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Abstract. A numerical investigation was carried out to characterize the isothermal 
flow in a confined impinging jet emanating from a rectangular duct of aspect-ratio equal 
to 13. After impinging a flat plate the flow separated in two streams that were confined by 
two slopping plane walls, each making an angle of 12° relative to the plate. The fluids 
were Newtonian and purely viscous non-Newtonian, the latter described by a power law 
model. The numerical simulation was carried out with a finite-volume based code using 
non-orthogonal collocated grids and second order accurate differencing schemes to 
discretize all terms of the transport equations. The flow characteristics were studied as a 
function of shear-thinning intensity for Reynolds numbers between 10 and 800. 
Specifically, we investigate in detail the pressure loss in the cell and the size of the 
recirculation zone attached to the sloping surfaces of the cell after validation of the 
numerical simulations against experimental Newtonian and non-Newtonian data. Three 
dimensional effects due to the finite span of the rectangular duct and cell are also 
evaluated.  
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1. INTRODUCTION 

 
A numerical investigation was carried out to characterize the flow field in a confined 

impinging jet emanating from a rectangular duct. The jet impinges a solid surface and spreads 
along the plate leading to intense levels of heat and mass transfer. Therefore, impinging jets 
are frequently found in metal cooling processes and in food and pharmaceutical industries. 
Here, the objective is the investigation of the dynamics of impinging jets for Newtonian and 
purely viscous non-Newtonian fluids. 

 In this set-up, of relevance for membrane separation cells, the impinging jets are confined 
by sloped planned walls. The jet emanating from a rectangular duct impinges a plate and 
splits into two streams that flow along channels of variable cross-channel due to the slopping 
walls. Previously, Garimella and Rice [4] studied a similar flow in the corresponding 
axisymmetric condition and they divided the flow field into three different regions: the free-
jet region, which is sufficiently far from the impinging surface to be affected by the plate; the 
impinging region, where the streamwise velocity strongly decays, and the jet spreads as it 
approaches the plate, and the wall region downstream the impingement. More recently, the 
laminar flow of a jet confined by a conical wall was investigated by Miranda et al[8] who 
found a recirculation zone close to the conical wall at low jet Reynolds numbers. At high jet 
Reynolds numbers the recirculation zone grows, the fluid flows radially in a thin channel 
attached to the impingement plate, and a second recirculation zone develops in the expansion 
region close to the plate. If the nozzle-to-plate distance increases, the second recirculation 
also grows.  

In the present study, the duct to plate distance is very short, 20% of the duct height, and the 
presence of the impingement plate is felt at the duct exit. 

This paper numerically investigates the combined effects of shear-thinnng and flow inertia 
upon the pressure loss and on the length of the separated flow region in the cell for laminar 
flow conditions and using a proprietary CFD code. This numerical investigation is carried out 
after validation against experimental data obtained by Cavadas et al.[2]. An attempt is made 
at understanding the various contributions to the pressure loss in the cell via a simplified one-
dimensional theory and using the numerical predictions to quantify some of the terms of the 
theory. The next sections describe, briefly, the cell geometry and the governing equations 
used to perform the numerical predictions. Then, the numerical procedure and the validation 
of the computational results are presented. Prior to presenting the parametric investigation of 
the pressure loss and the length of the separated flow region, which constitutes the objective 
of this work, the one-dimensional simplified theory on the contributions to the pressure loss is 
explained. The paper ends with a summary of the main conclusions.  
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2. FLOW GEOMETRY AND REYNOLDS NUMBER 

 
The cell test section is schematically represented in Fig. 1 (a) together with the coordinate 

system used in this work and a photo is shown in Fig. 1 (b). The test section is located 
downstream of a rectangular duct of aspect ratio (AR) equal to 13 (with a cross-section area 
of 260 x 20 mm2). This rectangular duct is 130 channel heights (H) in length in order to fully-
develop the flow prior to the impinging zone. The fully-developed rectangular duct flow exits 
the duct and impinges a flat plate, which is confined by two slopping plane walls, each 
making an angle of 12° relative to the plate. The two outgoing rectangular channels at the end 
of the cell have an height (h) of 4 mm and a spanwise dimension (W) of 260 mm. 

 

 

 
 

(a) (b) 
Fig. 1 – Experimental set-up for the impinging jet; (a) sketch of the cell test section; (b) photo of the cell test 
section. 
 

3. GOVERNING EQUATIONS 

 
The basic equations solved are those for 3-D, incompressible and isothermal laminar flow 

for constant density purely viscous fluids, where the viscosity only depends on the second 
invariant of the strain-rate tensor ( ijS ). In Cartesian index notation the governing equations 
are the continuity equation: 

 
 0i

i

u
x
∂

=
∂

 (1)
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and the equation for conservation of linear momentum : 
 

 j i iji

j i j

u uu p
t x x x

ρ τρ ∂ ∂∂ ∂
+ = − +

∂ ∂ ∂ ∂
 (2)

 
where iu  is the velocity component along the Cartesian coordinate ix , ρ  the fluid density, p  
the pressure and ijτ  the extra stress tensor. These equations allow the determination of the 
velocity and pressure flow fields. A fully-implicit finite-volume method is used to solve 
Equations (1) - (2).  The numerical code has been developed to allow the use of a number of 
different constitutive equations for viscoelastic and purely viscous fluids. The latter is the 
case in this work and the Generalized Newtonian fluid model of equation (3) is used, where 
the viscosity function is given by the power-law model (Eq. (4)), where the scalar shear rate 
( &γ ) defined on the basis of the second invariant of the strain-rate tensor 

 
&γ ≡ 2SijSij  and 

Sij = 1 2 ∂ui ∂xj + ∂u j ∂xi( ). 
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 ( ) 1−= nK γμ &   (4)

 
K and n denote the consistency and power indices, respectively.  
 
 

4. NUMERICAL PROCEDURE AND VALIDATION  

 
The numerical method is briefly outlined below as it has been described in detail in 

Oliveira et al.[10]. The numerical simulations were carried out with a finite-volume method 
using non-orthogonal collocated grids and second order accurate differencing schemes to 
discretize all terms of the transport equations (Patankar [12] and Perić [13]). The main code is 
interfaced with a mesh generation pre-processor and adequate data post-processor, as 
described in Oliveira [9]. The basic differencing schemes were central differences for the 
diffusion terms and a high-resolution method, CUBISTA described in Alves et al [1], for the 
convective terms. The solution algorithm was a modified version of the SIMPLEC algorithm 
of van Doormal and Raithby [15] adapted for time marching as explained in Issa and Oliveira 
[5], where details to evaluate mass fluxes at cell faces are given. 
Symmetry in terms of planes x-y and plane x-z was considered (Fig. 1 (a). This assumption 
was based on previous experimental work (Cavadas et al.[2]), and on preliminary numerical 
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tests done to assess the adequacy of the computational domain. Therefore, the numerical 
domain adopted is just a “quarter” of the physical domain. On the centerline, an axisymmetric 
condition was assumed, and at the wall, all the velocity components were set to zero. At the 
inlet of the rectangular duct, the flow profile was set to uniform and the flow developed along 
the duct.  

The computational grids were generated using patched blocks, one for the inlet of the 
channel, two for the cell zone, and one for the outlet of the channel. A schematic 
representation of the blocks used in the numerical simulations is shown in Fig. 2 (b) and 
details of the mesh are given in Table 1, listing the number of internal cells in the three 
directions (Nx,Ny,Nz) and the corresponding geometric expansion (or contraction) factors for 
mesh spacing (fx,fy,fz). The mesh spacing was non-uniform, with mesh points concentrated in 
the cell zone. The expansion factors used were carefully chosen to guarantee a smooth 
variation in the whole domain, in particular at the interfaces between the mesh-generating 
blocks. Several tests with different grids were initially performed to assess the adequate size 
of the discrete domain as well as the degree of grid refinement required for grid-independent 
results.  

 

 
 

(a) (b) 
Fig. 2 Schematic representation of the cell; (a) test section and measured values; (b) blocks used in the 
numerical simulation and tested points 
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Grid Block1   Block2    
 Nx/fx Ny/fy Nz/fz Nx/fx Ny/fy Nz/fz  

M15 50/0.89258 15/1 15/1.04941 20/1 15/1 15/1.04941  
M20 67/0.91831 20/1 20/1.036833 26/1 20/1 20/1.036833  
M20 a) 67/0.91831 20/1 120/1.00605 26/1 20/1 120/1.00605  
M30 100/0.9448 30/1 30/1.02441 39/1 30/1 30/1.02441  
M30 a) 100/0.9448 30/1 60/1.012130 39/1 30/1 60/1.012130  
M30 b) 100/0.9448 30/1 70/1.01039 39/1 30/1 70/1.01039  
M40 133/0.9583 40/1 40/1.01825 52/1 40/1 40/1.01825  
        

Grid Block3   Block4    

 Nx/fx Ny/fy Nz/fz Nx/fx Ny/fy Nz/fz Nº total of 
cells 

M15 20/1 88/1.00054 15/1.04941 20/1 38/1.07356 15/1.04941 53550 
M20 26/1 117/1.00041 20/1.036833 26/1 50/1.05468 20/1.036833 124040 
M20 a) 26/1 117/1.00041 120/1.00605 26/1 50/1.05468 120/1.00605 744240 
M30 39/1 175/1.00027 30/1.02441 39/1 75/1.00027 30/1.02441 417600 
M30 a) 39/1 175/1.00027 60/1.112130 39/1 75/1.00027 60/1.012130 835200 
M30 b) 39/1 175/1.00027 70/1.01039 39/1 75/1.00027 70/1.01039 974400 
M40 52/1 233/1.00020 40/1.01825 52/1 100/1.01825 40/1.01825 988640 

Table 1 Grid dimensions; 
 

In the grid tests, we analyze the behavior of the length ( XR ) of the separated regions on 
the sloped walls (c.f. Fig. 2(a)). This recirculation length varies along the spanwise direction 
and Fig. 3 shows its variation for different meshes. Grid M40 is the finest, leading to just 
under 4 million degrees of freedom, a large computational cost. Consequently, most 
simulations were carried out using grid M30 a). Even though there is a 5% difference in the 
length of the recirculation at the symmetry plane Z/W =0, relative to the value predicted by 
grid M40, the agreement with experimental data is good as shown later and hence its selection 
for the remaining numerical investigation. Note also that the used grid M30 a) is actually finer 
than grid M40 in the spanwise direction in order to better resolve variations along z.  

The data in Fig. 3 pertains to a Newtonian fluid at a Reynolds number of the rectangular 
duct flow of 200. In this work, the Reynolds number is defined in equation (5) and follows the 
work of Kozicki et al [6]. It is based on the mean inlet velocity, U and on the hydraulic 
diameter of the rectangular channel where, for an aspect ratio of 13, the parameters a and b 
are a = 0.4311 and b=0.9281. 
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Fig. 3 Recirculation length, for Re*=200, along z dimension for several mesh grids 
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5. VALIDATION 

 
In this Section we compare the numerical predictions with the experimental data for 

Newtonian and non-Newtonian fluids. For the Newtonian fluids the Reynolds numbers were 
Re*=100 and Re*=200 and for the non-Newtonian fluids Re*=200. The Newtonian fluid used 
was a glycerol-water mixture, which had the properties listed in Table 2. The non-Newtonian 
fluid used was an aqueous solution of xantham-gum, at a mass concentration of 0.2%. The 
xantham-gum is a food-grade polymer with a high molecular weight (supplied by the Kelco 
Division of Merck). The viscosities were measured in a rheometer (TA-AR 2000) using a 
cone-plate geometry. The viscosity of the xanthan gum solution was fitted with the Carreau-
Yasuda model (Eq.(6)), which had the rheological parameters listed in Table (6) . 
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Fluid ρl  [kg/m3] μ0 [Pa.s] ∞μ  [Pa.s] λ [s] a n K 
0.2% XG 1000 2.3242 0.00996 11.6875 0.50339 0.3454 ------ 

Glycerol-water 1184 ------ ------ ------ ------ 1 0.0425 
Table 2- Rheological properties of fluids used in the experimental work at 20ºC 

 
The validation of the numerical predictions is carried out with three sets of data: 
1) Predicted transverse profiles of streamwise velocity along the rectangular duct are 
compared with analytical solutions for fully-developed flow and with experimental data. 
This comparison is aimed at ensuring that the flow is completely fully-developed well 
upstream the inlet of the cell.;  
2) Transverse profiles of streamwise velocity within the cell; 
3) Spanwise profiles of streamwise velocity within the cell. 
 
The velocity data was normalized by the mean velocity at the rectangular channel, the X 

and Y coordinates by the height of the duct (H) and the Z coordinate by the half-width of the 
channel (W). 

In Fig. 4 (a) the transverse profiles pertaining to the fully-developed Newtonian flow in the 
rectangular duct are plotted at both Reynolds numbers. The plot includes the analytical 
solutions for both this channel (AR=13) and an infinite channel (AR=∞ ), presented by 
White[14]. The numerical simulations obtained with grid M30 a) are in excellent agreement 
with the theoretical solution for the rectangular duct and differ only by 5% from the 
experimental data. 

In Fig. 4(b) the experimental transverse profiles of the streamwise velocity at Y/H=0.8 and 
Z/W=0.45 are represented and compared with the results from the numerical simulation for 
Re*=100 and Re*=200 (Newtonian fluid). Here, the flow is no longer fully-developed and 
there is no analytical solution. As we can see there is a good agreement between the 
numerical and experimental data. 
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(a) (b) 
Fig. 4 Comparison between experimental data (symbols), theoretical expressions and numerical simulation 

results for the flow of  Newtonian fluids in the rectangular duct, Re*=100 and Re*=200; a) X/H=-5.7, Z/W=0, b) 
Y/H=1.65, X/H=0.525 

 
Inside the cell, spanwise profiles of streamwise velocity at Y/H= 1.65 X/H= 0.525 (see Fig. 

5b) for location) are represented in Fig. 5(a) and a good agreement is again seen between the 
numerical and experimental data at both Reynolds numbers, where the maximum difference is 
about 5%. The predicted velocity profile has the same shape as the experimental profile, with 
two peaks appearing near the walls, corresponding to the merging of the fluid exiting the 
recirculation bubble near the side walls with the main flow (this three-dimensional 
phenomenon will be better explained in section 7.3). 

  

 
(a) (b) 

Fig. 5 Spanwise profiles of streamwise velocity at the marked z-x planes within the cell for Re*=100,  Re*=200 
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In Figures 6(a) and (b) comparisons are shown for the xanthan gum solution. In Fig. 6 (a) 
the profiles are in a region of fully-developed flow and the analytical solution shown pertains 
to AR = ∞ . Judging from the corresponding Newtonian cases in Fig. 4 (a) the correct profile 
for this power law fluid in the AR=13 duct would exhibit a higher velocity on the centerline 
than the AR = ∞  case, approaching closely the calculated profile. Inside the cell, spanwise 
profiles of streamwise velocity at Y/H= 1.65 X/H= 0.525 (see Fig. 5 (b) for location) are 
represented in Fig. 7 (a) and we can see that the predicted and measured velocity profiles have 
the same shape , spite of a small difference of 10%. It is interesting also to remark that the 
calculations were able to predict the small oscillation near the wall as seen in the experiments.  

The differences between predictions and experiments are larger than for the Newtonian 
case, but it must be reminded that the xanthan gum solutions are viscoelastic (Escudier et 
al.[3]), whereas here only the viscous behavior is captured by the adopted constitutive 
equation. The fluid elasticity generates an imbalance of the normal stresses which will create 
a secondary flow in the fully-developed rectangular duct flow, leading to changes in the 
streamwise velocity. The secondary flow is weak and we could not measure it in the 
rectangular duct, but it could explain the observed differences in the shape of the streamwise 
velocity profile. A better prediction will need to be carried out in the future using an adequate 
constitutive equation to model the elastic properties of this solution. 

In spite of this limitation, the effects of inertia and shear-thinning on pressure loss and 
recirculation length are investigated next.  

  
a) b) 

Fig. 6– Comparison between experimental data (symbols), theoretical expressions and numerical simulation 
results for the rectangular duct, xanthan gum at Re*=200; (a) at X/H=-5.7 (b) at Y/H=1.65, X/H=0.525 
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Fig. 7 Spanwise profiles of streamwise velocity at X/H=0.525, Y/H=1.65 with xantham gum at Re*=200 

 
 

6. SIMPLIFIED ONE-DIMENSIONAL THEORY FOR PRESSURE LOSS 

 
The numerical calculations allows us to directly determine the pressure loss within the cell, 

but it can also provide insight onto its causes, namely on the various contributions to the total 
pressure loss, such as the amount due to friction at the walls, inefficient flow decelerations 
and pressure non-uniformities, amongst others. For this purpose, prior to presenting results, a 
one-dimensional simplified theory, adapted from that of Oliveira and Pinho [11] for sudden 
expansions in pipe flow, is presented below. 

In pressure drop calculations, it is engineering practice to consider that the flow is fully 
developed in straight pipes and ducts and to account for distortions and local effects due to 
fittings, curves and pipe accessories via their respective local loss coefficients. Hence, the 
pressure difference between sections 1 and 2 of the cell (c.f. Fig. 2 (b)) has several 
contributions: 

- reversible increase of pressure due to the decrease of velocity along the cell ( RpΔ -
Bernoulli effect); 

- irreversible pressure loss ( IpΔ ) between sections 01 and 02, that includes the inefficient 
dissipation of kinetic energy as the flow velocity along the cell decreases, the losses 
associated with the recirculation region and the pressure loss due to friction of the fluid at the 
walls of the cell; 

- irreversible pressure loss at the inlet (between sections 1 and 01) and outlet ducts 
(between sections 02 and 2) ( FpΔ ) where the flow is mostly not fully-developed. 
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 2 1T R I Fp p p p p pΔ = − = Δ −Δ −Δ (7)

 

After normalization with the upstream dynamic pressure ( 2
1

1
2

uρ ), the previous equation 

becomes:  
 

 
2 1

2
1

1
2

T R F I
p pC C C C

uρ

−
= = − −

    (8)

or 
 I R T FC C C C= − −            (9)

 
where C represents the corresponding pressure loss coefficient. 

Assuming fully developed flow at planes 1 and 2, the integral conservation of linear 
momentum applied to the control volumes between 1 and 01, and between 02 and 2 (see Fig. 
2 (b)) can be expressed as:  

 
x direction: 

2 2

1 1 1 1 1 01 1 01 01 01 01 1 1.p A A u p A A u dSρ β ρ β τ −+ = + + ∫ (10)
 

y direction: 
2 2

02 2 2 02 02 2 2 2 2 2 02 2 2.p A A v p A A v dSρ β ρ β τ −+ = + + ∫  (11)
 

where 2 2/u uβ ≡  is the profile shape factor for momentum (White [14]), 01 1τ − , 02 2τ −  are the 
local wall shear stresses between planes 1 and 01 and planes 02 and 2, respectively 1A  and 2A  
are the cross section areas of the ducts at sections 1 and 2, respectively. The integrals can be 
evaluated by using average values: 
 

 '
01 1 1 01 1 1 1 1. . .FdS S p Aτ τ− −= = Δ∫  (12)

 
 '

02 2 2 02 2 2 2 2. . .FdS S p Aτ τ− −= = Δ∫ (13)
 
where 1S  and 2S  are the wall surface areas where the averaged shear stresses 01 1τ −  and 02 2τ −  
take effect. 
 
 Defining the area ratio, 1 2A Aσ ≡ , and from mass conservation 1 1 2 2Au A v= , the 
combination of the above momentum balances as (Eq.(10)+ σ  Eq.(11)) leads to the following 



A.S. Cavadas, F.T. Pinho e J.B.L.M. Campos 

 13

expression after division by 1A  and the upstream kinetic energy.  
 
 ' '

2 2 1 01 022 1
1 01 2 022 2

1 1

( )2( ) 2 ( )
1 1

2 2

F F
T

p p p pp pC
u u

β β σ β β
ρ ρ

Δ + Δ + −−
= = − − − −  (14)

 
          The wall friction coefficients , 

1

'
F

C and
2

'
F

C , and the area-averaged pressure coefficients, 

01pC  and 02pC  ,  are defined by:  
 

'
' 11 1

1 2 2
11 1

4
1 1

2 2

wF
F

h

p LC
Du u

τ
ρ ρ

Δ
= =  

'
' 22 2

2 2 2
21 1

4
1 1

2 2

wF
F

h

p LC
Du u

τ
ρ ρ

Δ
= = (15)

 

01
01 2

1
1

2
p

pC
uρ

=  02
02 2

1
1

2
p

pC
uρ

=  (16)

 
After substitution in equation.(14) the total pressure loss coefficient is given by: 
 
 ( ) )()(22 0201

`´
022

2
011 12 ppFFT CCCCC −++−−−−= ββσββ  (17)

 
The reversible pressure coefficient is obtained from Bernoulli equation 
 
 2

1 2RC α α σ= −  (18)
 
where 3 3/u uα ≡ is the profile shape factor for energy.  
 
The irreversible loss coefficient CIC is now obtained combining equations (8), (14), (15) and 
(16). 
 
 2 2 ' '

1 2 1 01 2 02 2 1 01 022( ) 2 ( )IC F F F p pC C C C C Cα α σ β β σ β β= − − − − + − + + + − , (19)
 
an expression that can be re-written in the form of a sum of corrections to the reversible 
pressure coefficient 
 

 0( )IC R F pC C C C Cβ= − Δ + Δ −Δ (20)
In equation (20), CβΔ  accounts for the differences in the distribution of momentum at the two 
inlet duct sections (1 and 01) plus the corresponding difference for the two outlet duct 
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sections (02 and 2) ( 1 2C C Cβ β βΔ = Δ + Δ ), 0pCΔ  quantifies the effects of non-uniform 

pressure at the inlet and outlet sections of the cell ( ( )0 01 02p p pC C CΔ = − ) and FCΔ  represents 

the difference between the fully-developed ( FC ) and true ( '
FC ) pressure coefficients 

associated with wall friction at the inlet duct test section (1 and 01) in addition to that for  the 
outlet duct test section (2 and 02), according to:  
 
 1 2F F FC C CΔ = Δ + Δ  (21)
with 
 

'
1 1 1F F FC C CΔ = −  '

2 2 2F F FC C CΔ = −  (22)
 
Note that the fully developed friction coefficients are defined by:  
 

2
1 1

1
11 1

1 12 2
11 1

2
1 1

2 2

hF
F

h

L uf
Dp LC f

Du u

ρ

ρ ρ
Δ

= = =

2
2 2

2
222 2

2 22 2
21 1

2
1 1

2 2

hF
F

h

L vf
Dp LC f

Du u

ρ
σ

ρ ρ
Δ

= = =  
(23) 
 

 
The correction factors 0iβ  and 0p iC  are calculated by numerical integration of the velocity and 
pressure profiles, obtained from the numerical simulations, at the plane 0i (i=1,2).  The values 
of the profiles shape factor for energy,α , and momentum, β , used in the equations above at 
sections 1 and 2 are presented in the Table 3.  
 

n α1 α2 β1 β2 
1 1.63 1.55 1.22 0.48 

0.8 1.58 1.49 1.21 0.47 
0.6 1.51 1.43 1.19 0.46 
0.4 1.44 1.34 1.16 0.45 
0.2 1.32 1.23 1.12 0.43 

Table 3 Values of the profiles shape for energy and momentum in sections 1 and 2 
 
 

 
7. RESULTS AND DISCUSSION 
 
7.1 Pressure Loss Coefficient 

 
The values of the pressure loss coefficient ICC  are plotted in Fig. 8  as a function of 

Kozicki Reynolds number and shear-thinning intensity. The pressure loss coefficient obtained 
from the one-dimensional theory ICC  is the result of equation (19) where its various 
contributions were obtained from post-processing the data of the simulation with mesh 
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M30a). 
Using the Kozicki Reynolds number, a linear dependence of both IC  and ICC  with the 

Reynolds number is seen for each value of n , especially for Re*<400 and n≥ 0.6 in Fig. 8 (a). 
The plot also shows a reduction in ICC  with shear-thinning. 

  

 

Fig. 8  CIC and CI  versus Reynolds number for different values of n , filled symbols correspond to the predicted 
loss coefficient (CI), open symbols to the values from the 1D theory (CIC).  

 
Using the results of the numerical simulation, each corrective term of equation (20) ( FCΔ , 

CβΔ , RCΔ and pCΔ ) can be quantified in an attempt to explain the various contributions to 

ICC . 
 Differences between fully developed and undeveloped flow at the inlet ( 1FCΔ ) and outlet 

( 2FCΔ ) rectangular ducts are represented in Fig. 9(a) for the case of n=1.  The flow is 
dominated by inertia effects so the contribution of 1FCΔ  is small at the low Reynolds 
numbers of this investigation and decreases to negligible values as the Reynolds number 
increases. The main contribution to the total friction correction comes from 2FCΔ , in 
particular at low Reynolds numbers, because the flow in the initial part of the exit rectangular 
duct differs from a state of fully-developed flow thus. Thus 2FCΔ  is never negligible and, as 
shown below, this term is the major correction term in equation (20).  

The correction due to a non-uniform pressure distribution at the inlet and outlet sections of 
the cell, 0pCΔ , is plotted in Fig. 9(b) and is seen to be relevant at low Reynolds numbers, 
only. The contributions to 0pCΔ  from the inlet and outlet ducts are similar. 

Figure Fig. 10(a) plots all the contributions to the pressure loss coefficient and in Fig. 10 
(b) a zoom of Fig. 10 (a) is shown. At all Reynolds numbers, the most relevant contribution 

Re*

C
IC

 , 
C

I 
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comes from FCΔ  whereas the effect of CβΔ  is clearly negligible. Finally, the reversible term 

RC  is constant and can be considered negligible at low Reynolds, but becomes important as 
all the corrective contributions decrease with Reynolds numbers.  

 

  
(a) (b) 

Fig. 9  (a) ∆CF, ∆CF1, and ∆CF2 values versus Reynolds number  (n=1);  (b) ∆Cp, ∆Cp01 and ∆Cp02 values versus 
Reynolds number (n=1). 

 
 

  
(a) (b) 

Fig. 10 (a) ∆CF, ∆Cp, ∆Cβ and CR versus Reynolds number (n=1);  (b)  zoom of  ∆CF ∆Cp, ∆Cβ and CR versus 
Reynolds number (n=1) 

 
The correct irreversible coefficient ( IC ) is determined from the variation of pressure 

obtained in the numerical solution of the full Navier-Stokes equations, as follows: the energy 
equation between planes 1 and 2, considered in area of developed flow field, (see Fig. 2 (b) 
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reads as  

 2 2 2
1 1 1 1 2 2 2 2 1 2 1

1 1 1
2 2 2F F Ip u gz p v gz p p C uρα ρ ρα ρ ρ+ + = + + + Δ + Δ +  (24)

 
After simplification we obtain the following extrapolated pressures at planes 01 and 

02, respectively by fitting to pressure variations only along the fully-developed regions 

upstream and downstream of the sloped wall: 
2

1 1
01 1 1

1 2h

L uP p f
D

ρ≡ −  and 

2
2 2

02 2 2
2 2h

L vP p f
D

ρ≡ − . Then, IC  is calculated using equation (25). 

 
 

( )2 201 02
1 2 01 02 1 2

2
1

1
2

I p p
p pC C C

u
α α σ α α σ

ρ

−
= + − = − + −  (25)

with 01pC  and  02pC  representing the pressure coefficients just upstream and just downstream 
of the cell, respectively.  
 
 

n=1.0 
Re* 10 100 200 350 500 800 
CIC 1031.8655 105.6917 54.7803 32.9200 24.0147 15.8711 

CI 1393.9001 139.9126 70.3566 40.5995 28.7335 18.4278 
(CI- CIC)/ CIC 26% 24.5% 22.1% 18.9% 16.4% 13.9% 

n=0.8 
Re* 10 100 200 350 500 800 
CIC 649.3713 67.5249 35.3268 21.1972 15.3269 9.7164 
CI 852.1218 85.7277 43.2477 25.1082 17.9132 11.6629 

(CI- CIC)/ CIC 23.8% 21.2% 18.3% 15.6% 14.4% 16.7% 
n=0.6 

Re* 10 100 200 350 500 800 
CIC 415.9191 43.7754 23.0167 13.3282 8.3786 5.4450 
CI 523.5901 52.7798 26.9500 15.6266 10.2057 6.9031 

(CI- CIC)/ CIC 20.6% 17.1% 14.6% 14.7% 14.2% 21.1% 
N=0.4 

Re* 10 100 200 350 500 800 
CIC 273.8568 28.8660 14.7084 8.0409 5.4448 2..9376 
CI 324.6630 32.8601 16.7227 9.8744 7.0763 4.4917 

(CI- CIC)/ CIC 15.6% 12.2% 12.0% 18.6% 23.1% 34.6% 
N=0.2 

Re* 10 100 200 350 500 800 
CIC 189.0694 19.4643 9.6716 5.2431 3.3948 1.7389 
CI 205.5900 20.7949 10.5827 6.1822 4.1011 2..2522 

(CI- CIC)/ CIC 8.0% 6.4% 8.6% 15.2% 17.2% 22.8% 
Table 4 Predicted and corrected loss coefficient  
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Finally, we list in Table 4 all the calculated values of IC  and ICC  as a function of Re* and 
the comparison between both is plotted in Fig. 8, which constitute one of the main deliverable 
of this work. . At almost all Reynolds numbers there is a difference between of the predicted 
and the corrected of about 18%. This difference is due to the fact that we are studying a three 
dimensional flow and in the future should be necessary increase the number of cells along the 
spanwise direction. 
 

7.2 Recirculation length  

 
In this section we present the variation of the recirculation bubble length with Reynolds 

number, the shear-thinning intensity and assess for the first time some three-dimensional 
effects as we characterize its spanwise variation.  

Figure Fig. 11 (a) plots the recirculation length ( XR ) along the spanwise direction (Z/W) 
for Newtonian fluids, as a function of Reynolds number. XR is constant over most of the span, 
with the presence of the side walls eliminating the separated flow region. The width of this 
central region of constant recirculation is actually decreasing with Reynolds number 
suggesting the strong coupling between 3D effects and inertia: for Re= 100 the central region 
occupies 70% of the channel span, decreasing to 50% at Re= 800. It is interesting to notice 
also that the longest value of XR  is not at the centre plane but at the end of region where the 
3D effects are detected. This effect is small, but is noticeable especially at the larger Reynolds 
numbers. 

For the non-Newtonian fluids the picture is rather more complicated due to the combined 
effects of inertia, side walls and shear-thinning. For a constant Kozicki Reynolds number of 
200, Fig. 11b) plots the spanwise variation of XR  for different values of n .  

 

  
(a) (b) 

Fig. 11Recirculation Length (XR) along the spanwise direction; (a)Newtonian fluids (b)Re*=200 versus n. 
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 Shear-thinning is seen to reduce the length of the recirculation everywhere, except in 
the central region for the smallest value of n. The relative variation near the walls is also 
stronger than in the middle of the cell and shear-thinning also enhances the appearance of 
the peak value of XR  at Z/W≈ 0.6, thus decreasing the width of the central region of 
constant XR . This complex behavior is further enhanced at higher Reynolds numbers. The 
recirculation length at the centreplane is plotted in Fig. 12 as a function of Reynolds 
number and shear-thinning. At Re* = 800, the behavior is essentially opposite to that found 
at Re* = 200 now with the smallest separation belonging to the Newtonian fluid and the 
longest to the most shear-thinning fluid. The curves pertaining to the different fluids cross 
each other and explain this behavior. Note that the Kozicki Reynolds number is 
appropriate for fully-developed duct flow, whereas here we have a complex flow with 
three-dimensional effects, flow separation, strong changes of direction, and naturally the 
definition of an apparent viscosity inherent in the Kozicki Reynolds number hardly applies 
here. Other important conclusions from Fig. 12 are that, the recirculation length increases 
with increasing Reynolds number regardless of the shear-thinning intensity and that the 
effect of Reynolds number strengthened with shear-thinning.  
 

 
Fig. 12 Recirculation length versus Re* for several power law indexes. 

 

7.3 Three dimensional effects  

 
Three dimensional effects were already apparent in the results of the recirculation length, 

but are shown here in terms of velocity profiles. These three-dimensional effects are not 
numerical artifacts and were confirmed experimentally by (Cavadas et al.[2]) using flow 
visualization techniques. 

 

Re*
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a) b) 
Fig. 13  (a) Streamtraces in the recirculation zone; (b) Streamtraces for Re*=200 

 
This behavior can be seen in Fig. 13a) that shows streamlines drawn from the Newtonian 

numerical predictions at Re*= 200. 
The visualized three-dimensional flow inside the separated flow region was confirmed by 

the predictions and consists of a helical fluid motion along the spanwise direction from the 
centre of the cell towards the flat walls, as represented in Fig. 13a). Before reaching the flat 
side walls, the fluid in helical motion exits the separated flow region and goes into the main 
flow creating a jet near the side walls. The presence of these near-wall jets were already seen 
in Fig. 5b) at Y/H= 1.65 and X/H=0.525 downstream of the recirculation (c.f. Fig. 5a)). Figure 
Fig. 13b) shows streamlines drawn from the Newtonian numerical predictions at Re*= 200 
and confirms that the predictions were able to capture this effect. 

 

8. CONCLUSIONS 

 
Numerical predictions of the flow of Newtonian and shear-thinning fluids inside a cell, 

located at the end of a rectangular duct, were carried out using a finite volume based code. 
The differencing schemes used were all of at least second-order accuracy in uniform grids and 
the predictions compared well with experimental and analytical data where available. The 
shear-thinning fluids were modeled by the power law viscosity equation, where the power 
index varied between 0.2 and 1 and the Kozicki Reynolds number of the approaching 
rectangular duct flow varied between 100 and 800. The calculations showed the main features 
of the flow within the cell and quantified in depth the variations of the recirculation length 
and of the pressure drop coefficient. The use of a simplified 1D theory for the pressure loss, 
adapted from the theory of Oliveira and Pinho [11] for sudden expansions, allowed an 
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understanding of the causes underlying the pressure loss, as it qualitatively quantified the 
amount due to frictional loss at walls, the amount due to non-uniformities in pressure and 
changes in the velocity profiles, as well as the amount due to reversible changes. 

The pressure loss coefficient was seen to vary in inverse proportion to the Reynolds 
number as is typical of flow dominated by viscous effects, in spite of the large Reynolds 
numbers involved, for all values of n. The largest contribution to the pressure loss coefficient, 
at all Reynolds numbers, was that accounting for the difference between fully-developed and 
real wall friction at the inlet and outlet ducts, whereas the contribution associated with 
distortions of the velocity profiles at inlet and outlet ( CβΔ ) was seen to be negligible.  

In terms of the length of the separated flow region, this was seen to increase with increase 
regardless of power law index, but the behavior with shear-thinning was strongly non-
monotonic: at low Reynolds numbers the largest values of XR  pertained to Newtonian fluids, 
whereas at large Reynolds number the Newtonian fluids had the smallest recirculations. 

Three- dimensional effects were found in both the recirculation length and in the velocity 
profiles, with the numerical predictions being able to capture the features observed by flow 
visualization. 
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