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Abstract Three-dimensional (3D) objects reconstruction using just bi-
dimensional (2D) images has been a major research topic in Computer Vi-
sion. However, it is still a hard problem to address, when automation,
speed and precision are required and/or the objects have complex shapes
or image properties. In this paper, we compare two Active Computer Vi-
sion methods frequently used for the 3D reconstruction of objects from im-
age sequences, acquired with a single off-the-shelf CCD camera: Struc-
ture From Motion (SFM) and Generalized Voxel Coloring (GVC). SFM
recovers the 3D shape of an object based on the relative motion involved,
while VC is a volumetric method that uses photo-consistency measures to
build the required 3D model. Both methods considered do not impose any

kind of restrictions on the relative motion involved.

Introduction

Three-dimensional (3D) models built by computational systems are an in-
tensive and long-lasting research problem for the Graphic and Computer
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Vision research communities. Since Computer Vision is concerned with
the development of computational theories and methods for the automatic
extraction of useful information from images, it offers the opportunity to
build 3D models directly from real-world scenes with high accuracy and
visual realism.

The main goal of this work was to compare two Computer Vision im-
age-based methods commonly used for 3D objects reconstruction: Sruc-
ture From Motion (S§FM) and Generalized Voxel Coloring (GVC). This
paper starts with an introduction to the state-of-art in 3D reconstruction,
describing some commonly used reconstruction methods. After, some em-
phasis on S§FM and GV reconstruction methods is given. Then, the fol-
lowed methodologies are described. After, some of the obtained experi-
mental results are presented. Finally, some conclusions and guidelines for
future work are given.

3D reconstruction

Since most 3D reconstruction methods require considerable computational
and imaging resources, there is dways a trade-off between used hardware
and software, computational complexity and results accuracy, realism and
processing speed. In the last decades, the explosive growth in computers
processing power and memory storage and their continuous reducing price,
has enabled the common use of 3D reconstruction solutions in a variety of
application fields, such as:

e Industry, for instance, in clothing industry (e.g. [1, 2]), on-line mea-
surements and production line control (e.q. [3, 41);

e Navigation systems, for example, in autonomous vehicle guidance (e.g.
[5, 6]) and pose estimation (e.g. [7, 8]);

e Virtual reality, such as to build virtual actors, objects or environments
(e.g. [9, 10]) and augmented/mixed reality (e.g. [11, 12]);

e Biomedicine, in anthropometric studies (e.g. [13, 14]), detection of tu-
mors or other deformations (e.g. [15, 16]), manufacturing of prosthetic
devices (e.g., [17, 18]) and surgery planning (e.g. [19, 20]), for example;

o Architecture/archaeology, for instance, in 3D architectural site recon-
struction (e.g. [21, 22]) or archeological documentation (e.g. [23, 24]);

e Security systems, like in visual surveillance (e.g. [25, 26]) and biometric
or morphologic information retrieval (e.g. [27, 28]).



Methods for 3D Reconstruction

The usually available methods for 3D reconstruction of objects are typical-
ly classified into contact or non-contact, Fig. 1.

Contact-based methods can achieve high accuracy levels and are suita-
ble for a wide range of applications. However, these methods involve me-
chanical movement of a probe device from one measurement point to the
next. Consequently, the data acquisition can be very time consuming.
Moreover, since the probes collect only a sparse data set from the object to
be reconstructed, some of its critical areas might stay unmeasured. Also,
the act of scanning the object by touching it can modify or even damage it,
in particular if the object involved is very soft. CMMs (Coordinate Mea-
suring Maching capable of measuring objects of large dimensions are
very large in size and so somewhat cumbersome to be used in usua pro-
duction environments. Furthermore, frequently they need to be placed in
controlled-environment rooms, for their protection against temperature
variation and vibrations, [29].

Nowadays, the generation of a 3D model is mainly achieved by using
non-contact image-based methods. These are usualy divided into two
main groups, [30]:

1. Active methods that require some sort of energy projection (such as,
lasers or structured light) or use the relative motion between cam-
era(s) and objects, to obtain 3D information on the objects shape;

2. Passive methods that do not require energy projection or relative mo-
tion, and work under ambient illumination.
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Fig. 1. Common division of usual 3D reconstruction methods

Most common non-contact methods use image data, range sensors, or a
combination of both. Image-based methods are widely used, in particular
for industrial applications (e.g. [4, 31]), or for precise terrain and city
modeling (e.g. [21, 32]).

Range sensors acquire distance measurements from a well known 3D
reference coordinate system to the surface points on the object to be recon-
structed. They are very common when highly detailed models are required
and are already used inindustry (e.g. [33, 34]), for documentation of build-
ings and landscapes (e.g. [35, 36]) or for the recording of objects in arc-
haeology and cultural heritage (e.g. [37, 38]). However, they are costly (at
least for now), spatially limited, most of the systems available do not pro-
vide color information about the reconstructed object and the quality of the
obtained 3D models can be affected by the reflective characteristics of the
obj ects surfaces, [39].

The main difference between image- and range-based methods is that,
when using image data, it is necessary to have a mathematical model to de-
rive the objects 3D coordinates, which can be sometimes a complex prob-
lem to solve, [40]. Building 3D models using range methods is simpler,
because the range data acquired already contains the 3D coordinates ne-
cessary for the 3D reconstruction.

The next two subsections will focus on two commonly used image-
based reconstruction methods: Qructure From Motion (SFM), that belongs



to the standard sterec-based methods, and Generalized Voxel Coloring
(GV0©), that belongs to the more recent volumetric reconstruction methods.

Structure From Motion

Proposed in [41], SFM is a stereo-based method, Fig. 2. It uses the relative
motion between the camera(s) used and the objects to be reconstructed, to
make assumptions about the 3D objects shape. Thus, by knowing the tra-
jectories of objects feature points in the image plane, this method deter-
mines the 3D shape and motion that better describes most of the tragjecto-
ries of the referred points.

Fig. 2. Stereo vision principle: 3D coordinates of point P are determined through
the intersection of the two lines defined by the optical centers O and O” and the
matched 2D image pointsp and p°

This method has received several contributions and diverse approaches:
for example, in [42] the use of an extended Ka/manfilter was investigated
for estimating the motion and structure from a sequence of monocular im-
ages; in [43] an agorithm was developed for shape and motion estimation
under orthographic projection using the factorization projection; in [44] a
method was proposed that computes the fina reconstruction from interme-
diate reconstructions by anayzing the uncertainties in them, rather than
from image data directly; in [45] the problem of solving the SFM issue
without prior knowledge of point correspondence was addressed; more re-
cently, in [46], an halistic approach was used to compute S~V in stages by
gradually computing 3D scene information of increasing complexity
through processes which operate on increasingly large spatia image areas;
among many others. However, SFM may suffer from difficulties on find-
ing interest points and/or matching them along the input image sequence,
[47]. First, if the object to reconstruct has a smooth surface and low tex-



ture, the extraction of interest features may be difficult or even incorrect
since the local appearance is uniform within the neighborhood of each
candidate feature. Secondly, matching correspondence cannot be estab-
lished by just comparing local image measurements, unless the object has
a /ambertian surface; that is, its appearance does not change with the
viewpoint. Finally, occlusions in the scene make the correspondence be-
tween images difficult or even impossible to obtain.

Generalized Voxel Coloring

Asreferred earlier, stereo-based methods, like SFM, fail to capture objects
with complex shapes, smooth surfaces with lack of texture or when occlu-
sion phenomena occur.

For smooth objects, 3D reconstruction using volumetric methods have
been quite popular for some time, [48]. These methods are silhouette-
based reconstruction methods: intersecting the visual cones generated by
the silhouettes and the projection centers of each image, a 3D model can
be determined, Fig. 3. This 3D model is denominated as visual hull, [49], a
locally convex over-approximation of the volume occupied by an object.

Fig. 3. Visual hull obtained from two different viewpoints (Cy, C,)

V olumetric methods represent the 3D space model by using voxe/s(reg-
ular volumetric structures also known as 3D pixels). The space of interest
is divided into discrete voxds which are then classified into two catego-
ries: inside and outside. The union of all the inside voxelsis an approxima-
tion of the visual hull. The accuracy of the reconstruction obtained de-
pends on the number of images used, the positions of each viewpoint



considered, the precision of the camera calibration and the complexity of
the objects shape.

Generalized Voxel Coloring (GVC) is a volumetric method that uses
photo-consistency criterion, Fig. 4, to determine if a certain voxel belongs
or not to the abject being reconstructed. With this method, the resulting 3D
model isthe photo hull, Fig. 5, defined as the largest volume of voxels that
are photo-consistent with all viewpoints considered in the reconstruction.
Photo-consistency is checked statistically: a voxel is considered consistent
if the mean deviation of the pixels color, which results from the voxel im-
age projection, is under a predefined threshold. Thus, GC simultaneously
builds and colors the obtained 3D model.
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Fig. 4. Color consistency: if the voxel is inside the object surface it will reproject
the same color onto al viewpoints where it is visible (Ieft); otherwise, if the voxel
is outside the object surface it will most likely reproject distinct colors

Fig. 5. Relation between pfiofo and visual hull: the real object is contained inside
the photo hull that isin tern inside the visual Aull



Methodologies followed

In this work, SFM and GVC methods were tested on two objects with dif-
ferent shape properties: a smple parallel epiped and a human hand model.

The paralelepiped has a straightforward topology, with flat orthogonal
surfaces, whose vertices are easily detected in each image and simply
matched along the acquired image sequence. On the contrary, the hand
model has a smooth surface and a more complicated shape.

SFM methodology

To test the SFM method, we follow the methodology proposed in [50], and
resumed in Fig. 6:

1

2.

the first step isto acquire two uncalibrated images, of the object to be
reconstructed, using a single off-the-shelf digital camera;

then, image feature points of the considered aobject are extracted. Fea-
ture or interesting points are those who reflect the relevant discrepan-
cies between their intensity values and those of their neighbors.
Usually, these points represent vertices, and their correct detection al-
lows posterior matching along the image sequences acquired. Many
algorithms for interest points detection are available, but the point
features detectors based on the Harris s principles, [51], are the most
commonly used,;

. after being extracted, feature points must be matched. The matching

process is a 2D points association between sequentia images that are
the projection of the same 3D abject point. Automatic detection of
matching points between images can be achieved using several cross-
correlation processes. They all use small image windows from a first
image as templates for matching in the subsequent images, [52]. The
most common matching methods include MNormalized Cross-
Corrdation, |53, 54], and Qum-of-Squared-Differences, [50, 55];

. then the epipolar geometry is estimated. Epipolar geometry deter-

mines a pairwise relative orientation and allows for rejection of pre-
vious false matches (or outliers). When the interior orientation para-
meters of both images are the same, it mathematically expresses itself
by the funadamental matrix, a projective singular correlation between
two images, [56]. At least 7 matches are required to compute the fun-
damental matrix, but to cope with possible outliers, robust methods of
estimation are required. In general, the RANSAC— RANdom Sampling
Consensuis - agorithm, [57], achieves a robust estimation of the epi-
polar geometry;



5. next step is image rectification. It is the act of projecting two stereo
images onto a common plane, such that pairs of conjugate epipolar
lines (derived from the fundamental matrix) become collinear and pa-
rallel to one of the image axes. Performing this step simplifies the
posterior process of dense matching, because the search problem is
reduced to 1D;

6. finally, dense matching is performed, where a disparity map is ob-
tained. A disparity map codifies the distance between the object and
the camera(s): closer points will have maximal disparity and farther
points will get zero disparity. For short, a disparity map gives some
perception of discontinuity in terms of depth (2.5D reconstruction).
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Fig. 6. SV methodology followed for the 3D reconstruction of objects

If the camera were calibrated, the obtained 2.5D reconstruction could be
upgraded to 3D, using the triangulation concept, described in Fig. 2.

GVC methodology

To test the GWC method we follow the methodol ogy proposed in [58], and
represented in Fig. 7.
In this methodology, it is hecessary to acquire two image sequences:

e afirst one, acquired moving a planar chessboard calibration pattern free-
ly in 3D space;

e for the second sequence, the object to reconstruct is placed on a simple
turntable device, with the same chessboard pattern beneath it; keeping
the camera untouched, the second sequence of images is acquired, spin-
ning the turntable device until a full rotation is performed.
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Fig. 7. GVCmethodology followed for the 3D reconstruction of objects

No restrictions are made on the number of images acquired, nor the ro-
tation angle between two consecutive images of the second image se-
guence needs to be known.

Then, the used camera is calibrated, in order to find the transformation
that maps the 3D world in the associated 2D image space. The calibration
procedure is based on Zhang s algorithm, [59]. Intrinsic parameters (focal
length and principal point) and distortion parameters (radia and tangential)
are obtained from the first image sequence; using the second image se-
guence, the extrinsic parameters (rotation and translation) associated with
each viewpoint considered in the reconstruction process are determined.

Then, to obtain the object silhouettes from the input images, image
segmentation is performed. This step is required, because, even when the
scene background has low color variation, the photo-consistency criterion
may not be sufficient for accurate 3D reconstructions, [60]. Also, since the
used calibration pattern will rotate along with the object to be recon-
structed, it will not be considered has background and, consequently, will
be reconstructed as if it was part of the object of interest. Images are here
segmented by first removing the red and green channels from the original
RGB images and, finally, by image binarization using a user-defined thre-
shold value.

Combining the origina image sequence and associated silhouette im-
ages, and considering the previously obtained camera calibration parame-
ters, the 3D models are built using the GVC volumetric method imple-
mented in [61].

Finally, the volumetric model obtained is polygonized and smoothed us-
ing the Marching Cubesagorithm ([62]). Basically, this algorithm extracts



a polygonal surface from the volumetrical data. Thus, it proceeds through
the voxelized model, and, for each voxel, it determines the polygon(s)
needed to represent the patch of the isosurface that passes through the re-
ferred voxel.

Experimental results

In this section, some of the obtained experimenta results for both followed
methodol ogies and both considered objects will be presented and analyzed.

SFM method

Fig. 8 shows the acquired stereo image pairs of both objects used in this
work.

Fig. 8. Stereo image pairs of the objects used to test the SFM reconstruction me-
thod

For both objects, 200 image features were extracted using the Harriss
corner detector, [51], imposing a minimum distance between each detected
feature. Robust matching of features between the stereo images was made
using the RANSAC agorithm, [57]. The results obtained can be observed
in Fig. 9. Since the hand model presents a smooth surface, obviously many
wrong matches were detected and, consequently, the determined epipolar
geometry will be incorrectly estimated.

After, both stereo pairs were rectified using the algorithm presented in
[63]. As observed in Fig. 10 and Fig. 11, the results were much less accu-
rate for the hand model, due to the wrong matches from the previous step.
This caused a strong image distortion during the rectification step for this
object.

Then, dense matching was performed using San Birchfield s agorithm,
[64]. The results obtained for both objects considered in this work can be
observed in Fig. 12 and Fig. 13. Again, from the incorrect results obtained
in the previous steps, the dense matching for the hand model was, conse-



quently, of low quality. For the parallelepiped object case, the generated
disparity map matches reality better.

Fig. 9. Results of the (robust) feature points matching for both objects considered:
green crosses represent the matched feature points of the first image and the red
crosses represent the correspondent matched feature points of the second image

Fig. 10. Rectification results for the stereo images of the parallelepiped object

Fig. 11. Rectification results for the stereo images of the hand model object



Fig. 12. Disparity map obtained for the parallelepiped object

Fig. 13. Disparity map obtained for the hand model object

GVC method

Fig. 14 shows some examples of the second image sequence acquired for
the 3D reconstruction of both objects using the GVC method.



Fig. 14. Three images used for the 3D reconstruction of the parallelepiped (top)
and the hand model (bottom)

For both objects considered, the results of the extrinsic calibration pro-
cedure are represented in Fig. 15. The 3D graphics shown represent the
viewpoints considered in the second image acquisition process, consider-
ing the world coordinate system fixed on the lower-left corner of the
chessboard pattern and the camera rotating around the object.
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Fig. 15. 3D graphical representation of the extrinsic parameters obtained from the
camera calibration process for the parallelepiped object case, on the left, and for
the hand model case, on the right

A nother way to verify the accuracy of the calibration results obtained is
to reproject the 3D points from the chessboard pattern in all images of the
second sequence considered. The standard deviations of the reprojection
errors (in pixels) for the hand and torso models cases are indicated in Ta-
ble 1. The results obtained from the camera calibration were very accurate
for both cases.

The efficacy of our segmentation method enabled us to obtain good sil-
houette images for both considered objects, Fig. 16.



Table 1. Error of the reprojection of the pattern points into all images of the
second image sequence

Reprojection error (in pixels)
Object Average standard deviation
X Y X y
Parallel epiped -1.24e-04 -2.67e-05 0.545 0.594
Hand model -7.31e-05 -2.61e-05 0.673 0.840

Fig. 16. One example of image segmentation for the parallelepiped (top) and the
hand model (bottom): on the left, the original image; on the right, the binary image
obtained

Fig. 17 and Fig. 18 show the results of the 3D reconstruction obtained
for both objects using the GWC method. Both reconstructed models are
very similar to the real 3D object, even in the case of the hand model.
Comparing these results with the previous obtained by the SFM methodol -
ogy, GWC has no problem to reconstruct objects with smooth and complex
shapes. On the other hand, the accuracy of the 3D models built by this last
methodology is highly dependent on the calibration and segmentation
steps. Thus, GVC puts some restrictions, such as a background with low
color variation and suitable calibration apparatus, making it less appro-
priated for unconstrained real-world reconstructions.

GVC methodology was also tested on another object to verify its accu-
racy: atorso model. Comparing with the previous used objects, the torso



has considerably higher dimensions. Thus, a different calibration pattern
was required. Some of the results obtained after the reconstruction process
can be seen on Fig. 19, where it can be noticed that the torso reflects the
calibration pattern on its surface. As consequence, the inferior zone of the
reconstructed 3D model is not very accurate, both in terms of shape and
color.

From the voxelized 3D model obtained, some geometrical measures can
be determined, such as height, length and width. Fig. 20 compares these
values with the rea ones, obtained using an usua ruler, for al recon-
structed objects. This comparison confirms the approxi mated reconstruc-
tion results of the considered objects, using the GVC methodol ogy.

i. 17. Two different vioi nts (by row) of the 3D d obtained for the pa-
rallelepiped case: on the left, original image; in the centre, voxelized 3D model;
on the right, polygonized and smoothed 3D model

i. 18. Two different vioi nts (by row) of the 3D obtai ned for the hand
model case: on the left, original image; in the centre, voxelized 3D model; on the
right, polygonized and smoothed 3D model



19. Three different vewpoi nts (by row) of the del obtained for the tor-
so model case: on the left, original image; in the centre, voxelized 3D model; on
the right, polygonized and smoothed 3D model
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Conclusions

The main goal of this paper was to compare experimentally two commonly
used image-based methods for 3D object reconstruction: Sructure From
Motion (SFM) and Generalized Voxel Coloring (GVC).

To test and compare both methods, two objects with different shape
properties were used: a parallelepiped and a hand model.

Our adopted S~V methodology produced fine results when the objects
present strong feature points, and so, are easy to detect and match along
the input images. However, we can conclude that even small errorsin the
matching or in the epipolar geometry estimation can seriously compromise
the success of the remaining steps.

The models built using the GC methodology were quite similar to the
rea objects, be it in terms of shape or in color. Nevertheless, the recon-
struction accuracy was highly dependent on the quality of the results from
camera calibration and image segmentation steps. These can be two major
drawbacks in real-world scenes, because they can limit the application of
the GIC method. Moreover, the reflectance of their surfaces is an aspect
that must be considered for more accurate 3D reconstructions. In resume,
we can conclude that in controlled environments the GI/C methodology is
capable to obtain adequate 3D static reconstructions of objects from im-



ages. In addition, its major contribution may be the fact that it is fully au-
tomatic and suitable for many real applications.

Thus, when comparing the two methods, we can conclude that, on one
hand, GVC performs better in 3D reconstruction of objects with complex
shapes and, on the other hand, SFM is better for unconstrained real-world
objects reconstruction.

Acknowledgements

This work was partially done in the scope of project “ Segmentation,
Tracking and Motion Analysis of Deformable (2D/3D) Objects using
Physical Principles’, with reference POSC/EEA-SRI/55386/2004, finan-
cialy supported by FCT — Fundagdo para a Ciéncia e a Tecnologia from
Portugal.

The first author would like to thank the support of the PhD grant
SFRH/BD/27716/2006, aso from FCT.

References

1. T.l.Vasslev (2000). Dressing Virtual People, Systemics, Cybernetics and In-
formatics, Orlando, FL, USA.

2. P.Voalino, F. Cordier and N. Magnenat-Thalmann (2005). From early virtual
garment simulation to interactive fashion design, Computer-Aided Design,
37(6): 593-608.

3. S. M. Bhandarkar, T. D. Faust and M. Tang (1999). CATALOG: a system for
detection and rendering of internal log defects using computer tomography,
Machine Vision and Applications, 11: 171-190.

4, L.Song, X. Quand S. Ye (2007). Improved SFS 3D measurement based on
BP neural network, Image and Vision Computing, 25(5): 614-622.

5. D. Cobzas, H. Zhang and M. Jagersand (2003). |mage-based localization with
depth-enhanced image map, |EEE International Conference on Robotics and
Automation, Taipeh, Taiwan, 2: 1570-1575.

6. K. O. Arras, N. Tomatis, B. T. Jensen, et a. (2001). Multisensor on-the-fly
localization: Precision and reliability for applications, Robotics and Auto-
nomous Systems, 34(2-3): 131-143.

7. A.J. Davison, A. G. Cid and N. Kita (2004). Real-time 3D SLAM with wide-
angle vision, 5th IFAC Symposium on Intelligent Autonomous Vehicles, Lis-
bon, Portugal .

8. T. Lemaire, C. Berger, |.-K. Jung, et a. (2007). Vision-Based SLAM: Stereo
and Monocular Approaches, International Journal of Computer Vision, 74(3):
343-364.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

J.-C. Nebel, A. Sibiryakov and X. Ju (2003). V-Man Generation for 3-D Real
Time Animation, A Symposium on Intelligent Motion and I nteraction Within
Virtual E nvironments, London, UK.

A. Koutsoudis, F. Arnaoutoglou and C. Chamzas (2007). On 3D reconstruc-
tion of the old city of Xanthi. A minimum budget approach to previous term-
virtualnext term touring based on photogrammetry, Journal of Cultural Herit-
age, 8(1): 26-31.

H. Aans and F. Kahl (2002). E stimation of Deformable Structure and Motion,
Vision and Modelling of Dynamic Scenes W orkshop, Copenhagen, Denmark.

B. Vagvolgyi, C. Reiley, G. Hager, et al. (2008). Augmented Reality using
Registration of 3D Computed T omography to Stereoscopic Video of L aparos-
copic Renal Surgery, The Journal of Urology, 179(4): 241-242.

P. Tukuisis, P. Meunier and C. E. Jubenville (2001). Human body surface
area: measurement and prediction using three dimensional body scans, E uro-
pean Journal of Applied Physiology and Occupational Physiology, 85(3-4):
264-271.

L. Benton and J.-C. Nebel (2002). Study of the breathing pattern based on 4D
data collected by a dynamic 3D body scanner, 7th Numérisation 3D/Scanning,
Paris, France.

C. Beneder, F. G. Fuechsel, T. Krause, et a. (2008). The role of 3D fusion
imaging in sentinel lymphadenectomy for vulvar cancer, Gynecologic Oncol-
ogy, 109(1): 76-80.

G. D. Giammarco, M. L. Storto, R. Marano, et a. (2006). Superior vena cava
syndrome: a3D CT-scan reconstruction, European Journal of Cardio-Thoracic
Surgery, 30(2): 384-385.

N. H. Mahmood and T. Tjahjadi (2006). 3D Reconstruction From Multiple
Views For Orthotic and Prosthetic Design: An Overview, SCOReD - Student
Conference on Research and Development, Shah Alam, Selangor, Malaysia,
27-28.

S. I. Buchaillard, S. H. Ong, Y. Payan, et al. (2007). 3D statistica models for
tooth surface reconstruction, Computers in Biology and Medicine, 37(10):
1461-1471.

A. Pednekar and I. A. Kakadiaris (2000). Applications of Virtual Reality In
Surgery, Indian conference on Computer Vision, Graphics and Image
Processing, Graphics and Applications session, Bangalore, India.

J. P. Helferty, A. J. Sherbondy, A. P. Kiraly, et a. (2007). Computer-based
system for the virtual-endoscopic guidance of bronchoscopy, Computer Vi-
sion and Image Understanding, 108(1-2): 171-187.

D. P. Robertson and R. Cipolla (2002). Building Architectural Models from
Many Views Using Map Constraints, 7th European Conference on Computer
Vision-Part 11, Copenhagen, Denmark, 155-169.

S. Lee, D. Feng and B. Gooch (2008). Automatic construction of 3D models
from architectural line drawings, Symposium on Interactive 3D Graphics and
Games, Redwood City, California, CA, USA, 123-130.

R. Sablatnig, S. Tosovic and M. Kampel (2002). Combining shape from sil-
houette and shape from structured light for volume estimation of archaeol ogi-



24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34,

35.

36.

37.

38.

39.

cal vessals, International Conference on Pattern Recognition, Quebec City,
QC, USA, 1: 364-367.

M. Kampel and R. Sablatnig (2007). Rule based system for archaeological
pottery classification, Pattern Recognition L etters, 28(6): 740-747.

A. Calbi, C. S. Regazzoni and L. Marcenaro (2006). Dynamic Scene Recon-
struction For Efficient Remote Surveillance, IEEE International Conference
on Video and Signal Based Surveillance, Sydney, Australia, 99-99.

S. Fleck, F. Busch, P. Biber, et al. (2006). 3D Surveillance A Distributed
Network of Smart Cameras for Real-Time Tracking and its Visualization in
3D, IEEE Computer Vision and Pattern R ecognition, W orkshop on E mbedded
Computer Vision, New Y ork, NY, USA, 118-118.

N. Lynnerup, M. Andersen and H. P. Lauritsen (2003). Facial image identifi-
cation using Photomodeler® , Legal Medicine, 5(3): 156-160.

J. Leg E.-D. Lee, H.-O. Tark, et al. (2008). Efficient height measurement me-
thod of surveillance camera image, Forensic Science International, 177(1): 17-
23.

R. Gershon and M. Benady (2001). Noncontact 3-D measurement technology
enters a new era, http://www.qualitydigest.com/sept01/html/3d.html (retrieved
in June 2007).

S. M. Seitz (1999). An Overview of Passive Vision Techniques, SIGGRAPH
2000 Course on 3D Photography, Course Notes, New Orleans, Louisiana, LA,
USA.

S. M. Y oussef and R. M. Salem (2007). Automated barcode recognition for
smart identification and inspection automation, E xpert Systems with A pplica-
tions, 33(4): 968-977.

Y. Yu and J. Malik (1998). Recovering Photometric Properties of Architec-
tural Scenes from Photographs, Computer Graphics, 32: 207-217.

G. Zhang, J. He and X. Li (2005). 3D vision inspection for internal surface
based on circle structured light, Sensors and Actuators A: Physical, 122(1):
68-75.

C. P. Witana, S. Xiong, J. Zhao, et al. (2006). Foot measurements from three-
dimensional scans: A comparison and evaluation of different methods, Inter-
national Journal of Industrial Ergonomics, 36(9): 789-807.

C. Frih and A. Zakhor (2004). An Automated Method for Large-Scale,
Ground-B ased City Model Acquisition, International Journal of Computer Vi-
sion, 60(1): 5-24.

J. Chen and B. Chen (2008). Architectural Modeling from Sparsely Scanned
Range Data, I nternational Journal of Computer Vision, 78(2-3): 223-236.

M. Levoy, K. Pulli, B. Curless, et al. (2000). The Digital Michelangelo
Project: 3D scanning of large statues, Siggraph 2000, Computer Graphics,
ACM Press, ACM SIGGRAPH, Addison Wesley, 131-144.

G. Guidi, B. Frischer, M. Russo, et al. (2006). T hree-dimensional acquisition
of large and detailed cultural heritage objects, Machine Vision and Applica-
tions, 17(6): 349-360.

F. Remondino and S. El-Hakim (2006). Image-Based 3D Modelling: A Re-
view, T he Photogrammetric Record, 21(115): 269-291.



http://www.qualitydigest.com/sept01/html/3d.html�

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

F. Remondino, A. Guarnieri and A. Vettore (2005). 3D Modeling of close-
range objects: photogrammetry or laser scanning?, SPIE-IS&T Electronic Im-
aging, 5665: 216-225.

S. Ullman (1979). The Interpretation of Visual Motion, Massachusets MIT
Press, Cambridge, Massachusetts, MA, USA.

T. Broida and R. Chellappa (1991). Estimating the Kinematics and Structure
of a Rigid Object from a Sequence of Monocular Images, Pattern Analysis
and Machine Intelligence, 13: 497-513.

C. Tomasi and T. Kanade (1992). Shape and motion from image streams un-
der orthography: A factorization method, |nternational Journal of Computer
Vision, 9: 137-154.

J. Oliensis (1999). A multi-frame structure-from-motion algorithm under
perspective projection, I nternational Journal of Computer Vision, 34: 1-30.

F. Dellaert, S. Seitz, C. Thorpe, et al. (2000). Structure from Motion without
Correspondence, IEEE Computer Vision and Pattern Recognition, Hilton
Head, SC, USA, 2: 557-564.

J. Hui (2006). A holistic approach to structure from motion, PhD on Comput-
er Science, University of Maryland, MD, USA.

R. Hartley and A. Zisserman (2004). Multiple View Geometry in Computer
Vision, Cambridge U niversity Press, 2nd ed.

S. Seitz and C. R. Dyer (1997). Photorealistic Scene Reconstruction by V oxel
Coloring, Computer Vision and Pattern Recognition Conference, San Juan,
Puerto Rico, 1067-1073.

A. Laurentini (1994). The visual hull concept for silhouette-based image un-
derstanding, IEEE Transactions on Pattern A nalysis and Machine Intelligence,
16(2): 150-162.

M. Pollefeys, L. V. Gool, M. V ergauwen, et al. (2004). Visual Modeling with
a Hand-Held Camera, International Journal of Computer Vision, 59(3): 207-
232.

C. G. Harris and M. J. Stephens (1988). A combined corner and edge detector,
Forth Alvey Vision Conference, University of Manchester, England, 15: 147-
151.

R. C. Gonzalez and P. Wintz (1987). Digital Image Processing, 2nd ed., Addi-
son Wesley.

P. J. Burt, C. Yen and X. Xu (1982). Local Correlation Measures for Motion
Analysis: A Comparative Study, Pattern Recognition and Image Processing,
Las Vegas, NV, USA, 269-274.

J. P. Lewis (1995). Fast Normalized Cross Correlation, Vison | nterface, 120-
123.

A. Moore (2006). Stereo, Computer Vision Lectures, Robotics Institute, Car-
negie Mellon University, Pittsburgh, PA, USA.

O. Faugeras, Q.-T. Luong and S. J. Maybank (1992). Camera self-calibration:
Theory and experiments, 2nd E uropean Conference on Computer Vision, San-
ta Margherita Ligure, Italy, Lecture Notes in Computer Vision, Springer-
Verlag, 588: 321-334.



57.

58.

59.

60.

61.

62.

63.

64.

M. A. Fischler and R. Bolles (1981). RANdom SAmpling Consensus: a para-
digm for model fitting with application to image analysis and automated car-
tography, Communications of the ACM, New York, NY, USA, 24(6): 381-
395.

T. C.S. Azevedo, J. M. R. S. Tavares and M. A. P. Vaz (2007). 3D V olume-
tric Reconstruction and Characterization of Objects from Uncalibrated Im-
ages, 7th IASTED International Conference on Visualization, Imaging, and
Image Processing, Palma de Mallorca, Spain, 141-146.

Z. Zhang (2000). A Flexible New Technique for Camera Calibration, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(11): 1330-
1334.

K. Sande (2004). A Practical Setup for Voxel Coloring using off-the-shelf
Components, Bachelor Project, Universiteit van Amsterdam, Netherlands.

M. Loper (2002). Archimedes: Shape Reconstruction from Pictures - A Gene-
ralized V oxel Coloring Implementation, http://matt.loper.org/Archimedes/ (re-
trieved in August 2006).

W. E. Lorensen and H. E. Cline (1987). Marching cubes: A high resolution
3D surface construction algorithm, ACM SIGGRAPH Computer Graphics,
New Y ork, NY, USA, 21(4): 163-169.

F. Isgro and E. Trucco (1999). Projective rectification without epipolar geo-
metry, IEEE Conference on Computer Vision and Pattern Recognition, Fort
Collins, Colorado, CO, USA, 1: 94-99.

S. Birchfield (1999). Depth Discontinuities by Pixel-to-Pixel Stereo, Interna-
tional Journal of Computer Vision, 35(3): 269-293,
http://vision.stanford.edu/~birch/p2p/ (retrieved in November 2004).



http://matt.loper.org/Archimedes/�
http://vision.stanford.edu/~birch/p2p/�

