Programação Linear e Método Simplex

Slide 1

Transparências de apoio à leccionação de aulas teóricas

Versão 1 ©1998

José Fernando Oliveira, Maria Antónia Carravilla – FEUP

Slide 2

"Toda a teoria deve ser feita para poder ser posta em prática, e toda a prática deve obedecer a uma teoria. Só os espíritos superficiais desligam a teoria da prática, não olhando a que a teoria não é senão uma teoria da prática, e a prática não é senão a prática de uma teoria. Quem não sabe nada de um assunto, e consegue alguma coisa nele por sorte ou acaso, chama "teórico" a quem sabe mais e, por igual acaso, consegue menos. Quem sabe, mas não sabe aplicar - isto é, quem afinal não sabe, porque não saber aplicar é uma maneira de não saber -, tem rancor a quem aplica por instinto, isto é, sem saber que realmente sabe. Mas, em ambos os casos, para o homem são de espírito e equilibrado de inteligência, não há uma separação abusiva. Na vida superior a teoria e a prática complementam-se. Foram feitas uma para a outra"

Programação Matemática

Slide 3

Programação Matemática

Construímos modelos muito especiais de Programação Matemática:

- Todas as variáveis tomam valores em \mathcal{R} ou em \mathcal{Z} .
- Há só um objectivo a maximizar ou a minimizar.
- O objectivo e as restrições são lineares.

- \Rightarrow Modelos de Programação Linear se todas as variáveis tomam valores em \mathcal{R} .
- \Rightarrow Modelos de Programação Inteira se todas as variáveis tomam valores em \mathcal{Z} .

Programação Matemática

Problema de Programação Matemática

 $min \quad f(X)$

sujeito a:

 $g_i(X) \leq 0 \quad \forall_{i \in \{1, \dots, m\}}$ $h_i(X) = 0 \quad \forall_{i \in \{1, \dots, l\}}$ $X \in \mathcal{S} \subset \mathcal{R}^n$

Programação Matemática: Conceitos Fundamentais

• Função Objectivo

$$min \quad f(X)$$

• Restrições

$$g_i(X) \leq 0 \quad \forall_{i \in \{1,\dots,m\}}$$

 $h_i(X) = 0 \quad \forall_{i \in \{1,\dots,l\}}$

Slide 7

• Conjunto admissível

Todos os pontos $\mathcal{S} \subset \mathcal{R}^n$ que satisfazem as restrições.

• Solução admissível

Qualquer $X \in \mathcal{S}$ é solução admissível.

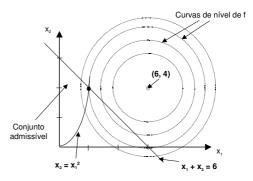
• Solução óptima $X^* \in \mathcal{S}$

$$f(X^*) \le f(X) \quad \forall_{X \in \mathcal{S}}$$

Programação Matemática Exemplo de Programação Não-Linear

min
$$f(X) = (x_1 - 6)^2 + (x_2 - 4)^2$$

suj a: $x_2 - x_1^2 \ge 0$
 $x_2 + x_1 \le 6$
 $x_1, x_2 \ge 0$



Sol:
$$x_1 = 2, x_2 = 4, f = 16$$

Bibliografia

- Ferreira, José António Soeiro (1995). Apontamentos de Investigação Operacional 1. FEUP.
- Pinho, Maria do Rosário e Ferreira, Maria Margarida (1999). Apontamentos de Análise Matemática 2, FEUP.

Programação Linear

Slide 10

Programação Linear Modelos

Forma geral

$$max/min \quad \sum_{j=1}^{n} c_j x_j$$

Slide 11 sujeito a:

$$\sum_{j=1}^{n} a_{ij} x_{j} \geq b_{i} \quad \forall_{i \in \{1, \dots, p\}}$$

$$x_{j} \geq 0 \quad \forall_{j \in \{1, \dots, q\}}$$

$$\sum_{j=1}^{n} a_{ij} x_{j} = b_{i} \quad \forall_{i \in \{p+1, \dots, m\}}$$

$$x_{j} \quad qualquer \quad \forall_{j \in \{q+1, \dots, n\}}$$

- x_j valor da variável de decisão j;
- c_j contribuição da variável de decisão x_j , por unidade, para a função objectivo;
- z função objectivo a ser maximizada ou minimizada;
- a_{ij} quantidade do recurso i gasta por unidade da variável de decisão x_j ;
- ullet b_i disponibilidade do recurso i.

Programação Linear Modelos

Forma normalizada

$$max \quad \sum_{j=1}^{n} c_j x_j$$

sujeito a:

Slide 12

$$\sum_{j=1}^{n} a_{ij} x_j = b_i \quad \forall_{i \in \{1, \dots, m\}}$$
$$x_j \geq 0 \quad \forall_{j \in \{1, \dots, n\}}$$

- lado direito das restrições ≥ 0 ;
- restrições sob a forma de igualdades;
- variáveis ≥ 0 .

Programação Linear Modelos

Equivalência entre as diversas formas do problema PL

- $\bullet \ minf(X) = -max[-f(X)]$
- $\bullet \ \ x \le 0 \to x = -y, \, y \ge 0$

- $x \in \mathcal{R} \to x = u v, u > 0 \land v > 0$
- $\sum_{j=1}^{n} a_{ij} x_j \ge b_i \to \sum_{j=1}^{n} a_{ij} x_j s_i = b_i \ s_i \ge 0$ (variável de folga)

$$\sum_{j=1}^{n} a_{ij} x_{j} = b_{i} \to \begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} \ge b_{i} & \to & \sum_{j=1}^{n} a_{ij} x_{j} \ge b_{i} \\ \sum_{j=1}^{n} a_{ij} x_{j} \le b_{i} & \to & -\sum_{j=1}^{n} a_{ij} x_{j} \ge -b_{i} \end{cases}$$

Programação Linear - Exemplo

O Sr. Victor Águas, fabricante de renome internacional de barcos a remos e de canoas, pretende determinar as quantidades que deve produzir de cada um dos produtos, para maximizar o lucro da sua actividade industrial. Depois de analisado o problema, foi possível encontrar um modelo onde estivessem reflectidas as restrições mensais em termos de matéria-prima (2000kg de alumínio), de tempo de máquina (300 horas) e de mão de obra (200 horas). O lucro (que se pretende obviamente maximizar) está representado em 10^3 \$. As variáveis x_{BR} e x_C , correspondem respectivamente ao número de barcos a remos e ao número de canoas a serem fabricadas. Neste modelo não se exige que x_{BR} e x_C sejam inteiros.

$$max \quad Z = 50x_{BR} + 60x_C$$

sujeito a:

$$50x_{BR} + 30x_C \leq 2000$$

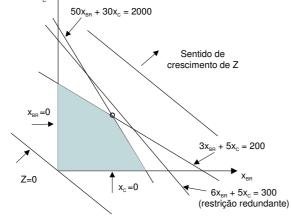
$$6x_{BR} + 5x_C \leq 300$$

$$3x_{BR} + 5x_C \leq 200$$

$$x_{BR}, x_C \geq 0$$

Qual a produção óptima?

Programação Linear - Exemplo Resolução gráfica



Solução óptima:

$$x^*_{BR} = 25, x^*_C = 25, Z^* = 2750$$

- solução óptima está necessariamente num vértice;
- função objectivo com outro declive (óptimo salta de vértice em vértice);
- função objectivo com mesmo declive que restrição activa (óptimo múltiplo);
- restrição activa com outro declive (valor óptimo altera-se mas não muda de vértice)

Resolução gráfica de problemas de Programação Linear Exemplo 1

$$max \quad Z = 4x_1 + x_2$$

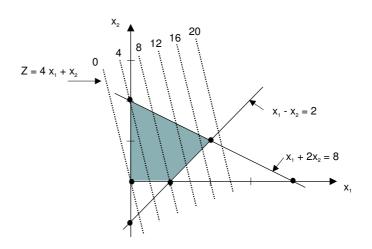
sujeito a:

Slide 16

$$x_1 - x_2 \le 2$$

$$x_1 + 2x_2 \le 8$$

$$x_1, x_2 \ge 0$$



Resolução gráfica de problemas de Programação Linear Exemplo 2 (solução óptima não única)

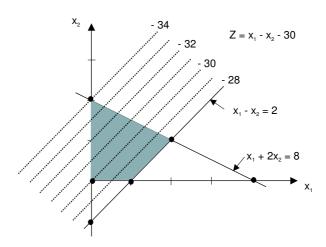
$$max \quad Z = x_1 - x_2 - 30$$

sujeito a:

$$x_1 - x_2 \le 2$$

$$x_1 + 2x_2 \le 8$$

$$x_1, x_2 \ge 0$$



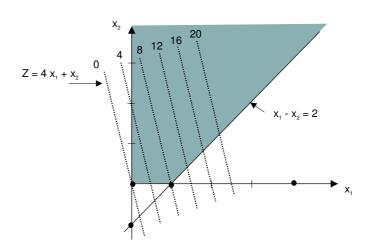
Resolução gráfica de problemas de Programação Linear Exemplo 3 (solução ilimitada)

 $max \quad Z = 4x_1 + x_2$

Slide 18 sujeito a:

$$x_1 - x_2 \le 2$$

$$x_1, x_2 \ge 0$$



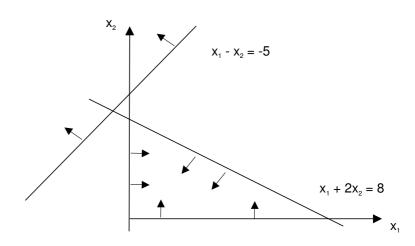
Resolução gráfica de problemas de Programação Linear Exemplo 4 (sem solução admissível)

max Z

sujeito a:

$$x_1 - x_2 \le -5$$

 $x_1 + 2x_2 \le 8$
 $x_1, x_2 \ge 0$



Programação Linear – abordagem algébrica

$$max \quad \sum_{j=1}^{n} c_j x_j$$

sujeito a:

Slide 20

$$\sum_{j=1}^{n} a_{ij} x_{j} = b_{i} \quad \forall_{i \in \{1,\dots,m\}}$$
$$x_{j} \geq 0 \quad \forall_{j \in \{1,\dots,n\}}$$

Problema matemático da Programação Linear (forma normalizada): Encontrar a solução de um **sistema de equações lineares** que maximiza uma dada função objectivo linear.

Álgebra – um exercício

Dos seguintes sistemas de equações apresentados, verifique quais são os que têm uma única solução, um número infinito de soluções ou nenhuma solução.

$$x_1 - x_2 = -5$$
 $x_1 + x_2 = -5$
 $-2x_1 + 2x_2 = 10$ $-2x_1 + 2x_2 = 8$

Slide 21

$$4x_1 + 2x_2 = -6$$
 $2x_1 + 6x_2 = 4$ $8x_1 + 4x_2 = 11$ $x_1 + 3x_2 = 2$

Partindo deste exercício, indique as condições gerais que deve satisfazer um sistema de equações para que tenha uma única solução (sistema possível e determinado), uma infinidade de soluções (sistema indeterminado) ou nenhuma solução (sistema impossível).

Pode sempre rever os apontamentos de Álgebra...

Álgebra – Recordando...

Sistemas Equivalentes

Dois sistemas são equivalentes se têm o mesmo conjunto de soluções. Uma solução de um sistema é logo solução do outro sistema.

Resolução de Sistemas de Equações Lineares

Para resolver um sistema de equações lineares tenta-se obter um sistema equivalente que seja mais fácil de resolver.

Obtenção de um Sistema Equivalente - operações elementares

- Multiplicação de qualquer equação do sistema por um número positivo ou negativo.
- Adição a qualquer equação de um múltiplo de outra equação do sistema.

Resolução de Sistemas de Equações Lineares Exemplo

Considere-se o seguinte sistema de 2 equações a 5 incógnitas:

$$x_1$$
 - $2x_2$ + x_3 - $4x_4$ + $2x_5$ = 2
 x_1 - x_2 - x_3 - $3x_4$ - x_5 = 4

Slide 23 Sistema equivalente:

$$x_1$$
 - $2x_2$ + x_3 - $4x_4$ + $2x_5$ = 2
 x_2 - $2x_3$ + x_4 - $3x_5$ = 2

Sistema equivalente:

$$x_1$$
 - $3x_3$ - $2x_4$ - $4x_5$ = 6
 x_2 - $2x_3$ + x_4 - $3x_5$ = 2

Resolução de Sistemas de Equações Lineares Exemplo

Sistema Canónico Sistema em que em cada equação há uma variável que nessa equação tem coeficiente 1 e nas outras equações coeficiente 0 (não existe).

Slide 24

Pode-se obter o conjunto de todas as soluções do sistema, dando valores arbitrários às variáveis x_3, x_4 e x_5 e calculando os valores correspondentes de x_1 e de x_2 .

Variáveis básicas

Variáveis não básicas

$$x_1 \ e \ x_2$$
 $x_3, \ x_4 \ e \ x_5$

Solução básica Todas as variáveis não básicas iguais a zero.

$$x_1 = 6$$
, $x_2 = 2$, $x_3 = 0$, $x_4 = 0$, $x_5 = 0$

Solução básica admissível Solução básica em que os valores das variáveis básicas são não-negativos.

Relação vértices - soluções básicas

$$max \quad Z = 4x_1 + x_2$$

sujeito a:

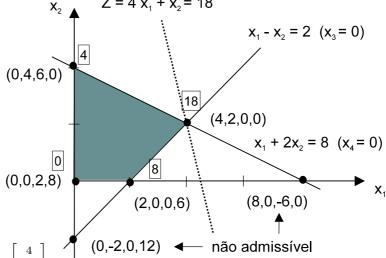
$$x_1 - x_2 + x_3 = 2$$

 $x_1 + 2x_2 + x_4 = 8$
 $x_1, x_2, x_3, x_4 \ge 0$

Slide 25

Base correspondente à solução óptima (numa forma matricial):

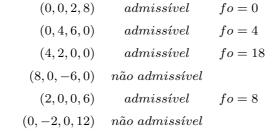
$$\left[\begin{array}{ccc} 1 & 0 & 2/3 & 1/3 \\ 0 & 1 & -1/3 & 1/3 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \end{array}\right] = \left[\begin{array}{c} 4 \\ 2 \end{array}\right]$$

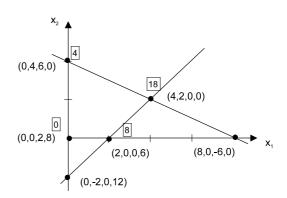


Soluções básicas e admissibilidade

Soluções básicas:

Slide 26





Algumas observações (importantes)

ullet Sendo $\mathcal Q$ o conjunto formado pelos pontos $\mathbf X$ tais que

$$\mathbf{AX} = \mathbf{b} \tag{4}$$

$$\mathbf{X} \geq 0 \tag{5}$$

Slide 27 $\stackrel{\text{um ponto } \mathbf{X} \text{ \'e v\'ertice de } \mathcal{Q} \text{ se e s\'o se } \mathbf{X} \text{ for solução b\'asica admiss\'evel de } (4).$

 Quando se passa de um vértice a outro vértice adjacente, uma só variável básica passa a não básica e uma só variável não básica passa a básica.

Generalização/Demonstração

Para provar que as observações são correctas e aplicáveis a qualquer problema de Programação Linear, vai ser necessário provar que:

1. O espaço das soluções de um problema de Programação Linear é um conjunto convexo.

Slide 28

- 2. A solução óptima de um problema de Programação Linear corresponde sempre a um ponto extremo do espaço das soluções.
- 3. A cada ponto extremo do espaço das soluções corresponde sempre uma solução básica admissível do sistema de equações.

Algumas noções de topologia

Hiperplano

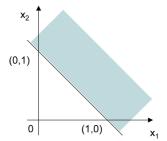
Hiperplano
$$\equiv \{ \mathbf{X} \in \mathbb{R}^n : \mathbf{a}\mathbf{X} = \alpha, \ \mathbf{a} \in \mathbb{R}^n (\mathbf{a} \neq 0), \ \alpha \in \mathbb{R} \}$$

Semi-espaço fechado

Slide 29

Semi-espaço fechado
$$\equiv \{ \mathbf{X} \in \Re^n : \mathbf{a} \mathbf{X} \ge \alpha \}$$

Exemplo: semi-espaço fechado em \Re^2 : $x_1 + x_2 \ge 1$



Observação: Em Programação Linear o conjunto das soluções admissíveis é a intersecção de um número finito de semi-espaços fechados.

Conjunto convexo

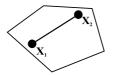
Um subconjunto $Q \subset \mathbb{R}^n$ diz-se convexo se, para qualquer par de pontos de Q, a sua combinação linear convexa também pertencer a Q.

Slide 30

$$\mathcal{Q} \text{ convexo } \equiv \begin{cases} X_1, X_2 \in \mathcal{Q} \\ 0 \le \mu \le 1 \end{cases} \Rightarrow \mu X_1 + (1 - \mu) X_2 \in \mathcal{Q}$$

Conjuntos convexos

Conjuntos não convexos

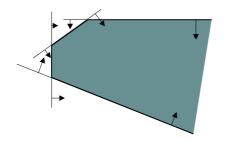


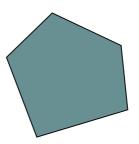
Poliedro (convexo)

Um poliedro é a intersecção de um número finito de semi-espaços fechados.

Poliedro
$$\equiv \{\mathbf{X} \in \mathbb{R}^n : \mathbf{a_i} \mathbf{X} \le \alpha_i, i = 1, \dots, m\}, \quad \mathbf{a_i} \in \mathbb{R}^n, \mathbf{a_i} \ne 0, \alpha_i \in \mathbb{R}, i = 1, \dots, m\}$$

Um poliedro é um conjunto convexo fechado mas não necessariamente limitado. Um poliedro limitado diz-se um politopo.





Observação: O conjunto das soluções admissíveis de um problema de Programação Linear é um poliedro convexo.

Ponto extremo

O ponto extremo de um conjunto convexo \mathcal{Q} é um ponto de \mathcal{Q} que não pertence a nenhum segmento de recta que una dois outros pontos de \mathcal{Q} .

Seja \mathcal{Q} um conjunto convexo em \Re^n . O ponto $\mathbf{X}^{(\mathbf{k})} \in \mathcal{Q}$ é um ponto extremo de \mathcal{Q} se, com $\mathbf{X_1}, \mathbf{X_2} \in \mathcal{Q}$ e $0 \le \mu \le 1$

$$\mathbf{X^{(k)}} = \mu \mathbf{X_1} + (1 - \mu) \mathbf{X_2} \qquad \Rightarrow \qquad \mathbf{X^{(k)}} = \mathbf{X_1} \ \lor \ \mathbf{X^{(k)}} = \mathbf{X_2}$$

Slide 32

Exemplos de pontos extremos:

Observação: Qualquer ponto $\mathbf{X} \in \mathcal{Q}$ pode ser expresso como uma combinação linear convexa dos pontos extremos $\mathbf{X}^{(\mathbf{k})}$ k = 1, 2, ... K de \mathcal{Q}

$$\mathbf{X} = \sum_{k=1}^{K} \lambda_k \mathbf{X}^{(\mathbf{k})}, \quad \lambda_k \ge 0, \quad \sum_{k=1}^{K} \lambda_k = 1$$

(a "informação" relevante do conjunto está condensada nos seus pontos extremos).

Problema de Programação Linear O conjunto de soluções admissíveis é convexo

Seja

$$\mathcal{Q} = \{\mathbf{X}|\mathbf{AX} = \mathbf{b}, \mathbf{X} \geq \mathbf{0})\}$$

o conjunto de todas as soluções admissíveis de um problema de Programação Linear com m equações e n incógnitas.

Slide 33 Defina-se \mathbf{X}^* como uma combinação linear convexa de dois pontos quaisquer pertencentes a \mathcal{Q} . $\mathbf{X}^* \geq 0$ por definição.

$$\mathbf{X}^* = \lambda \mathbf{X_1} + (1 - \lambda) \mathbf{X_2} \quad 0 \le \lambda \le 1$$

 $\mathcal Q$ é convexo se e só se $\mathbf X^* \in \mathcal Q$ ou seja, se $\mathbf A \mathbf X^* = \mathbf b.$

$$\mathbf{AX^*} = \mathbf{A} [\lambda \mathbf{X_1} + (1 - \lambda) \mathbf{X_2}]$$
$$= \lambda \mathbf{AX_1} + (1 - \lambda) \mathbf{AX_2}$$
$$= \lambda \mathbf{b} + (1 - \lambda) \mathbf{b}$$
$$= \mathbf{b}$$

Problema de Programação Linear Solução óptima é ponto extremo

A solução óptima de um problema de Programação Linear:

$$\max z = \mathbf{CX}$$

Slide 34 sujeito a:

$$\mathbf{AX} = \mathbf{b}$$
$$\mathbf{X} > \mathbf{0}$$

sendo finita, está num ponto extremo do espaço de soluções admissíveis Q.

Corolário

Se mais do que um ponto extremo for solução óptima, então toda a combinação linear convexa desses pontos corresponde a uma solução óptima.

- O conjunto Q é limitado se se acrescentar a restrição $x_j \leq M$ para todos os x_j que não sejam limitados.
- Qualquer ponto $\mathbf{X}' \in \mathcal{Q}$ pode ser expresso como uma combinação linear convexa dos pontos extremos $\mathbf{X}^{(\mathbf{k})}$ $k=1,2,\ldots K$ de \mathcal{Q}

$$\mathbf{X}' = \sum_{k=1}^{K} \lambda_k \mathbf{X}^{(k)}, \quad \lambda_k \ge 0, \quad \sum_{k=1}^{K} \lambda_k = 1$$

Slide 35

• Defina-se \mathbf{X}^* como o ponto extremo de \mathcal{Q} ao qual corresponde o maior valor da função objectivo:

$$z^* = \mathbf{CX}^* = \max_{i} \left\{ \mathbf{CX^{(i)}} \right\}$$

Agora é necessário mostrar que a nenhum ponto de $\mathbf{X}' \in \mathcal{Q}$ pode corresponder um valor da função objectivo maior do que z^* .

$$z' = \mathbf{C}\mathbf{X}' = \mathbf{C}\left(\sum_{k=1}^{K} \lambda_k \mathbf{X^{(k)}}\right) = \sum_{k=1}^{K} \lambda_k \left(\mathbf{C}\mathbf{X^{(k)}}\right) \le \mathbf{C}\mathbf{X}^* = z^*$$

Problema de Programação Linear Solução básica admissível é ponto extremo

A condição necessária e suficiente para que um ponto \mathbf{X} seja um ponto extremo do espaço de soluções \mathcal{Q} é que \mathbf{X} seja uma solução básica admissível tal que:

Slide 36

$$\mathbf{AX} = \mathbf{b}$$

$$\mathbf{X} \geq \mathbf{0}$$

A demonstração (por contradição) deste teorema pode ser encontrada nas páginas 89-91 de:

• Bazaraa, M., Jarvis, J, Sherali (1990). Linear Programming and Network Flows, 2nd ed. Wiley, New York.

Então...

Resolver um problema de PL resume-se a determinar todas as bases admissíveis do sistema de equações que as suas restrições formam e escolher a que tiver melhor valor da função objectivo.

Existem $\frac{n!}{m!(n-m)!}$ bases para um sistema $m \times n$.

Nem todas serão admissíveis, mas...

Bibliografia

- Ferreira, José António Soeiro (1995). Apontamentos de Investigação Operacional 1. FEUP.
- Guimarães, Rui Campos (1983). *Introdução à Programação Linear*. FEUP.

- Hillier, Frederick S. e Lieberman, Gerald (1995). *Introduction to Operations Research*, Mc Graw-Hill.
- Ravindram, Philips e Solberg (1987). Operations Research, Principles and Practice. John Wiley & Sons.
- Taha, Hamdy A. (1997). Operations Research, an Introduction. Prentice Hall.

Algoritmo Simplex

Slide 39

Motivação para o Algoritmo Simplex

$$max \quad Z = 4x_1 + x_2$$
 sujeito a:
$$x_1 - x_2 \leq 2$$

$$x_1 + 2x_2 \leq 8$$

$$x_1, x_2 \geq 0$$

Slide 40

 $max \quad Z = 4x_1 + x_2$ sujeito a: $x_1 \quad -x_2 \quad +\mathbf{x_3} \quad = 2$ $x_1 \quad +2x_2 \quad +\mathbf{x_4} \quad = 8$ $x_1, \quad x_2, \quad \mathbf{x_3}, \quad \mathbf{x_4} \geq 0$

Solução básica admissível:

Z = 0

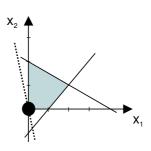
$$max \quad Z = 4x_1 + x_2$$
 variáveis não básicas :
$$\begin{cases} x_1 = 0 \\ x_2 = 0 \end{cases}$$
 sujeito a:
$$x_1 -x_2 + x_3 = 2 \\ x_1 +2x_2 +x_4 = 8 \end{cases}$$
 Variáveis básicas :
$$\begin{cases} x_1 = 0 \\ x_2 = 0 \end{cases}$$

$$\begin{cases} x_1 = 0 \\ x_2 = 0 \end{cases}$$

$$\begin{cases} x_1 = 0 \\ x_2 = 0 \end{cases}$$

Slide 41

- ullet Objectivo: maximizar Z
- Escolher variável com coeficiente máximo na função objectivo: x_1
- x_1 cresce de 0 até um valor tal que, ficando $x_2=0,\,x_3$ e x_4 mantêm-se ≥ 0
- x_3 anula-se em primeiro lugar quando x_1 cresce.



max				
Z =	$4x_1$	$+x_2$	Solução básica admissív	
=	$4(2 + x_2 - x_3)$	$+x_2$	Variáveis não básicas :	$\begin{cases} x_2 = 0 \end{cases}$
=	8	$+5x_2 -4x_3$, arrayers fractions .	$\begin{cases} x_3 = 0 \end{cases}$
sujeite	o a:		Variáveis não básicas : Variáveis básicas :	$\begin{cases} x_1 = 2 \\ c \end{cases}$
	$\mathbf{x_1}$ $-x_2$ $+x_3$			$(x_4 = 6)$
	$+3x_2$ $-x_3$	$+\mathbf{x_4} = 6$	Z = +8	

Slide 42

ullet Objectivo: maximizar Z (escrito em função das variáveis não básicas)

 $x_4 \geq 0$

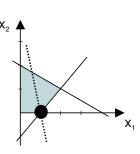
 $\bullet\,$ Escolher variável com coeficiente máximo na função objectivo: x_2

 x_3 ,

- x_2 cresce de 0 até um valor tal que, com $x_3=0,\,x_1$ e x_4 se mantêm ≥ 0
- $\bullet \;\; x_4$ anula-se em primeiro lugar quando x_2 cresce.

 x_1 ,

• O crescimento de x_2 implica o crescimento de x_1 , logo x_1 não sai da base.



max

$$Z = 8 +5x_2 -4x_3$$

$$= 8 +5(\frac{6}{3} + \frac{1}{3}x_3 - \frac{1}{3}x_4) -4x_3$$

$$= 18 -\frac{7}{3}x_3 - \frac{5}{3}x_4$$

sujeito a:

Slide 43

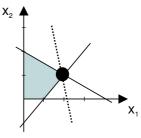
$$\mathbf{x_1} + \frac{2}{3}x_3 + \frac{1}{3}x_4 = 4$$

$$+\mathbf{x_2} - \frac{1}{3}x_3 + \frac{1}{3}x_4 = 2$$

$$x_1, x_2, x_3, x_4 \ge 0$$

$$Z^* = +18$$

 Solução é óptima aumento de x_3 ou de $x_4 \Rightarrow$ diminuição de Z.



Algoritmo Simplex - Metodologia

- Início Identificar uma solução básica admissível inicial.
- Iteração Passar a uma solução básica admissível melhor.
 - Qual é a variável que entra na base? É a variável não-básica que ao passar a positiva provoca um acréscimo mais rápido de Z (num problema de maximização). Para ser fácil fazer essa análise é necessário que a função objectivo seja escrita só em função das variáveis não-básicas.

- Como se identifica a variável que sai da base? É aquela cuja restrição de não-negatividade impõe o menor limite superior ao crescimento da variável que entra na base.
- Como se identifica a nova solução básica? Convertendo as equações para que mantenham a forma inicial:
 - * cada variável básica só tem coeficiente 1 numa das equações e tem coeficiente 0 em todas as outras;
 - em cada equação só uma variável básica tem coeficiente 1.
- Paragem Parar quando não existe nenhuma solução básica admissível adjacente melhor que a solução actual.

Algoritmo Simplex Resolução de um problema

Quadro inicial

variáveis básicas	x_1	x_2	x_3	x_4	
$ \leftarrow x_3 $	1	-1	1	0	2
x_4	1	2	0	1	8
-Z	4	1	0	0	0
	$\uparrow\uparrow$				↑
custos marginais	o mais				valor simétrico
	positivo				da função objectivo

Slide 46

Custos marginais coeficientes da função objectivo quando esta está expressa apenas em função das variáveis não básicas \longrightarrow medem a variação de Z por unidade de crescimento de cada variável não básica.

A solução $(x_1, x_2, x_3, x_4) = (0, 0, 2, 8)$ é a solução básica admissível inicial.

	x_1	x_2	x_3	x_4	
$ \sqsubseteq x_3 $	1	-1	1	0	2
x_4	1	2	0	1	8
-Z	4	1	0	0	0
	$\uparrow\uparrow$				

Slide 47

 x_3 sai da base porque $\min(\frac{2}{1}, \frac{8}{1}) = \frac{2}{1}$

 x_4 sai da base porque na coluna da variável que entra na base, x_2 , só o elemento da linha a que corresponde x_4 é não-negativo.

Slide 48

Quadro final Solução óptima única: $(x_1,x_2,x_3,x_4)^* = (4,2,0,0)$ $Z^* = 18$

Algoritmo Simplex – Passos do algoritmo

- 1. Obter uma solução básica admissível (SBA) inicial.
- 2. Verificar se a SBA é óptima
 - Maximização todos os custos marginais negativos;
 - Minimização todos os custos marginais positivos;

se for \rightarrow terminar algoritmo.

Slide 49

- 3. Se algum custo marginal for positivo (maximização), a variável a entrar na base será a que tiver maior coeficiente.
- 4. Determinar o maior valor que a variável que vai entrar na base pode ter:
 - dividir todos os termos independentes pelos coeficientes positivos da variável;
 - $\bullet\,$ a linha a que corresponde o menor quociente é a linha pivot;
 - se todos os coeficientes forem negativos, a solução é ilimitada.
- 5. Manipular as linhas do quadro de modo a obter um coeficiente unitário para o elemento *pivot* e valores nulos para todos os coeficientes dessa coluna.
- 6. Voltar a 2.

Algoritmo Simplex – Situações particulares

1. Empate no critério de entrada de uma variável na base.

Escolher arbitrariamente a variável a entrar na base.

2. Existência de soluções alternativas.

Slide 50

Quando, na solução óptima, uma variável não básica tem custo marginal nulo.

3. Solução não limitada.

Quando todas as componentes dos vectores a entrar na base forem não positivas.

Algoritmo Simplex - O Sr. Victor Águas (cont.)

$$max \quad Z = 50x_{BR} + 60x_{C}$$
 sujeito a:
$$50x_{BR} + 30x_{C} \leq 2000$$

$$6x_{BR} + 5x_{C} \leq 300$$

$$3x_{BR} + 5x_{C} \leq 200$$

$$x_{BR}, \quad x_{C} \geq 0$$

Slide 51

Slide 52

$$max \quad Z = 50x_{BR} + 60x_{C}$$
 sujeito a:
$$50x_{BR} + 30x_{C} + s_{1} = 2000$$

$$6x_{BR} + 5x_{C} + s_{2} = 300$$

$$3x_{BR} + 5x_{C} + s_{3} = 200$$

$$x_{BR}, \quad x_{C}, \quad s_{1}, \quad s_{2}, \quad s_{3} \geq 0$$

Algoritmo Simplex - O Sr. Victor Águas (resolução)

	x_{BR}	x_C	s_1	s_2	s_3	
s_1	50	30	1	0	0	2000
s_2	6	5	0	1	0	300
$ \sqsubseteq s_3 $	3	5	0	0	1	200
-Z	50	60	0	0	0	0
		$\uparrow\uparrow$				

- x_C entra na base porque $\max(50, 60) = 60$
- s_3 sai da base porque $\min(\frac{2000}{30}, \frac{300}{5}, \frac{200}{5}) = \frac{200}{5}$

- x_{BR} entra na base porque $\max(14) = 14$
- s_1 sai da base porque $\min(\frac{800}{\frac{150}{5}}, \frac{100}{3}, \frac{40}{\frac{3}{5}}) = \frac{800}{\frac{150}{5}}$

José Fernando Oliveira, Maria Antónia Carravilla – FEUP

	x_{BR}	x_C	s_1	s_2	s_3	
x_{BR}	1	0	$\frac{5}{160}$	0	$-\frac{3}{16}$	25
s_2	0	0	$-\frac{15}{160}$	1	$-\frac{7}{16}$	25
x_C	0	1	$-\frac{3}{160}$	0	$\frac{5}{16}$	25
-Z	0	0	$-\frac{7}{16}$	0	$-\frac{75}{8}$	-2750

Slide 53

Todos os valores na linha da função objectivo são ≤ 0 .

Solução óptima: $(x_{BR}, x_C)^* = (25, 25)$ e $Z^* = 2750$

Qual o significado de $s_2 = 25$ na solução óptima?

Determinação de uma base inicial admissível

- Uma condição importante para o funcionamento do método simplex é a disponibilidade de uma solução básica inicial, na forma canónica.
- Por vezes ela não é evidente, ou nem mesmo se sabe se existe (pode não existir nenhuma solução admissível!).

- Solução:
 - Tentativa e erro resolver sucessivamente o sistema em ordem a diferentes conjuntos de variáveis, reduzi-lo à forma canónica e ver se a solução resultante é admissível.
 - Utilização de variáveis artificiais.

Utilização de variáveis artificiais

1. Converter o problema de PL para a forma normalizada.

sujeito a:

$$\sum_{j=1}^{n} a_{ij} x_j = b_i \quad \forall_{i \in \{1, \dots, m\}}$$
$$x_j \geq 0 \quad \forall_{j \in \{1, \dots, n\}}$$

 $max \quad \sum_{j=1}^{n} c_j x_j$

Slide 55

2. Examinar cada restrição e verificar se existe alguma variável que possa ser básica nessa restrição. Se não existir, somar uma **variável artificial** $y_i, y_i \geq 0$ nessa mesma restrição.

Nota: As variáveis artificiais não têm relevância ou siginificado no problema original (daí serem designadas por artificiais). Apenas são usadas para facilitar a construção de uma base inicial para o problema.

$$max \quad \sum_{j=1}^{n} c_j x_j$$

sujeito a:

$$\sum_{j=1}^{n} a_{ij} x_{j} = b_{i} \quad \forall_{i \in \{1,\dots,k\}}$$

$$\sum_{j=1}^{n} a_{ij} x_{j} + y_{i} = b_{i} \quad \forall_{i \in \{k+1,\dots,m\}}$$

$$x_{j} \geq 0 \quad \forall_{j \in \{1,\dots,n\}}$$

 $y_i \geq 0 \quad \forall_{i \in \{k+1,\dots,m\}}$

3. O problema "artificial" só será equivalente ao original se todas as

 $\mathbf{Objectivo} \longrightarrow$ fazer as variáveis artificiais sairem da base:

Slide 56

1. Método das duas fases

variáveis artificiais valerem zero.

2. Método das penalidades ("Big M") \checkmark

Método das penalidades

Atribuir às variáveis articiais um custo muito elevado — \mathbf{M} — (problema de minimização) na função objectivo.

O próprio método simplex se encarregará, ao tentar melhorar a função objectivo, de expulsar as variáveis artificiais da base \Leftrightarrow colocar as variáveis a valerem zero.

Slide 57

$$min \quad \sum_{j=1}^{n} c_j x_j + \sum_{i=k+1}^{m} M y_i$$

sujeito a:

$$\sum_{j=1}^{n} a_{ij} x_{j} = b_{i} \quad \forall_{i \in \{1,...,k\}}$$

$$\sum_{j=1}^{n} a_{ij} x_{j} + y_{i} = b_{i} \quad \forall_{i \in \{k+1,...,m\}}$$

$$x_{j} \geq 0 \quad \forall_{j \in \{1,...,n\}}$$

$$y_{i} \geq 0 \quad \forall_{i \in \{k+1,...,m\}}$$

${f M\acute{e}todo}$ das penalidades – exemplo

min
$$Z=-3x_1+x_2+x_3+\mathbf{My_1}+\mathbf{My_2}$$
 sujeito a: $x_1-2x_2+x_3+s_1=1$ $=11$ $-4x_1+x_2+2x_3-s_2+\mathbf{y_1}=3$ $=3$ $-2x_1+x_3+x_3+x_3+s_1+\mathbf{y_2}=1$ x_1 , x_2 , x_3 , x_3 , x_4 , x_5

	x_1	x_2	x_3	s_1	s_2	y_1	y_2	
s_1	1		1			0		11
y_1	-4	1	2	0	-1	1	0	3
$ otin y_2 $	-2	0	1	0	0	0	1	1
$\overline{-Z}$	-3	1	1	0	0	0	0	0
	6M	-M	$1 \\ -3M$	0	M	0	0	-4M
			$\uparrow\uparrow$					

Slide 59

$$Z = -3x_1 + x_2 + x_3 + M(3 + 4x_1 - x_2 - 2x_3 + s_2) + M(1 + 2x_1 - x_3)$$

= $4M + (-3 + 6M)x_1 + (1 - M)x_2 + (1 - 3M)x_3 + Ms_2$

	x_1	x_2	x_3	s_1	s_2	y_1	y_2	
s_1	3	-2	0	1	0	0	-1	10
$ \begin{array}{c} s_1 \\ $	0	1	0	0	-1	1	-2	1
x_3	-2	0	1	0	0	0	1	1
-Z	-1	$1 \\ -M$	0	0	0	0	-1	-1
	0	-M	0	0	M	0	3M	-M
		$\uparrow\uparrow$						

	x_1	x_2	x_3	s_1	s_2	y_1	y_2	
$ \Leftarrow s_1 $	3	0	0	1	-2	2	-5	12
x_2		1	0	0	$-2 \\ -1$	1	-2	1
x_3	-2	0	1	0	0	0	1	1
-Z	-1	0	0	0	1	-1	+1	-2
	0	0	0	0	0	M	M	0
	11							

Slide 61

	x_1	x_2	x_3	s_1	s_2	y_1	y_2	
x_1	1	0	0	$\frac{1}{3}$	$-\frac{2}{3}$	$\frac{2}{3}$	$-\frac{5}{3}$	4
x_2	0	1	0	0	-1	1	-2	1
x_3	0	0	1	$\frac{2}{3}$	$-\frac{4}{3}$	$\frac{4}{3}$	$-\frac{7}{3}$	9
-Z	0	0	0	$\frac{1}{3}$	$\frac{1}{3}$	$-\frac{1}{3}$	$-\frac{2}{3}$	2
	0	0	0	0	0	M	M	0

Solução óptima: $(x_1, x_2, x_3, s_1, s_2)^* = (4, 1, 9, 0, 0)$ com $Z^* = -2$

Notas finais

- A função das variáveis artificiais é apenas a de funcionar como variável básica numa dada equação. Uma vez substituída na base por uma variável original, pode ser eliminada do quadro simplex (eliminando a respectiva coluna).
- Slide 62
- Se no quadro óptimo alguma variável artificial ainda tiver um valor diferente de zero, isso significa que o problema original não tem nenhuma solução admissível, portanto, é um problema impossível.

Bibliografia

- Ferreira, José António Soeiro (1995). Apontamentos de Investigação Operacional 1. FEUP.
- Guimarães, Rui Campos (1983). *Introdução à Programação Linear*. FEUP.

- Hillier, Fraderick S. e Lieberman, Gerald (1995). *Introduction to Operations Research*, Mc Graw-Hill.
- Ravindram, Philips e Solberg (1987). Operations Research, Principles and Practice. John Wiley & Sons.
- Taha, Hamdy A. (1997). Operations Research, an Introduction. Prentice Hall.