter, D = 38mm, and varying heights.

In figure 6.16 it can be seen that the frequency at which all of the peak features

occur decreases with sample height. Feature A decreases from 2.0kHz for a sample

height of 20mm down to 0.4kHz for a sample height of 76mm. A similar observation

can be made for features B and C, decreasing from 3.0kHz and 6.0kHz down to

0.5kHz and 0.9kHz respectively. The rate at which the frequency of each the peak

features occurs is similar for the three presented features cases. This decrease seams

to be exponential with sample height, being compatible with the relation between

sample height and flexural resonance frequencies given in equation 3.101.

The observed result trends seen in figures 6.14 and 6.15, and again in figure 6.16,

appear to be similar to the general behaviour of a Bernoulli-Euler beam. These

results are explored further by calculating the equivalent theoretical analytical res-
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onance frequency results and comparing them.

Equation 3.101, (section 3.10.2), was used to determine the characteristic fre-

quencies for the first three modes of flexural vibration of the equivalent beam mod-

els, with the same density and geometry. Equation 3.107 was used in a similar

fashion to determine the characteristic frequencies for the first three modes of tor-

sional vibration. The boundary conditions of the analytical models, namely their

fixity, were determined with the use of equation 3.103 and 3.110.

The dynamic behaviour of an analytical model has already been explored in sec-

tion 6.2 with an estimated equivalent shear-wave velocity of Vs
∼= 50m.s−1 obtained

from the first torsional mode of vibration. A similar procedure for the first flexural

mode of vibration produces an estimate of Vs = 44m.s−1. In the control and repeata-

bility tests, in section 6.3, wave velocity estimates in the range of Vs
∼= 40m.s−1 were

also obtained. Considering all the shear wave estimates obtained so far, two values

of Vs = 30m.s−1 and = 50m.s−1, were chosen to establish a range of possible wave

velocities to be used in the comparison of the magnitude response curve and the

dynamic analytical models.

The parameters used to define the properties of the cantilever beam and mass

on top model are given in table 6.7.

Parameter Symbol Units value

diameter D mm 38 50 75

concentrated mass6 M g 210 384 836

density ρ kg.m−3 1000

Poisson’s ratio ν no units 0.45

shear wave velocities Vs m.s−1 = 30 / = 50

length L mm ∈ [ 10 110 ]

Table 6.7: Properties of the Bernoulli-Euler cantilever beam model.

6The weight of the steel plates used in the parametric study.
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The theoretical results were calculated for a range of elastic properties, expressed

in the equivalent shear wave velocities but also for a range of different beam geome-

tries, corresponding to the actual geometries of the polyurethane samples. The

use of different end plates, corresponding to different sample diameters, were also

taken into account by considering the actual weight of the different steel plates.

The density of the beam’s medium is equal to that of the polyurethane rubber.

Such rubber-like materials have little elastic volumetric variation and therefore high

Poisson’s coefficients, thus a value of ν = 0.45 was chosen.

In figure 6.17, the peak feature A and the second mode of flexural vibration

results are highlighted. These results are presented for samples with constant diam-

eter, D = 38mm and variable heights. The flexural mode characteristic frequencies

were calculated for two different equivalent shear-wave velocities of Vs = 30 and

Vs = 50m.s−1, identified by references F2V30 and F2V50 respectively.
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Figure 6.17: Peak features A and characteristic frequency curves of second mode

of flexural vibration, for samples with constant diameter, D = 38mm.

In figure 6.17, feature A results can be observed to be contained within the

range of the second flexural mode of vibration frequencies, except for sample heights
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H > 76mm. This result indicates that the chosen feature A is related with the second

mode of flexural vibration. It also indicates that the equivalent shear wave velocity

of the studied rubber is in the proposed range, which agrees with the observation

made in section 6.2.2.

Figure 6.18 highlights the peak feature B and the third mode of torsional vibra-

tion. This figure is similar to figure 6.17, where now the characteristic frequency

curves of the third mode of torsional vibration are identified as T3V30 and T3V50.
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Figure 6.18: Peak features B and characteristic frequency curves of the third mode

of torsional vibration, for samples with constant diameter, D = 38mm.

The chosen peak features B and frequency curves of the third mode of torsional

vibration, in figure 6.18, also appear to be related. This relation is more evident for

higher samples, where the proposed range clearly encloses the peak features.

In figure 6.19 are highlighted the third peak features, feature C; and the frequency

curves of the third mode of flexural vibration. These theoretical curves are identified

as F3V30 and F3V50.

In figure 6.19, the theoretical results of curves F3V30 and F3V50 seem to be
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Figure 6.19: Peak features C and characteristic frequency curves of the third mode

of flexural vibration, for samples with constant diameter, D = 38mm, and variable

heights.

related with feature C results. As with feature A and the second mode of flexural

vibration in figure 6.17, the frequency curves agree better with feature C for lower

sample heights.

Having established the relation between the chosen peak features and the the-

oretical frequency curves for the second and third modes of flexural vibration as

well as for the third mode of torsional vibration, a second type of comparison was

attempted. The peak feature results are now compared with theoretical frequency

curves in terms of sample diameter variation.

The peak features serving as an example in figure 6.15 correspond to three sam-

ples with the same height, H = 76mm, and different diameters D = 38mm, 50mm

and 75mm. These response magnitude curve features are marked as A, B and C, as

in figure 6.20, together with the characteristic frequency curves of the second and

third modes of flexural vibration. The vertical frequency axis is now linear, since

the variation of characteristic frequencies with diameter for flexural vibration also
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varies linearly, (equation 3.101).
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Figure 6.20: Peak features A and C and characteristic frequency curves concerning

samples with constant height, L = 76mm, and variable diameters.

In figure 6.20 features A and C are generally well within reach of the proposed

frequency curve ranges. These results, together with the similar observation made

for sample height variations, confirm the relationship between these features and

the proposed modes of flexural vibration. At this point, little doubt can remain as

for the suitability of the proposed theoretical models of dynamic behaviour of the

samples when tested with bender elements.

The comparison between peak feature B and the third torsional mode of vi-

bration’s characteristic frequencies for constant sample height of H = 76mm and

variable diameter is illustrated in figure 6.21.

The results in figure 6.21 show that feature B results are not related to the third

torsional mode of vibration, as previously thought and indicated in figure 6.18. Even

though, for the diameter D = 38mm, feature B is well inside the range of torsional

characteristic frequencies, the same is not true for higher diameters. It can be seen

that the torsional mode presents near constant values for the range of considered
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Figure 6.21: Peak features B and characteristic frequency curves concerning sam-

ples with constant height, L = 76mm, and variable diameters.

diameters, unlike the flexural mode results, which grow linearly with diameter. Even

though feature B results are not in the proposed range for the second and third modes

of flexural vibration, it follows a similar upwards trend. This might indicate that,

even though it is not related with the proposed modes, it is also a feature of flexural

behaviour.

A clear unequivocal relation between the cylindrical samples’ dynamic behaviour,

when excited by a bender element, and the Bernoulli-Euler beam flexural behaviour

has been established. It is then important of acknowledging this form of sample

behaviour and the consequences it carries in terms of bender element signal inter-

pretation. Early assumptions, explicit or not, of unbounded shear wave propagation

regardless of sample geometry, must therefore be corrected, especially since they are

misleading in terms of describing the possibility of a simple shear wave propagation,

rather than a more complex group of wave components propagating in a flexural

mode, (Blewett et al., 1999; Dyvik and Madshus, 1985). It is also important to

clarify the possibility that other sources of dispersion are present. When assuming
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flexural modes of wave propagation, geometric or waveguide dispersion, as described

in section 3.4.1, must also be considered.

6.4.3 Phase Delay Curve

The results for the frequency domain analysis were obtained using sweep signals.

These signals provided a complete set of response curves formed by the phase delay

and magnitude curves, (section 2.4). Harmonic continuous signals were also used

and referred to as continuous signals and pi points, as described in sections 2.2 and

2.3. Since all three types of signal are able to produce phase delay response curves,

the resulting curves are compared to confirm the validity of using sweep signals,

which have a greater potential in terms of number of data quality but are not so

commonly used. In figure 6.22 the obtained phase delay curves for two samples

with significantly different geometries are compared. The phase delay curves are

identified as ‘pip’ for pi point results, as ‘cs’ for continuous signal results and as

‘sweep’ for sweep signal results.
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Figure 6.22: Comparisons between phase delay curves of sweep signals, pi points

and continuous signals for samples S21 and S29.

In both test cases, sample S11 - h20× d75mm in figure 6.22(a) and sample S29 -
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h76× d38mm in figure 6.22(b), the agreement between the three phase delay curves

is very good. Since the three input signals produced similar results, there is no

reason to distinguish between them. All three signals are used for all of the samples

in the parametric study, but the sweep signals are consistently used to produce most

of the presented results due to giving results with better data density, i.e., more data

points for each sample.

When obtaining a wave travel time from a phase delay response curve, it is

necessary to choose a frequency range from which to calculate the curve’s gradient.

The selection of such frequency range deserves some attention, since different ranges

would produce different travel time estimates. The reason why different results can

be obtained is linked to the nature of the phase delay response curve. Three reasons

have been identified as being responsible for such difference in gradients: dispersion,

phase shifts and noise.

It is worth pointing out that when estimating a wave velocity from a gradient

of a range or group of frequencies, from a particular phase delay curve, what is in

fact being measured is the group wave velocity. In simple terms, group velocity is

the average of the phase velocity of each member of the group. It is important to

distinguish between these two concepts, since they produce significantly different

results, for instance in terms of dispersion, (Redwood, 1960). For the time domain

pulse signal results, only two curve features are used to estimate the wave velocity,

one of the input and another of the output signals. What is being measured is

therefore the phase velocity of a particular wave component. The differences between

phase and group velocity are discussed in section 3.2.

Noise, whenever present, might contaminate the results. It terms of frequency

range selection, noise might be a problem if it is felt differently at different frequen-

cies. This means that different frequency ranges might be affected by it in different

ways. For the present study, the only source of noise which could not be avoided was
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cross-talk, (section 2.6). This form of noise has a relatively low constant magnitude

and therefore its interference increases with decreasing magnitude of the received

signal. Unfortunately, it was not possible to successfully remove cross-talk noise

from the sweep signal responses, as done for harmonic continuous and pulse signals.

The reason is that the algorithm prepared for this purpose was not efficient when

dealing with sweep signals, (section 2.6.3). Therefore, cross-talk noise must be taken

into consideration when determining a frequency range from which to calculate the

gradient. For higher frequencies, when the received signal has lower magnitudes, the

effect of cross-talk noise is more significant and so these frequency ranges should be

avoided.

Figure 6.23 presents an example of the selection of a frequency range. It refers

to sample S29 - h76 × d38mm, making use of both its phase delay and magnitude

curves. Three frequency ranges are highlighted, the first from 0.3kHz to 0.6kHz, the

second from 0.8kHz to 1.7kHz and a third range from 2.0kHz to 3.4kHz. Average

wave group velocity estimates of 22.0m.s−1, 37.5m.s−1 and 39.5m.s−1 correspond

respectively to these frequency ranges.

The first range is disregarded because it coincides with a clear response peak of

the system, as expressed by the magnitude curve, also plotted in figure 6.23. This

resonance is also indicated by the phase delay curve in the form of a phase shift,

although quite damped. Such resonances are associated with phase shifts between

the input and output signals. The third proposed range is disregarded because it

coincided with relatively low values of the magnitude response curve, also because

for these frequencies, in the present study, cross-talk noise is expected to have a

significant effect on the received signal.

The second frequency range is therefore chosen due to the exclusion of the other

two possible frequency ranges. By selecting this frequency range, it is possible to

avoid the phase shift that occurs at the resonance peak detected in the first range. It
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Figure 6.23: Selection of the frequency range used to determine the group wave

velocity. Obtained from the phase delay and magnitude response curves, for sample

S29 - h76 × d38mm.

is also possible to avoid any significant contribution from the cross-talk noise present

in the third frequency range.

While calculating the phase delay and magnitude response curves it is also possi-

ble to obtain a coherence curve relative to the input and output signals, as explained

in section 2.4. The coherence curve describes the degree of relation of the output

signal to the input signal, presented as percentage per frequency. At frequencies

where the coherence is near the maximum value of 100% it is possible to admit the

output signal to have enough quality, not being too afected by noise of phase-shifts,

and should therefore provide trustworthy travel time estimates.

Other potential sources of disturbance related with wave dispersion remain. For

the present example the near-field effect is calculated considering the most conser-

vative case of a maximum equivalent shear-wave velocity of Vs = 50m.s−1 and a

minimum travel distance from tip-to-tip of td = 76 − 2 × 3 = 70mm, (section 3.6).

For the lowest frequency of the proposed range, f = 0.8kHz, the near-field shear-
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wave component has a relative amplitude of Ns/Fs = 0.15 and a phase-velocity

ratio of V n
s /V

f
s = 0.98. So, with a weight of around 15% and with a velocity that

is practically the same as the shear-wave velocity, the near-field effect can be ruled

out as having no significant influence for the proposed frequency range, neither at

the lowest frequency of the mentioned range nor for all other higher frequencies.

The frequency range selection criteria presented is applied to all of the sample

results. The obtained velocity is not for all the individual points in the phase delay

curve but for a first degree polynomial best fit line. The gradient of this curve is

then used to obtain a travel time. This travel time is for a group of wave components

with slightly different frequencies, and therefore the obtained velocities are the group

velocities.

Arroyo et al. (2003a) proposed a frequency limit concerning the near-field effect.

This limit, as given in equation 3.67, can be used with the objective of obtaining the

near-field wave components propagation velocity which are less than 5% different

than the characteristic compression and shear wave velocities.

6.4.4 Wave Velocity

The wave travel time results obtained for each sample cannot be compared directly

between samples with different heights, they need to be normalised into velocities.

The velocity results were, at this stage, calculated using a travel distance measured

tip-to-tip, (section 1.5).

Some estimates of shear wave velocity have been obtained so far. These values

are summarised in table 6.8.

The initial velocity estimates for the parametric study are presented in figure

6.24. The reference wave velocities of 30m.s−1 and 50m.s−1 are highlighted, defining

a range for which the samples’ shear stiffness is expected to be at. The proposed

7Laser Doppler Velocimeter
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Test Device Vs

torsional resonance LDV7 ≈50m.s−1

flexural resonance LDV ≈44m.s−1

flexural vibration (2nd and 3rd modes) bender elements ∈ [30, 50]m.s−1

Table 6.8: Estimated shear-wave velocity using various dynamic methods.

velocity range is based on the independent sample monitoring presented in section

6.2, and from the analysis of the bender element tested dynamic modal behaviour

given in section 6.4.2.

10 20 30 40 50 60 70 80
25

30

35

40

45

50

55

sample height − mm

w
av

e 
ve

lo
ci

ty
 −

 m
.s−

1

D=38mm
D=50mm
D=75mm

V50

V30

Figure 6.24: Frequency domain wave velocities for parametric study of rubber

samples.

Even though the synthetic rubber constituting the samples had similar properties

for all sets of samples, some minor differences in stiffness were observed, (section

6.3). These differences, having been quantified, (figure 6.8), are used to normalise

the results. Sample S08, the control sample from the sample set with characteristic

heights of 10mm, is used as the reference for the normalisation of the remaining

sample velocity results. The normalised wave velocities are presented in figure 6.25.
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Figure 6.25: Frequency domain normalised wave velocities for parametric study

of rubber samples.

The results from figure 6.24 and figure 6.25, one for the non-normalised results

and the other for the normalised results, appear to be quite similar. This means

that the differences obtained in the control sample tests are not significant which

indicates how consistent the properties of the synthetic rubber were.

The analysis of results in either figure 6.24 or 6.25 enables the observation of

an overall lower wave velocities for shorter samples. The wave velocity seems to

generally increase with sample height. Acknowledging the results for sample of the

same diameter, they vary in a similar fashion with sample height; all three curves

can be observed to start by increasing, then diminishing and again increasing with

increasing sample height. These features of the proposed curves are common for all

of them, despite occurring at different heights. The importance of this observation

will become apparent in section 6.6.2, where the relation with sample geometry is

further explored.

Another characteristic of the results deserves some attention. The fact that

for all sample diameters the results from the shortest samples, H = 10mm, are
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significantly lower than the remaining results, and will also be explored further in

section 6.6.1 in relation to wave travel distance.

6.5 Time Domain

In this section the results of the parametric study are studied mainly in the time

domain. The wave velocity results are obtained directly from the time histories

of the transmitted and received pulse signals. Pulse signals are commonly used

when testing soil samples with bender elements. This methodology has its roots

in the practice of cross-borehole testing, in which pulse signals are also employed.

Moreover, the signal time histories, and especially those of pulse signals, provide a

very intuitive reading.

6.5.1 Bender Element Performance

It has already been shown that the transmitted signal and the corresponding trans-

mitting bender element motion are not the same for a short duration input signal

such as a sinusoidal pulse, (chapter 5). The actual bender element movement does

not stop at the same time as the input signal does, it carries on oscillating in what

looks like the vibration of a damped MDOF system. Also, there is a clear phase

delay between the input signal and the bender element movement, which varies with

the frequency of the input signal. Like in a simple dynamic system, a significant

phase shift could be observed at the natural frequency of the bender element. Fi-

nally, it is worth mentioning that for pulse signals, the transducers are only capable

of achieving a transient response state, which means that its response, namely the

frequency of its response is controlled by the dynamic properties of the transducer

and not those of the excitation signal.

To summarise, it has been demonstrated in chapter 5 that the input signal does
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not correspond to the actual movement of the transmitting bender element. This

observation carries a significant consequence in that when using any feature of the

transmitted signal as a reference against which to measure the travel time, the chosen

feature might not correspond to any feature of the actual transducer vibration. This

observation can also be extended to the receiving transducer. Hence, if a feature from

each signal is used, then the measured travel time might have no correspondence

with the actual wave behaviour.

Dispersion is another factor which must also be considered when dealing with

the time histories of the transmitted and received signals. If a propagating wave is

formed by components with different frequencies and if each of these components

travel at different velocities then the wave signal will not look the same at any two

separate points of the sample, including the transmitting and receiving end of the

sample, i.e., the propagating signal will become increasingly distorted with travel

distance. Two forms of dispersion have been established so far, the near-field effect

and the geometric or waveguide dispersion, (section 3.7). Sinusoidal pulse signals,

such as those normally used to excite bender elements, have a broad frequency

content, (figures 5.15 and 5.21). Besides, the actual transmitted wave might not be

equal to the transmitted signal. For these reasons, when using pulse signals, little

control over the frequency content of the actual transmitted wave is left for the test

operator and therefore little or no control over the frequency dependent dispersion

phenomena.

For all these reasons, it does not seem reasonable to use the time histories from

pulse signals to determine a medium’s equivalent shear wave velocity. Yet, because

they are so frequently used and because they provide such intuitive results, their

properties are further explored in this section.
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6.5.2 Differences and Similarities Between Signals

Figure 6.26 contains the time history responses from samples S09 - h20 × d38mm,

S10 - h20×d50mm and S11 - h20×d75mm for an input signal of 3.0kHz. These three

samples are from the same set, i.e., have the same height but different diameters.
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Figure 6.26: Received pulse signals in samples S09, S10 and S11, for an input of

3.0kHz.

The response signals in figure 6.26 are clearly similar to each other. Some signal

features occur at around the same time: the first offset at around 0.1ms, the first

local minimum at around 0.23ms, the first maximum at around 0.4ms, and the

following minimum at around 0.56ms, are present in all the signals. Despite being

similar, these features noticeably do not occur at exactly the same time, with the

signals becoming even more distinguishable after a time of around 0.56ms.

The mentioned features of the studied responses, first arrival, first local minimum

or first inflexion, first maximum and following minimum, are commonly used in pulse

signal time history interpretation. They have been identified in figure 2.2 as D, E,

G and H respectively and are presented again in figure 6.26.

The magnitude of the first local minimum at around 0.23ms, takes different
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values for each signal, both in absolute terms but also in relation to other signal

features such as the first maximum at around 0.4ms. This first local minimum is a

common feature of pulse signal responses when testing with bender elements, and

their origin is subject to discussion. Being usually associated with the near-field

effect, (Hardy et al., 2002), the observed magnitude variation with diameter might

help to clarify their presence.

The example time histories in figure 6.26 have already been noted by their sim-

ilarities as well as differences. In fact, they are one of the studied sample set cases

where the time domain results most resemble each other. Other comparisons be-

tween the responses of samples of the same set proved to be significantly more

dissimilar. Figure 6.27 presents a second example for samples S29 - h76 × d38mm,

S30 - h76 × d50mm and S31 - h76 × d50mm. Again, the proposed three samples

are from the same set and therefore considered to have exactly the same material

properties. The signal used is a sinusoidal pulse signal with a central frequency of

3.0kHz.
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Figure 6.27: Received pulse signals in samples S29, S30 and S31, for an input of

3.0kHz.
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Figure 6.27 presents the response time histories of samples S29, S30 and S31.

The received signals are quite different from each other, despite having used the

same excitation signal and having traveled the same distance on the same medium.

The first offset can be detected at around 0.75ms for sample S29, at either 0.4ms

or 1.2ms for S30 and at around 1.1ms for S31. The first local minimum feature is

located at 1.36ms for S29, at either 1.2ms or 1.4ms for S30 and at around 1.1ms

for S31. The following peak features, i.e., the first maximum and the following

minimum, also do not coincide in terms of time or magnitude.

If any of the curve features were to be used to estimate the wave travel time,

than three different results would be obtained for three samples made of the same

material and with the same height. These results would also be different depending

on the chosen signal feature. For example, the first local minimum provides an

estimated wave velocity of 52m.s−1, 50m.s−1 and 64m.s−1 for samples S29, S30 and

S31 respectively. These values are manifestly different from each other, with a

variation in the range of 16%. This for a test where the samples are made from

exactly the same material and a great deal of effort was placed in the test set-

up. Such a variation in results is remarkable, especially when compared with the

obtained repeatability baseline error of 1%, (section 6.3). And, for sample S31, the

obtained result is significantly outside the range of estimated shear wave results

obtained so far, check table 6.8.

Table 6.9 contains the different wave velocity estimates for the three samples,

for each of the curve features. The corresponding pulse signal features notation is

illustrated in figure 2.2 or 6.26.

The difference between travel times obtained using the same signal features can

vary by as much as 30%. The variation between travel times obtained using different

features is even greater. For sample S29, the results obtained using A-D is 160%

greater than the result from C-H. Knowing the samples are made from exactly
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Feature S29 - h76 × d38 S30 - h76 × d50 S31 - h76 × d75 Variation

A-D 93m.s−1 58m.s−1 64m.s−1 30%

A-E 52m.s−1 50m.s−1 64m.s−1 16%

B-G 39m.s−1 44m.s−1 54m.s−1 18%

C-H 35m.s−1 40m.s−1 50m.s−1 20%

Table 6.9: Wave velocity estimates from figure 6.27.

the same medium, and that the travel distance is the same for all cases, than the

differences between signals can only be explained by geometry dependent dispersion,

also refered to as waveguide dispersion. Remembering how the frequency of the

response can not be controled using pulse signals, then there is no feasable way of

obtaining conclusive results for the present example using pulse signals.

6.5.3 Pulse Signal Features

In order to observe the evolution with input signal frequency of the identified fea-

tures of the response time histories, the corresponding travel times were recorded

for various frequencies. The travel times were measured directly between the trans-

mitted and received signal features. Figure 6.28 presents the travel time results

from sample S11 - h20× d75mm, chosen for being a good example of a bulk sample

and having been used in the example of figure 6.26. The equivalent travel times for

the shear wave velocity estimates of Vs = 30m.s−1 and Vs = 50m.s−1 are also pre-

sented and are identified by references V30 and V50, located at 0.47ms and 0.28ms

respectively.

The travel time results obtained for different signal features, (figure 6.28), indi-

cate a distortion between the transmitted and received signals, that varies with input

signal frequency. An undistorted signal would produce similar travel time estimates

for all of the chosen features. What can be observed is that at most frequencies,

the features produce different travel times estimates. In summary, the distortion of
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Figure 6.28: Different travel times estimates for sample S11, for varying input

frequencies.

the propagated wave can be introduced by a number of factors, such as the actual

mechanical response of the benders to the existing signals, (section 5.5), and the

mechanical response of the sample itself, (section 6.4.2). It can also be caused by

dispersion phenomena.

In figure 6.28, the travel time measured between the first offset of the transmit-

ted and received signals, A-D, gives travel times in the range ttA-D = 0.1ms, falling

substantially below the range of V50. This travel time value corresponds to a wave

velocity of around V = 140m.s−1, meaning it is clearly a consequence of disper-

sion. The travel time measured between the transmitted signal first offset and the

received signal first local minimum, A-E, varies between 0.30ms at lower frequen-

cies of around 2kHz and decreases almost linearly reaching travel times of 0.16ms

at signal frequencies of 10kHz. This minimum travel time is equivalent to a wave

velocity of V = 88m.s−1, again well outside the proposed range of wave velocities,

indicating it might consistently overestimate the wave velocity.

The travel times measured between transmitted and received signals first max-
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ima, B-G, and the travel time measured between the second minimum of the trans-

mitted and received signals, C-H, both reach stable results of around ttB-G = 0.30ms

and ttC-H = 0.38ms that correspond to wave velocities of V = 47m.s−1 V = 37m.s−1,

well within the proposed range.

In figure 6.29 similar results to the ones in figure 6.28 are presented, now for

sample S29 - h76 × d75mm, the most slender geometry in contrast to sample S11.

The objective of using two samples with such different geometries is to maximise

the range of possible results that can be obtained from samples made of from the

same material, when using the time domain pulse signal technique.
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Figure 6.29: Different travel times estimates for sample S29, for varying input

frequencies.

Again the received signal is distorted in relation to the transmitted signal. Com-

paring with the results of sample S11, it can be seen that both cases present similar

travel time curves with input signal frequency, with greater variations at lower fre-

quencies, gradually growing more stable for higher frequencies. One observable

difference is that for the case of sample S29, this stabilisation occurs at lower fre-

quencies and appears to be more regular.
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The travel time results for features B-G and C-H are again within the proposed

range defined by V30 and V50. The results for features A-E go out of the men-

tioned range. They do so for higher frequencies, reaching more reasonable travel

time values. A travel time of 1.4ms is equivalent to a wave velocity of 58m.s−1 for

sample S29. Nevertheless, the estimates from features A-D are, as for S11, very low,

producing wave velocities in the range of 100m.s−1.

Having analysed the results from two samples with remarkably distinct geome-

tries, the fact that the results in figures 6.28 and 6.29 are apparently similar is

considered relevant. Both cases present a clear distortion between transmitted and

received signals, except for a few input frequencies. Both give features B-G and

C-H results within the expected range of shear wave velocities and are the ones that

indicate the most suitable travel times estimation. Features A-E in both examples

give results which estimate relatively high wave velocities of ≥ 55m.s−1. Both ex-

amples produce features A-D results, which produce very high wave velocities of

≥ 140m.s−1 and ≥ 100m.s−1, for S11 and S29 respectively. Keeping in mind that

for a shear wave velocity of Vs = 50m.s−1 and a Poisson’s coefficient of ν = 0.45, the

compression wave velocity would be Vp = 170m.s−1, the first arrival is neither due to

pure compression wave components or to a shear wave component. It must there-

fore be attributed to dispersion phenomena. For example, travel velocities faster

than the characteristic shear wave velocity can be obtained for wave phase velocity

dispersion, (figure 3.16).

6.5.4 Frequency Content of Received Pulse Signals

The frequency content of the received pulse signals in samples S11 - h20 × d75mm

and S29 - h76 × d38mm are studied in this section, with the objective of studying

the transformation the signals suffer after being propagated though the samples.

The frequency content was determined for response signals corresponding to in-
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put signals with different central frequencies. The frequency content of each signal

was obtained using the fast Fourier transform, FFT. Figure 6.30 presents the fre-

quency content of 6 received pulse signals in sample S11, with input frequencies

between 1kHz and 11kHz. Figure 6.31 presents the frequency contents of 6 received

pulse signals in sample S29, with input frequencies between 0.4kHz and 2.4kHz.

Different frequencies are used for each sample, since each sample is limited in terms

of the range of frequencies they can successfully propagate, (section 6.4.1).

In figure 6.30, the frequency content for an input signal of 1kHz in sample S11 has

two peaks, one at 0.6kHz and another at 1.0kHz. These peaks occur at frequencies

within the range at which the theoretical characteristic frequencies of the first mode

of flexural vibration and second mode of torsional vibration of a similar bar would

occur. These characteristic frequencies were obtained using a Bernoulli-Euler beam

model of the sample, i.e., a cantilever with a mass on the free top end, (section

6.4.2).

The following responses for higher input frequencies can be observed to present

a broad peak, ranging from 3kHz to 4kHz. These responses seem to be independent

from the frequency of the input signals. The bender elements, when embedded in

a similar rubber sample, have been observed to have a flexural resonance frequency

around this same range of frequencies, 5.0kHz, (figure 5.16). It is then possible that,

for the shorter sample S11, the observed responses for higher input frequencies are

dominated by the response of the bender elements.

The test system formed by sample S11 and bender element transducers respond

distinctly to different pulse input frequencies. For lower frequencies, the sample’s

dynamic properties dominate the response of the system. For higher frequencies,

the transducers’ dynamic properties appear to dominate the response of the system.

This distinction highlights the importance of considering the dynamic properties of

both the sample and the transducers.
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The frequency contents of the pulse responses obtained for sample S29 are given

in figure 6.31. The presented results are for input signals with frequencies up to

2.4kHz after which no significant changes occur to the shape of the received signal.

Signals with higher frequencies gave similar results, where only the magnitude of

the response attenuates.

Independently from the frequency of the input signal, all of the presented re-

sponses can be observed to have two clear peak features, one at 0.38kHz and another

at 0.55kHz. These features have already been identified in section 6.4.3, especially

the feature at 0.38kHz, which was associated with the second flexural modes of vi-

bration of this sample. The feature at 0.55kHz was thought to be related with the

second mode of torsional vibration, although this result has not been confirmed,

(figure 6.21).

Comparing the behaviour of the dynamic systems comprising samples S11 and

S29, a number of observations can be made. In sample S11, for most of the input

signals, the dynamic properties of the transducers dominated the response. For

sample S29, the dynamic properties of the sample itself dominated the response. As

observed in section 6.4.1, taller samples limit the maximum frequencies which can

successfully propagate through them. This means that the wave that reaches the

receiving bender element does not have enough frequency content to excite it at its

own natural frequency, and so its contribution to the overall response of the system

is not as significant. Another empiric way of explaining this behaviour is that for

the system where ‘less sample separates’ the transducers, the overall behaviour is

dominated by the dynamic properties of the transducers. For a test system where

‘more sample’ separates the transducers, the overall behaviour is dominated by the

dynamic properties of the sample.

It is worth relating the frequency content presented in figures 6.30 and 6.31 with

the peak features results given in figures 6.28 and 6.29. In the case of sample S11,
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the frequency at which the response indicates some form of resonance, at frequencies

around 3kHz and 4kHz, coincides with the frequency range at which less distortion

can be observed from the feature results. Around these frequencies, for the two

most significant pair of signal features, B-G and C-H, the correspondent travel time

estimated values are most similar. For sample S29, the travel time estimates for

signal features B-G and C-H are most similar for lower input frequencies, but it

is not possible to make a direct comparison, since for input frequencies lower than

1kHz, the peak feature results are most unstable.

Having observed the relation between two aspects of the dynamic response of the

tested systems, i.e, the minimum received signal distortion for input pulse signals’

central frequencies near their resonance frequencies, such input frequencies were

henceforward chosen to provide the responses used for the time domain parametric

study. So, for each sample, multiple input pulse signals with different frequencies

were used and the result for the one producing the least distorted response was

chosen.

The pair of features B-G and C-H, measuring the travel time between the main

maximum and minimum features of the transmitted and received signals, were cho-

sen to estimate the travel time value used in the parametric study. This travel time

was calculated as the average of the two B-G and C-H estimates. This way, a con-

sistent collection of results based on a set of concepts which can be replicated in

other test systems, obtaining travel time estimates for signals with minimum dis-

tortion between input and output, and at which a significant frequency content is

observable in the response. Moreover, as seen in figures 6.28 and 6.29, among the

possibly signal features, these were the ones leading to the most credible estimates

in terms of previously observed wave velocity of the samples, (table 6.8).
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6.5.5 Dispersion in Results

The received pulse signals were analysed again, now with the objective of better

understanding the two distinct dispersion phenomena associated with bender ele-

ment testing, geometry dispersion and near-field effect. The received signal feature

E, as illustrated in figure 2.2, is usually associated with the near-field effect, (Brig-

noli et al., 1996). The travel time results presented so far, (figures 6.28 and 6.29),

include the travel times obtained using the received signal first inflexion marked as

feature E. These seem to correspond to travel times faster that the proposed range of

possible shear-wave travel times. Thus, for the results obtained so far, the received

signals have a clear presence of dispersion that can be associated with received signal

feature E.

In section 3.6, the results concerning the near-field effect are presented as a ratio

between the near-field and the far-field wave component magnitudes and velocities.

In order to determine the relation of feature E with the near-field effect, feature G

was chosen as being associated with the far-field wave components, since it provides

travel time results well within the proposed range. The ratio between the magnitude

of the signal associated with these two features, E and G, is calculated for a number

of pulse signals and for all the samples used in the present parametric study. The

signal feature notations E and G must not be mistaken with the Young’s modulus,

E, or shear stiffness, G.

Figure 6.32 presents the ratio between the magnitudes of features E and G, as

identified in figure 2.2, for samples S11 and S29. These results were obtained for a

range of the input signal frequencies. The consequences of dispersion due to wave

reflection and near-field effect are expected to be different for these two samples.

For sample S11 - h20 × d75mm, which is low and broad, the lateral boundaries are

distant from the direct wave travel path and the receiver is near the source. So
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dispersion due to wave reflection is expected not to be relevant and dispersion due

to near-field effect is expected to be quite significant. Sample S29 - h76 × d38mm,

on the other hand, has lateral boundaries nearer the direct travel path, in absolute

and in relative terms, and has a much longer absolute travel path. Sample S29 can

therefore be expected to have dispersion dominated by different causes, i.e., to have

a relevant dispersion due to wave reflection and less due to near-field effect.
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Figure 6.32: Ratio between signal features E/G for samples S11 and S29 collected

for a range of input signal frequencies.

In figure 6.32, in the case of sample S11, the ratio can be observed to decrease

sharply from its initial maximum value, stabilises at around 0.2. For sample S29,

the ratio also has an initial maximum and stabilises at around 0.3. The ratio values,

for sample S29, becomes more scatared for input frequencies higher than 3kHz.

Theoretical calculations for the near-field effect only place a similar magnitude ratio

at 0.15 and 0.20 for samples S11 and S29, using their respective travel distances

and dominating received signal frequencies. Hence, the theoretical values of near-

field ratio do not match the values obtained with features E and G, but predict a

higher near-field effect for sample S29. The fact that the predictions do not match
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the observed ratios, being in fact lower than them, might be another indicator that

wave reflection must also be a contributor to the observed dispersion.

The same E/G ratio was also calculated for all the samples taking part in the

parametric study. The corresponding results are presented in figure 6.33, according

to sample diameter and height. The theoretical near-field effect was also calculated

for equivalent travel distances and input signal frequencies used. It is presented

in the form of the ratio given by the shear wave near-field component over the

shear wave far-field component, NS/FS. These theoretical results were calculated

according to the method presented in section 3.6 and illustrated in figure 3.19(b).

Assuming that feature E is related to dispersion, the objective of comparing the

E/G ratio with the equivalent near-field ratio is to distinguish which dispersion is

due to near-field and which is due to the presence of the geometric boundaries and

wave reflection.

In figure 6.33(a), the results concerning the samples with diameters D = 38mm

are presented. The near-field theoretical results are quite similar to the E/G ratio

from the received pulse signals, for lower sample heights H ≤ 30mm. For taller sam-

ples, the E/G ratio produces values considerably higher than the near-field results.

For lower samples, the direct wave travel distance is much smaller than any possible

reflected wave path. For this reason the lateral boundaries, believed to contribute to

the geometric wave dispersion, have less influence on the overall wave propagation.

As the sample height increases, the reflected travel paths become more similar to

the direct ones, hence increasing the influence of sample geometry as the origin of

dispersion.

In figure 6.33(b), the results for samples with intermediate diameters, D =

50mm, are presented. The near-field estimates are now similar to the E/G ratio

for samples up to 40mm height. The same principles explained for the 38mm diam-

eter samples would also explain this observation and why the similarity in results is
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Figure 6.33: Features E/G ratio in received pulse signal and theoretical near-field

effect.
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present up to taller samples. Since their diameters are larger, only for taller samples

does the reflected wave travel paths become more similar to the direct travel path.

In figure 6.33(c), the results for samples with the largest diameter, D = 75mm,

are presented. This is the case where for all of the sample heights the E/G ratio

seems to be more closely related with the near-field estimates. The same principle

of direct and reflected travel paths presented for the previous two cases is not only

again valid but further reinforced.

The irregular variation with sample height of the theoretical near-field results

occurs because the frequency used to determine each NS/FS ratio is the same as

that of the input signal chosen to test each sample. Since different frequencies were

chosen for the input pulse signals, according to the actual response of each sample,

then different values of near-field effect were also obtained.

Together, the analysis of all the E/G ratio allows a number of observations.

All samples have some form of dispersion present. In lower and broader samples,

dispersion is mainly caused by the near-field effect. In taller and narrower samples,

dispersion is caused by both the presence of wave reflection and the near-field effect.

So, it is important to consider not only near-field, but also the significant dispersion

caused by presence of geometric boundaries.

The objective of eliminating dispersion from the received pulse signal might

not be possible to achieve. It has been shown that the dynamic behaviour of the

bender element transducer and of the samples, (section 5.8, 6.2 and 6.4.2), cannot

be controlled by the frequency of the input pulse signal. Neither the transmitting

bender element nor the sample can be made to vibrate at frequencies higher than

their own natural frequencies when excited by a short duration signal, such as a

pulse signal. In terms of near-field effect. the remaining option would be to increase

the travel distance, but by itself this is not an effective solution, since the waveguide

dispersion increases for slender samples. Another possibility is to increase the height
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and the diameter of the sample, so as to minimise the near-field and the waveguide

dispersions. This last option is also not practical, especially if the bender element

tests need to be conducted in a standard-size sample as for example the h76×d38mm

of the triaxial cell. For such standard geometry samples the effects of dispersion

might be an unavoidable side effect of testing with pulse signals.

6.5.6 Pulse Signal Velocity

Up to 45 pulse signals with different central frequencies were used to test each of

the 24 samples included in the parametric study, (table 6.2). The determination

of the wave travel time, as explained generally in section 2.1, was made using the

transmitted and received signals maxima and minima features, identified as B-G

and C-H, and illustrated in figure 2.2. The reasons for choosing these two features,

rather than the first arrival, have already been presented in section 6.5.4. The wave

velocity estimates were obtained by averaging the travel time recorded for each of

the two mentioned signal features for a transmitted pulse signal with a frequency

chosen so as to have minimum signal distortion, as well as a significant received

signal frequency content. This frequency coincides with the input signal frequency

at which the two travel time estimates are most similar.

Figure 6.34 presents the wave velocity estimates obtained from the measured

travel times using pulse signals in the indicated manner and for a wave travel dis-

tance measured tip-to-tip. These velocity estimates are presented according to sam-

ple diameter and height. The presented values for each sample set are corrected

according to the observed differences between sets of samples as measured in the

control samples, (section 6.3).

From figure 6.34 it can be observed that the wave velocities significantly increase

with sample height up to 40mm, down from around 25m.s−1 up to around 50m.s−1,

which is a very significant increase. Up to sample heights of 40mm, the velocity
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Figure 6.34: Corrected wave velocity estimates from pulse signals, according to

sample height and diameter.

estimates for different sample diameters agree well with each other. Referring back

to equivalent results from the frequency domain tests presented in figure 6.25, such

a good agreement between samples with the same diameter could not be observed.

The velocity estimates for samples with H > 40mm are more scattered than for

shorter samples where, independent from sample diameter, the results are consistent

with each other. Eventually there is ‘step down’ to values of around 35m.s−1 and

45m.s−1 as the sample height increases.

Considering the velocity range, given by V30 and V50, to evaluate the reliability

of the obtained wave velocity estimates, it is worth noting how the obtained results

can vary between significantly low and high values of velocity. In both instances

beyond the proposed range. Comparing the presented results with the equivalent

frequency domain results, (figure 6.25), the frequency domain results are more scat-

tered but are also more coherent in terms of being within the proposed velocity

range.
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6.6 Discussion

6.6.1 Travel Distance

So far, all of the presented velocity results have considered the travel distance to

be measured tip-to-tip. The background on travel distance estimation in bender

element testing is presented in section 1.5. In summary, the work developed by

Dyvik and Madshus (1985), Viggiani and Atkinson (1995) and Brignoli et al. (1996)

has, in all cases, pointed at the travel distance as being that measured on transducers

tip-to-tip.

The travel distance contribution to the uncertainty associated with determina-

tion of wave velocity is usually considered to be less significant than the travel time,

(Arroyo et al., 2003a). As there is uncertainty about wave travel time, and since

these travel time results are needed to verify the correct travel distance in the ben-

der element problem, then surely the estimation of travel distance is also affected

by uncertainty.

For this reason, the estimation of travel distance is now readdressed using the

results from the time and frequency domains. When dealing with a first arrival

scenario, it is intuitive to imagine the transmitter tip end to be the source of the

propagating wave front. It is also intuitive to imagine the receiver’s tip end to be the

first to pick it up. But, even though many authors directly using the time histories

of the signals still use the first offset of the transmitted signal, often they do not use

the very first arrival of the received signal. There are many examples where other

features of the received signal are used, such as its first local minimum or inflexion,

(Brignoli et al., 1996). If the first arrival of the received signal is not used, than any

other feature of this signal is obtained at a time when the receiving transducer is

already fully engaged, and not only its end extremity.

An estimate of the pressure exerted by the transmitting bender element on the
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surrounding medium is presented in section 5.6 in figure 5.25. Considering the results

of the UCL-BE, which are the transducers used in the present geometry parametric

study, their pressure distribution diagram is parabolic, varying with embedment

height. The centre of pressure, for the proposed model, is localised at 1.78mm from

the sample base, i.e., 60% of the transducer’s embedded tip height, 3mm.

It was not possible to monitor the behaviour of the receiving transducer with

the same detail used for the transmitting transducer. This is because the amplitude

of its movement fell below the precision limit of the laser equipment. Neverthe-

less, the receiver bender element is similar to the transmitter bender element, i.e.,

same materials, geometry, wiring, etc. Therefore, its mechanical behaviour can be

expected to be the same and so, when coupled with the medium and engaged and

forced by it to oscillate, it can be assumed that the applied pressure has a similar

distribution. If that is the case, than the centre of exerted pressure is also at 60%

of the embedded height.

The test results presented by Viggiani and Atkinson (1995) are for three samples

with heights varying between 35mm and 85mm and constant embedment of 3mm

per transducer. The results presented by Brignoli et al. (1996) concern embedment

relative heights of 3% and 14% for samples with 100mm height. The samples used in

the present parametric study permit the study of a broader range of travel distances.

The parametric tests concern 7 different sample heights, varying between 10mm

and 76mm, with a constant transducer embedment height of 3mm. This produces

relative embedment heights between 8% and 60%. Thus the study of lower samples

with large relative embedment heights becomes possible. This is important because

travel distance assumptions are more relevant for lower travel distance tests. On the

other hand, is was not possible to compare results from different stress states. The

studied ranges of travel distance for the present study as well as those covered by the

mentioned authors are presented in figure 6.35. This figure indicates the suitability

296



of the range of sample geometries used in the parametric study, to determine the

correct travel distance compared to the other mentioned studies.
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Figure 6.35: Range of studied sample heights and relative embedment in the

determination of travel distance for the present parametric study and those covered

by Viggiani and Atkinson (1995) and Brignoli et al. (1996).

The influence of the travel distance is directly related with the sample height.

For a sample of 10mm height and with a bender element embedment of 3mm, the

potential maximum error associated with considering the wrong travel distance is

10/(10 − 2 × 3) = 2.5 ≡ 150%. For the tallest sample considered, H = 76mm, the

equivalent maximum error associated with travel distance would be of 76/(76− 2×

3) = 1.09 ≡ 9%. This analysis is quite important, because it implies that considering

the wrong travel distance might have different consequences for different sample

heights and also highlights how big the potential error associated with considering

the wrong travel distance can be for shorter samples. A test in a triaxial cell has a

potential of error due to considering the wrong travel distance much lower than if a

sample is tested in an oedometer, where the sample is shorter and the relative error

can be much higher.
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Referring to the velocity results obtained from the frequency domain, namely

the wave velocities presented in figure 6.25, the most remarkable result is that for

the samples with 10mm height, the velocity results are apparently much lower than

those for other sample heights. A similar observation can be made from the time

domain results presented in figure 6.34. In both cases there is an upward tendency

in wave velocity with sample height, starting with uncharacteristically low velocity

values.

Dispersion is usually associated to faster wave velocities in the context of bender

element testing. Therefore, it would not be expected to be able to justify the ob-

served lower wave velocities. It is worth mentioning that dispersion, both due to the

presence of geometry boundaries and to the near-field effect, in terms of wave group

velocities, can produce lower values than the characteristic wave velocities, (figures

3.13, 3.15 and 3.17). Nevertheless, the results from the time domain are associated

with the wave phase velocity, since single points are considered when estimating the

travel time. Since the frequency domain results agree with the time domain results,

dispersion is disregarded as a cause for the observed low wave velocities.

An incorrect travel distance consideration is left as the remaining possible cause

for the observed low wave velocities. In order to verify this possibility, the travel

time results from the parametric study, both for the frequency and time domains,

were re-evaluated with the travel distance in mind.

Figure 6.36 presents travel time results for the same rubber samples used in

the parametric study. These results were obtained using the gradient of the phase

delay curve in the frequency domain. A best-fit line was plotted to indicate the

travel distance which best agrees with the time results. For reference purpose, the

total bender element penetration of 6mm was also marked. Figure 6.37 presents

equivalent results to those seen in figure 6.36 obtained in the time domain.

The best-fit line for the frequency domain travel time results, in figure 6.36,
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Figure 6.36: Travel time results using a frequency domain method for the para-

metric study samples.
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Figure 6.37: Travel time results using time domain method for the parametric

study samples.

crosses the vertical sample height axis at 3.56mm. This value indicates that the

travel distance should be measured from a point in the embedded bender element tip

1.86mm from the base of the sample, or 62% of the embedded height. Such a travel

distance is quite similar to the one obtained using the static pressure distribution
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model, which pointed to a value of 1.78mm from the sample base.

The time domain travel time results in figure 6.37 are best fitted by a line that

crosses the vertical height axis at 1.64mm. This value indicates a travel distance

measured 0.82mm from the sample base, 27% of the embedded height. In spite

of indicating a travel distance relatively different from the frequency domain and

pressure distribution, the time domain results also indicate a longer distance than

the tip-to-tip travel distance.

A proposed explanation for such a high travel distance obtained for the time

domain results might be the observed phase delay between the transmitted and

the received signals and the actual bender element movement. In figure 5.18 a time

delay of around 2×10−2ms could be observed, for a wave velocity of around 50m.s−1.

This time delay would decrease the ideal travel distance by 1mm at the transmitting

transducer. If the receiving transducer is assumed to have a similar time delay, a

total of 2mm need to be added to the corrected travel distance. This would bring

the best fit line to cross the vertical axis at 1.64+2×1.00 = 3.64mm. This corrected

travel distance is very similar to the values obtained for the frequency domain travel

time results, which are unaffected by the mentioned phase and time delay. They

are also very similar to the travel distance obtained using the centre of pressure

from the dynamic pressure distribution model. A total of three separate indicators,

one of which is independent from the other two, point to a correct travel distance

measured between bender element pressure centres. Table 6.10 presents the various

proposed travel distances.

The velocities presented in figures 6.25 and 6.34 were recalculated using the

travel times obtained from the frequency and time domain results and using the

respective corrected travel distances. These reviewed velocity results are presented

in figures 6.38 and 6.39 for the frequency and time domain results respectively.

In figure 6.38, the frequency domain results are still rather scattered. Yet, the
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Description height from base relative height travel distance

tip-to-tip 3.00mm 100% height−6.00mm

pressure distribution 1.78mm 59% height−3.56mm

frequency domain 1.83mm 61% height−3.66mm

time domain 0.82mm 27% height−1.64mm

corrected time domain 0.82+1.00=1.82mm 61% height−3.64mm

Table 6.10: Travel distances according to different estimates and methods.
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Figure 6.38: Corrected frequency domain wave velocities. Travel distance mea-

sured between 1.83mm of transducers’ embedded heights.

trend of increasing wave velocity with sample height is no longer present. For the

time domain results, in figure 6.39, the increasing trend, also noticeable in the

original results seen in figure 6.34, is also no longer present. The corrected time

domain results give wave velocity estimates which are quite high, being most of

them out of the proposed velocity range. Nevertheless, the coherence between the

corrected time domain wave velocity is worth noting.

In general, the travel distance measured between transducers tip-to-tip appeared

to be unsuitable for a typical bender element analysis. The obtained results for a
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Figure 6.39: Corrected time domain wave velocities. Travel distance measured

between 0.82mm of transducers’ embedded heights.

large range of sample geometries and confirmed by the estimated pressure distribu-

tion along the transducer’s embedded length indicate that the travel distance should

be measured between the centre of dynamic pressure of those transducers, roughly

at 60% of the embedded height.

6.6.2 Geometry Influence in the Frequency Domain

The subject of sample geometry and wave propagation has been addressed gen-

erally in section 3.2. Geometric boundaries have been shown to cause incoming

wave components to be reflected back into the medium as one or more different

wave components, including surface waves, (Redwood, 1960). As all outgoing wave

components are reflected back into the medium, they contribute to the overall prop-

agating wave, possibly interfering with the wave front. A bounded medium, by

forcing outgoing waves to reflect back into it and guide them, is also known as a

waveguide. Cylindrical bars are well-known cases of waveguides, they are often stud-

ied and serve as example due to the simplifications introduced in the analysis due
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to their cross-section axial symmetry, (Achenbach, 1973). For example, Fratta and

Santamarina (1996) have devised a specific test where a cylindrical soil samples was

considered to behave as waveguides.

Waves propagating in cylindrical bars are characterised by three distinct funda-

mental modes of propagation: longitudinal, torsional and flexural, (section 3.4.1).

These modes of wave propagation are generally dispersive. There is one exception,

the first mode of torsional wave propagation is non-dispersive. This non-dispersive

torsional mode is at the base of torsional resonant column testing, (section 3.11).

Soil samples tested with bender elements in triaxial cells and oedometers are

usually cylindrical in shape, and thus the principles of wave propagation in cylindri-

cal bars must apply. Nevertheless, since the tested samples do not have an infinite

length, there might be cases where for bulkier sample, they can behave more as an

unbounded medium than as a waveguide. There are other limitations related to the

elastic and linear characteristics of the medium. For the range of applied stresses and

strains, the tested samples are assumed to be linear elastic. Even though none of the

cylindrical samples have infinite lengths, a distinction can be made between slender

samples which are expected to behave as theoretically predicted cylindrical bars,

and bulkier samples which are expected to behave more like laterally unbounded

media. Slender samples have a higher possibility of having propagating wave fronts

influenced by reflected wave components, since the lateral boundaries are relatively

nearer the main propagating path, between transducers. Bulkier samples can be

expected to propagate wave fronts undisturbed by reflected wave components.

The near-field effect, discussed in section 3.6, is also related to the sample geom-

etry, namely its height. Near-field wave components dissipate much faster than the

far-field wave components and so quickly lose their influence with increasing travel

path lengths.

Some aspects of sample geometry influence have already been observed. In sec-
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tion 6.4.1, the frequency content of the received signals was analysed. It was pos-

sible to establish a relation between sample heights and frequency content as taller

samples allowed narrower frequency contents through. In section 6.4.2 and 6.2, a

relation between the dynamic behaviour of the samples and their geometries has

been established.

There was also the question of wave travel distance addressed in section 6.6.1.

If the wave travel distance is not correctly selected, a potentially significant error

can result in the estimation of wave velocities. Such error would also be different

for each sample height, creating a signal distortion which is increasingly significant

for lower sample heights.

The last stage of the geometry influence analysis is to look at the wave velocity

results and verify the presence of any significant sample geometry influence. The

wave velocities obtained from the frequency domain results were presented in figure

6.25. It was possible to observe that the results for the three different diameters have

some similarities, namely a local minimum at an intermediate sample height. The

relation between this and other features and the sample geometry are further studied

by looking at different horizontal axes, revealing different geometric relations of the

samples. In figure 6.40, the velocity results, using the tip-to-tip travel distance, are

plotted using a horizontal slenderness ratio axis of height over diameter, H/D.

The relation between the three curves, for different sample diameters, presented

in figure 6.40, is now more obvious. For the three different diameters, each curve can

be seen to follow a similar pattern of initial increase, followed by a local minimum

and ending with a local maximum. The fact that the behaviour of so many different

samples can be seen to follow a similar pattern related with their geometry indicates

that the results, and the mentioned curve features, are not arbitrary, some relation

does exist between the results and the sample geometry.

Another geometric parameter is attempted as the horizontal axis in figure 6.41,
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Figure 6.40: Wave velocity comparison with slenderness ratio, H/D,for frequency

domain results.

where the square of the sample height over the diameter, H2/D, is used.
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Figure 6.41: Comparison between wave velocity and geometric parameter, H2/D,

for frequency domain results.

When plotted versus the geometric parameter H2/D, the velocity results from

the frequency domain of all of the tested samples now seem to be even more closely

related. The three velocity-diameters curves are now very similar to each other.
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The curve features now occur at the same values of H2/D. The parameter H2/D is

not as ‘elegant’ or universal as the slenderness ratio, but the obtained results show

the clearest relation between the frequency domain velocity result and a geometry

parameter. Initially the obtained results seemed very scattered and the fact that for

the proposed geometry parameter they became so coherent is a clear indication of

this parameter relevance. Furthermore, the fact that results from samples with sig-

nificantly different heights and diameters consistently produce similar wave velocity

results in accordance with H2/D also serves as a clear indicator of the geometry’s

influence. What might have been considered erratic results now have to be consid-

ered in terms of their relevance to explain the influence of sample geometry in terms

of wave propagation.

The results presented so far were normalised using the travel distance measured

from tip-to-tip. In figure 6.42 are presented the frequency domain velocities now

obtained using a corrected travel distance measured between the transducers’ centre

of dynamic pressure, (section 6.6.1). Once again, the geometry parameter given by

the ratio H2/D is used at the horizontal axis.

The velocity-diameter curves in figure 6.42 are similar to the ones shown in figure

6.41, except for the lowest values of H2/D. These now produce higher wave velocity

estimates.

When the transmitting bender element disturbs the medium, the resulting me-

chanical waves propagate in all directions. For a bulkier sample, a direct wave

propagation is expected to reach the receiver with little or no interference from re-

flected wave components. Reflected wave components have a travel path which can

be much longer, hence becoming significantly more damped and also taking longer

to reach the receiver. This means that the wave components which travel directly

between transducers in a bulk sample can be assumed to travel in an unbounded

medium. As the samples become slender, the reflected wave components, namely
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Figure 6.42: Wave velocity for frequency domain results, with a travel distance

measured between 60% of the transducer’s embedded height, as calculated in section

6.6.1.

those that reach the receiver, have travel paths with similar lengths to the direct

travel path, meaning that they start to interfere significantly with the received wave

front.

The far-field shear wave components propagate, in an unbounded medium, at the

characteristic shear wave velocity, Vs, (Claxton, 1958). In a cylindrical waveguide,

an anti-symmetric shear disturbance is expected to produce waves which propagate

in a combination of flexural modes. These modes of wave propagation are dispersive.

The determination of the relative amplitude of each flexural mode is quite complex

and difficult to obtain, (Redwood, 1960). Nevertheless, it is generally assumed that,

at higher frequencies, the overall group velocity for each mode tends to be less dis-

persive, pointing at the characteristic shear wave velocity. At lower wave velocities,

the first mode of wave propagation is dominant with an overall significant disper-

sive behaviour. The estimation of group wave velocity at these lower frequencies is

therefore rendered more difficult. The dispersion curves for a rubber cylinder with
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similar properties as the ones used in the parametric study can be found in figures

3.16 and 3.17.

Before proceeding to the analysis of the wave velocities for the parametric study

in figure 6.42, it is worth remembering that the range of frequencies for which the

phase delay gradient was calculated is different for each sample. Taller samples had

their wave velocity calculated for lower frequency ranges, due to their lower maxi-

mum frequency, as presented in section 6.4.1. This means that with an increasing

sample height, one might expect less dispersion due to near-field effect and more

dispersion due to wave reflection, both because of the increasing slenderness of the

samples and because of their lower maximum frequency ranges.

It is worth trying to fit the proposed wave propagation models to the frequency

domain wave velocity results. So, for bulkier samples, say (H2/D) < 15mm, a

direct wave propagation undisturbed by reflected wave components is assumed. For

this model, dispersion is caused by near-field effect only. For slender samples, say

(H2/D) > 50mm, the waves propagate as in a waveguide, and for high enough

frequencies the group velocity is the same as the characteristic shear wave velocity.

Two more groups of results can be observed. The velocity results for geometry

parameters 15 < (H2/D) < 45mm and (H2/D) > 85mm. The first range can

be assumed to correspond to a group of transition sample geometries. For this

first range of geometry parameters the samples behave neither predominantly as an

unbounded medium, nor as a waveguide. Some form of transitional, more complex

behaviour takes place. The second range, (H2/D) > 85mm, is characterised by the

scattering of the velocities results. This could be explained by the fact that the

corresponding results were obtained using frequency ranges at lower frequencies at

which the flexural modes of wave propagation are more dispersive. These behaviour

models are presented in figure 6.43.

From figure 6.43, the shear wave velocity is estimated to be around Vs = 45m.s−1.
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Figure 6.43: Sample behaviour model according to geometry parameter H2/D for

frequency domain velocity results.

This value is obtained considering the wave velocity values obtained for a waveguided

behaviour of the sample for which high enough frequencies are able to propagate

through.

The proposed models of sample behaviour were related with sample geometry,

namely with the geometric factor H2/D.

unbounded medium → H2/D < 15mm

waveguide → H2/D > 45mm

This relationship has been established for the tested rubber samples. Actual soil

samples would still be expected to behave as linear-elastic media, but their different

elastic properties mean that the proposed geometric limits of sample behaviours

might be found at other values of geometric parameters. Testing with different

boundary conditions such as confining pressure or with a protecting latex membrane

might also alter the limits distinguishing the models of behaviour. Nevertheless, the
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mechanical response appears to present a clear distinction as a function of sample

geometry.

Without making a parametric study for each new set of bender element tests,

the available option is to use a significantly bulkier or slender sample to guarantee

its behaviour is either clearly that of an unbounded medium or that of a waveguide,

and not something in between. The standard sample dimensions for an oedometer

or triaxial cell places them well within these categories. The same cannot be said of

other test set-ups such as anisotropy studies, where the transducers can sometimes

be placed at the sides of the samples.

Having established the behaviour models of the studied samples, it becomes

necessary to guarantee a minimum of dispersion by controlling the frequency of the

continuous signal. For this purpose, the near-field effect for unbounded models and

the near-field effect and dispersion curves for the waveguide must be estimated. The

near-field effect has been well studied so far and the limit proposed by Arroyo et al.

(2003a) given in equation 3.67 is both practical and simple to use.

In order to evaluate the waveguide dispersion, one option is to calculate the

specific dispersion curves of each studied sample. This is a complex numerical task

that requires considerable effort. For this reason a simple limit is proposed based

on the generic dispersion curves of the flexural modes of propagation presented by

Redwood (1960). According to his work, the first mode of flexural wave propagation

becomes quite less dispersive after D/2Λ > 0.35 for a Poisson’s ratio of ν = 0.29.

This result can be presented as:

fwd >
1.4Vs

D
(6.1)

where fwd is the limit frequency in Hertz for which minimum waveguide dispersion

can be expected, Vs is the estimated shear wave velocity and D is the sample diam-
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H D H2/D limit8 Frequency Range Velocity Variation

(mm) (mm) (mm) (kHz) (kHz) (m.s−1) (%)

76 38 152 fwd > 1.7 [1.0 1.8] - KO 40.5 10%

60 38 95 fwd > 1.7 [2.5 3.7] - OK 44.4 1%

50 38 66 fwd > 1.7 [2.5 3.1] - OK 46.0 2%

76 50 116 fwd > 1.3 [0.8 2.0] - KO 47.1 5%

60 50 72 fwd > 1.3 [1.6 3.7] - OK 44.7 1%

50 50 50 fwd > 1.3 [2.5 3.1] - OK 44.6 1%

76 75 77 fwd > 1.0 [1.1 1.9] - OK 47.7 5%

60 75 47 fwd > 1.0 [2.5 3.7] - OK 42.3 6%

Table 6.11: Velocity variation according to waveguide dispersion frequency limit.

eter. This result was obtained using a safety coefficient of 2.0 to further maximise

the limit frequency. Equation 6.1 must not be considered as an absolute limit but

only as a preliminary reference proposed by the author.

The suitability of the proposed frequency limit presented in equation 6.1 is mea-

sured using the velocity results given in figure 6.43.

The application of the waveguide dispersion frequency limit to the frequency

domain results appears to suit the results. Since it has a theoretical justification, its

confirmation for the available parametric study is quite encouraging. For samples

assumed to behave as waveguides, a maximum error of 6% is present for results

obtained using a frequency range within the proposed limit. If the results for the

bulkier samples, with diameters of 75mm are disregarded, then the maximum error

obtained is around 2%. These are favourable results which, nevertheless, do not

fully confirm the validity of the proposed limit. A number of other parametric

tests on materials with different elasticity properties would be necessary in order to

corroborate the results obtained so far.

Noting that the results in figure 6.43 were obtained using a travel distance mea-

8Obtained using an estimated shear wave velocity of Vs = 45m.s−1

311



sured using the transducer’s centre of dynamic pressure and not the most usual tip-

to-tip distance. Nevertheless, for the considered samples, i.e, those with waveguide

behaviour, their relatively large heights makes their results less susceptible to either

choice of travel distance. For this reason, the proposed limit is, if valid, applicable

to either case.

6.6.3 Geometry Influence in the Time Domain

The time domain wave velocity results for a corrected travel distance, as presented in

figure 6.34, are now analysed in terms of their variation with the two geometric pa-

rameters explored so far, H/D and H2/D. The corresponding curves are presented

in figures 6.44 and 6.45.
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Figure 6.44: Time domain wave velocities variation with slenderness ratio H/D.

From the two proposed geometric parameters, the slenderness ratio, H/D, seems

to be the one for which a clear relationship can be established between the velocity

results and the sample geometry. In figure 6.45 a clear step in wave velocity can

be observed for H/D > 1.25. At this slenderness ratio the wave velocity estimates

present a shift from values in the range of V ≈ 58m.s−1 down to V ≈ 45m.s−1.
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Figure 6.45: Time domain wave velocity variation with geometric parameter

H2/D.

There is a phase shift between excitation and response at each mechanical inter-

face: between transmitted electric signal and transmitting bender element vibration,

between transmitting bender element vibration and soil vibration, between soil vi-

bration and receiving bender element vibration and between receiver bender element

vibration and received electric signal. This behaviour is characteristic for any sim-

ple mechanical system. It was also verified in the monitoring study conducted in

section 5. For these reasons, the direct measurement of travel time between trans-

mitted and received electric signals becomes insignificant, since it is only remotely

related to the propagating wave in the soil. However, it is noticeable that for low

slenderness ratios, H/D < 1.25, the measured wave velocities are quite high and well

outside the proposed range. This range has been established with results from the

independent laser monitoring, the vibration analysis of the response curves and the

frequency domain results. For higher slenderness ratios, the velocities ‘step down’

and fall within the proposed velocity range. They also agree well with the velocities

obtained in the frequency domain, at around v ≈ 45m.s−1.

313



It is still quite worrying that most of the obtained results for H/D < 1.25 ap-

pear to over-estimate the wave velocity, being also quite coherent with each other.

Some form of dispersion could explain the wave velocities which are significantly

higher than the estimated shear wave velocity, and the proposed range of velocities.

The near-field effect is worth considering since, when testing with pulse signals, the

transmitted wave frequency content is quite broad, (figures 6.30 and 6.31). This

means that even if the signal’s reference central frequency would indicate no sig-

nificant near-field effect, the lower frequency content of such a broadbanded signal

could still excite significant near-field wave components. In section 6.5.5 the ex-

pected theoretical near-field was compared with the proposed values of measured

total dispersion. This total dispersion was evaluated in the form of an amplitude

ratio between the first signal minimum, feature E, and the first signal maximum,

feature G. These pulse signal notations are identified in figure 2.2.

Samples with diameters of D = 38mm were observed to have no significant near-

field effect above heights 40mm. Similar observations were made for samples with

diameters of D = 50mm and D = 75mm for sample heights of H = 50mm and

H > 76mm respectively. It is worth presenting the relation between dispersion and

sample geometry. Figure 6.46 contains the ratio between estimated near-field and

total measured dispersion, varying with sample slenderness ratio. For dispersion

ratios lower than 0.5, the near-field effect is assumed to be non-dominant in terms

of the overall observed dispersion. Since the other known source of dispersion is the

waveguide dispersion, one must assume that for dispersion ratios lower than 0.5, the

waveguide dispersion is the dominant form of dispersion.

Again, a relationship between sample geometry and signal properties is quite

clear. Figure 6.46 shows how the near-field effect becomes less significant with

increasing slenderness ratio. The presented results are quite crude and must be

treated with some caution. For example, results where the dispersion ratio is higher
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Figure 6.46: Ratio between the theoretical unbounded near-field effect and total

measured dispersion.

than 1 indicate that the observed total dispersion is lower than the theoretical near-

field effect. This can only mean that the method of measuring dispersion is flawed.

Yet, it is remarkable to observe the clear trend which for H/D ≥ 1.0 indicated little

near-field effect. This result produces a limit slenderness ratio quite similar to the

one observed in figure 6.44, H/D = 1.25mm. Some relationship can therefore be

established with the decreased impact of near-field effect with the observed step

decrease in (measured) wave velocity, in terms of sample slenderness ratio.

A significant range of slenderness ratios was covered during the parametric study.

The calculation of the direct and reflected wave paths allows an interesting observa-

tion, if the direct travel distance is the length of the straight line between the trans-

ducers, and the reflected travel distance is the sum of the lengths of two sides which

close the isosceles triangle which has the direct travel distance as its hypotenuse.

In figure 6.47 assume TDd as the length of the direct travel path and TDr as

the length of the reflected travel path. The ratio between the direct and reflected

travel path lengths is presented in figure 6.48 for the geometric parameters H/D
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Figure 6.47: Direct and reflected travel distances.

and H2/D.
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Figure 6.48: Study of direct and reflected travel distances ratio variation with

geometry parameters.

The relationships between direct and reflected travel paths provide interesting

reading. In figure 6.48(b), a distinction in the travel path ratio curve can be observed

at a H2/D ≈ 50mm. This value limits a range for which the reflected travel path

length could be assumed to be similar to the length of the direct travel path. Such

travel path length distinction at H2/D ≈ 50mm coincides with the establishment
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of a waveguide behaviour for the samples when tested in the frequency domain,

as proposed in figure 6.43. The occurrence of this feature feature strengthens the

argument in favour of the proposed distinction between models of sample behaviour

and its relation with sample geometry, namely the geometric parameter H2/D.

Returning to the time domain results, in terms of travel time, a distinction was

established for sample slenderness ratio of around H/D = 1.2. A similar analysis in

terms of near-field effect and total dispersion provided a distinction in behaviour at

slenderness ratio of H/D = 0.9. These two values were highlighted in the relation

between reflected and direct travel path lengths given in figure 6.48(a). At the

proposed values of slenderness ratios, such a clear break feature is not noticeable

as in the case of the frequency domain results observed in figure 6.48(b). However,

some distinction can be made between the travel path lengths before and after the

range given by H/D ∈ [0.9 1.2].

6.6.4 Frequency Domain Vs Time Domain

Signal processing and interpretation methods using results in the time and frequency

domains both aimed at obtaining the correct wave travel time. In the time domain

the travel time results are measured directly between chosen features of the trans-

mitted and received electric signals. In the frequency domain, namely through the

use of the phase delay response curve gradient, the travel time results are obtained

in relative terms, i.e., the correlation between the phase difference of two or more

results at different frequencies are used to provide a travel time.

Apart from the waveguidance effect of model conversion at a reflecting bound-

ary, two well-known phenomena in wave propagation and body vibration theory

are also believed to be relevant; the phase shift and mode conversion that occurs

at the transmission of energy between two media interface, (Doyle, 1977). So at

each interface, the response might be different to the excitation in terms of their
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relative phases, and wave mode since a modal conversion can occur, where a lon-

gitudinal wave components might be transmitted as a flexural wave component for

example. When testing with bender elements, a minimum of four interfaces exists,

those between transmitted electric signal and transmitting bender element, between

transmitting bender element and sample, between sample and receiving bender ele-

ment, and finally between receiving bender element and received electric signal. At

each of these four interfaces the mentioned phenomena could be expect.

The monitoring of a transmitting bender element using a laser velocimeter,

(chapter 5), permitted the observation of a minimum time delay between trans-

mitted signal and actual bender element vibration of around 0.01ms, (figures 5.12

and 5.18). This time delay was attributed to actual travel time of the signal in the

electric circuit. It also permitted the observation of a phase shift which in prac-

tise translates into an apparent second time delay of around 0.03ms. The relative

importance of such direct and indirect time delays on the overall travel time deter-

mination depends on the flexural stiffness of the medium, as well as on the total

travel distance. One important characteristic of each possible time delay at each

interface is that they are cumulative.

For the example of the tested synthetic rubber with Vs ≈ 45m.s−1, and for a

sample height of 20mm, with the transducers embedded 3mm each in the sample and

a travel distance measured between their centres of dynamic pressure, the expected

shear wave travel time would be tt = (0.02 − 2 ∗ 0.00182)/45 = 0.36ms. The

mentioned apparent and real time delays of 0.01ms and 0.03ms at the transducer

interface can have an importance of 2.8% and 8.3% each, bringing the total time

delay up to 11%, just for one of the possible time delays present in a simple bender

element testing system. Assuming a similar value was measured at the receiving

transducer, the total time delays would be of 22%.

The contribution of the mentioned apparent delays between each interface can be
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significant and cannot be avoided when dealing with the results in the time domain.

The frequency domain results are obtained using relative readings. Possible time

delays at different signal frequencies are therefore not considered. Even if such

time delays exist and vary with signal frequency, when measuring the phase delay

between two similar frequencies, they cannot be expected to have much impact.

When measuring the phase delay between two responses with similar frequency,

both results are influenced by approximately the same time delay and so the relative

results should be, all other things being equal, independent from it.

The cumulative delays possible in each interface of the test system, and the

difficulty in quantifying them, justifies the use of frequency domain techniques to

measure the wave travel times.

6.6.5 Continuous Signal Vs Pulse Signal

Both continuous and pulse signals can be used to excite the transmitting bender

element. Pulse signals, either square or sinusoidal, have been used since the start

of bender element testing, inherited from another dynamic soil tests such as the

cross-borehole test, (Bodare and Massarsch, 1984; Shirley and Hampton, 1978).

Pulse signals are, by definition, short in duration. This carries two important

consequences. One, is that they are quite broadbanded, i.e, they have a large fre-

quency content, as can be confirmed in figure 5.13. It entails that the frequency with

which the signal is referred to is only partially related to it. It also means that there

might be some confusion between the frequency content one might wish to transmit

and the frequency content actually being transmitted. The second consequence has

to do with the mechanical response of Newtonian systems to short duration excita-

tions, considering their mass and therefore their inertia. This response is referred

to as a transient response, (Clough and Penzien, 1993). A transient response of a

system is dominated by the properties of the system itself where, for example, the
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frequency at which it vibrates is its own natural frequency rather than the excitation

frequency (figures 5.12 and 5.18). This is true for short signals such as pulse signals

with frequency content that is higher than the natural frequency of the mechanical

system excited. Thus, even if the reference frequency of a pulse signal is lower than

the natural frequency of a transducer, part of its broad frequency content can still

be capable of exciting it in a transient manner.

Bender elements are no exception, and respond in a transient manner, as other

simple mechanical systems, to short duration excitations. In fact, the problem is

not limited to the response of the transducers as the response of the sample to short

duration excitation is also a transient response and again, its own natural frequencies

dominate its behaviour, (section 6.5). When testing with pulse signals there is in

fact little or no control over the frequency of the response. The operator of a bender

element test might therefore be misguided into the actual degree of control he has

over the system’s response. Even though he controls the central frequency of the

transmitted pulse signals, he does not control the frequency of the response of the

transmitting transducer and that of the sample, their own mechanical properties do.

When testing with pulse signals, there is little control over the actual frequency

of the system’s response or its components. This means that there is also no control

over dispersion phenomena which are frequency-dependent. These dispersion phe-

nomena have already been discussed and were referred to as the near-field effect and

the waveguide dispersion. In cross-borehole testing, even when using square pulse

signals, which have even broader ranges of frequency content than sinusoidal pulse

signals, frequency dependent dispersion phenomena are most often not relevant. In

cross-borehole tests the receivers are placed at a considerable distance from each

other and also apart from the wave source. This means that the near-field effect

can be disregarded since the near-field wave components decay much faster with

distance from the wave source than the far-field wave components do. Furthermore,
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they also become less dispersive with distance from source. In terms of waveguide

dispersion, again the geometric nature of cross-borehole testing explains why it is

not significant. The geometric boundaries from which wave components could be

reflected from are quite distant from the direct wave travel path. Hence, possible

reflected wave components do not influence the received waves. This means that

the transmitted pulses can be considered to propagate as in an unbounded medium,

and consequently, with no waveguide dispersion.

Continuous signals such as harmonic continuous signals have relatively much

narrower banded frequency contents when compared with pulse signals. For exam-

ple, the frequency content of a sinusoidal pulse signal and a sinusoidal continuous

signal, both with a central frequency of 3.0kHz, are presented in figures 2.4 and 2.6

respectively.

Harmonic continuous signals, with a relatively long duration, are able to excite

a simple mechanical system into a steady state of vibration. In terms of wave

propagation, this steady state is known as a standing wave, (Achenbach, 1973).

The response, namely its amplitude and phase delay, varies with the amplitude and

the frequency of the excitation. Nevertheless, the frequency of the excitation and of

the response are the same. When using a harmonic continuous signal, it is possible

to control the frequency of the system’s response. This way it is possible to steer

this response clear of significant near-field effect and of the highly dispersive nature

of the flexural modes of wave propagation at low frequencies.

Continuous signals are not a panacea for testing with bender elements with

minimum dispersion. A system’s response can be driven to vibrate at a chosen

frequency, but the magnitude of such response might be too low to enable a successful

bender element analysis. Every mechanical system with mass is a frequency filter,

for which there is a maximum frequency after which no significant vibration can be

transmitted. Bender elements and soil samples are such systems. An analysis of the
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maximum frequency transmitted through a bender element / rubber sample system

was presented in section 6.4.1. It was possible to establish a maximum frequency

for each tested sample. It was also possible to observe how this maximum frequency

decreases with sample height.

An example of an unsuccessful test, using harmonic continuous signals, is pre-

sented in figure 6.42. The velocity result for sample S29 - h76×d38mm, obtained at

a low frequency range, is lower than the estimated equivalent shear wave velocity.

Precisely because signals with relatively low frequencies could be received, a highly

geometric dispersive behaviour could not be avoided resulting in the obtention of

an uncharacteristic velocity result. The observation of the impact of low frequency

results leads to the proposition of a frequency limit based in the flexural modal

behaviour of the sample and a function of the sample’s properties. This frequency

limit is expressed in equation 6.1.

6.6.6 Overview

The study of the parametric results permitted the conclusion that a universal for-

mula for testing with bender element is not possible. It has been demonstrated

that different types of signal, signal frequency, and sample geometry, all influence

the dynamic behaviour of the samples and consequently the obtained estimate wave

velocities.

In terms of sample geometry, it was possible to distinguish between three differ-

ent models of behaviour. Bulk samples, propagating waves as if in an unbounded

medium, slender samples behaving as waveguides, and samples with intermediate

geometries, behaving in a transient, more erratic, way.

For any given sample, dispersion can only be controlled with signal frequency,

both due to near-field effect and wave reflection. When using pulse signals, only a

transient response can be obtained from the tested system. This means that little
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control over the frequency of the response is available. For this reason, continuous

signals should be used, enabling a steady state response from the system.

Even when using continuous signals, there is no complete control over the dy-

namic response of the system. Since each component of system behaves as a fre-

quency filter, the geometry of the sample or of the transducers, as well as their elastic

properties, limit the range of frequencies at which an optimum response can be ob-

tained. It is therefore possible that a particular sample can only be tested with

minimum dispersion at a frequency for which its response is negligible. In other

words, there might be sample and transducer set-ups which cannot be successfully

tested.

The observations made so far concern samples made of a particular soft rub-

ber material, with a Young’s modulus in the range of E ≈ 10MPa, a density of

ρ = 1000m.s−3 and a Poisson’s ratio of ν ≈ 0.45. Soft soils are generally stiffer

E ≈ 100MPa, denser ρ ≈= 1700m.s−3 and have various Poisson’s coefficients,

(Atkinson, 2000). Nevertheless, the generic mechanic response, considering linear-

elastic behaviour, must be similar and only the observed values of geometry parame-

ters and signal frequency might vary. For example, a medium which is stiffer than

the used rubber will have, all other things being equal, resonances at higher frequen-

cies and also faster wave velocities, leading to the possibility of it being capable of

propagating signals with higher frequencies. The main goal of the parametric study

was to present a set of theoretical principles which can be considered to guide the

behaviour of a bender element test system. Other goals were also the demonstration

of the importance of moving past the initial behaviour model of unbounded wave

propagation into a more realistic, and not necessarily more complicated models,

with solid theoretical background that enable the interpretation of results taking

into consideration a number of factors such as the sample geometry. This goal is

believed to have been accomplished in a satisfactorily manner.
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Chapter 7

Numerical Analysis

This chapter is concerned with the numerical analysis of a finite difference dynamic

model of a soil sample and bender element transducers system. Laboratory testing

results have confirmed the complex modal dynamic behaviour of soil samples and

bender element transducers alike. Some indications have already been obtained that

such behaviours can be explained by well-known dynamic theories of wave propaga-

tion, body vibration, and corresponding analytical models. Nevertheless, there are

no closed-form solutions for this specific dynamic problem, (Hardy, 2003). There-

fore, a numerical analysis becomes a suitable tool to pursue a better understanding

of general and specific phenomena related with the use of bender elements.

7.1 Literature Review

Numerical analysis related to bender element testing has been performed for different

aspects of this particular mechanical process by a number of authors. In table 7.1, a

summary of some of these authors and respective computer programs used in their

studies is presented.
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Author Type Model Program

Jovičić et al. (1996) finite elements plane shear - 2D SOLVIA 901

Arulnathan et al. (1998) finite elements plane shear - 2D GeoFEAP2

Hardy (2003) finite elements plane shear - 2D ICFEP3

Hardy (2003) finite elements Fourier series - 3D4 ICFEP

Arroyo et al. (2002) finite differences plane shear- 3D FLAC3D5

Table 7.1: Summary of numerical computer programs used in the analysis of

bender element problems.

Jovičić et al. (1996) used a finite element program to model a two-dimensional,

plane strain, normally consolidated Speswhite kaolin soil sample as an isotropic,

elastic and drained medium. The medium’s properties were a Young’s modulus of

E = 118MPa and a density of ρ = 2000kg.m−3. A confining stress of 200kPa was

also applied. This study focused on the wave propagation caused by forcing a soil

node to oscillate transversely in a single cycle sinusoidal pulse. The time histories

of the displacements of the source point and of a second point, representing the

receiving bender element, were then compared to obtain a wave travel time. Two

pulse signals with different central frequencies were used. These frequencies were

chosen so that a particular dimensionless relation between shear wave velocity and

wave length of Rd = 1.1 and Rd = 8.1 could be obtained, where Rd is given as:

Rd =
td× f

Vs

(7.1)

and where td is the travel distance, f is the frequency and Vs is the shear wave

velocity.

The obtained results were compared with actual test results of a Speswhite kaolin

1As seen in AB (2005).
2Geotechnical Finite Element Analysis Program, (Bray et al., 1995).
3Imperial College Finite Element Program, (Potts, 2005).
4Not a full 3D analysis but an alternative for fewer memory storage and processing time needs.
5Fast Lagrangian Analysis of Continua in Three-Dimensions, (Itasca, 2002).
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soil sample. The numerical results appear to agree well with the pre-determined

shear wave velocity. However, some complex response components attributed to the

near-field effect were identified. It was also possible to observe from the numerical

results that the frequency of the received signals might not have the same frequency

as the transmitted signal. Similar frequency disagreements have been also observed

for practical tests, as presented in section 6.5.4 for example.

Arulnathan et al. (1998) prepared a finite element model with the objective of

evaluating the sources of travel time determination errors, namely the interference

of the end plates, the transfer function between electric signal and the actual me-

chanical oscillations and near-field effect. The error associated with the assumption

of one-dimensional wave propagation is also mentioned. A two-dimensional finite

element model of a soil sample with plane strain and with linear elasticity was used.

The transmitting and receiving bender element pair were modelled together with

the soil sample. The transmitted signals were sinusoidal pulses. A parametric study

was conducted varying the input pulse signal central frequency, sample size, mesh

scale, bender element length, soil stiffness and Poisson’s ratio.

The results presented by Arulnathan et al. (1998) agree with some observations

already made in chapters 5 and 6. For example, a phase lag between the excitation

load and the actual tip displacement was observed, as was also seen in section 5.5.

Different methods of evaluating the wave travel time were used, cross-correlation

and direct time reading using different peak features of the transmitted and received

signals. The numerical results from these different methods do not match and neither

do they precisely match the actual predetermined equivalent shear wave velocity. It

is also interesting to note how, using direct time readings, different travel times

were estimated using different curve features. The disparity between these results

increases for lower input signal frequencies. Similar results, for practical tests, were

obtained in section 6.5.3.
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Hardy (2003) presented a thorough numerical analysis of the bender element

test, also presented in Hardy et al. (2002) where three different types of models

were used. The first two models were two-dimensional and considered a plane strain

wave propagation. The first model only considered the soil medium, which was in

fact forced to behave as if though it were one-dimensional. This was achieved by

forcing the lateral surfaces to have no longitudinal movement hence stopping any

wave reflected components from reaching the receiver. If no wave reflection exists,

then in principle no waveguide dispersion can occur. The second model considered

both the soil sample and a pair of bender elements. The third model, also considering

the soil and bender elements, was calculated using a Fourier series, which together

with some considerations of symmetry, enabled it to emulate a three-dimensional

behaviour. The time step, as well as the mesh scale, were tested for various values

in order to optimise the quality of the results.

(a) 1st model - 1D unbounded (b) 2st model - 2D bounded

Figure 7.1: time history of the received signals for the 1D unbounded and the 2D

bounded numerical modes, extracted from Hardy (2003).

The first model, with an example result seen in figure 7.1(a), behaving as a

one-dimensional model, is capable of propagating a shear wave with little or no

distortion, depending on the time step used. For time steps small enough, the

received signal is an exact scaled copy of the transmitted signal. This test is useful,

since it provides a benchmark to determine the necessary boundary conditions that
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need to exist so that an undistorted wave propagation can occur, and consequently

for which unbounded wave propagation assumptions can be supported.

The second model, with an example result seen in figure 7.1(b), appears to pro-

duce more realistic results. The time history of the received signals, obtained using

different input signal frequencies, indicates no specific feature, which can be reliably

and consistently associated with the actual shear wave velocity. Nevertheless, the

first inflexion, for the particular sample elastic properties and geometry used, does

seem to be the feature from the received curve which provided the most approxi-

mate results in terms of expected wave velocity. It was also observed that signs of

dispersion affecting the reading of the first arrival diminish with increasing input

signal frequency. Issues of dispersion were only associated with near-field effects

and no mention to waveguide dispersion, or to sample modal behaviour was made.

This significantly limits the mentioned analysis. Hardy (2003) does not mention

the apparent constant frequency of the received signals for higher frequency input

signals. If, as observed, the received signals have a constant independent frequency,

then any possible relation between input signal frequency and observed dispersion

is limited, since the actual received signal frequency is where the dispersion should

be analysed.

The second numerical model used by Hardy (2003) was also excited using a

continuous signal in order to perform a phase-sensitive detection method. It was

thus possible to avoid transient states of vibration. However, the results from this

model were not so satisfactory. A number of frequencies were determined for which

the transmitted and received signals should have been in-phase, but that was not

the case. This could be explained, for example, by an incorrect assumption of travel

distance. Hardy (2003) assumed the travel distance to be that between transducers

tip-to-tip. A challenge to this assumption can be found in section 6.6.1.

The third model, approximating a three-dimensional analysis, leads to results
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similar than the results from the plain two-dimensional second model. This model

produces a more complex received signal, for which the determination of first arrival

is less objective. It is also interesting to notice that, in this case, the increasing of

input signal frequency does not eliminate the signs of dispersion. On the contrary, it

increases them. Again, this might indicate that more than near-field effect dispersion

might be present.

The comparison between the results of the first and second models, as given

by Hardy (2003), and partially represented in figure 7.1, provides a useful observa-

tion. The first model, for which no wave components can be reflected at the lateral

boundaries, shows received signal with very little signs of distortion and very little

signs of dispersion, for small enough time steps. An analytical calculation following

the steps given in section 3.6 and the material properties given in Hardy (2003),

estimated the near-field wave components to have a magnitude of around 4% of

the far-field wave components. This estimate agrees with the results presented by

Hardy (2003). For the second model, the same material properties were used, with

no restrictions applied to the lateral boundaries of the sample. In this case, the

received signal appears to be more realistic, showing clear signs of distortion and of

dispersion. Considering the travel distance to be measured between bender element

tips, the theoretical near-field effect for the second model would still have around

4% of the far-field wave magnitude.

The main differences between the two models are the boundary conditions at

the lateral surface and the inclusion of bender elements on the second model. If the

inclusion of the bender elements, modelled as perfectly coupled to the soil sample,

is considered not to have a significant effect in the way waves propagate along the

sample, then the great increase in distortion, observed in the second model, can

surely only be attributed to the changes in the lateral surface boundary conditions.

Since the near-field effect is theoretically predicted to be similar in both models,
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the observed increase in dispersion cannot be attributed exclusively to the near-field

effect. This leaves the wave reflection phenomena, also referred in the present study

as waveguide dispersion, as another significant source of dispersion.

Arroyo et al. (2002) created a true three-dimensional numerical model using a

less conventional finite difference model. According to the authors, finite difference

models are numerically less expensive for small wavelengths and might introduce less

numerical dispersion, due to the employed discretization algorithms, (Zienkiewicz et

al., 2000). A parametric study was performed where the sample diameter and height

were varied in order to understand their influence on the overall behaviour. Arroyo

et al. (2002) have only modelled the transmitting bender element having used the

oscillation of a node at the other end of the sample to evaluate the received signal.

The influence of the lateral boundaries was also studied by making them absorbing

or non-absorbing, affecting their capacity for wave reflection.

Arroyo et al. (2002) obtained a received signal with no clear first arrival, and

no feature that could be associated with a theoretical first arrival, as Jovičić et al.

(1996), Arulnathan et al. (1998) and Hardy (2003) had. In the case of Arroyo et al.

(2002), the first inflexion and the theoretical first arrival are the least related of the

presented cases.

For all the results produced by the mentioned authors, the time history of the

received signals are significantly different from the input signals. The fact that four

different authors using different software packages and different modelling techniques

produced received signals which were distorted in relation to the input signals is a

sign that the used numerical models are capable of simulating at least some of the

mechanical phenomena which leads to such distortion. The observed distortions are

common in laboratory practical results and make a strong case against the possibility

of undistorted wave propagation. It means that boundary condition assumptions

related with undistorted wave propagation are not reliable, such as the assumption
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of unbounded wave propagation. The fact that, in general, these authors were also

not able to match the theoretical first arrival of a propagating shear wave with

any particular feature of the received signal time history is also a strong case for

the inherent difficulties of avoiding wave dispersion, casting more doubts about the

reliability of travel time determination using the time history of the transmitted and

received signals. Arulnathan et al. (1998) goes further in demonstrating the phase

lag between the excitation load and oscillation movement of the transmitting bender

element, further strengthening the case of unreliability of direct time readings.

7.2 Introduction to FLAC3D

The software package used for the present work was FLAC3D6. This programme

was used because it offered the possibility of true three-dimensions modelling, with

only reasonable processing costs. Two-dimensional modelling is believed to be in-

sufficient to study the influence of the sample geometry over its dynamic behaviour

when excited by a bender element. Even though the tested samples were often

cylindrical, the transversal motion caused by the transmitting bender element was

anti-symmetric, causing equivalent positive and negative strains on each side of the

transducer. Moreover, different wave components propagate in different directions

and are reflected differently once they reach the cylindrical or other shape of the

sample lateral surface. Such a complex wave propagation can only be modelled if

all aspects of the sample geometry are considered.

FLAC3D uses an explicit finite difference method of modelling the behaviour

of geomechanical structures. It is capable of modelling linear and non-linear, elas-

tic and plastic behaviour. In three-dimensional models, the constitutive elements

forming the grid assume various semi-regular polyhedron shapes, such as bricks and

6Thanks to the much appreciated collaboration of Prof. Luis Medina at Universidade Da
Coruña.
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wedges. Besides static analysis, FLAC is capable of linear and non-liner dynamic

analysis, creep analysis, thermal analysis and fluid flow analysis. Only linear elastic

dynamic analysis is used for the present study.

By using a finite difference method of modelling, FLAC does not need to build

and store stiffness matrices. For this reason it is able of using a lower processing ca-

pacity than standard finite element programs to run similar models or more complex

models using the same processing capacity. The processing capacity limitations men-

tioned by Hardy (2003) and the cause for not running full three-dimensional models

are therefore possible to overcome.

7.2.1 Damping

While using analytical models to study the dynamic behaviour of bender element

transducers and soil-like samples, a simple form of viscous damping was used. This

form of damping, presented in section 3.9, is ideal for use in analytical models, due

to its simplicity compared to more realistic hysteretic forms of damping. Viscous

damping is a simpler concept but has its limitations, it is frequency-dependent,

which is not a trait of real mechanical damping.

FLAC permits the use of two types of hysteretic damping. One such form of

damping is the Rayleigh damping, often used in time-domain programs. Rayleigh

damping is frequency-independent only within a particular range of frequencies,

being frequency-dependent outside that range, (Bathe and Wilson, 1976). It is

independently proportional to the mass and to the stiffness of the system, and it is

therefore necessary to define it by determining two respective damping constants.

The other form of damping offered by FLAC is called local damping. This form

of damping is, for simple cases, frequency independent. It is modelled by adding

and removing mass to oscillating elements, proportional to the mass and acceleration

of that element. The addition and subtraction of mass is made so that there is an
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overall conservation of mass in the system. This model of damping is not fully tested

and must be used with some care for complex systems with multi-modal behaviour,

(Itasca, 2002).

As in Arroyo et al. (2002), local damping is used. This way, since the model

is relatively simple, non-frequency dependence can be assumed for the range of

excited frequencies used. Local damping only needs one dimensionless parameter,

unlike Rayleigh damping, which needs two. This makes its estimation more intuitive.

Also, local damping is less expensive in terms of computational processing capacity.

7.2.2 Grid Size and Time Step

The wave frequencies that can be correctly propagated along the model are depen-

dent of the grid dimensions, namely its maximum dimensions. In Itasca (2002), the

following limit is proposed,

∆l ≤ λ

10
(7.2)

where ∆l is the maximum grid element dimension and λ is the wavelength.

The time step used in the calculations does not need to be determined by the

user, it is automatically calculated by FLAC. Depending on the use of local or

Rayleigh damping, the dynamic time step takes different values, for numerical sta-

bility reasons. The time step expression when using local damping is given as:

∆t = min

{

V

cpAmax

}

1

2
(7.3)

where V is the model sub-zone volume, Amax is the maximum face area associated

with the respective model sub-zone and cp is the longitudinal wave velocity. The

minimum function includes all of the model’s sub-zones.
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7.3 Simple Parametric Study

Two separate numerical studies were conducted using FLAC3D. In this section is

presented the study of a simple parametric study based in the work presented by

Arroyo et al. (2002) and further developed in Arroyo et al. (2006). The numerical

model described as model A was used to prepare a second model with the same

properties but with a larger diameter. The main objective is to be able to com-

pare the results from the two models and to evaluate the influence of the sample’s

diameter on the wave propagation phenomenon.

(a) Model A - D50 × H100 (b) Model B - D75 × H100

Figure 7.2: representation of finite difference grids of models A and B.

7.3.1 Model Description

Two models of a cylindrical soil sample with diameters of 50mm and 75mm were

used with a height of 100mm. These models include a transmitting bender element
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at the bottom end which is 2mm thick, 10mm high and 10mm wide and is completely

embedded in the sample. Figure 7.2 shows the graphical representation of grids of

the two distinct models.

The soil sample and bender element were modelled as two different media. The

properties of the soil medium are given in table 7.2. The elastic properties of the

bender element were modelled as being ten times higher than those of the soil. This

was to ensure that the transducer is significantly stiffer than the soil. In this way,

the bender element transducers have a Young’s modulus of around E = 630MPa.

This value is nearly four times smaller than the stiffness value estimated in section

5.6. The reason for this discrepancy is that the numerical study was performed

before the monitoring study. The remaining properties of the bender element are

the same as those of the soil, i.e., the same Poisson’s ratio and density.

Model A - D50 ×H100mm / Model B - D75 ×H100mm

Property Symbol Units Value

Bulk Modulus k Pa 26.4 × 106

Shear Modulus G Pa 28.6 × 106

Poisson’s ratio ν —– 0.10

Density ρ kg.m−3 2000

Compression Wave Velocity Vp m.s−1 180

Shear Wave Velocity Vs m.s−1 120

Table 7.2: Properties of the soil medium for numerical models A and B, in

FLAC3D.

The cylindrical models are in fact modelled as half cylinders. The vertical plane

that crosses the vertical axis of the sample and the bender element width is capable

of providing a symmetry plane, in terms of geometry and motion. A horizontal

restraint is applied to the displacement of the nodes along this symmetry plane.
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This way only half the processing capacity is needed. The necessity of full three-

dimensional models to correctly simulate the complex behaviour of wave propagation

generated by bender element has been stated. Precisely due to the non-symmetric

wave components radiation from the transducer, as well as non-symmetric wave

reflection from the cylindrical lateral surface of the sample, it might now seem

incoherent to use symmetry to simplify the model. Take the pressure distribution

of a circular section presented in figure 7.3, obtained for the displacement of a node

in its centre, estimated from a similar pressure distribution presented by McSkimin

(1956). It can be observed that there is a plane of symmetry along the vertical axis

that crosses the circle centre. This observation provides the premisses which allow

the modelling of just half a cylinder and still assume the results to be similar to

those of a full cylinder.

Figure 7.3: pressure distribution on a circular section, subjected to the displace-

ment of a node in its centre.

The boundary conditions of both models are similar. They are horizontally fixed

along the vertical face of symmetry. Their bottom end face is vertically fixed but

left with free horizontal movement. Their top end surface is absorbent, so as not to

introduce any reflected wave components back into the system and hence avoiding
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further complexity of behaviour. The models are also confined by an isotropic

pressure of 100kPa.

The excitation is applied in the form of a forced motion. The bender element

is forced to move by application of a displacement history, parabolically distributed

along the transducer’s height, so as to simulate it deformation when bending as if

excited by an electric signal with its based fixed. The displacement history consists

of a single cycle of a sinusoidal function with a frequency of 4.0kHz, null phase delay

and an amplitude reached by the top nodes of 0.1mm, represented by:

u(t) =

{

0.1 sin(2π4000t+ 0)

0

(mm)
for 0 ≤ t ≤ 1/4000

for t > 1/4000

(s)

where time, t, is in seconds and the displacement, u(t), is in millimetres.

Besides modelling the two described samples with similar properties and different

diameters, another study case was also tested where the samples have absorbing

lateral surface. These tests enable the simulation of almost no wave components

being reflected from these boundaries back into the sample. In this way it is possible

to estimate the behaviour of the model as if the sample was unbounded in terms

of wave propagation, such as Blewett et al. (2000) attempted in actual laboratory

testing. The absorbing boundary condition is a particular feature of FLAC, it does

not provide an 100% effective absorbance, losing eficiency for wave components

reflecting at lower angles from the surface.

7.3.2 Results

Figure 7.4 displays the time histories of the horizontal displacements of the node at

the top of the sample symmetry axis for models A and B with reflecting boundaries.

The equivalent time response for model B with absorbing lateral surface is also
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presented. For reference purposes, the input signal as well as the equivalent travel

time correspond to a shear wave velocity of Vs = 120m.s−1.

0  .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.8
time − ms

m
ag
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input − 4.0kHz

model A − D = 50mm

model B − D = 75mm

model B (absorbing)

V
s
=120m.s−1

Figure 7.4: time history of received pulse signals at top of the sample, for model

A and model B.

The response of model A appears to be realistic, similar to a characteristic re-

sponse of a bender element test. This result is encouraging in terms of validity of the

numerical analysis carried out. It can be observed that the first arrival occurs sooner

than the shear wave velocity would indicate, which is also a not very uncommon

result. The response in model B is apparently similar to that of model A except for

having a slightly lower magnitude and of having its main peak feature arriving at a

later time. The very first arrival in model B also does not occur at the expected time

of 0.75ms. The response of model B with absorbing lateral surfaces is the one with

apparent less distortion. It lasts only one and a half cycles and has a first arrival

nearest to the expected arrival time. The response for the absorbing model B is the

most similar to the response obtained by Hardy (2003) for his unbounded model.

This partially confirms the capacity of using absorbing surfaces to model unbounded

conditions. It also strengthens the perception of which boundary conditions need to
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be present for unbounded wave propagation to occur.

The comparison of the time response results for models A, B and absorbing model

B, (figure 7.4), provides an analysis of the responses for samples with decreasing

influence from laterally reflected wave components and consequent lower waveguide

dispersion. The other studied cause of dispersion, the near-field effect, does not vary

for these three cases since the signal frequency and the travel distance is the same

for all. For these reasons, any changes in the received signal, namely changes which

indicate dispersion, can be attributed exclusively to waveguide dispersion, (section

3.2).

A clear indication of the influence of the reflected wave components in the re-

ceived signal can be seen to develop with sample geometry. For a supposedly un-

bounded sample, found in the absorbing model B, the received signal is the least

distorted, with the latest first arrival occurring nearer to the expected shear wave

arrival. As the possibility of wave reflection increases, i.e., with decreasing sample

diameter, the received signal indicates larger distortion. The number of oscillation

cycles can be seen to increase, the first arrival occurs earlier, and the difference

between first arrival and expected shear wave first arrival increases. These obser-

vations confirm the observation already made about the significant influence the

sample geometry has on the propagation of bender element generated waves, (chap-

ter 6).

Figure 7.5 presents an attempt of wave decomposition. Assuming that a simple

decomposition case of the received signal between direct and reflected wave com-

ponents is possible. The response of the reflecting model A is the total response,

including direct and reflected wave components. The response of absorbing model

A is produced exclusively by the direct wave components, since no reflection could

occur at the lateral surfaces. The difference between the reflecting and absorb-

ing responses should produce the response caused exclusively by the reflected wave
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components.
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Figure 7.5: reflected wave signal obtained as the difference between the non-

absorbing signal and the absorbing signal, for model A.

The comparison between the responses of the reflecting or non-absorbing model

A and the absorbing modal A- h100 × d50 indicates a larger complexity of the

non-absorbing response. The non-absorbing model A also produces a response with

an earlier first arrival. The exclusively reflected wave response is very similar to

the non-absorbent response, (figure 7.5). This indicates that the non-absorbent

received signal is dominated by the reflected wave components. The importance of

the reflected wave components, which are not considered when assuming unbounded

wave propagation, is therefore further acknowledged by these numerical results.

A similar analysis is made for model B- h100 × d75 and presented in figure 7.6.

This time, by comparing a model with a larger diameter, slightly smaller reflected

wave components influence might be expected, since the travel path for these is now

slightly longer.

Comparing the results of figure 7.6 for model B - h100× d75 with the results in

figure 7.5 for model A - h100 × d38, it is possible to observe discrepencies between
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Figure 7.6: reflected wave signal obtained as the difference between the non-

absorbing signal and the absorbing signal, for model B.

the subtracted results. In the case of model B, the subtraction produces a reflected

wave signal less similar to the original non-absorbing signal. This indicates that the

reflected wave components are now less significant than the direct wave components

given by the absorbing model. It is also interesting to note how influential the

dispersion caused by waves reflection is, and in the present case, how significant it

is when compared with other sources of dispersion such as the near-field effect.

Both in the case of model A and model B, the received signal is mainly composed

of reflected wave components, more so for model A with a slenderness ratio ofH/D =

1.0. This observation indicates that, for the present simulations, with the present

material properties, any wave velocity estimation using unbounded wave propagation

assumptions is erroneous, leading to more or less significant underestimations of

shear wave travel time and consequent overestimations of shear wave velocity and

small-strain shear stiffness. Take for example the use of the first bump as the first

arrival, given by feature E in figure 2.2, the concerning results are presented in table

7.3.
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Model Travel Time Vs G0 Error

A&B 0.75ms 120.0m.s−1 28.8MPa 0.0%

A 0.66ms 136.4m.s−1 37.2MPa 29.2%

B 0.73ms 123.3m.s−1 30.4MPa 5.6%

Table 7.3: Small-strain shear stiffness G0 estimation error using first arrival for

numerical models A and B.

In model A, the estimate of the material’s small-strain shear stiffness using the

wave’s first arrival in the time domain produces an error of 29%, which is quite

significant. For model B, the reflected wave compoenents are less significant and

consequently the error in stiffness estimation, 6%, is lower.

When using a pair of bender elements to study the dynamic behaviour of a

sample of any medium, an important limitation is present. Such a test set-up can

only be used to monitor the behaviour of a single point of the studied sample, which

in turn has to be at or near the surface. There are rare exceptions of using more

than one receiver, (Belloti et al., 1996; Lee and Santamarina, 2005). The use of

numerical models permits to vanquish this limitation of bender element use. Using

numerical models, it is possible to monitor the behaviour of any node of the sample.

The models A and B were calculated registering the motion history of around 40

nodes along the samples main axis. The presentation of results for all these nodes

in a combined fashion allows not only the study of each node, but also the study of

the way in which the transmitted wave propagates.

Figure 7.7 shows a surface formed by the motion time history of 40 nodes along

the sample’s main central axis. These nodes are equidistantly separated 2mm from

each other between the sample heights of 20mm and 100mm. The motion of the

transmitting bender element tip at a height of H = 10mm, and of the nodes at

H = 20mm, H = 50mm and H = 100mm are highlighted to assist the inter-

pretation of the surface. The theoretical first arrival for a shear wave velocity of
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Vs = 120m.s−1 is marked in the corresponding highlighted response time history.

The travel time is obtained considering a travel distance measured from the tip of

the transducer. Figures 7.8 and 7.9 show similar surfaces for model B with non-

absorbent and absorbing lateral surface respectively. The motion time histories are

not presented with their actual relative magnitude. Since they decrease exponen-

tially with travel distance, any direct comparison is difficult. Their magnitudes were

therefore presented as normalised to each other.

A first comparison between the surfaces in figures 7.7, 7.8 and 7.9 shows a de-

creasing complexity in terms of wave propagation. As the lateral surfaces are moved

further away from the studied wave travel path, the less interference can be observed,

and consequently the simpler the wave propagation appears to become. This ob-

servation serves to reinforce the relation between the presence of lateral boundaries

and the complexity of wave propagation.

Take the case of model A - h100 × d50 with non-absorbing lateral surfaces,

presented in figure 7.7. Of the three presented cases this is the one with the most

complex surface. Notice how at H = 10mm, H = 20mm and H = 50mm the

theoretical first arrival coincides with the same feature of node motion, i.e., assumed

to coincide with the apparent wave front. For the case of H = 100mm this is no

longer the case, the first arrival occurs significantly later than the arrival of the wave

front. Notice also how the mentioned wave front appears to propagate in a linear

fashion up to a height of approximately H ≈ 60mm, after which it is deviated. The

apparent wave front carries on propagating up to the sample maximum height also

in a linear fashion but with a different inclination in the horizontal plane. This

different inclination translates into a different propagating velocity.

The assumption that up toH ≈ 60mm the wave-front was formed by undisturbed

wave components, travelling directly from the source, was confirmed by the good cor-

relation between this wave-front travel time and the theoretical wave equivalent first
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arrivals. Is is also possible to assume that at the mentioned height of H ≈ 60mm re-

flected wave components, faster but with a longer travel path, reach the wave-front.

From then on, the wave-front is defined by the reflected wave components, which in-

troduce faster than expected first arrivals. The propagating wave-fronts inclinations

or velocities, in figure 7.7, for direct and reflected wave components, are not parallel.

This implies that it is not possible to assume any particular feature on the received

pulse signal, H = 100mm, to be related with the direct wave propagation. Similar

results for direct and reflected wave propagation and consequent sample behaviour

have already been clearly observed and explored in sections 6.4 and 6.5.

For example in section 6.4, the parametric study in the frequency domain of

sample geometry provided a clear distinction in behaviour for samples with differ-

ent geometries, (figure 6.43). Results for pulse signals and time domain velocity

estimates also presented differentiated behaviours for different sample geometries.

In figure 6.44, a clear phenomenon could be observed, where distinct wave velocities

were obtained for samples with slenderness ratios lower and higher thanH/D = 1.25.

The results for model B with absorbing boundaries, (figure 7.9), shows a very

stable wave propagation. Of the three presented cases, it is the one where the

original transmitted pulse signal appears to be less distorted as it propagates along

the sample. Since for this case little or no wave reflected components are expected

to interfere with the transmitted wave propagation, it is also an ideal case to observe

any possible near-field effect, which should be the only source of dispersion. The

near-field wave components would be expected to travel at higher, non-constant,

decreasing velocities than the far-field components. They would also be expected to

attenuate significantly faster than the far-field components, (figures 3.19 and 3.20).

No such feature is apparent in figure 7.9. This raises the possibility of FLAC3D

dynamic model not being capable of modelling near-field phenomena.

Assume, as for the results in figure 7.6, that only non-reflected wave components
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propagate along the sample’s main axis for the absorbing model A and model B.

Then by subtracting their motion time histories to those of the non-absorbing mod-

els, the motion time histories of the reflected wave components, exclusively, can be

obtained. The surfaces constructed by plotting these results for the nodes along the

main sample axis are presented in figures 7.10 and 7.11 for model A and model B

respectively.

When comparing the reflected wave results of model A, in figure 7.10, with the

equivalent non-absorbent results, in figure 7.7, it is possible to observe how, at lower

sample height, the reflected wave components are detected much later. For a sample

height of 20mm, the normal non-absorbent wave is first detected at around 0.1ms.

The reflected wave is only detected at around 0.25ms. This means the reflected wave

components arrive later than the direct wave components, at the sample height of

h= 20mm, by a factor of three. Having already speculated from the results in figure

7.7, it can now be confirmed that the wave front of the reflected wave components

intersects the theoretical first arrival at a sample height of around 60mm. The

theoretical first arrival coincides with different features from the reflected wave at

different sample heights, with no apparent relation with any of them.

Comparing the results from model A and model B, in figures 7.10 and 7.11

respectively, the reflected wave components are detected significantly later in the

case of model B. At a sample height of 20mm, the first arrival for model A occurs

at around 0.25ms and for model B it occurs at around 0.40ms. This strengthens

the assumptions that the presented surfaces actually correspond to reflected wave

components. Since model B has a larger diameter than model A, 75 > 50mm,

the reflected travel path is longer, explaining the difference in reflected wave first

detection.

For model A the reflected wave-front intersects the theoretical first arrival at a

sample height of around H = 60mm, and at around H = 87mm for sample B, (fig-
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ures 7.10 and 7.11). These sample heights, when divided by the respective sample

diameters, produce slenderness ratios of 1.20 and 1.16 respectively. Referring back

to the parametric study in chapter 6, more specifically to the estimated wave velocity

results for pulse signals presented in figure 6.44 and the near-field relative disper-

sion in figure 6.46, these results also presented significantly different behaviour for

samples with slenderness ratios lower and higher than 1.25 and 0.9 approximately.

Distinguishable behaviours with clear break points at not very different slenderness

ratios have been established for non-related laboratory and numerical tests. This

is an extra confirmation of the importance of sample geometry in wave propaga-

tion. Namely, how distinct behaviours for lower or higher slenderness ratios can be

obtained, in terms of determining the first arrival of the received signal.

The inclination of the two distinct wave components, direct and reflected, as

they propagate along the sample, indicates different propagation velocities, for the

direct wave propagation, a wave velocity of around V = 120m.s−1 was obtained,

compatible with the theoretical shear wave velocity. The reflected wave components

propagate at a wave velocity of around V = 230m.s−1. This value is in fact higher

than compression wave velocity of Vp = 180m.s−1. This indicated that these reflected

wave components are clear signs of waveguidance dispersion, which explains such

high velocities, (figure 3.16). Actual wave velocities with relative high velocities

were also observed in section 6.5.
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Figure 7.7: Wave propagation along the sample’s main axis for model A - h100 × d50mm, with non-absorbing lateral surface.
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Figure 7.8: Wave propagation along the sample’s main axis for model B - h100 × d75mm, with non-absorbent lateral surface.
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Figure 7.9: Wave propagation along the sample’s main axis for model B - h100 × d75mm, with absorbing lateral surface.
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Figure 7.10: Reflected wave components propagating along the sample’s main axis for model A - h100 × d50mm.
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Figure 7.11: Reflected wave components propagating along the sample’s main axis for model B - h100 × d75mm.
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7.4 Second Parametric Study

A second parametric study was conducted using a new set of FLAC3D models.

These were prepared from scratch with the objective of refining some aspects of the

previous models, such as the inclusion of a receiving transducer and the use of a

load, instead of a forced displacement, to excite the transmitting bender element.

Finally, the model properties were calibrated with the results of an actual tri-axial

bender element soil test.

Time constraints to the use of the software license meant that the models could

not be perfected in order to obtain the same standards of results quality obtained

in the previous numerical study. The results were affected by some numerical errors

which, although not disabling a comparative analysis, do remove some degree of

confidence.

Figure 7.12: representation of generic finite difference model, including transmit-

ting and receiving bender elements.
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7.4.1 Model Description

A new set of 8 FLAC3D models was prepared to further study the influence of sample

geometry in wave propagation. These models include the transmitting and receiving

bender element transducers and the soil sample. The bender element transducers

still have 10mm width and 10mm length but only have 1mm thickness. The bender

element pair is embedded in the soil by 2mm, and the opposed end is fixed, making

them behave as cantilevers.

The soil properties were modelled so as to emulate a residual granite soil, similar

to the one described in Ferreira et al. (2004) and Greening et al. (2003). The main

objective was to obtain a shear wave velocity estimated at Vs = 190m.s−1, for a

soil with a density of ρ = 1900kg.m−3 and a characteristic Poisson’s coefficient of

ν = 0.35. These and other properties of the soil are summarised in table 7.4.

Property Symbol Units Value

Bulk Modulus K Pa 205.8 × 106

Shear Modulus G Pa 68.6 × 106

Poisson’s ratio ν —– 0.35

Density ρ kg.m−3 1900

Compression Wave Velocity Vp m.s−1 396

Shear Wave Velocity Vs m.s−1 190

Table 7.4: Properties of the soil medium for second parametric study numerical

models.

The sample’s height and diameter were varied, much in the same way as was done

in chapter 6, and tested separately. Again, the understanding of their influence over

the perceived dynamic behaviour of the sample is the main objective. The values for

the different heights and diameters, as well as for the resulting slenderness ratios,

are presented in table 7.5.
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Model Height Diameter Slenderness

H(mm) D(mm) H/D(mm)

M81 140 70 2.00

M82 140 60 2.33

M83 140 50 2.80

M84 140 40 3.50

M85 110 70 1.57

M86 90 70 1.29

M87 70 70 1.00

M88 50 70 0.71

Table 7.5: Geometry of FLAC3D models used in second parametric study.

The properties of the bender element transducer, namely its elastic parameters,

are again modelled as being ten times higher than those of the soil. At the time

these numerical simulations were performed, the monitoring of actual transducer

properties, as presented in section 5.6, had not been performed, and this is why

more approximated values were not used. The same procedure of multiplying the

soil’s stiffness parameters by ten, as done by Arroyo et al. (2002), and in the previous

section, was again chosen to simulate transducers significantly stiffer than the soil

they are testing.

The transmitting bender element is excited by applying a binary force at the top

and bottom end of the transducer. This binary force follows a sinusoidal function

during a single cycle, much like in section 7.3.1, with a central frequency of 2.0kHz

and with a maximum amplitude of 2.5 × 10−4N. The force binary amplitude was

chosen in order to obtain a maximum displacement of the bender element tip of

around 1.0µm, which is a relatively small value. The maximum displacement ob-

served for an embedded transducer of similar dimensions was of 10.0µm, see results
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in section 5.6.3.

7.4.2 Results

The travel time estimates in the time domain were made using the first maximum

and minimum values of the transmitted and received signals, as done in section 6.5,

and described in figure 2.2 as curve features B to E and C to G. The obtained travel

times, one for each pair of features, were averaged to produce a single travel time.

In the frequency domain, a transfer function was obtained relating the transmit-

ted and received signals. From its phase delay component, the gradient for a range

of frequencies near the input signal central frequency of 2.0kHz was used to estimate

the wave travel time. The time and frequency domain results are presented next in

figure 7.13.
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Figure 7.13: wave velocity for numerical parametric simulation, obtained through

results in the time and frequency domains.

The results in figure 7.13 appear to present some relevant trends. It can be

observed that the time domain velocities decrease with the sample slenderness ratio,

approaching the theoretical value of Vs for larger ratios. The frequency domain
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velocities, except for the value corresponding to the lowest slenderness ratio, increase

significantly, from lower than theoretical velocity values up to the theoretical shear

wave velocity. It is also relevant to point how the different results appear to agree

with each other and with the theoretical velocity value, for slenderness ratios higher

than 2.0.

7.5 Discussion

In laboratory tests, innumerable factors cannot be precisely repeated from test to

test. When dealing with numerical simulations, there is complete control over chosen

properties of the system. Besides, in laboratory, some of the differences between tests

might occur without the knowledge of the operator and therefore go unaccounted

for. On the other hand, numerical modelling cannot simulate all the properties

and boundary conditions of a real system. Also, they involve complex numerical

calculations which are not easily understood by most users and which can produce

significant numerical errors. These are in turn often dealt using a trial and error

approach. Still, for simple simulations where only a single geometry parameter is

varied, differences in the results can most certainly be attributed to such parameter.

The numerical results from the two separate numerical studies in section 7.3

clearly show the influence of the sample geometry in the results obtained from

bender element generated wave propagation. It was possible to distinguish between

exclusively directly propagated waves and exclusively reflected propagated waves.

From these two type of waves, which constitute the normal propagated wave, the

impact of the reflected wave components could be observed, dominating the response

at the receiving end, more so for the sample with the smallest diameter.

Another observation made from the first simulation series was the actual propa-

gation of the transmitted wave along the main axis of the sample. In this analysis,
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it was possible to observe how the direct and reflected wave components travel at

different velocities. The reflected wave components were detected with an initial

delay but, by travelling faster than the direct wave components, intersect them,

eventually distorting the observed first arrival.

The second series of numerical simulations also provided indications of a sample

geometry influence. Moreover, it was possible to obtain and compare results from

the time and frequency domains. These matched for samples with higher slenderness

ratios, but are quite different for lower slenderness ratios.

Only sinusoidal pulse signals were used in the presented numerical simulations.

This leaves an important gap since the response of cylindrical samples, as already

discussed in chapters 5 and 6, is more stable when a steady state of oscillation is

reached. This is not the case when using pulse signals, where only a transient state

of vibration can be obtained. Further testing needs to be done in order to clarify the

understanding of wave propagation in cylindrical samples as well as their dynamic

responses. Specifically the use of continuous signals, which have already been used

in Hardy (2003).

The elastic properties assumed for the bender elements were not their actual

properties but very rough estimates with the single objective of ensuring that their

stiffness was significantly higher than that of the soil. Since the properties of the

bender elements are now better known, there is no reason not to use their actual

values in future simulations.

In the second group of simulations the properties of an actual soil, as well as

those of its corresponding bender element test, were used. The simulation and the

soil tests were not performed simultaneously neither were they coordinated with

each other. It would then be interesting to, in future simulations, have a better

prepared calibration between actual and numerical studies, so that each of them

can support and justify the other’s results and conclusions.
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Chapter 8

Conclusions and

Recommendations

8.1 Conclusions

The experimental, numerical and analytical results obtained and presented in this

dissertation confirm the general applicability of well known theoretical concepts of

body vibration and wave propagation to bender element testing. These provides a

concrete background to the phenomena involved, and a robust platform over which

further discussion, developments and improvements can be built upon. Debatable

issues such as the ideal signal type, signal processing method and dispersion min-

imisation approach, are made more clear and the process of decision-making more

straightforward, when contextualised under a mechanical point of view.

The choice of the best type of input signal to use in bender element testing is a

clear example of where the understanding of the mechanical properties of the test

system provides a clear answer. Given the choice between pulse signals and harmonic

continuous signals, the monitoring of the bender elements behaviour confirms the

theoretical prediction of a transient response for pulse signals and of a steady-state
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response for harmonic continuous signals. During a transient response, the behaviour

of a mechanical system is dominated by its own properties, namely its frequency of

vibration. Therefore, if control over the frequency of vibration of the system is

required, for example to try and avoid the near-field effect, than the pulse signal is

not a suitable excitation signal. This argument needs to keep being reinforced due

to the more traditional and persistent practise of using pulse signals.

Harmonic continuous signals, unlike pulse signals, are able to establish a steady-

state response from the transmitting bender element, and of the tested sample as

as well. Consequently, this type of signal permits the control of the frequency of

vibration of the transducer as well as of the tested sample. For this reason, har-

monic continuous signals are a better choice than pulse signal when control over the

frequency of the response is required, such as when minimising frequency dependent

dispersive phenomena.

A clear distinction between signal processing methods can be made regarding

the domain in which the data is handled, the time domain or the frequency domain.

One of the main differences between analysis in these domains is that in the time

domain the results are usually compared in absolute terms, and in the frequency

domain the results are compared in relative terms. The transmission of vibration

energy between two different mediums, such as between a bender element and a

sample, has an inherent phase delay between the excitation and the response, which

has also been confirmed in the results of the bender element monitoring. Therefore,

if comparing features from the transmitted and received signals directly in the time

domain, the phase delays that occur at each of the interfaces of the test system

render the obtained travel time almost meaningless.

Even when comparing the very first arrival of the transmitted and received sig-

nals, which marks the discontinuity between stationary and moving particles of the

medium, the introduction of phase delays at each interface can also induce the per-
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ception of time delays. These time delays can have a significant impact on relatively

short travel distances, such as the ones present in laboratory geotechnical testing

of soil. In the studied case of a synthetic rubber with a height of H = 76mm and

a small-strain shear stiffness of approximately G0 = 2.0GPa, the introduced time

delay was estimated at 20% of the total wave travel time. For shorter samples with

shorter travel paths and for stiffer mediums the importance of the introducing such

a time delay increases.

When comparing signals in relative terms, for example by comparing two received

signals rather than a transmitted and received signal, as done in the frequency

domain, then any phase or time delays cumulatively introduced at each interface

will have approximately the same impact on any two signals with similar frequency.

For this reason, when comparing two such signals the influence of the phase delay

at each mechanical interface can be avoided. The travel time results obtained in

the frequency domain, such as by using the gradient of the phase delay curve to

estimate wave travel time, are consequently more suitable than the results obtained

using direct time domain readings.

When calculating the wave velocity, the travel distance is as relevant as the

travel time, since the velocity varies linearly with either factor. The travel distance

has, for some time, been taken as the tip-to-tip distance between bender elements,

subject which has been left mostly unchallenged. The results presented in this dis-

sertation, covering a large range of sample heights, travel distances and relative

embedment heights indicate that the wave travel distance should be measured not

between transducers tip-to-tip but between about 60% of the transducer’s embed-

ment height, coinciding with the estimated centres of dynamic pressure exerted by

the transmitter bender element on the sample. Since the initial assumption of travel

distance measured tip-to-tip was based in tests covering a smaller and less relevant

ranges of sample heights, the present study must therefore at least lead to further
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discussion concerning this subject.

On the issue of dispersion; when considering the test sample to behave as a

linear-elastic mechanical continuum, dispersion can be caused by the near-field effect

and by wave reflection or wave-guidance. Both these phenomena are influenced

by the geometry of the sample, where bulkier samples are mostly affected by the

near-field effect and slender samples can be affected by the near-field effect and

by waveguidance, and both these dispersion phenomena are frequency dependent.

A limit for the signal frequency after which the near-field effect can be avoided

has previously been proposed based on wave radiation theory, and is presented in

equation 3.67. Following a similar theoretical approach, a limit for signal frequency

concerning waveguide dispersion is proposed for the first time in the context of

bender element testing, and presented in equation 6.1.

The classification of sample geometry permits an objective choice of which the-

oretical model of behaviour is most suitable to describe the relevant dynamic phe-

nomena of body vibration and wave propagation. A concrete distinction of what

constitutes a bulkier or slender sample was attempted based on the results of the

geometry parametric study. In general terms, bulkier models were observed to be-

have similarly to an unbounded medium and the slender samples were observed

to behave more similarly to waveguides. In terms of bender element testing, the

distinction between sample geometries influences the necessity of considering the

waveguide dispersion or not. A geometry parameter was obtained, based in the

parametric study results, to distinguish between the two mentioned models of be-

haviour, as well as to indicate where the samples might have a transient, more

unpredictable dynamic response. These geometry limits are presented in equation

6.1.

Finally, the studied numerical models confirmed the objective influence of sample

geometry in terms of wave propagation. They provided a clear picture of unbounded
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wave propagation, of waveguided wave propagation and of wave reflection, along the

main axis of the sample. And of the meaningful contribution of such reflected waves,

in the overall received signal.

8.2 Recommendations

The study of the influence of the sample geometry in bender element testing was the

primary subject of this dissertation. Nevertheless, other relevant issues concerning

bender element testing where also analysed, sometimes with surprising observations.

The wave travel distance, according to the results obtained in the parametric

study, was observed to be measured not between the transducers tip-to-tip, as com-

monly assumed in bender element testing, but measured between about 60% of the

transducers embedded heights. Further testing, concerning specifically the subject

of wave travel distance, might help to clarify this subject.

The independent monitoring of the transmitting bender element permitted the

observation of shear strains in excess of ε > 10−3%, which might imply the induction

of local non-linear behaviour of the soil near the transmitting transducer. Therefore,

it is necessary to veryfing these results and also to quantify its influence on the overall

behaviour of the system, and consequent validity of the linear-elastic behaviour

assumptions.

The numerical modelling of dynamic bender element test systems has shown

so far, a good agreement with laboratory results. They provide a powerful tool

where the properties of the medium are defined prior to testing, and with the added

advantage of considering the vibration of as many nodes as desired, in more than

one direction, unlike real bender element testing where a not much more than one

pair of transducers are commonly used.

The presented analytical study of the relevant dynamic phenomena was made
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using the Bernoulli-Euler beam model of behaviour, with considerable success. This

model is quite simple providing easy to use frequency equations, yet it does not

consider the effect of shear deflection and rotary inertia. Other, more complete

models, such as the Timoshenko beam model, which considers the mentioned effects,

have the potential of predicting the dynamic response of relatively bulk samples even

better. For this reason, its use might further increase the quality of analytical results,

despite being its added complexity.

When interpreting test results, besides the sample geometry other factors that

might affect the dynamic behaviour of the system, must be considered. For exam-

ple, the wave propagation analysis presented in this dissertation only considered

wave reflection at the lateral boundaries of the sample. The consideration of wave

reflection at the top and bottom boundaries is a relevant subject which merits fur-

ther study. Other elements of the test system, described in table 6.1, could also be

responsible for significant alterations to the dynamic behaviour of the test system.

These other factors, such as the latex membrane protecting the sample, or the ap-

plication of other test equipment such as local LVDT’s, must be quantified in future

work related with bender element testing, in order to obtain a more realistic picture

of how a bender element test system really behaves.
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Appendix A

Sample Geometry
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Figure A.1: Rubber sample geometries used in parametric study. This page may be used as a pull-out companion to chapter 6.

365



Appendix B

Conclusions Summary (or Bender

Elements Use Guide)
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Results

Interpretation Method

Time Domain Frequency Domain

Absolute Readings Relative Readings

Phase delay becomes 

irrelevant since it is identical 

for any two results with similar 

frequencies.

Variable magnitude and phase 

delay of the response with 

frequency of the excitation.

Phase delay at each interface of 

the wave propagation system.

Time shift in significant 

features of the response.

No direct correlation between 

transmitted and received 

signals.

In case of dispersion, it is not 

possible to consistentely 

distinguish between different 

Figure B.1: Interpretation Method
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Signal Type

Pulse Signals Continuous Signals 

No control over the frequency 

of the response:

    transmitting transducer

    sample

    receiving transducer

Transient Response Steady−State Response

Control over the frequency of 

the response, same as the 

frequency of the excitation.

Variable magnitude and phase 

delay of the response with 

frequency of the excitation.

Figure B.2: Signal Type
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Figure B.3: Models of Behaviour
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Mitchell, J. K. (1964). Shearing resistance of soils as a rate process. Journal of the

Soil Mechanics and Foundations Division, ASCE 95(5), 1219–1246.

Muscolino, G., A. Palmari and F. Ricciardelli (2005). Time-domain response of

linear hysteretic systems to deterministic and random excitations. Earthquake

engineering and structural dynamics 34(9), 1129–1147.

378



Nagaraj, T. S. and M. Norihiko (2001). Soft Clay Behaviour, Analysis and Assess-

ment. 1 ed.. A.A.Balkema. Rotterdam.

Nash, D. F. T., M. L. Lings and D. S. Pennington (1999). The dependence of

anisotropic go shear moduli on void ratio ans stress state for reconstituted gault

clay. Generic.

Nazarian, S. and K. H. Stokoe (1984). In situ shear wave velocities from spec-

tral analysis of surface waves. 8th World Conference on Earthquake Engineering

pp. 31–38.

Pennington, D. S. (1999). The Anisotropic Small Strain Stiffness of Cambridge Gault

Clay. Thesis/dissertation.

Pennington, D. S., D. F. T. Nash and M. L. Lings (2001). Horizontally mounted

bender elements for measuring anisotropic shear moduli in triaxial clay specimens.

Geotechnical Testing Journal 24(2), 133–144.

Pico, Technology L. (2005). Pico adc-216 oscilloscope specifications. Electronic Ci-

tation.

Piezo, Systems I. (2005). Piezoceramic materials and properties. Catalog.

Podesta, M. D. (2002). Understanding the properties of matter. 2nd ed.. Taylor and

Francis. London.

Potts, D. M. (2005). Icfep, imperial college finite element program. Computer Pro-

gram.

Rayleigh, J. W. S. and Robert B. Lindsay (1945). The theory of sound. Vol. 1 of

Dover Classics of Science and Mathematics. Dover Publications. New York.

Redwood, M. (1960). Mechanical waveguides. Pergamon Press.

Richart, F. E., J. R. Hall and R. D. Woods (1970). Vibration of soils and foundations.

Prentice Hall. Englewood Cliff, New Jersey.

379



Rio, J. F., P. D. Greening and L. Medina (2003). Influence of sample geometry on

shear wave propagation using bender elements. Procedings of the Third Interna-

tional SYmposium on Deformation Characteristics of Geomaterials, IS Lyon 2003

pp. 963–967.

Rix, G. J. and J. Meng (2005). A non-resonance method for measuring dynamic soil

properties. Geotechnical Testing Journal.

Sanchez-Salinero, I. (1987). Analytical investigation of seismic methods used for

engineering applications. Thesis/dissertation. University of Texas. Austin.

Santamarina, J. C. (2001). Soisl and waves. John Wiley and Sons. Chichester.

Saunders, J. H. and K. C. Frisch (1962). Polyurethanes, Chemistry and Technology.

Vol. 1. 1st ed.. John Wiley and Sons. New York.

Schultheiss, P. J. (1981). Simultaneous measurement of p and s wave velocities

during conventional laboratory soil testing procedures. Marine Geotechnology

4(4), 343–367.

Schultheiss, P. J. (1982). The influence of packing structures on seismic wave velocity

in sediments. Marine Geological Report.
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