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Abstract: This paper presents a new methodology to 
establish the best global match of objects’ contours in 
images. The first step is the extraction of the sets of 
ordered points that define the objects’ contours. Then, by 
using the curvature value and its distance to the 
corresponded centroid for each point, an affinity matrix is 
built. This matrix contains information of the cost for all 
possible matches between the two sets of ordered points. 
Then, to determine the desired one-to-one global 
matching, an assignment algorithm based on dynamic 
programming is used. This algorithm establishes the 
global matching of the minimum global cost that 
preserves the circular order of the contours’ points. 
Additionally, a methodology to estimate the similarity 
transformation that best aligns the matched contours is 
also presented. This methodology uses the matching 
information which was previously obtained, in addition to 
a statistical process to estimate the parameters of the 
similarity transformation in question. In order to validate 
the proposed matching methodology, its results are 
compared to those obtained by the geometric modeling 
approach proposed by Shapiro and Brady who are well 
known in this domain. 

Keywords: Image analysis, alignment, registration, 
geometric modeling, dynamic programming. 

1 Introduction 

As far as Computational Vision is concerned, one of the 
main and more complex problems encountered is the 
alignment and recognition of objects represented in 
images. These tasks are very important in several 
applications of Computational Vision as is the motion 
analysis of objects along image sequences, the quality 

inspection of objects from images, the objects’ 
recognition from images, the evolution analysis of 
patients’ diseases from medical images, etc. The 
complexity involved is essentially due to the different 
projections that objects can assume in images; for 
instance, due to the existence of varied cameras 
viewpoints, or even as a result of deformations that the 
objects may undergo. 
To measure the similarity between two objects 
represented in images, or between two configurations of 
an object, it is possible to resort to techniques based on 
the signals used to represent those objects. In these 
techniques, images are regarded as being 2D signals that 
characterize the gray level (or color) of the images’ 
pixels. Examples of such techniques are those based on 
Fourier or wavelet transforms. For instance, in [Daugman 
(2003)] a method based on Gabor wavelets is used to 
identify persons through the recognition of their iris, and 
in [Orchard, 2007] medical images from multimodal 
sources are aligned using an exhaustive search procedure 
based on the Fourier transform. 
Another class of techniques used to measure the similarity 
between two objects in images is based on the analysis of 
their shapes. To apply these techniques, one must begin 
by extracting features from the objects’ shapes, such as a 
group of points, segments, boundaries, surfaces or 
skeletons. In Computational Vision, this task is usually 
known as object segmentation. 
There are several techniques to obtain  the segmentation 
of objects represented in images; for example, those based 
on: image gradient, [Canny (1986)], deformable models, 
[Kass, Witkin and Terzopoulos (1988), Cootes and Taylor 
(1992), Xu and Prince (1998), Tavares, Carvalho, 
Oliveira, Vasconcelos, Gonçalves and Pinho (2007), 
Vasconcelos and Tavares (2008)]; level set methods, 
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[Wang and Wang (2006), Wang, Lim, Khoo and Wang 
(2007a), Wang, Lim, Khoo and Wang (2007b)]; as well 
as physical modeling, [Gonçalves, Tavares and Jorge 
(2008)]. For a review on object segmentation see, for 
example, [Zhang (2001), Zhang and Lu (2004), Gonzalez 
and Wood (2008), Ma, Tavares, Jorge and Mascarenhas 
(2009)]. 
Frequently, following the segmentation of the objects 
from the input images, the matching between the 
extracted objects’ features are then accomplished. Then, 
some techniques use the matching found in order to 
determine the objects’ similarity by attributing a cost to 
each correspondence found. However, other techniques 
begin by trying to align the objects, based on the above 
mentioned matching process and, subsequently proceed to 
determine their similarity by comparing the aligned 
objects. Usually, this image alignment is referred to as 
image registration. 
The problem in determining the matching between 
objects’ feature points, has resulted in the appearance of 
several approaches that try to achieve the best possible 
global matching. To achieve this goal, one can use, for 
example: spatial information of the intensity gradient, 
[Lucas and Kanade (1981)]; modal matching, [Scot and 
Longuet-Higgins (1991), Shapiro and Brady (1992), 
Sclaroff and Pentland (1995), Tavares (2000), Carcassoni 
and Hancock (2003), Bastos and Tavares (2006)]; shape 
context, [Belongie, Malik and Puzicha (2002)]; shape 
signature, [Otterloo (1991), Cohen and Guibas (1997): 
Oliveira and Tavares (2007), Gonzalez and Wood (2008, 
Oliveira (2008)]; or probabilistic criteria, [Moisan and 
Bérenger (2004), Keren (2009)]. 
When the similarity of the objects’ feature points is 
quantified in the form of a cost matrix, the matching 
problem can be considered as being an optimization 
problem, and assignment algorithms are thus used. 
Examples of optimal approaches for this purpose are: 
linear programming, [Bastos and Tavares (2006)]; graph 
search, [Roy and Cox (1998)]; bipartite graph matching, 
[Fielding and Kam (2000)]; concave optimization, 
[Maciel and Costeira (2003)] and dynamic programming, 
[Scott and Nowak (2006), Oliveira and Tavares (2008)]. 
Non-optimal approaches include greedy algorithms, [Wu 
and Leou (1995)] and simulated annealing, [Starink and 
Backer (1995)]. 
This paper begins by referring to previous work which 
has been developed in order to determine the best global 
matching between objects’ feature points. Then, a novel 
methodology is proposed to build a robust affinity matrix 
by using the curvature value and its distance to the 
correspond centroid (CDCI) from each point that is to be 
matched. Following this, comparative results between the 
proposed methodology and the geometrical approach 
suggested by Shapiro and Brady, [Shapiro and Brady 
(1992)], are presented. Our preference in relation to the 

methodology used by Shapiro and Brady as a reference 
approach is mainly due to the following facts: it is widely 
known in the image analysis domain, it presents a 
reasonable computational cost and it usually produces 
good matching results. Next, a methodology is presented 
to estimate the similarity transformation that best aligns 
objects which have been previously matched. In order to 
achieve this, this methodology defines the contours in the 
complex plane and then, by using the matching 
information and statistical processing, it estimates the 
similarity transformation parameters. Finally, in the final 
section, some results and conclusions are presented. 

2 Previous work 

This work appears as a sequence to the projects described 
in [Tavares (2000), Tavares, Barbosa and Padilha (2000)] 
which considered matching methodologies for 
characteristic points in images based on physical 
modeling or geometric modeling complemented with 
modal matching, [Shapiro and Brady (1992), Sclaroff and 
Pentland (1995)]. Briefly, the methodologies were used to 
determine the matching between objects' characteristic 
points, through the construction of an affinity or cost 
matrix. Next, the cost matrix obtained was used in the 
process of obtaining the desired correspondences by using 
a pure local searching approach: one point is just matched 
with its best candidate if in the case of this second point 
the first one is also the best matching candidate. 
In [Bastos and Tavares (2006)], the work previously 
described in [Tavares (2000), Tavares, Barbosa and 
Padilha (2000)] was improved by taking into 
consideration optimizations methods in the establishment 
of the desired matching. Thus, the matching was 
formulated as a classic assignment problem and solved by 
considering three traditional algorithms, [Dell’ Amico and 
Tooth (2000)]: the usual Hungarian method; the Simplex 
method for Flow Problems, [Löbel (2000)], and the 
LAPm, [Volgenant (1996)]. The results obtained were 
considerably better than those obtained using the original 
local approach; however, crossed correspondences still 
appeared very frequently, [Bastos and Tavares (2006)]. 
In [Oliveira and Tavares (2008)] an assignment algorithm 
with order restriction based on dynamic programming 
was applied to the previously built affinity matrices by 
using the geometrical modeling suggested by Shapiro and 
Brady, [Shapiro and Brady (1992)]. This new 
optimization algorithm successfully solves the crossed 
matches problem and considerably improves the 
execution time of the complete matching process. 
However, the execution time is still high for some 
possible applications; essentially due to the fact that the 
methodology used by Shapiro and Brady needs to solve 
an eigenvalue/eigenvector problem from two modeling 
matrices that can assume large dimensions ( mmnn ×+× , 
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with n and m being the numbers of the objects’ points to 
be matched). Additionally, the above mentioned 
methodology is very sensible to the objects’ shapes and 
also to some of the considered parameters, such as the 
eigenvectors’ signals and the number of eigenvectors to 
be used in the construction of the cost matrix. 
Thus, the principal goal of this work was to develop a 
faster, more efficient and robust methodology to obtain a 
novel affinity matrix that, when complemented to an 
optimization algorithm which preserves the circular order 
of the objects’ contour points, allows for the 
establishment of the best global matching between 
objects’ contour points without having crossed 
correspondences. 

3 Matching methodology 

Transformations of similarity, that is, geometric 
transformations involving translations, rotations and 
scaling, can originate changes in an object’s position, 
dimension and orientation, whilst always maintaining its 
shape. Moreover, if the shapes involved are polygons, 
then the known property: two polygons are similar (have 
the same shape) if the corresponding angles have the 
same amplitude and the lengths of the corresponding 
sides are directly proportional, can be used to decide if 
they are similar and also to establish their matching. The 
adopted matching methodology considers this property to 
build a cost matrix that quantifies the similarity between 
the contour points of two objects. One should notice that 
if a discrete contour is closed, then it can be considered as 
being a polygon. 

3.1 Cost matrix construction 

Let contour 1 and contour 2 represent two contours to be 
matched, defined by a sequence of n and m ordered 
points, respectively. For each contour, a sequence of the 
angles’ amplitude associated to its points can be 
established. Thus, point iP  of contour 1 corresponds the 
angle’s amplitude iα  and point jP'  of contour 2 

corresponds the angles’ amplitude jθ . 

Now, consider a contour and three of its consecutive 
points kiP − , iP  and kiP + , where k is an integer positive 
number. Here, it is defined as the curvature angle 
associated with point iP  the angle whose vertex is iP , 
one side contains point kiP −  and the other side contains 
point kiP + . Three points define two angles, the first 
whose amplitude is lower or equal to 180º and another 
whose amplitude is greater or equal to 180º. To build the 
sequences of angles, the angle’ amplitude defined in 
counter clockwise direction and from the line segment 
[ ]kii PP −  to the line segment [ ]kii PP +  is taken into 

consideration. 
To improve the results, the value of parameter k could be 
adjusted, depending on the point sets of the contours. For 
instance, if the contours are defined by few points, then 
small values of k (near 1) provide better results. On the 
other hand, if the contours are defined by a larger number 
of points, then the value of k should be increased. The 
experimental results which will be presented were 
obtained by considering 10=k , due to the fact that this 
value revealed to be adequate in our preliminaries 
experiments. Additionally, one verified that values lower 
than 10 and not significantly higher than this value do not 
originate considerable differences in the matches found. 
Therefore, an angular cost matrix, A, can be defined in 
such a way that each element ija  represents the 

difference between the angles’ amplitude iα  of contour 1 
and the angles’ amplitude jθ  of contour 2: 

jiija θα −= . 

Matrix A, when used as cost matrix together with an 
optimization algorithm that preserves the contours’ point 
order in the matching, can originate suitable matches if 
the two contours are defined by few points and the 
numbers of points that define them are approximately 
equal. However, in other cases, the matching results can 
be unstable, [Oliveira (2008)]. Thus, along with the 
curvature information, it is necessary to consider more 
relevant information about the objects to be matched in 
order to suppress the instability verified. 
As has been previously referred, if two objects are 
similar, then the lengths of homologous elements are 
directly proportional. Thus, if the scaling effect is 
suppressed, the distance between two elements in an 
object is equal to the distance of the homologous elements 
in the other associated object. Here, this property is used 
to define a new cost matrix, D, based on the distance of 
the contours objects’ points to the correspondent centroid. 
Let’s take the following two contours, contour 1 defined 
by n points and contour 2 defined by m points into 
consideration. For contour 1, let 1dX  represent the 
weighted average of the distances of its points to its 
centroid with coordinates ( )cc yx , , as defined in [Oliveira 
(2008)]. Now, consider the sequence of distances to the 
centroid of the contour 1’s points: ndddd 1...,,1,1,1 321 , 
where for each point iP  with coordinates ( )ii yx , : 

( ) ( ) 1
221 dcicii Xyyxxd −+−= . 

Based on the same principle, the sequence of distances to 
the centroid of contour 2 can be established: 

mdddd 2...,,2,2,2 321 . 



 4 

Next, a new matrix D can be defined by calculating the 
differences between the previously defined two 
sequences. Therefore, each element ijd  of matrix D is: 

jiij ddd 21 −= . 

Finally, by adding the information of angular costs, 
represented in matrix A and the information of the 
distance to the centroid represented in matrix D, the final 
cost matrix C can be defined: 

( ) AXwDwC ××−+×= −11 , 

where [ ]1,0∈w  represents the weight attributed to the 
distance to the centroid and X  is the average of the 
curvature angles of the contour defined by fewer points. 
Seeing that all elements of matrix D vary around 1 (one) 
whereas the elements of matrix A do not, matrix A is 
multiplied by the factor 1−X . Consequently, the elements 
of matrix ( )AX ×−1  also vary around 1 (one) and, in this 
way, the effect of the parameter w is more stable. 
In summary, the distance to the centroid information 
included in matrix C gives stability to the global matching 
and the curvature information improves the local matches, 
[Oliveira (2008)]. Moreover, each element ijc  of matrix 
C represents the match cost between point i of contour 1 
and point j of contour 2. Furthermore, the bigger its value 
is, the smaller is the affinity between the respective 
points. 
After having done several preliminary experiments which 
consider contours of different dimensions and shapes, the 
following can be concluded: (a) When the contours are 
defined by a reduce number of points and the difference 
between the number of points that defines them is 
insignificant, the low value of parameter w, which reflects 
a reduced influence of the distance to centroid 
information and a high influence of the curvature 
information, provides better results. (b) When the 
contours are defined by a large number of points or there 
is a considerable difference between the numbers of 
points that define them, a value of parameter w near 1 
(one), which represents the high influence of the distance 
to centroid information and the low influence of curvature 
information, provides better results. 
The results presented in this paper were obtained by using 

8.0=w ; because of the fact that, in the experiments 
done, this value was proven to be a good compromise 
between the effect of the curvature information and the 
distance to centroid information. However, in a number of 
other particular applications, different values of w 
combined with various values of k, could originate better 
results. 
The computational complexity of all the processes 
involved in the building of the cost matrix C is 

( )mnrO ×× , where r is a constant value. For the sake of 
simplicity, one can only consider ( )mnO × . In all the 
references to computational complexity throughout this 
paper this simplification has been applied. 

3.2  Optimal global matching 

To determine the global matching based on the previously 
defined cost matrix, a cost optimization algorithm has 
been used. Due to the fact that the order of the contours’ 
points must be preserved, in order to avoid crossed 
matches, an optimization algorithm that respects this 
restriction should be employed. Let us consider a cost 
matrix C, of dimension mn× , representing the matching 
cost of the n points of contour 1 with the m points of 
contour 2. The matching problem could be formulated as: 
- Decision variables: 

[ ]ijxX = , where: 





=
otherwise

jmatchesi
xij ,0

)2contour(point1)contour(point if,1 . 

- Objective function: 

∑∑
= =

=
n

i

m

j
ijijcxf

1 1
min ; 

- Constrains: 

• ∑
=

==
m

j
ij nix

1

,...,2,1,1 ; 

• ∑
=

=≤
n

i
ij mjx

1

,...,2,1,1 ; 

• The matching must preserve the circular order. 
 
In order to solve this problem, we have chosen the 
algorithm based on dynamic programming proposed in 
[Oliveira and Tavares (2008)], because it satisfies all the 
above mentioned conditions in addition to the fact that it 
is very fast. In summary, the algorithm selected 
determines the global matching of type one-to-one that 
minimizes the sum of all individual matches. If a contour 
is defined by n points and the other by m points, with 

mn ≤ , only n matches are established, thus excluding the 
( )nm −  points of the contour defined by a greater number 
of points from the matching. Its computational 
complexity is ( )( )1+−×× nmmnO , [Oliveira and 
Tavares (2008)]. 
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4 Similarity transformation estimation 

The process of image alignment, usually referred to as 
image registration, is fundamental in many applications 
such as in medical imaging and image recognition. 
A commonly used methodology to align two objects in 
images consists of applying a series of transformations to 
one of the original images in order to increase the 
similarity between them. Whenever it is impossible to 
further enhance the similarity found between the images, 
or in the case of the convergence criteria being satisfied, 
the objects are considered to be aligned. 
Frequently, the alignment problem is associated with the 
matching problem. Thus, in order to align the objects the 
matching between their homologous elements must first 
be established. Then, based on the matches found, the 
parameters of an alignment function can be estimated. 
The methodology which has been proposed is of this 
class: it only considers similarity transformations, which 
are solely based on rotations, scaling and translations. 

4.1 Local rotation, scaling and translation 

Let [ ]AB  and [ ]'' BA  represent two straight line segments 
in the plane. When aiming to determine the similarity 
transformation T that aligns these two segments, the 
following condition must be verified: 

[ ]( ) [ ]'' BAABT = . 

Without loss of generality, we can assume that ( ) 'AAT =  
and ( ) 'BBT = . 

A point on a plane can be represented in a unique way by 
a complex number. Thus, considering the segments 
defined in the complex plane C, the similarity 
transformation T can be defined as a function that applies 
a scaling and a rotation around the origin 
point, iO 00 += , followed by a translation. Thus, 
mathematically, T can be defined as: 

uwzzz
T

+=
→

'
:


CC
, 

where w and u are complex numbers. In this way, through 
the definition of T, two independent simultaneous 
equations can be defined: 

( )
( ) 




=+
=+

⇔




=
=

'
'

'
'

BuwB
AuwA

BBT
AAT

. 

By solving these simultaneous equations in order to find u 
and w, the parameters of function T can be determined. 
The absolute value of w represents the scaling and its 
argument represents the rotation angle amplitude. ( )uRe  

and ( )uIm  represent the translation in the x-axis and y-
axis directions, respectively. 

4.2 Global rotation, scaling and translation 

Supposing that a global matching of type one-to-one had 
already been established, and it was defined by a function 
g like the following one (given by column): 









=

n

n

PPP
PPP

g
'...''

...

21

21 , 

where the first row represents the points of contour 1, the 
second row represents the corresponding points of 
contour 2 and n is the number of singular matches 
established; that is, the number of the points of the 
contour which has been defined by fewer points. 
If a contour is defined by n points, then it is possible to 
define, at the upmost, ( ) 2/2 nn −  distinct line segments 
connecting its points. Thus, for each segment defined by 
two points of contour 1, the transformation of similarity T 
that transforms it into the corresponding segment of 
contour 2 is determined, and, at the upmost, ( ) 2/2 nn −  
distinct values for local scaling, rotation angle and 
translation vector can be obtained. 
In this paper, in order to estimate the global parameters of 
the similarity transformation involved between two 
previously matched contours, a statistical processing of 
the local parameters determined has been made. First, the 
outsider values are excluded; then, the averages values of 
the rotation angles, scales and translations are calculated 
by using the remaining values. We consider that a value 

ix  is an outsider, if σ>− ixX , where X  is the average 

of all values and σ  is the standard deviation. 
The option for average solutions was a consequence of its 
simplicity and also because good results in the 
preliminaries experiments that were done were always 
achieved. However, other statistical approaches could be 
considered, possibly originating different results. Notice 
that the elimination of the outsiders is important, because 
the average is a statistic parameter that is very sensitive to 
extreme values. Moreover, the contour pairs which have 
been used have a significant non-similarity component 
between them; thus one may expect some local 
transformations values to be very different to the global 
transformation parameters. 
The computational complexity of the methodology 
developed to estimate the similarity transformation 
between two previously matched contours is equal to 
( )2nO , n being the number of points matched. 
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5 Results and conclusions 

So as to validate the proposed matching algorithm, based 
on CDCI (curvature and distance to centroid information), 
its results were compared with those obtained by using 
the geometrical modeling and modal matching proposed 
by Shapiro and Brady, [Shapiro and Brady (1992)]. As 
has been previously referred, the reference methodology 
that was chosen was mainly due to the fact that it is 
widely known in the image analysis domain, it is not very 
demanding in computational terms, in particular in terms 
of execution speed, and the fact that it usually produces 
good matching results. Before presenting the results 
obtained, we provide a brief summary of Shapiro and 
Brady's methodology in the next subsection. 

5.1 Shapiro and Brady's methodology 

Briefly, the first step is to build two squared proximity 
matrices, 1H  and 2H , also called shape matrices, one 
for each contour which is to be matched, defined by the n 
and m points, respectively. To build the matrix 1H  of 
contour 1, the Gaussian-weighted distances between all 
of its points should be calculated. Thus, each element ijh  

of 1H  is given by: 

2
1

2 2σijr
ij eh −= , 

where 
22

jiij xxr −= , ix  and jx  are points of contour 

1 and 1σ  is a parameter that depends on the contour 1 
shape and controls the interaction between its points. In 
an analogous way, the matrix 2H  is built for contour 2. 

To determine the best value of iσ  ( )2,1=i , several 
preliminary experiments were carried out. Usually, the 
value 2ii d=σ , where id  is the average distance 
between all points of the contour i, was the one which 
originated the best matching results. Thus, the results 
presented by this paper were obtained by using this value. 
The two proximity matrices, 1H  and 2H , are real, 
squared and symmetric. Thus, all eigenvalues are real and 
all eigenvectors, commonly called modes, are orthogonal. 
To make their singular value decomposition (SVD), an 
algorithm presented in [Press, Teukolsky, Vetterling and 
Flannery (2002)] based on the Jacobi Transformations of 
a Symmetric Matrix was used. 
The Jacobi method is absolutely foolproof for all real 
symmetric matrices, but for large matrices it is slower 
than the QR method, for instance, [Press, Teukolsky, 
Vetterling and Flannery (2002)]. However, the Jacobi 
algorithm is much simpler than the more efficient 
methods. 

The number of operations involved in the implemented 
Jacobi routine varies from 318n  to 330n , [Press, 
Teukolsky, Vetterling and Flannery (2002)]. In a 
simplified manner, to make the SVD of the two matrices 

1H  and 2H , the total complexity of the algorithm is 

( )33 mnO + . 

The sign of each eigenvector is not unique, seeing that by 
switching its signal the orthogonallity of the basis is not 
violated. However, it is vital that both sets of eigenvectors 
have consistent directions, since they are used to build the 
affinity matrix Z. Thus, a signal correction algorithm is 
needed. 
In order to choose the signal of each eigenvectors, the 
approach presented in [Shapiro (1991)] was implemented. 
Briefly, it can be described as follows: Let 1V  and 2V  
represent the sets of unitary length eigenvectors of 
matrices 1H  and 2H , respectively, considering that the 
eigenvectors are ordered according to the descendent 
order of the correspondent eigenvalues. Next, 1V  is 
considered to be the reference basis and the axes in 2V  
are oriented one at a time, by choosing the direction (that 
is, the vector’s signal) for each one that maximizes the 
alignment of the two vectors’ features set. Details of this 
approach can be seen in [Shapiro (1991)]. 
Finally, the affinity matrix Z is built by measuring the 
squared Euclidean distance between the features’ vectors. 
In the implementation carried out by this study, only 25% 
of the eigenvectors were used, because this value was 
proved to be efficient in many cases, [Tavares (2000)]. 
Considering k to be the number of eigenvectors used, 

( )iv p,1  the i-element of p-vector from the ordered set 1V  

and ( )jv q,2  the j-element of q-vector from the ordered set 

2V , each ijz  of matrix Z is given by: 

( ) ( )( )∑
=

−=
k

r
rrij jvivz

1

2
,2,1 . 

The values of each ijz  vary between 0 (zero) and 4 (four). 
A perfect match is indicated by the value 0 (zero), while a 
value of 4 (four) indicates an inappropriate match. The 
computational complexity involved in the building of the 
matrix Z is ( )kmnO ×× . 
As has been previously referred, to obtain the global 
matching that minimizes the sum of all matches, 
considering Z as the cost matrix, the algorithm based on 
dynamic programming proposed in [Oliveira and Tavares 
(2008)] was used. 
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5.2 Experimental results 

The main goal of this work was the evaluation of the 
quality of the matches found based on CDCI by 
comparing the results obtained with those resulting from 
the use of the cost matrix established by geometric 
modeling as proposed by Shapiro and Brady. To make the 
comparison between the two matching methodologies 
possible, the same algorithms for both methodologies 
were used, except for those used to build the cost 
matrices. The algorithms were implemented in C++ 
language, using Microsoft Visual Studio 6. All the 
experiments were carried out in a PC with an AMD 
Turion64 microprocessor at 2.0GHz, with 1.0GB of RAM 
and running Microsoft Windows XP. 
In the following experiments which will be presented, the 
contours used were extracted from the images available in 
the database "silhouette database(1032 shapes)", 
organized by the Laboratory for Engineering 
Man/Machine System (LEMS). Two image classes were 
considered: class "hammer", with a total of 32 images, 
and class "tool", with a total of 41 images. 
For the images used, the contours extraction was easy and 
no special segmentation technique was used. The flowed 
segmentation approach can be divided in three steps: first, 
the images were binarized; then, the objects’ inner points 

were eliminated; and finally, the contours’ points were 
ordered through the use of a contour tracking algorithm. 
Shapiro and Brady's methodology is based on the singular 
value decomposition of the proximity matrices of the two 
contours to be matched. Thus, for large proximity 
matrices, this methodology requires a high computational 
effort, even if a faster algorithm is used to solve the 
associated eigenvalues/eigenvector problem. Thus, in the 
comparisons that have been carried out, only contours 
defined by less than 200 points were used. 
In Table 1, some examples of the matches found by using 
the cost matrix based on CDCI as well as by using the 
cost matrix based on the Shapiro and Brady's 
methodology can be observed. In the same table, the 
numbers of points that define each contour and the total 
of computational time required (that is, to extract the 
contours, build the cost matrix, establish the matches, 
determine the similarity transformation and align the 
contours) are also presented. The examples shown were 
chosen to permit the simple visualization of the original 
contours and the matches established. In addition, and 
bearing the same goal in mind, only pairs of contours 
where the rotation angle involved was reduced are shown. 
Furthermore, in each case presented, only 25% of the 
matches found are represented. 

 

Table 1: Examples of matches obtained and the associated computation times required by the proposed methodology (CDCI) 
and Shapiro and Brady's methodology (in which just 25% of the matches found are represented by green lines). 

Objects and nº of contours points 
Methodology used 

CDCI Shapiro and Brady’s 

 
"hammer01" 
141 points 

 
"hammer02" 
139 points 

 
Time: 0.016 s 

 
Time: 2.813 s 

 
"hammer25" 
193 points 

 
"hammer26" 
126 points 

 
Time: 0.047 s 

 
Time: 4.766 s 

 
"tool27" 

105 points 

 
"tool23" 

189 points 
 

Time: 0.062 s 
 

Time: 5.094 s 

 
"tool09" 

200 points 

 
"tool03" 

185 points 
 

Time: 0.047 s 
 

Time: 7.844 s 
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In Table 2, some examples of contours alignment, 
obtained by the proposed alignment methodology, are 
illustrated. In these cases, the matches were previously 
obtained by resorting to CDCI. 
The matching results and respective alignments are 

presented in Table 3 for the two matching methodologies 
under comparison. The classification of the quality of the 
matches and alignments found was made through visual 
observation. 

 

Table 2: Examples of alignments obtained using the proposed algorithm to estimate the similarity transformation involved 
between two matched contours (the matches were found by using CDCI). 

Original images Contours in their 
original positions Aligned contours 

 
"hammer03" 

 
  

"hammer30" 

 
"hammer13" 

 
  

"hammer28" 

 
"hammer21" 

   
"hammer35" 

 
"hammer27" 

   
"hammer38" 

 
"tool12" 

 
  

"tool05" 

 
"tool16" 

   
"tool19" 
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Table 3: Summary of the matches and alignments obtained by using the methodology based on CDCI 
and Shapiro and Brady's methodology, when considering contours defined by 100 to 200 points. 

Methodology based on CDCI 

Image 
classes 

Matching Similarity transformation 

Good Satisfactory Bad Good Satisfactory Bad 

"hammer" 100% 0% 0% 100% 0% 0% 

"tool" 100% 0% 0% 100% 0% 0% 

Shapiro and Brady's methodology 

"hammer" 51% 24% 25% 58% 17% 25% 

"tool" 54% 31% 15% 59% 26% 15% 
 
In Table 4, a comparison of the total computational time 
needed by both methodologies is made. The results 
presented were obtained by taking more than 150 
experimental cases for each methodology into 
consideration. 

Finally, to show how instable the Shapiro and Brady's 
methodology can be, Table 5 presents four experiments 
made with two different values of iσ , and one can clearly 
see how a reduce change on this parameter can affect the 
results obtained. 

 

Table 4: Total computation times required by each of the two methodologies compared when considering 
contours defined by 100 to 200 points. 

Images classes 

Total time [s] 

Methodology based on CDCI Shapiro & Brady's methodology 

Min Average Max Min Average Max 

"hammer" < 0.01 0.03 0.08 1.11 2.46 10.10 

"tool" 0.01 0.04 0.08 1.13 4.86 8.63 
 

Table 5: Matching of the contours "hammer08" & "hammer39" on the left and "hammer01" & "hammer04" 
on the right, using Shapiro and Brady's methodology with the indicated values for the parameter iσ . 

 
2ii d=σ  

 
2ii d=σ  

 
22ii d=σ  

 
22ii d=σ  
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5.3 Results discussion 

In all the experimental tests which considered the 
contours of classes "hammer" and "tool", the 
methodology based on CDCI always presented good 
matches, and consequently, good estimations for the 
similarity transformation in question. However, when 
Shapiro and Brady's methodology was used, only 51% 
and 54% of good matches were obtained for the classes 
"hammer" and "tool", respectively. 
In some experiments, the matching obtained as a result of 
Shapiro and Brady's methodology were of bad quality or 
did not make any sense (for example, the matching 
between the contours "hammer08" & "hammer39" 
represented in Table 1). This happened in 25% and 15% 
of the matches for the classes "hammer" and "tool", 
respectively. 
Shapiro and Brady's methodology was very unstable in 
several experiments that were carried out. In fact, in some 
cases where bad matches were established, good matches 
could have been obtained if the methodology parameters 
had been adjusted for these particular cases. However, as 
a consequence of this, some previous well established 
matches would have been worse if these new parameters 
had been adopted instead. For instance, as Table 5 
illustrates, by considering 22ii d=σ , the matching 
between the contours "hammer08" & "hammer39" 
improved, but the matching between the contours 
"hammer01" & "hammer04 became worse. 
Obviously, the similarity transformation parameters 
depend on their previous matching. When the matching 
was good, the estimated values for the similarity 
transformation were also good. When the matching was 
of satisfactory quality, the estimated values for the 
similarity transformation were good in a considerable 
quantity of the cases analyzed, and satisfactory in the 
others. When the matching was bad, the alignments were 
also usually bad. These final last observations confirm 
that the statistical processing done on the parameters 
seems to be appropriate. 
In addition, some experiments were carried out by using 
contours defined by fewer points, but, in general, the 
quality of the matches obtained by both methodologies 
under comparison was like the one previously described. 
In relation to to the execution times, the methodology 
based on CDCI required less execution time as was to be 
expected. 

6 Final conclusions and future work perspectives 

An important fact that should be emphasized is that the 
methodology based on CDCI was proven to be robust for 
the classes of objects used. In fact, the results were always 
good, independently of the contours’ shapes and the 

numbers of points which define them. In addition, this 
methodology was proven to be more adequate to match 
contours defined by ordered points than the methodology 
used by Shapiro and Brady. 
The methodology presented to estimate the similarity 
transformation produced good results as well, mainly 
when used in combination with the matching 
methodology based on CDCI. 
As a future work perspective, one possibility could be the 
matching of all contours presented in images. That is, 
each image can have more than one contour and the goal 
would be the establishment of the best matching of each 
contour of one image with the corresponding contour of 
the other image. In order to achieve this, a similarity 
measure would be needed to decide which pairs of 
contours should be matched. 
Another possibility could be the development of a new 
methodology to match objects defined by sets of points 
without the order requirement, which would permit the 
consideration of the objects’ inner points. Several 
methodologies of this kind already exist, but in general 
they are quite sensitive to the objects’ shapes, to the 
image acquisition systems or even to the geometric 
transformation involved. 
The usage of the methodologies proposed in this paper to 
match and align organs presented in medical images is 
another task which should be addressed in the near future. 
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