OBTENÇÃO DA FORMA 3D DE OBJECTOS ATRAVÉS DE MÉTODOS VOLUMÉTRICOS

Teresa C. S. Azevedo¹, João Manuel R. S. Tavares^{1, 2}, Mário A. P. Vaz^{1, 2}

1: Laboratório de Óptica e Mecânica Experimental (LOME) Instituto de Engenharia Mecânica e Gestão Industrial (INEGI) Faculdade de Engenharia da Universidade do Porto (FEUP) e-mail: teresa.azevedo@fe.up.pt

2: Departamento de Engenharia Mecânica e Gestão Industrial (DEMEGI) e-mail: {tavares, gmvaz}fe.up.pt

Palavras-chave: Visão Computacional, Visão 3D, Reconstrução Tridimensional, Métodos Volumétricos

Resumo. Neste trabalho pretendeu-se realizar a reconstrução e caracterização tridimensional (3D) de objectos a partir de imagens bidimensionais (2D). Para tal, utilizaram-se métodos volumétricos, que se caracterizam por representar o modelo final por um conjunto finito de primitivas geométricas 3D, usualmente designadas por voxels. Assim, utilizando uma sequência de imagens adquiridas em torno do objecto a reconstruir, calibrou-se a câmara usada, determinaram-se as poses associadas a cada imagem e construíram-se os modelos 3D do objecto em questão usando métodos volumétricos. O objectivo final foi analisar a exactidão dos modelos obtidos ao variar alguns dos parâmetros dos métodos volumétricos considerados, tais como o tipo de projecção dos voxels considerada e o modo de classificação dos voxels.

1. INTRODUÇÃO

Em Visão Computacional, existem vários métodos para obter modelos 3D de objectos a partir de imagens. No entanto, continua a ser um dos objectivos mais complexos de concretizar, de forma automática, rápida e precisa. As aplicações possíveis para a reconstrução 3D variam desde a inspecção industrial, aplicações biomédicas, realidade virtual, identificação de objectos, sistemas de segurança, navegação automática, entre outras.

1.1. Métodos volumétricos

Os métodos tradicionais de reconstrução 3D por metodologias de Visão Estéreo têm dificuldades em reconstruir formas que apresentem elevados graus de continuidade e suavidade, tal como a forma do corpo humano, [1]. Tal deve-se essencialmente à dificuldade

em emparelhar primitivas do objecto a reconstruir entre as imagens usadas para posterior triangulação 3D.

Os métodos volumétricos de reconstrução 3D de objectos têm-se tornado relevantes nas últimas décadas. Comparativamente às técnicas de Visão Estéreo, estes métodos são alternativas eficientes e versáteis, pois trabalham no espaço volumétrico do objecto a reconstruir e não requerem o referido emparelhamento. Uma compilação dos métodos volumétricos de reconstrução 3D pode ser encontrada no trabalho de Slabaugh et. Al., [2].

Os métodos de reconstrução 3D utilizados neste trabalho usam *octrees*, [3], para representar o volume ocupado pelo objecto em causa. Basicamente, o volume envolvente do objecto é construído por um procedimento de refinamento efectuado sobre a *octree* construída. A cada uma das suas células (*voxels*) é atribuída uma de três classificações (0-dentro, 1-fora ou 2-ambíguo). Neste trabalho, inicialmente assume-se que o objecto seja representado por um volume de 8x8x8 *voxels*, todos eles com a classificação 0 (zero). Iterativamente, projectam-se todos os *voxels* com classificação 0 (zero) em cada imagem adquirida e actualizam-se as suas classificações, de acordo com critérios que variam consoante o método volumétrico escolhido. A seguir, subdividem-se os voxels ambíguos em oito novas células, novamente com classificação 0 (zero). Estes novos *voxels* são posteriormente processados exactamente como os do nível anterior.

A maioria dos métodos volumétricos de reconstrução baseiam-se nas silhuetas do objecto a reconstruir. Estes métodos tentam aproximar o Envoltório Visual - *Visual Hull*, [4], que se define como a forma máxima que reproduz as silhuetas do objecto original, em todos os pontos de vista fora do seu fecho convexo. Como na prática não é possível utilizar um número infinito de imagens, os métodos volumétricos baseados em silhuetas obtêm o Envoltório Visual Inferido - *Inferred Visual Hull*. Este resulta de um processo de intersecção de volumes cónicos, com base nas restrições impostas pelas silhuetas obtidas e os centros de projecção associados, Figura 1.

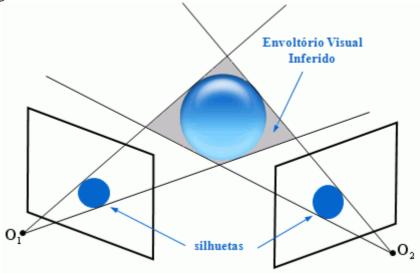


Figura 1 – Envoltório Visual Inferido definido por duas silhuetas.

O método baseado em silhuetas adoptado efectua a projecção dos *voxels* sobre as imagens segmentadas (silhuetas). Assim, se a projecção se situar completamente fora da silhueta na imagem corrente, o *voxel* encontra-se completamente fora do objecto, não sendo necessário verificar as restantes imagens. Se a projecção intersectar a silhueta, o *voxel* deve encontrar-se perto do limite do objecto, sendo assim classificado como ambíguo. Finalmente, se a projecção se situar completamente dentro das silhuetas em todas as imagens adquiridas, o *voxel* encontra-se completamente dentro do objecto.

Actualmente, muitos métodos de reconstrução volumétrica usam uma ou várias propriedades fotogramétricas para distinguir os pontos da superfície do objecto a reconstruir dos restantes pontos que constituem a cena envolvente do mesmo objecto. Estes métodos baseados em fotoconsistência, além de reconstruir objectos com geometrias complicadas, como as estruturas anatómicas externas, também geram um modelo 3D colorido, sem a necessidade de uma etapa extra para a colorização do modelo reconstruído. A forma do objecto de interesse é determinada pela remoção dos *voxels* foto-inconsistentes. Um *voxel* é fotoconsistente se as cores dos píxeis que ele projecta forem similares, Figura 2.

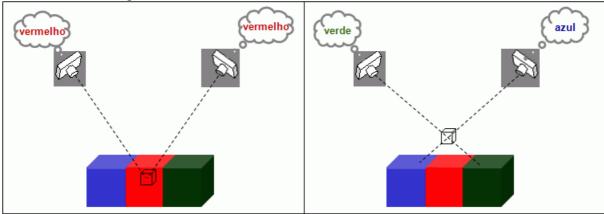


Figura 2 – Fotoconsistência: se um *voxel* pertencer ao objecto, ele reprojectará a mesma cor nas imagens nas quais é visível (esquerda); por outro lado, se um *voxel* estiver fora do objecto, ele provavelmente irá reprojectar cores distintas.

Neste trabalho, utilizou-se também um método baseado simultaneamente em silhuetas e foto-consistência; ou seja, durante o processo de classificação dos *voxels* da *octree*, para além de serem utilizadas as silhuetas, é igualmente realizado um teste estatístico. Assim, apenas aqueles *voxels* em que o desvio-padrão das cores dos píxeis em que se projectam for inferior a um determinado limiar - *threshold*, podem ser subdivididos e passar ao próximo nível de refinamento.

2. METODOLOGIA UTILIZADA

O primeiro passo da metodologia adoptada foi calibrar a câmara de imagem utilizada. O processo de calibração baseou-se no método de calibração de Zhang, [5], que necessita de

um padrão de calibração coplanar colocado sob o objecto a reconstruir. Tendo a câmara calibrada, foi possível determinar as poses associadas a cada imagem adquirida.

Posteriormente, as imagens são segmentadas utilizando técnicas comuns de processamento de imagem, tais como binarização por *threshold* e operações morfológicas, [6].

Após a segmentação, vários modelos 3D do objecto em causa foram reconstruídos, utilizando os dois métodos volumétricos: um baseado em silhuetas e outro baseado em silhuetas e critérios de foto-consistência. O objectivo final foi comparar os resultados obtidos pelos dois métodos e analisar a exactidão dos modelos obtidos ao modificar o tipo de projecção dos *voxels*: rectangular ou exacta. A projecção de um *voxel* numa imagem é realizada pela retroprojecção dos seus oito vértices e determinação do seu fecho convexo, obtendo-se geralmente um hexágono. Outra hipótese passa por escolher o menor rectângulo que englobe as oito projecções.

3. RESULTADOS EXPERIMENTAIS

Os métodos volumétricos considerados foram testados usando um modelo de uma mão humana, consistindo um desafio à sua reconstrução 3D devido à sua complexidade em termos da forma envolvida. Os parâmetros obtidos pelo processo de calibração da câmara de imagem usada, juntamente com as imagens originais e as segmentadas, Figura 3, são introduzidos no processo computacional de reconstrução 3D desenvolvido, obtendo-se um modelo 3D para o objecto em causa.

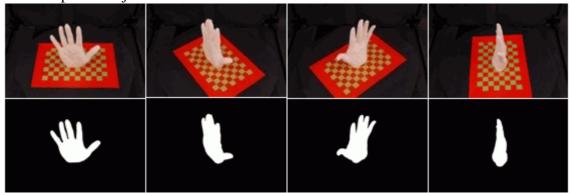


Figura 3 - Quatro imagens do modelo da mão (em cima) e respectivos resultados do processo de segmentação da imagem original (em baixo).

As Figura 4 e Figura 5 mostram dois conjuntos de resultados obtidos usando o método baseado em silhuetas. Os conjuntos diferem apenas no critério de projecção dos *voxels* da *octree*. Usando a projecção exacta dos *voxels*, Figura 5, verifica-se que os *voxels* são classificados como completamente dentro ou fora do objecto em níveis de refinamento mais baixos; ou seja, torna o processo de reconstrução 3D mais rápido na medida em que diminui o número de *voxels* ambíguos logo nos primeiros níveis da *octree*.

A Figura 6 mostra os resultados obtidos usando o método baseado em silhuetas e

fotoconsistência. Como o objecto considerado não apresenta concavidades e possui uma cor mais ou menos uniforme ao longo de toda a sua superfície, os resultados obtidos pelo método baseado em fotoconsistência são bastante similares aos apresentados na Figura 5.

O gráfico da Figura 7 compara o volume dos modelos 3D obtidos pelos métodos volumétricos utilizados, para crescentes níveis de refinamento da *octree*. Como o modelo da mão foi construído por prototipagem rápida utilizando a técnica de estereolitografia, [7], o volume real foi obtido directamente do modelo *STL*. Observa-se que o volume dos modelos 3D obtidos se aproxima rapidamente do volume real ao aumentar o nível de refinamento da *octree*. Verifica-se igualmente que a diferença entre as três variantes dos métodos volumétricos consideradas é diminuta.

Finalmente, o gráfico da Figura 8 mostra as medidas do modelo 3D obtido pelo método volumétrico baseado em silhuetas, projecção exacta dos *voxels* e oito níveis de refinamento da *octree*, comparando-as com as medidas do modelo real da mão.

Figura 4 – Reconstrução 3D da mão obtido pelo método volumétrico baseado em silhuetas e projecção rectangular dos *voxels*, com (da esquerda para a direita) 3, 5 e 7 níveis de refinamento da *octree*.

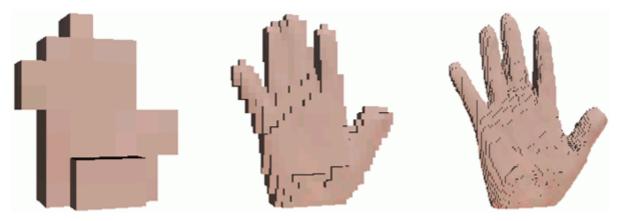


Figura 5 – Reconstrução 3D da mão obtido pelo método volumétrico baseado em silhuetas e projecção exacta dos *voxels*, com (da esquerda para a direita) 3, 5 e 7 níveis de refinamento da *octree*.



Figura 6 – Reconstrução 3D da mão obtido pelo método volumétrico baseado em silhuetas e fotoconsistência, mantendo a projecção exacta dos *voxels*, com (da esquerda para a direita) 3, 5 e 7 níveis de refinamento da *octree*.

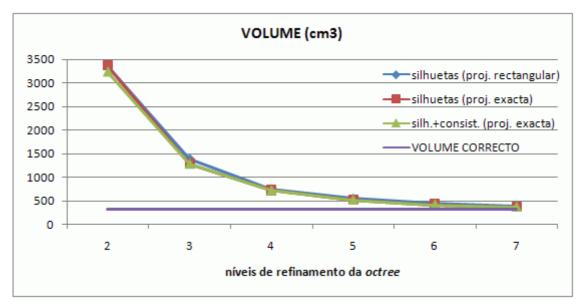


Figura 7 – Volume do modelo 3D obtido *versus* método volumétrico utilizado para crescentes níveis de refinamento da *octree*.

4. CONCLUSÕES E TRABALHO FUTURO

É difícil obter um modelo 3D exacto de um objecto a partir de imagens 2D, principalmente se este apresentar superfícies complexas, como é o caso das estruturas anatómicas externas.

Os resultados obtidos demonstram a boa qualidade de reconstrução 3D de objectos que se pode obter com a aplicação de métodos volumétricos. Pela facilidade de implementação e poucas exigências ao nível de *setup* (uso de apenas uma câmara e um processo de calibração adequado), estes métodos revelam elevadas potencialidades de aplicação.

Os métodos baseados em silhuetas necessitam de cenas cuja segmentação fundo/objecto

seja fácil de obter. Já os métodos de reconstrução volumétrica baseados em fotoconsistência requerem condições de iluminação constantes. Contudo, nada impede que as duas técnicas sejam combinadas de forma a auxiliar o processo de reconstrução 3D.

O trabalho futuro irá concentrar-se na implementação de processos de auto-calibração e na reconstrução 3D de objectos deformáveis.

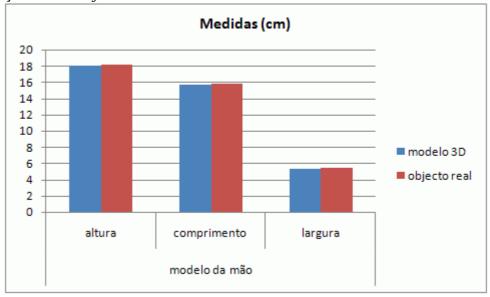


Figura 8 – Medidas do modelo 3D obtido pelo método volumétrico baseado em silhuetas, projecção exacta dos *voxels* e oito níveis de refinamento da *octree*.

6. AGRADECIMENTOS

O primeiro autor agradece a Bolsa de Doutoramento, com a referência SFRH/BD/27716/2006, concedida pela FCT - Fundação para a Ciência e a Tecnologia.

REFERÊNCIAS

- [1] G. Zeng, M. Lhuillier and L. Quan, *Recent Methods for Reconstructing Surfaces from Multiple Images*, Lecture Notes in Computer Science, Springer Verlag, vol. 3519, pp. 429-447, 2005.
- [2] G. Slabaugh, W. B. Culbertson, T. Malzbender and R. Shafer, *A survey of methods for volumetric scene reconstruction from photographs*, International Workshop on Volume Graphics, New York, NY, USA, pp. 21-22, 2001.
- [3] C. H. Chien and J. K. Aggarwal, *A Volume/Surface representation*, International Conference on Pattern Recognition, Montreal, Canada, pp. 817-820, 1984.
- [4] A. Laurentini, *The visual hull concept for silhouette-based image understanding*, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 16, n. 2, pp. 150-162, 1994.
- [5] Z. Zhang, A Flexible New Technique for Camera Calibration, IEEE Transactions

- on Pattern Analysis and Machine Intelligence, vol. 22, n. 11, pp. 1330-1334, 2000.
- [6] T. C. S. Azevedo, J. M. R. S. Tavares and M. A. P. Vaz, *3D Object Reconstruction from Uncalibrated Images using an Off-the-Shelf Camera*, Advances in Computational Vision and Medical Image Processing: Methods and Applications, ISBN: 978-1-4020-9085-1(print) 978-1-4020-9086-8 (online), Springer, pp. 117-136, 2008.
- [7] C. A. M. Relvas, *Processos de Prototipagem Rápida no Fabrico de Modelos de Geometria Complexa: Estudo Realizado Sobre o Modelo Anatómico da Mão*, Tese de Mestrado em Design Industrial, FEUP Faculdade de Engenharia da Universidade do Porto, Porto, Portugal, 2003.