
1 INTRODUCTION 
Tracking features along image sequences has been a 
long-standing problem in Computational Vision, as 
no known framework has been able to demonstrate 
its robustness to all kinds of changeling problems 
that may occur (for instance, image sequences with 
complex motions, cluttered scenes, noisy data, oc-
clusions, topology variations or high number of 
mage frames to analyze). To accomplish that goal, 
many attempts have been made. However, none is 
known to be able to automatically detect, track and 
interrupt the procedure when appropriate, indepen-
dently of the scenes’ conditions or features’ motion. 

The tracking results are not independent of the 
used methodology, and their outcome may vary ac-
cording to the used approaches. In this paper, the 
tracking of feature points is done on a stochastic 
strategy. Thus, to contribute to the purpose of ro-
bustness, we compare the results obtained with two 
stochastic filters, which can be used in a tracking 
framework. 

The Kalman Filter (KF) is a well known efficient 
recursive approach that optimally estimates the state 
of a linear dynamic system from a series of noisy 
measurements. It is composed by a set of mathemat-
ical equations that provide an efficient computation-
al mean to estimate the state of a system, in a way 
that minimizes the mean of the squared error. The 
KF is very powerful in several aspects: it supports 
estimations of past, present and even future states, 
even when the precise nature of the modeled system 

is unknown, [Welch & Bishop (2006)]. However, its 
major drawback is it linear assumption; that is, the 
KF tries to estimate the state of a discrete-time con-
trolled process that is governed by a linear stochastic 
difference equation; consequently, it does not relia-
bly overcome nonlinear occurrences. 

Therefore, to overcome KF’s drawbacks, other 
filters have been proposed, as the Unscented Kalman 
Filter (UKF). These filters endeavor to propagate 
mean and covariance information through nonlinear 
transformations. Regarding the UKF, the authors 
present it as more accurate, easier to implement, and 
indicate that it uses the same order of computation as 
the linearization, [Julier & Uhlmann (2004)]. In this 
work, we will present and analyze the results ob-
tained by these filters in a tracking framework. 
 

1.1 Related Work 
The Kalman Filter has been widely used, but to sur-
pass its limitation several approaches have been sug-
gested. For instance, the Extended Kalman Filter 
(EKF) is probably the most commonly used estima-
tion algorithm for nonlinear systems. It linearizes 
about the current mean and covariance. However, 
more than 35 years of experience in the estimation 
community have shown that is difficult to imple-
ment, complicated to tune, and only reliable for sys-
tems that are almost linear on the time scale of the 
updates, [Julier & Uhlmann (2004)]. 
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A central and crucial operation performed in the 
KF is the propagation of a Gaussian Random Varia-
ble (GRV) through the system’s dynamics. In the 
EKF, the state distribution is approximated by a 
GRV, which is then propagated analytically through 
the first-order linearization of the nonlinear system. 
This can introduce significant errors in the true post-
erior mean and covariance of the transformed GRV, 
which may lead to sub-optimal performance and 
sometimes divergence of the filter. 

Other filters have been proposed, such as the Ite-
rated Extended Kalman Filter (IEKF), the Central 
Difference Filter (CDF) and the first order Divided 
Difference Filter. The conventional EKF and IEKF 
algorithms do not take the linearization errors into 
account, which leads to inconsistent state estimates 
when these errors cannot be neglected, [Lefebvre et 
al. (2003)]. 

The UKF addresses that problem by using a de-
terministic sampling approach. The state distribution 
is again approximated by a GRV, which is 
represented using a set of carefully chosen sample 
points. These sample points completely capture the 
true mean and covariance of the GRV, and when 
propagated through the true nonlinear system, also 
approach the posterior mean and covariance accu-
rately to the third order (Taylor series expansion) for 
any nonlinearity. The EKF, in contrast, only achieves 
first order accuracy. Remarkably, the computational 
complexity of the UKF is of the same order as the 
EKF’s, [Wan & Van Der Merwe (2000)]. 

A variation of the original UKF algorithm (called 
the Reduced Sigma Point Filters [Julier & Uhlmann 
(2002)]) chooses only 1n +  sampling points. This 
means that the linear regression through those points 
is exact; therefore, it does not take the linearization 
errors into account. Hence, as was the case for the 
(I)EKF, the state estimates are generally inconsis-
tent, [Lefebvre, Bruyninckx and De Schutter 
(2003)]. 

An arising estimation model is the Particle Filter 
(PF): the key idea is to represent the posterior densi-
ty function by a set of random samples with asso-
ciated weights and to compute estimates based on 
these estimates and weights. Comparing PF to KF, 
the former has a more robust performance in the case 
of non-Gaussianity and non-linearity due to the si-
mulated posterior distribution. In a PF, a large num-
ber of particles are desirable to represent the post-
erior distribution, especially in situations where new 
measurements appear in the tail of the prior, or if the 
likelihood is strongly peaked. To solve the computa-
tional problem raised by the large particle numbers 
that can be generated, for example, in [MacCormick 
& Isard (2000)] a partitioned sampling is proposed, 
which requires that the state-space can be sliced. 
With the same purpose, Sullivan et al., in [Sullivan 
et al. (1999)], proposed layered sampling using mul-
tiscale processing of images. It turns out that these 

solutions significantly reduce the computational 
costs, but in-depth efforts are desirable for better ef-
ficiency, [Zhou et al. (2009)]. 

In [Merwe et al. (2000)] an Unscented Particle 
Filter (UPF) is introduced. The UKF allows the PF 
to incorporate the latest observations into a prior up-
dating routine. In addition, the UKF generates pro-
posal distributions that match the true posterior more 
closely and also has the capability of generating 
heavier tailed distributions than the well known 
EKF. Consequently, the convergence results predict 
that UPF should outperform standard PF, EKF and 
UKF. However, its computational cost can also be 
questioned. 

Other comparison studies between predictive fil-
ters have been published; for example, in [LaViola 
(2003)] the performance of the UKF and EKF is 
compared towards improving human head and hand 
tracking using quaternions, and in [Lefebvre, Bruy-
ninckx and De Schutter (2003)] the process and 
measurement update performances are studied sepa-
rately, instead of analyzing their overall behavior of 
some KF variants. 

Along the last years, numerous applications of 
state estimation have been reported, such as in sen-
sor fusion and navigation, [Metzger et al. (2005)], 
state estimation for chemical processes, [Vachhani et 
al. (2005)], weather forecasting, [Carme et al. 
(2001)], and training of neural networks [Rios Neto 
(1997)]. 

1.2 Adopted Tracking Framework 
In the applied tracking framework, the measured da-
ta is integrated using optimization upon the corres-
pondence step. The proposed criterion minimizes the 
global matching cost based on the Mahalanobis dis-
tance, under the assumption that the matching cost is 
superior to a threshold value. To deal with the ap-
pearance and disappearance of features during the 
tracking process a management model is considered, 
[Pinho et al. (2007)]. 

1.3 Paper Overview 
This paper is organized as follows. In the next sec-
tions, a brief introduction is made to KF and UKF. 
In section 4, some experimental results are presented 
with synthetic and real image sequences. In the last 
section, the main conclusions are held as well as 
perspectives of future work. 

2 THE KALMAN FILTER 
The equations of the KF fall into main two groups: 
time update (or prediction) and measurement update 
(or correction) equations. The time update stage is 
responsible for projecting forward (in time) the cur-
rent state and error covariance to obtain the a priori 



estimates for the next time step. The measurement 
update phase is responsible for the feedback (i.e. for 
incorporating a new measurement into the a priori 
estimation to obtain an improved a posteriori ap-
proximation), [Welch & Bishop (2006)]. 

The prediction step is based on the Chapman-
Kolmogorov equation for a first order Markov 
process: 

1x xtt
− += Φ − , (1) 

where Φ  relates the system state 1xt
+
−  at the previous 

time step 1t −  to the state -xt  at the current step t . 
The superscripts +  and −  indicate if the measure-
ment data have been or not considered, respectively. 
The related uncertainty is given by: 

1
TP P Qt t

− += Φ Φ +− , (2) 

where P  is the covariance matrix and Q  models the 
process noise. 

The correction equations that update the predicted 
estimations upon the incorporation of new ut  mea-
surements are given by: 

1T TK P H HP H Rt tt t
−− − = +   , (3) 

x x K u Hxt tt t t
+ − − = + −   , (4) 

P I K H Ptt t
+ − = −  , (5) 

where K  is chosen to be the gain that minimizes the 
a posteriori error covariance equation, H  processes 
the coordinates transformation between the predicted 
space and the measurement space, Rt  is the mea-
surement noise involved, and I  is the identity ma-
trix. 

3 THE UNSCENTED KALMAN FILTER 
As formerly mentioned the UKF addresses the major 
shortcomings of the EKF and is more appropriate for 
nonlinear movement. It considers a set of sigma-
points from the distribution of the state vector x  at 
the beginning of the time step. Those points are all 
propagated through true nonlinearity, and the para-
meters of the Gaussian approximation are then re-
estimated. If these sigma-points are appropriately 
chosen, it can be shown that the mean and cova-
riance of x  at the end of the time step are p th-order 
accurate for any nonlinearity, [Mariani & Ghisi 
(2007)]. The order p  of accuracy depends primarily 
on the number of sigma-points. In general, 2 1L +  
points are considered, being L  the dimension of the 
state vector, although other proposals have been 
made with fewer points (see, for instance, [Julier & 
Uhlmann (2002)]). 

In the prediction phase, the sigma-points 
{ },S wi ii χ= , 0, ..., 2i L=  are obtained using the un-

scented transformation: 
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where iw  is the weight associated with the i th sig-
ma-point such that: 

2 10
L wii∑ == , (9) 

and λ  is a scaling parameter in order that 
( )( )L Px iλ+  is the i th column (or row) of the square 

root of the weighted covariance matrix, ( )L Pxλ+ . The 
values of α  and β  parameters should be deter-
mined experimentally. 

Each sigma point is now propagated through the 
nonlinear function: 

( )Y g ii χ= , (10) 

with 0, ..., 2i L= , and the approximated mean and co-
variance of y  are as follows: 
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The measurement update equations are given by: 
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( )iy y K Z z= + − , (18) 

T
zzP P KP K= − . (19) 

The computational cost of the above algorithm is 
( )3nϑ , being the most expensive operations the 

computation of the matrix square root and the outer 
products required to obtain the covariance of the 
projected sigma points. 

4 EXPERIMENTAL RESULTS 
The first example considers a synthetic sequence 

of eight images of 300x300 pixels, in which the cen-
tre of a square is moving according to a linear model 
given by (in pixels): 
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The tracking error, that is, the differences be-
tween the estimated and measured features’ posi-
tions, along the sequence is represented in Figure 1. 
In that figure, one can notice that the UKF gets bet-
ter estimations for the undergoing motion, but as 
time goes by KF tends to draw near UKF results. 

 

Figure 1. Tracking error associated to a point that undergoes 
the linear motion according to (20). 

The second example is an image sequence com-
posed by 6 frames with the same dimensions of the 
previous example, also synthetically built (Figures 2 
and 3). In those images, the + crosses represent the 
filters’ prediction, the x crosses in the centre of the 
tracked squares represent the accurate measurements 
and the x crosses between the other two represent the 
corrected results after the measurement incorpora-
tion. But, in this case, the motion of the tracked fea-
ture is defined by a nonlinear model (in pixels): 
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In this second example, the tracking error, 
represented in Figure 4 shows that as increases the 
features’ distance between frames, the UKF gets 
more accurate results than the KF, which can also be 
noticed in the obtained images, some of which 
represented in Figure 3. 

In the third example, a real sequence of 30 images 
is considered, where three mice are tracked in im-
ages of 320x240 pixels. Several difficulties arise in 
tracking the center of the mice’s bodies in the ac-
quired images. One of which comprehends the fast 
movement of the mice, as they may go back and 
forth changing drastically their movement direction, 
or may move very quickly along one direction. Fig-
ure 5 represents the tracking results obtained in 3 
frames, at which the upper mouse changes severely 
its movement direction. However, as by visual ob-
servation it is difficult to distinguish accurately the 
shown images results, in Figure 6 the tracking posi-
tion error of the mice is represented. Hence, from 
Figure 6, one can notice that in general UKF (results 
represented by dashed lines) achieves better ap-
proaches to the undergoing motion; nevertheless, in 
the case of the third mouse the results obtained by 
each filter are very similar. Moreover, as tracking 
was successfully accomplished by both filters, main-
ly due to the used association approach, taking into 
account the computational cost related to the un-
scented transformation, one can think that in this 
case KF could be more advantageous. 
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Figure 2. Tracking a point (the centre of the square) in a nonli-
near sequence using KF. 
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Figure 3. Tracking results of the last frames of sequence in Fig-
ure 2 using UKF. 

 

 
Figure 4. Error involved in the nonlinear tracking of the square 
shown in Figure 2. 
 

Figure 5. Tracking results for frames 15, 16 and 17 of a 30 im-
age sequence obtained using KF and UKF. 

5  CONCLUSIONS AND FUTURE WORK 
In this paper, we have analyzed the influence of the 
used filter (KF and UKF) in the tracking of points 
undergoing linear and non-linear motions. In this 

comparison one noticed that if the movement is 
highly nonlinear, then the UKF is worth its computa-
tional load; otherwise, the KF with the undertaken 
matching methodology suits reasonably the tracking 
process with lower computational requirements. 

Hence, the decision to use KF or UKF in this 
tracking framework is application dependent: if the 
computational requirements are strongly constrained, 
then KF can be considered with a good matching 
strategy; when such constrains are not presented, 
then UKF should be considered as it generally ob-
tains more robust tracking results. 
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Figure 6. Errors of the predicted position of the mice’s centre 
point motion in a real image sequence. 
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