
Dynamic Scenario Simulation Optimization

André Monteiro de Oliveira Restivo

A Thesis presented for the degree of

Master in Artificial Intelligence and Intelligent Systems

Supervisor: Prof. Lúıs Paulo Reis

Universidade do Porto

Faculdade de Engenharia

June 2006

Dedicated to

My Parents, for the support

and

Filipa, for caring

Dynamic Scenario Simulation Optimization

André Monteiro de Oliveira Restivo

Submitted for the degree of Master in Artificial Intelligence and

Intelligent Systems

June 2006

Abstract

The optimization of parameter driven simulations has been the focus of many re-

search papers. Algorithms like Hill Climbing, Tabu Search and Simulated Annealing

have been thoroughly discussed and analyzed. However, these algorithms do not take

into account the fact that simulations can have dynamic scenarios.

In this dissertation, the possibility of using the classical optimization methods just

mentioned, combined with clustering techniques, in order to optimize parameter

driven simulations having dynamic scenarios, will be analyzed.

This will be accomplished by optimizing simulations in several random static sce-

narios. The optimum results of each of these optimizations will be clustered in order

to find a set of typical solutions for the simulation. These typical solutions can then

be used in dynamic scenario simulations as references that will help the simulation

adapt to scenario changes.

A generic optimization and clustering system was developed in order to test the

method just described. A simple traffic simulation system, to be used as a testbed,

was also developed.

The results of this approach show that, in some cases, it is possible to improve the

outcome of simulations in dynamic environments and still use the classical methods

developed for static scenarios.

Optimização de Simulações em Cenários

Dinâmicos

André Monteiro de Oliveira Restivo

Submetido para obtenção do grau de

Mestrado em Inteligência Artificial e Sistemas Inteligentes

Junho de 2006

Resumo

A optimização de simulações parametrizáveis tem sido o tema de variados artigos

de investigação. Algoritmos, tal como o Hill Climbing, Tabu Search e o Simulated

Annealing, foram largamente discutidos e analisados nesses mesmos artigos. No

entanto, estes algoritmos não tomam em atenção o facto das simulações poderem

ter cenários dinâmicos.

Nesta dissertação, a possibilidade de usar os métodos de optimização clássicos

referidos, combinados com técnicas de clustering, de forma a optimizar simulações

parametrizáveis envolvendo cenários dinâmicos, vai ser analisada.

Para atingir este objectivo, as simulações irão ser optimizadas em vários cenários

estáticos gerados aleatoriamente. Os resultados óptimos encontrados para cada um

destes cenários serão depois agregados de forma a obter-se um conjunto de soluções

t́ıpicas para cada simulação. Estes resultados t́ıpicos, podem depois ser usados em

simulações com cenários dinâmicos, como referências que irão ajudar a simulação a

adaptar-se ao cenário actual.

Um sistema genérico de optimização foi desenvolvido de forma a testar o método

descrito. Um sistema de simulação de tráfego, usado como caso de teste, foi também

desenvolvido.

Os resultados desta técnica mostram que, em alguns casos, é posśıvel obter bons

resultados em simulações parametrizáveis com cenários dinâmicos usando na mesma

os métodos clássicos de optimização.

Acknowledgements

I read somewhere else, that nothing brings more joy than writing the acknowledg-

ment section of any dissertation. It is indeed true.

I would like to thank my supervisor, Prof. Lúıs Paulo Reis, for helping me set my

goals, reviewing what I wrote numerous times and helping me bring this thesis to

an end. I also would like to thank Prof. Eugénio Oliveira, for taking the time to

discuss with me the main ideas of this thesis and also for showing new directions I

could take in my research.

I also would like to thank my friends Sérgio Carvalho and Nuno Lopes for their

support during the entire process. Nuno, for the lengthy phone conversations, in

the late night hours, that helped me in the critical initial phase, when everything

was still a little blurry. Sérgio, for being a great think-wall, reviewing some of my

initial writings and for having the patience to listen to my ramblings over and over

again.

Of course I must not forget to also thank all the people that I failed to mention in

these few short paragraphs, specially those that kept asking when it be would finally

be ready and kept me going all this time.

And finally, I cannot end without thanking Life, The Universe and Everything.

v

Contents

Abstract iii

Abstract iv

Acknowledgements v

1 Introduction 1

1.1 Objectives . 2

1.2 Proposal . 4

1.3 Thesis Structure . 5

2 Simulation Optimization 6

2.1 Parameter Optimization . 6

2.2 Discrete Variables Optimization Algorithms 8

2.2.1 Hill Climbing . 9

2.2.2 Simulated Annealing . 10

2.2.3 Tabu Search . 12

2.2.4 Evolutionary Computation . 12

2.2.5 Nested Partitions . 15

2.3 Continuous Variables Scenarios . 17

2.3.1 Gradient Based Search Methods 17

2.3.2 Response Surface Methods . 18

2.3.3 Stochastic Approximation Methods 19

2.4 Multiple Response Simulations . 19

2.5 Non-Parametric Scenarios . 20

vi

Contents vii

2.6 Conclusions . 20

3 Clustering 22

3.1 Clustering Methodology . 23

3.2 Patterns and Features . 23

3.3 Clustering Techniques Classification 24

3.4 Cluster Distance Heuristics . 25

3.5 Initial Clustering Centers . 27

3.6 Clustering Methods . 27

3.6.1 K-Means . 27

3.6.2 C-Means Fuzzy . 28

3.6.3 Deterministic Annealing . 29

3.6.4 Clique Graphs . 30

3.6.5 Hierarchical Clustering . 31

3.6.6 Local Search . 32

3.6.7 Dynamic Local Search . 33

3.7 Conclusions . 33

4 Project and Implementation 35

4.1 Architecture . 36

4.2 Technology . 38

4.3 Modules . 38

4.3.1 Simulation Runners . 38

4.3.2 Evaluator . 41

4.3.3 Optimizer . 43

4.3.3.1 Hill Climbing Optimizer Implementation 46

4.3.3.2 Simulated Annealing Optimizer Implementation . . . 46

4.3.3.3 Genetic Algorithm Optimizer Implementation 47

4.3.4 Aggregator . 49

4.3.4.1 Solution Aggregation 52

4.3.4.2 Scenario Aggregation 54

4.3.4.3 Aggregation Implementation 55

Contents viii

4.4 Scenario Adaptation . 56

4.4.1 Nearest Scenario Approach . 57

4.4.2 Nearest Aggregate Approach 59

4.5 Conclusions . 60

5 Traffic Lights Simulator 62

5.1 Traffic Simulation Scenario . 62

5.1.1 Intelligent Driver Model . 64

5.1.2 Traffic Generation . 66

5.1.3 Traffic Lights . 67

5.1.4 Simulation . 68

5.1.5 Parameters . 69

5.1.6 Graphical Interface . 72

5.2 Other Possible Scenarios . 72

5.3 Conclusions . 73

6 Results and Analysis 75

6.1 Optimization . 75

6.1.1 Optimization Methods . 76

6.1.2 Optimization Results . 78

6.1.3 Comparison of Methods . 79

6.2 Aggregation . 81

6.3 Adaptive Simulations . 82

6.4 Conclusions . 87

7 Conclusions and Future Work 88

7.1 Summary . 88

7.2 Future Work . 89

7.3 Conclusions . 91

A Scenario Optimization Results 100

B Scenario Aggregation Results 104

Contents ix

C Code Listings 105

C.1 Hill Climber Optimizer . 105

C.2 Simulated Annealing Optimizer . 107

C.3 Genetic Algorithm Optimizer . 109

C.4 K-Means Algorithm . 114

List of Figures

2.1 A Simulation with its intervening variables 7

2.2 Mutation and Recombination Operators 13

2.3 Nested Partition Example . 16

2.4 Objective Utility Functions . 20

3.1 Hierarchical Clustering . 32

4.1 Master-Slave Architecture . 37

4.2 System Modules Interaction . 38

4.3 Simulation Communication . 40

4.4 Evaluator Sample Communication . 42

4.5 Optimizer Project Classes . 45

4.6 Optimizer Classes . 45

4.7 Scattered Simulation Results . 52

4.8 Clustered Simulation Results . 53

4.9 Parameter and Scenario relations . 54

4.10 Aggregating Scenarios . 54

4.11 Scenario Adaptation . 58

5.1 Traffic Lights Schedule Example . 67

5.2 Traffic Light Coordinates . 70

5.3 Traffic Simulator Interface . 72

6.1 Solution Neighbourhood Structure . 77

6.2 Low Traffic Optimization Results . 79

6.3 Migration Traffic Optimization Results 80

x

List of Figures xi

6.4 High Traffic Optimization Results . 80

6.5 Complete Scenario Set Results . 84

6.6 Clustered Scenario Set Results . 84

6.7 Single Scenario Set Results . 85

7.1 Single Variable Graphical Analysis Mock-up 91

7.2 Multi Variable Graphical Analysis Mock-up 92

List of Tables

6.1 Comparison of Different Optimization Methods 81

6.2 Adaptive Simulation Results . 83

A.1 Scenario Optimization Results . 100

B.1 Scenario Aggregation Results . 104

xii

List of Algorithms

1 Random Search basic form . 9

2 Standard Hill Climbing Algorithm . 9

3 Standard Evolutionary Algorithm . 14

4 C-Means Fuzzy Clustering Algorithm 29

5 Corrupted Clique Graph Clustering Algorithm 31

6 Hill Climber Optimizer Algorithm . 47

7 Simulated Annealing Optimizer Algorithm 48

8 Genetic Algorithm Optimizer Algorithm 50

9 K-Means Clustering Algorithm . 57

10 Traffic Simulation . 68

xiii

Listings

C.1 Hill Climbing Optimizer (start) . 105

C.2 Hill Climbing (iteration) . 105

C.3 Simulated Annealing (start) . 107

C.4 Simulated Annealing (iteration) . 107

C.5 Genetic Algorithm (start) . 109

C.6 Genetic Algorithm (iteration) . 110

C.7 Genetic Algorithm (generator) . 111

C.8 K-Means Clustering Algorithm . 114

xiv

Chapter 1

Introduction

Many systems, in areas such as manufacturing, financial management and traffic

control, are just too complex to be modeled analytically, but there is still a need to

analyze their behaviour and optimize their performance. Discrete event simulations

have long been used to test the performance of such systems in a variety of condi-

tions. The use of simulations is normally related to the need of understanding how

a certain system behaves under a definite set of environment variables and also to

know how it can be changed in order to improve its performance.

Simulations are sometimes controlled by what can be called agents. These agents

can have several levels of intelligence, ranging from simple agents to intelligent

autonomous agents that can learn from their errors or even from one another. Im-

proving a simulation can mean either making it more similar to the reality it is

modelling, changing the configuration of the simulation in order to get better re-

sults or improving the behaviour of these same agents. This dissertation will focus

mainly in this last problem.

Agents controlling a simulation can be optimized by changing their algorithms,

making them more intelligent, however this is not always easy or even possible.

However, Agents have normally a set of parameters that can be fine tuned in order

to get better results from the simulation.

1

1.1. Objectives 2

Simulations are important tools for studying how a system will react to parameter

changes, but often, testing every single parameter combination, to evaluate which is

the most suited set of values, is not affordable. To help solve this problem a great

number of simulation optimization methods have been developed. These methods

can be used to find the optimum parameters for a given simulation.

Simulation Optimization is a field where a great deal of work has been made but

that is still very active. Several optimization algorithms have been developed and

studied over the years such as: Stochastic Approximation, Simulated Annealing

and Tabu Search. However, most of the times, these algorithms will only optimize

a simulation for a certain static scenario. If the scenario being analyzed by the

simulation changes, the optimum parameters will probably also change.

Simulation scenarios are often also defined by a set of parameters. In cases where this

does not happen, parameters describing the scenario can sometimes be extracted.

In this way, a simulation normally has two sets of parameters that will influence its

outcome: environment, or scenario, parameters that normally can’t be controlled

and system, or agent, parameters that can be changed in order to get better results.

In cases where environment parameters exist, the optimization of a simulation will

be even more complicated as it is necessary to optimize the system parameters for

each possible scenario.

1.1 Objectives

The main objective behind this dissertation is to study how well known Simulation

Optimization algorithms can be used in order to optimize simulations running in

dynamic scenarios or that can be used with several different static scenarios. The

motivation behind this objective resulted from the observation of several different

simulations with these same characteristics that needed to be optimized and the

lack of tools for the task.

1.1. Objectives 3

Several other secondary objectives will be addressed:

• Generic System - Even if most optimization algorithms are generic enough

to be used with almost any simulation, a great deal of work, adapting and

implementing the algorithm, still has to be done when we want to optimize a

particular simulation. With a generic optimization system that required little

effort to adapt to any simulation, a lot of this effort could be shifted to more

important issues.

• Extendability - Each simulation has its own unique features that might re-

quire different algorithms. The choice of the correct algorithm is not always

obvious and can force the developer to test several of them before finding a

suitable one. Each time a different algorithm is tested, it has to be adapted in

order for it to work with the simulation being developed, hence more precious

time is wasted. An optimization system with several optimization algorithms

included and the possibility of adding new ones will allow the user to easily

experiment which algorithm is more suited to the problem in hand.

• Optimization Process Analysis - Ironically most optimization algorithms

also have a set of parameters that must be tweaked in order to get an optimal

performance out of them. So tools that allow us to analyze the optimizer

are often required. Developing these tools each time we study a new type of

simulation is time consuming. The solution will be to create a set of generic

tools that allow the optimization of any simulation with only a few changes

in the simulation code. These should allow the user to monitor, tune and aid

the optimization process.

• Distributed Optimization - Other main concern about using simulation

optimizers is that each simulation run usually takes from a few seconds to

minutes, hours or even days. All the optimization algorithms depend on run-

ning the simulation with several different combinations of scenarios and system

parameters. This may cause the use of optimization algorithms impracticable

in some situations. The common solution for this problem is to run the sim-

1.2. Proposal 4

ulations in more than one computational unit thus distributing the load and

shortening the time of the optimizing process.

1.2 Proposal

This dissertation proposes the creation of a generic optimization system that will

address the points just mentioned:

• The system should be able to use different algorithms and the addition of new

algorithms should be easily accomplished;

• It should be easy to adapt any simulation in order to use the system;

• The system should be able to run simulations in more than one computational

unit, at the same time, saving computational costs;

• The user should have access to the optimization process as it runs and adjust

any parameter in order to improve the system performance;

• The output of the system should take in consideration that there might not

be an optimal global set of parameters for the simulation but several sets of

parameters optimal for different scenarios.

One way of implementing the last of these points is to optimize the simulation

against several different scenarios and then use the optimum parameters found for

the scenario that most resembles the current one. As will be explained in the

subsequent chapters this solution has several drawbacks. One of these drawbacks is

the overhead caused by the constant changing of parameters. The solution proposed

in this dissertation is to use clustering algorithms to minimize the number of different

parameter sets, thus minimizing the number of times parameters need to be changed.

1.3. Thesis Structure 5

1.3 Thesis Structure

This dissertation will be structured into the following chapters:

• Chapters 2 and 3 will evaluate the current state of optimization and clustering

algorithms.

• Chapter 4 will present the structure of a generic simulation optimization sys-

tem and its implementation will be addressed.

• Chapter 5 will present the test case scenario.

• Chapter 6 will present and analyze the results.

• Chapter 7 will contain a brief summary of the dissertation, the final conclusions

and also some references to possible evolutions and future work.

Chapter 2

Simulation Optimization

A great amount of research has been done in the areas of Parameter Optimization

and of Simulation Optimization. In this section the current state of the art of

these two subjects will be presented with the following issues being discussed: what

is a simulation optimization problem; challenges posed by this kind of problems;

different kinds of parameter optimization scenarios; specific problems that each of

these scenarios pose and several ways of tackling them.

2.1 Parameter Optimization

An optimization problem normally consists on trying to find the values of a vector

−→x = (x1, . . . , xnx) ∈ M , of free parameters of a system, such that a criterion

f : M → < (the objective function) is maximized (or in some cases minimized):

f(~x) → max. Most of the times there also exists a vector ~y = (y1, . . . , yny) ∈ N , a set

of stochastic parameters, that also influence the objective function. This second set

of parameters defines different scenarios the simulation can run in. These parameters

are not in our control but they still can be monitored and simulations can adapt to

its changes.

Often these free parameters are subject to a set of constraints ~m = M1 × . . .×Mnm

6

2.1. Parameter Optimization 7

by functions gj : M1 × . . . × Mnm. A more complete mathematical definition of an

optimization problem can be found at [Bäck 96].

A Parameter Optimization Problem can be defined as having:

• A set of decision variables ~(x) whose values will influence the result of the

objective function.

• A set of constraints on the decision variables (gj).

• A set of environment (~y) variables that can not be controlled but influence the

result of the simulation.

• An objective function (f(~x, ~y))that needs to be maximized or minimized. The

objective function is often a weighted sum of the set of results from the simu-

lation (see Section 2.4 for Multiple Response Simulations).

In Figure 2.1 it can be seen how decision and environment variables interact in a

simulation.

Figure 2.1: A Simulation with its intervening variables

Simulation Optimization procedures are used when our objective function can only

be evaluated by using computer simulations. This happens because there is not an

analytical expression for our objective function, ruling out the possibility of using

differentiation methods or even exact calculation of local gradients. Normally these

functions are also stochastic in nature, causing even more difficulties to the task

2.2. Discrete Variables Optimization Algorithms 8

of finding the optimum parameters, as even calculating local gradient estimates

becomes complicated.

Running a simulation is always computationally more expensive than evaluating

analytical functions thus the performance of optimization algorithms is crucial.

In the following sections, some of the algorithms that have been developed over the

years, to solve simulation optimization problems, will be analyzed.

2.2 Discrete Variables Optimization Algorithms

The most simple scenarios in parameter optimization problems happen when de-

cision variables are discrete in nature. In these scenarios, and when the subset of

possible values for the decision variables is small, one could test every set of values

in order to find the optimum solution for the problem. This would be easily accom-

plished if the simulation was deterministic. However, as noticed by [Olafsson 02], in

the stochastic world, further analysis would have to be done in order to better com-

pare each possible solution. [Goldsman 94,Goldsman 98] described several methods

to perform this analysis in order to increase the confidence in selecting the optimum

result.

The cases that will be analyzed in detail are those where it is infeasible to test every

possible solution. The algorithms used in these kind of scenarios are usually called

Random Search algorithms (or Meta-Heuristics). [Olafsson 02] noticed that Random

Search algorithms usually follow the structure depicted in Algorithm 1.

Random Search algorithms are variations of this algorithm with different neighbour-

hood structures, different methods of selecting new candidate solutions and different

acceptance and stopping criteria.

In discrete decision variable optimization problems, the neighbouring solutions to

a particular set of decision values can be calculated easily, making Random Search

2.2. Discrete Variables Optimization Algorithms 9

Algorithm 1 Random Search basic form

1. Select an initial solution and test its performance

2. Select a candidate solution from the neighborhood of that solution and test
its performance

3. If the performance of the new solution is better than that of the current solu-
tion then set the current solution as being the new solution

4. If stopping criterion is met stop else go back to step 2

methods ideal for these kind of scenarios.

In the following sections, different Random Search algorithms, that can be found in

optimization literature, will be described.

2.2.1 Hill Climbing

Hill Climbing (HC), in its basic form, is the simpler of the optimization methods for

discrete variable optimization problems. The method starts with an initial random

solution and searches amongst its neighbours for better ones. If a better solution

is found the algorithm resumes its search from that new solution. The algorithm

stops when it cannot find a better solution close to the current one. A description

of a standard HC algorithm can be found in Algorithm 2.

Algorithm 2 Standard Hill Climbing Algorithm

1. Generate an initial solution, randomly or by means of an heuristic function

2. Loop until a stop criterion is met or there are no untested neighbour solutions:

(a) Test a neighbour solution to the current that hasn’t yet been tested

(b) If the new solution is better than the current solution make it the current
solution

3. Return the current solution

HC has some well-known limitations as stated by [Russell 02]:

• Local Maximum - A local maximum is a peak that is higher than its neigh-

2.2. Discrete Variables Optimization Algorithms 10

bours solutions but is not the highest value of the function. The HC algorithm

will stop at these points.

• Plateau - A plateau is an area where the objective function is essentially flat.

HC will search erratically in these kind of areas.

• Ridges - A ridge is an area with a point, where even without it being a local

maximum, all available moves will make the solution worse. Ridges depend

on the method chosen to calculate neighbour solutions.

A solution to the Local Maximum problem is to restart the HC process when it

stops from a random location. This method, called Random Start Hill Climbing

(RSHC), works well when there are only a few local maximums but in more realistic

problems it will take an exponential amount of time to find the best solution to the

problem ([Russell 02]).

A variation of the Hill Climbing method is the Steepest Ascent Hill Climbing (SAHC)

algorithm ([Rich 90]). The difference between these two methods is that the first

tests all current solution neighbours in order to find the best solution amongst them,

while the SAHC algorithm changes its current best solution as soon as a better one

is found. SAHC normally converges quicker than HC but still does not guarantee

the best solution is found.

Some other methods, loosely based on HC, have been later proposed by other au-

thors. In the following sections some of these methods will be analyzed.

2.2.2 Simulated Annealing

Originally described by [Kirkpatrick 83] Simulated Annealing (SA) tries to emulate

the way in which a metal cools and freezes into a minimum energy crystalline struc-

ture (the annealing process) and compares this process to the search for a minimum

in a more general system.

2.2. Discrete Variables Optimization Algorithms 11

At that time, it was well known in the field of metallurgy that slowly cooling a

material (annealing) could relieve stresses and aid in the formation of a perfect

crystal lattice ([Fleischer 95]). [Kirkpatrick 83] realized the analogy between energy

state values and objective function values, creating an algorithm that emulated that

process.

The SA algorithm tries to solve the Local Maximum problem described in 2.2.1. It

does so by allowing the search to sometimes accept worst solutions with a probability

(p), that would diminish with the temperature of the system (t). In this way, the

probability of accepting a solution that resulted in a certain increase in the objective

function (∆f), at a certain temperature, would be given by the following formula

described in the original paper by [Kirkpatrick 83]:

p(∆f, t) =







e
−∆f

t ∆f ≤ 0

1 ∆f > 0
(2.1)

Observing the formula, it is clear that downhill transitions are possible, with the

probability of them occurring decreasing with the height of the hill and inversely

related to the temperature of the system.

In order to implement the SA algorithm, the initial temperature of the system, and

how that temperature is going to be lowered, still has to be decided. The slower

the temperature is decreased, the greater the chance an optimal solution is found.

In fact [Aarts 89] showed that running the simulation an infinite number of times is

needed to be sure the optimal solution to the problem has been found.

Most times a reasonably good cooling schedule can be achieved by using an ini-

tial temperature (T0), a constant temperature decrement (α) and a fixed number

of iterations at each temperature. These kind of cooling schedules are called fixed

schedules. The problem with these schedules is that it is often impractical to cal-

culate the ideal values for T0 and α. Another approach is to use a scheduling that

can automatically adapt to the problem at hand. These are called self-adaptive

2.2. Discrete Variables Optimization Algorithms 12

schedules and were first presented by [Huang 86].

2.2.3 Tabu Search

Tabu Search (TS) is another optimization method created to solve the local max-

imum problems revealed by the Hill Climbing algorithm. The main idea behind

the TS algorithm is to use the search history in order to impose restrictions, and

additions, on the neighbourhood of the solution currently being analyzed.

There are two main ways of taking advantage of the search history in order to im-

prove the choice of the next solutions to be explored: recency memory and frequency

memory ([Glover 93]).

Recency memory is a short term memory where recent solutions or recent moves

between solutions are labeled as being tabu-active. The TS algorithm avoids going

through those same solutions, or backtracking those moves, in order to better explore

the space of feasible solutions.

Frequency memory is a longer term strategy that discourages moves to solutions

whose components have been frequently visited or encourages moves to solutions

whose components have rarely been evaluated. Another form of longer term strat-

egy is achieved by recording which components appear most in elite solutions and

encouraging moves towards solutions containing those components.

Shorter and longer term strategies can be used at the same time and often yield

good results. [Glover 93] has written a very comprehensive explanation on the uses

of Tabu Search.

2.2.4 Evolutionary Computation

Not uncommonly, computer scientists grab their ideas from biological phenomena.

Evolutionary Computation (EC) is just one of many examples of the benefits of this

2.2. Discrete Variables Optimization Algorithms 13

Figure 2.2: Mutation and Recombination Operators

interdisciplinary cooperation.

As seen in the last sections, the SA and TS algorithms are variations of the HC

algorithm where the notion of neighbourhood has been slightly distorted in order

to escape from local maximums. EC has a somewhat different approach as its

methods deal with populations of solutions, instead of a single current solution from

where moves to better (or sometimes worse) solutions can be made. It is loosely

based in the biological mechanism of evolution, where the fittest organisms have a

greater probability of generating offspring making each new generation better than

the previous one.

Three major methods have been established in literature: Genetic Algorithms (GA),

Evolution Strategies (ES) and Evolutionary Programming (EP). These three meth-

ods follow, nevertheless, the same basic strategy: A population of solutions, each

one of them having a certain fitness (calculated by evaluating the objective func-

tion for each solution), to whom a series of probabilistic operators, like mutations,

selections and recombinations, are applied (see Figure 2.2).

The mutation operator is used to introduce innovation in the current population

allowing the algorithms to explore areas of the search space that are not being

explored at the moment. The selection operators are those that make the method

2.2. Discrete Variables Optimization Algorithms 14

reach better results with each new generation, selecting the solutions with an higher

fitness value over the ones with a lower one. The recombination operator allows

some information exchange between current solutions by introducing a new solution

into the population from the merge of two previous selected solutions . The beauty

of the algorithm lies in the fact that, although it is extremely simple, it has been

used by mother nature, with remarkable success, for millions of years.

Algorithm 3 is a simple outline of what a standard Evolutionary Computation al-

gorithm looks like ([Holland 75,Pierreval 00]).

Algorithm 3 Standard Evolutionary Algorithm

1. Start with the generation counter equal to zero.

2. Initialize a population of individuals (either randomly or by means of an heuris-
tic function).

3. Evaluate fitness of all initial individuals in population.

4. Increase the generation counter.

5. Select a subset of the population for children reproduction (selection).

6. Recombine selected parents (recombination).

7. Perturb the mated population stochastically (mutation).

8. Evaluate the mated population’s fitness (evaluation).

9. Test for termination criterion (number of generations, fitness, etc.) and stop
or go to step 4.

As has already been stated, the three different approaches to evolutionary computing

share the same basic structure. The main differences between them lie in their

objectives, the way their population is coded and the way they use the different

evolutionary operators.

EP has been initially developed having in mind machine intelligence. Its main

particular characteristic is the fact that solutions are represented in a form that

is tailored to each problem domain. EP tries to mimic evolution at the level of

reproductive populations of species, and recombinations do not occur at this level,

so EP algorithms seldom use it.

2.2. Discrete Variables Optimization Algorithms 15

On the other hand GAs use a more domain independent representation (normally bit

strings). The main problem with GA is how to code each solution into meaningful

bit strings. Its advantages are that mutation and recombination operators are easily

implemented as bit flips (mutations) and string cuts followed by concatenations

(recombination).

The main difference between ES and the other two methods just discussed are the

fact that selection in ES is deterministic (the worst N solutions are discarded) and

that ES uses recombination as opposed to EP.

A more complete description about the differences between these three methods and

their uses can be found at [Spears 93,Fogel 95].

2.2.5 Nested Partitions

The Nested Partitions method is a relatively recent (when compared to other)

method for parameter optimization first proposed by [Shi 97, Shi 00]. The basic

idea behind this particular method is the continuous partitioning of the solution

space into smaller, and more promising, regions until a stopping criterion is met.

The algorithm runs in 4 simple steps: partitioning, sampling, promising index cal-

culation and backtracking. The starting step is the creation of an initial, most

promising, region (normally the complete solution space Θ). This region is then

partitioned into M subregions (σ1, . . . , σM) using some previously chosen partition-

ing method. The method then proceeds by randomly sampling each one of the M

subregions and then calculating the promising index of these subregions as, for in-

stance, the best performance value from the samples taken of each subregion. The

subregion with the best performance index becomes our most promising subregion

and is partitioned even further. In the following steps each of the new subregions

and also the surrounding of our most promising region is taken into account, thus

calculating the promising index for M+1 regions. If the subregion with the most

promising index is one of the subregions of our most promising region, the method

2.2. Discrete Variables Optimization Algorithms 16

then continues partitioning even further, but if it is the surrounding region that is se-

lected, it backtracks to the region which is the parent to the current most promising

region.

Figure 2.3 contains an example of how the algorithm works. In the first step the

solution space was partitioned in four subregions. Sub region σ2 was selected as

the most promising, after sampling and calculating the promising index of each one

of them. The the algorithm proceeded by partitioning region σ2 and evaluating

its subregions and also the surrounding region Θ \ σ2 = {σ1, σ3, σ4}. This time

subregion σ2.3 was selected as the most promising region. In the next step the

promising indexes of our four subregions, plus the surrounding region Θ \ σ2.3, was

calculated. As the surrounding region was found to be the most promising, the

algorithm backtracked to the parent of subregion σ2.3 which is region σ2.

Figure 2.3: Nested Partition Example

A notable feature of the NP method is that it combines global and local search in a

natural way. It is also highly suitable for parallel computer structures ([Shi 97]).

2.3. Continuous Variables Scenarios 17

2.3 Continuous Variables Scenarios

Optimization of simulation parameters brings some new challenges when those same

parameters are continuous instead of being discrete. In these cases the feasible solu-

tions space becomes infinite. Methods for solving optimization problems with con-

tinuous input parameters can be classified as either gradient-based or non-gradient-

based ([Swisher 00]). Gradient based methods are the most used ones and three sub-

classes of these kind of methods can be identified: Gradient Based Search Methods

(GBSM), Response Surface Methods (RSM) and Stochastic Approximation Methods

(SAM).

2.3.1 Gradient Based Search Methods

GBSMs work by estimating the objective function gradient (5f) to determine the

shape of the function and then employing deterministic mathematical techniques

in order to find the maximum of that same function([Carson 97]). Several dif-

ferent methods of estimating the gradient have been developed like: Finite Differ-

ences, Likelihood Ratios, Infinitesimal Perturbation Analysis and Frequency Domain

Method.

The Finite Differences Method (FD), labeled by [Azadivar 92] as the crudest of all

gradient estimation methods, works by calculating partial derivatives for each of the

free parameters (−→x = (x1, . . . , xn) ∈ M):

δf

δxi

=
f(x1, . . . , xi + ∆i, . . . , xn) − f(x1, . . . , xi, . . . , xn)

∆i

(2.2)

For a simulation with n free parameters at least n+1 runs of the simulation are

needed, and if the simulation response happens to be stochastic in nature then

several more runs are needed to obtain a more reliable value for each derivative

making this method very inefficient.

2.3. Continuous Variables Scenarios 18

The Likelihood Ratio Estimation Method (LR) described in [Glynn 90] is a much

more efficient method of estimating gradients in stochastic scenarios. However,

the LR is not appropriate for every simulation and is not suitable for a generic

optimization system.

The Infinitesimal Perturbation Analysis (IPA) method of calculating gradient esti-

mates, yields a much more interesting approach for a generic optimization system.

The IPA assumes that an infinitesimal perturbation, in an input variable, does not

affect the sequence of events but only makes their occurrence times slide smoothly

([Carson 97]). If this statement holds, then the objective function gradient could

be estimated from a single simulation run. However gradients calculated with this

method are usually biased and inconsistent.

Frequency Domain Analysis (FDA) is based in the following idea: if an output

variable is sensitive to one of the input variables and if that same input variable

is oscillated sinusoidally, at different frequencies, over a long simulation run, the

output variable should show corresponding oscillations in the response. Those same

oscillations can then be analysed using Fourier transforms in order to understand

how each input variable influences the output variable of the simulation.

2.3.2 Response Surface Methods

Response Surface Methods (RSM) have the great advantage of requiring fewer simu-

lations runs than the other methods described. They work by trying to fit regression

models to the objective function of the simulation model. They start by trying to fit

a first order regression model into the simulation results and searching that model

using a Steepest Ascent approach. When it gets nearer to the solution, a higher

order regression model is then used.

Although RSMs require few simulations runs, experiments have shown that for more

complex functions the results provided are not very good ([Azadivar 92]). The usage

of regression models in simulation optimization have been described in [Biles 74].

2.4. Multiple Response Simulations 19

2.3.3 Stochastic Approximation Methods

Stochastic Approximation Methods (SAM) are recursive procedures that approach

the maximum of a function also using regression functions. The relevant characteris-

tic of this method over RSM is that SAM also work with noisy observations [Azadi-

var 92]. The greatest problem is that a large number of iterations is required before

reaching the optimum value. For multi-dimensional decision variables, n+1 obser-

vations must be done in each iteration.

2.4 Multiple Response Simulations

Simulation models that output more than one result in each simulation run have

their own difficulties. With these kind of simulations there is no longer a single

objective function that as to be optimized, but several ones.

One simple approach to solve this problem is to consider one of the objective as

the function to be optimized subject to certain levels of achievement by the other

secondary objective functions [Azadivar 92].

Other obvious solution is to define a weight for each one of the objective functions

thus defining a new objective function:

f(~x) =

n
∑

i = 1

wifi(~x) (2.3)

This solution, although effective at first glance, is in fact typically a poor solution.

Normally each one of the objective functions has a different utility function. By just

using the weighted sum of the objective functions, we are considering that these

utility functions are linear and have the same zero value but, in fact, the normal

case is the one depicted on the right part of Figure 2.4.

2.5. Non-Parametric Scenarios 20

Figure 2.4: Objective Utility Functions

2.5 Non-Parametric Scenarios

There is also a completely different class of optimization problems. Non-parametric

simulations are those where the mathematical models we have seen in Section 2.1

cannot be applied. Examples of these problems are scheduling policies, layout prob-

lems and part routing policies [Azadivar 92]. As the decision variables in these

problems are not quantitative, classical optimization algorithms like Hill Climbing

or Simulated Annealing cannot be used.

To approach this class of problems new model generators and optimization methods

had to be developed from scratch. As these problems do not lie in the scope of this

thesis no deep analysis will be done about them.

2.6 Conclusions

When having a simulation optimization problem at hand, the first thing one has to

do is to analyze the nature of that same problem. This means that decision variables,

environmental variables and results must be characterized. The characterization of

these variables will automatically narrow the scope of choices one has to make.

In the event of it being a simple discrete variable optimization problem the choice of

available algorithms will comprehend the classic Hill Climbing, Simulated Annealing,

Tabu Search and several flavours of Evolutionary Computing algorithms, besides the

2.6. Conclusions 21

more recent Nested Partitions algorithms and also many more. The first three of

these algorithms share the same structure having just a few variations. In fact,

all of them imply the definition of solution neighbourhoods. One thing they all

have in common is the need of evaluating the objective function for comparison

purposes. This, as has been seen, brings new challenges when we have several

objective functions.

Although having been under heavy research for many years, the studied Simula-

tion Optimization algorithms all fail in one single point. They all assume that the

simulation environment is static when in fact it normally is not. The simulation

environment is constantly changing and so, the parameters that control it also have

to change.

In Chapter 4 some of the optimization algorithms that were just described, as well

as clustering methods like the ones that will be analyzed in Chapter 3, will be used

in order to develop an optimization system that assumes simulation can be dynamic.

Chapter 3

Clustering

Clustering can be defined as grouping sets of elements that are similar in some way.

A simple way of achieving this objective is by obtaining maximum inter-cluster

similarity and intra-cluster dissimilarity.

Clustering methods have to deal with two different problems: membership (whether

an element belongs to a certain cluster or not) and how many clusters to create.

Most methods only deal with the first of these problems but some strategies have

been developed to determine the number of clusters and cluster membership at the

same time ([Fraley 98]).

To develop an optimization system as delineated in Chapter 1, solutions from an

optimization problem must be grouped together, having in mind that different solu-

tions apply to different initial conditions of the simulation. The objective is to find

out which different kind of solutions exist and to which type of problems each one

of them can be applied.

In this section, different clustering algorithms will be explained. The situations

in which each algorithm can be used, their advantages and drawbacks will also be

analyzed.

22

3.1. Clustering Methodology 23

3.1 Clustering Methodology

Clustering is normally done in 5 separate steps ([Jain 99]):

1. Pattern Representation - This refers to preparing the data for the cluster-

ing algorithm. Analyzing which data elements are relevant to the clustering

process, their scales and types, and also transforming the data in order to

emphasize more relevant features (e.g. transforming numbers into even and

odd classes).

2. Definition of Pattern Proximity - Clustering is normally based in some

kind of proximity function. This function can be simply the euclidean distance

between each element or a somewhat more complex function.

3. Clustering - There are many methods for performing this step and those can

be grouped, for example, as hard or fuzzy partitioning methods and hierarchi-

cal or partitioning methods.

4. Data Abstraction - How the data will be presented after the clustering step.

5. Assessment of Output - Validating the clustering process output.

A vast number of clustering algorithms exist due to the fact that each specific

clustering problem has its own requirements and benefits. However, an all-solving

clustering algorithm is something that does not exist [Jain 99].

3.2 Patterns and Features

Patterns (~p) are a common clustering term that refer to vectors of d measurements.

Patterns are the data items that a clustering algorithm will try to group. Each

scalar component of a pattern is called a feature (pi).

3.3. Clustering Techniques Classification 24

~p = (p1, . . . , pd) (3.1)

Features can be divided into the following categories ([Gowda 91]):

• Quantitative Features: continuous values, discrete values or interval values;

• Qualitative Features: nominal (unordered) or ordered.

To cluster the data retrieved from the optimization model described in Chapter 1,

focus will be given mainly to clustering methods appropriated for continuous or

discrete values.

3.3 Clustering Techniques Classification

As stated before clustering techniques can be classified from several different point

of views. Classifying these algorithms can help in the choice of a suitable clustering

algorithm. Following, we present a classification of clustering algorithms based on

the one proposed by [Jain 99]:

• Agglomerative / Divisive - Agglomerative methods start with each pattern

in its own cluster and work by merging clusters until a stopping criterion is

met. Divisive methods start with a single cluster containing all patterns and

work by dividing the initial cluster into smaller clusters, also until a stopping

criterion is met. Agglomerative methods memory requirements are usually

proportional to the square of the number of groups in the initial partition,

normally the size of the data set [Fraley 98].

• Monothetic / Polythetic - Most clustering methods use all features at

once when computing distances between patterns. These kind of methods

are referred as polythetic methods. Monothetic methods considers features

sequentially as they divide or agglomerate clusters.

3.4. Cluster Distance Heuristics 25

• Hard / Fuzzy - Clustering algorithms can have hard or fuzzy result sets. In

hard result sets each pattern belongs to only one cluster while in fuzzy result

sets each pattern is assigned a degree of membership to more than one cluster.

• Incremental / Non-incremental - Incremental clustering algorithms allow

the introduction of new patterns into the result set without forcing a complete

rebuild of the pattern set. This is of extreme importance when the pattern set

is large and dynamic.

• Hierarchical / Partitioning - Hierarchical clustering algorithms can output

a dendogram of nested clusters as a result, while partitioning algorithms output

single-level partitions.

3.4 Cluster Distance Heuristics

Most of the clustering methods we will discuss use some heuristic form of determin-

ing the distance between clusters. In fact, the existing methods normally concen-

trate their efforts in determining the dissimilarity between clusters rather than their

similarity.

The most appropriate heuristic to be applied is something that depends strongly

on the dataset, so a best than all method is something that does not exist. Besides

that, a criteria to find which method is the best for a certain dataset is not known.

The most used heuristic variations are the following ([Fung 01]):

• Average linkage - In this method dissimilarity is calculated as the average

distance between each element in a cluster and all elements of the other cluster.

• Centroid linkage - The centroid of a cluster is defined as the center of a

cloud of points. Dissimilarity is calculated as the the distance between cluster

centroids.

3.4. Cluster Distance Heuristics 26

• Complete linkage - The distance between two clusters is determined by the

distance between the most dissimilar elements of both clusters. This method

is also referenced as the furthest-neighbour method.

• Single linkage - This method is a variation of the previous one where the

dissimilarity between two clusters is based on the two most similar elements

instead of the two most dissimilar ones.

• Ward’s method - A somewhat different method from the previous ones.

Cluster membership is assigned by calculating the total sum of squared devi-

ations from the mean of the cluster.

Another problem regarding distances is that the various features normally do not

use the same scale. Normalization has to be performed in order to get meaningful

distance values.

[Luke 02] defined a method that ensures all features will have a mean value of 0.0

and a standard deviation of 1.0 over the entire range of patterns to be analyzed. His

method can be easily explained using these four simple steps to be applied to each

feature:

1. Sum the values of the feature over all patterns and divide the sum by the

number of different patterns.

2. Subtract this average value from the feature in all patterns.

3. Sum the square of these new values over all patterns, divide the sum by the

total number of patterns, and take its square-root. This is the standard devi-

ation of the new values.

4. Divide the feature by the standard deviation in each pattern.

Only after applying this simple procedure will all patterns be ready for comparison

and distance evaluation.

3.5. Initial Clustering Centers 27

3.5 Initial Clustering Centers

Some of the methods we are describing in the next section require a set of initial

empty clusters and their respective centers. The choice of these initial centers is

crucial to the quality of the obtained clusters, as noticed by [Fung 01]. The same

author proposed some heuristic methods for choosing these initial parameters:

• Bins - Divide the space into bins and choose random initial clusters in each

of those bins.

• Centroid - Choose initial centers near to the dataset centroid.

• Spread - Chose random centers across the entire dataset.

• PCA - Project the dataset into the most important component as to form

a one-dimensional dataset. Then perform a clustering algorithm and use the

obtained clusters centers as the initial centers.

3.6 Clustering Methods

In the next sections several clustering methods described in the literature will be

presented.

3.6.1 K-Means

The K-Means clustering algorithm was one of the first clustering algorithms ever

described. Although very easy to implement, it has some drawbacks that will be

discussed later in this Section.

The algorithm starts with the creation of k clusters with initial centroids estimated

using, for example, one of the algorithms explained in Section 3.5. Patterns are then

assigned to the cluster with the nearest centroid (usually using simple euclidean

3.6. Clustering Methods 28

distance measurements). New cluster centroids are then calculated and the process

repeats until convergence is met (i.e. no pattern changes cluster).

The major drawbacks of this method are: the fact that the number of clusters must

be predetermined; having a poor performance as distances to the cluster centroids

must always be recalculated in each step; and its results being very dependent of

the initial choice of cluster centroids.

[Fayyad 98] showed that the dependency of the initial clusters choice could be easily

surmounted by iteratively applying the K-Means algorithms to various subsamples

of the initial set of patterns and observing which initial clusters fail to have any

elements in it. Other problem with this method is that it favours circular clusters

(as most clustering methods do), however clusters can have different forms like, for

example, strips or ellipsoids.

3.6.2 C-Means Fuzzy

Fuzziness is a term often used in artificial intelligence literature that breaks the

traditional approach of an object x having, or not having, a certain characteristic y.

Instead of that, fuzzy methods state that the object x has the characteristic y to a

certain degree z. This approach is able to represent reality in a much accurate form.

When it comes to clustering, fuzziness means that patterns no longer belong un-

doubtedly to a single cluster but have a certain degree of membership to a number

of different clusters. This creates the notion of fuzzy boundaries. The C-Means

Fuzzy algorithm, first described by [Pal 95], works like depicted in Algorithm 4.

The C-Means algorithm usually has a parameter q (a real number greater than 1)

that refers to the amount of fuzziness applied to the cluster boundaries. The degree

of membership to each cluster (uij) is computed using the following formula:

3.6. Clustering Methods 29

Algorithm 4 C-Means Fuzzy Clustering Algorithm

1. Estimate K initial empty clusters with estimated centroids (using a method
like those exposed in Section 3.5).

2. Calculate the degree of membership of every pattern to every cluster.

3. Recalculate cluster centroids.

4. Update the degree of membership (same as step 2).

5. Go to step 3 unless a stopping criterion is met (usually when the biggest change
in membership is below a certain tolerance value).

uij =

1
d(pj ,Ci)

1

q−1

∑K

k=1
1

d(pj ,Ck)

1

q−1

(3.2)

Where the pj refers to pattern j, Ci refers to cluster i and d is a distance estimator

as defined in Section 3.4.

To update the cluster centroids we just have to take into account the degree of

membership of each of the M patterns to each cluster:

Ċi =

∑M

j=1(uij)
qpj

∑M

j=1(uij)q
(3.3)

The objective of the algorithm is to minimize the following cost function:

E(U, C) =

M
∑

j=1

K
∑

i=1

(uij)
qd(pj, Ci) (3.4)

3.6.3 Deterministic Annealing

The deterministic approach to clustering, first introduced by [Rose 90], follows much

of the principles of the SA algorithm described in Section 2.2.2. In this case the

energy of the system, that we want to minimize, is given by the following expression

(extremely similar to the cost function seen in equation 3.4):

3.6. Clustering Methods 30

E =

M
∑

j=1

K
∑

i=1

(uij)d(pj, Ci) (3.5)

In the original paper, the problem is formulated as a fuzzy clustering problem and

the association probability distribution is obtained by maximizing the entropy at a

given average variance .

3.6.4 Clique Graphs

The recent popularity of clustering in the domain of bio-informatics, as a tool for

studying DNA micro-array data, has yield some interesting new results [Fasulo 99].

One of the most interesting results being a new clustering algorithm based on clique

graphs, or, more precisely, on corrupted clique graphs. Clique graphs are graphs

with every vertex connected to every other vertex.

The algorithm, first described by [Ben-Dor 99], tries to maximize intra-cluster sim-

ilarity and inter-cluster dissimilarity. In this way the similarity graph, within a

cluster, should be represented by a clique graph.

However the similarity measurements are usually approximations and errors are

prone to occur. So similarity is normally represented by a clique graph with some

edges missing and some extra edges. This kind of graphs are what are called cor-

rupted clique graphs.

In the corrupted clique graph model it is assumed that the similarity graph is a

clique graph with edges removed and added with a probability α. The goal of the

algorithm is to find the ideal clique graph given the corrupted one [Fasulo 99].

The theory behind the algorithm states that if α is not to large and M is not to

small, meaning that we have a sufficiently large number of patterns, and similarity

errors are not to big, then, we can choose a subset of the initial patterns p′ with

high probability of it containing a core that correctly classifies all patterns in the

3.6. Clustering Methods 31

Algorithm 5 Corrupted Clique Graph Clustering Algorithm

1. Pick a random subset p′ of p.

2. Consider all ways of partitioning p′ into non-empty clusters (core candidates).

3. Classify all remaining patterns into these candidates.

4. Keep the core candidate with the clique graph more similar to the original
clique graph.

initial dataset. The theoretical algorithm base on this assumption is described in

Algorithm 5.

3.6.5 Hierarchical Clustering

Hierarchical Clustering is a common class of clustering algorithms, suitable for sce-

narios where there is not a obvious separation by well-defined clusters. Instead,

these algorithms, output clusters that are represented as a tree where the root node

is a cluster containing all patterns and sub-sequential nodes are divisions of that

node.

Hierarchical clustering methods come in two flavours: divisive and agglomerative.

The first start with a big cluster containing all patterns and work down the tree by

breaking it into smaller ones, while the latest start with small uni-pattern clusters

that are joined, creating increasingly larger clusters. Agglomerative hierarchical

clustering algorithms are much more common and are the ones that will be described

next.

The idea behind the algorithm is to start by creating a cluster for each pattern in

the dataset, then, find out which pair of clusters is less costly to merge, and merge

it. The merging process then repeats until there is only one cluster left (see Figure

3.1). To estimate the cost to merge two clusters any of the methods described in

Section 3.4 can be used.

If the complete cluster tree is not needed, the merging process can be stopped when

3.6. Clustering Methods 32

Figure 3.1: Hierarchical Clustering

a certain number of clusters as been achieved or when the merging cost crosses a

determined tolerance value (see Figure 3.1 - stopping at dashed line creates the

clusters with a thicker border in the image).

3.6.6 Local Search

The same optimization techniques studied in Section 2.2 can be easily adapted to

provide clustering algorithms. The main idea behind this technique is to look at a

cluster configuration as a solution for the clustering problem. This solution can then

be optimized using, for instance, the SA algorithm. In this case, swapping patterns

from a cluster to another could be used to create neighbouring solutions.

An even better utilization of optimization techniques can be achieved if, instead

of creating an initial random solution, we apply a simple clustering algorithm (i.e.

k-means) prior to trying any optimization.

[Kanungo 02] has a good overview of various swap strategies that can be applied

to local search methods in order to improve the k-means method.

3.7. Conclusions 33

3.6.7 Dynamic Local Search

Recently a new clustering method was developed, called Dynamic Local Search

([Karkkainen 02]), that claims to be able to solve, simultaneously, the two main

questions clustering algorithms try to answer: how many clusters exist and to which

cluster each pattern belongs to.

The original idea behind the method is that Local Search can be used, in a brute

force manner, to generalize the problem to one where we do not know the number of

existing clusters. This is done by applying the method to every reasonable number

of clusters and choosing the one that minimizes the cost function. This method has

the obvious drawback of being terribly inefficient.

[Karkkainen 02] rationalized that it was possible to use the Local Search method-

ology to solve both problems at the same time simply by adding the removal and

creation of clusters to the operations that generate neighbouring solutions.

3.7 Conclusions

In this Chapter several clustering algorithms have been addressed. The clustering

problem and its variants have also been explained and listed.

Clustering is a much harder problem than what can be supposed at first glance.

The vast number of different clustering algorithms that can be found in literature is

a reflex of the great number of different problems, with each one requiring different

approaches.

Besides having to choose from a great variety of algorithms, several small details have

to be decided when applying clustering techniques like how to calculate distances

between elements and clusters. There is also a major problem found with every

clustering algorithm: without any sense of scale it is impossible to assign elements

to clusters without any user input.

3.7. Conclusions 34

In Chapter 4 some of the clustering algorithms that were just presented, as well as

optimization methods like the ones that were analyzed in Chapter 2, will be used in

order to develop a optimization system like the one presented in Chapter 1.

Chapter 4

Project and Implementation

A generic optimization system has been implemented to validate the ideas behind

this dissertation. Four main points are behind the construction of this prototype:

• In the simulation optimization field, researchers often develop their own opti-

mization systems. This happens mainly because it is relatively easy to develop

a fairly decent optimizer from scratch. However having a generic optimization

system available would allow the researcher to optimize his simulation with

several, and perhaps more advanced, optimization methods and use some al-

ready developed analysis tools.

• No system is ever generic enough for everyone. So, having the possibility of

extending a system is crucial when developing a generic system. In particular

this optimization system should allow new optimization methods to be added

easily.

• Simulation based optimizations are always, or almost always, CPU intensive.

This happens because optimization algorithms need to run simulations, which

sometimes are already CPU intensive, numerous times, in order to achieve

good results. An usable optimization system must take this into account.

Distribution is the most obvious way of working around this problem, so a

35

4.1. Architecture 36

good optimization system should allow the distribution of workload across

different machines.

• Simulations are used many times to optimize a set of parameters that will be

later used in the real world. Most optimization systems approaches do not

take into account the fact that there are environment changes occurring every

time in real life applications.

• A much needed feature in todays optimization systems, that will help un-

derstand and cope with changing environments, would be a scenario/result

analyzer. This tool would help users understand what kind of solutions there

are to the problem and in which scenario each can be applied successfully.

The next sections will explain how a system based in this previous ideas could be,

and was, developed.

4.1 Architecture

As already explained in Chapter 2, a simulation normally receives a set of parameters

and outputs a set of results. Besides that, most simulations have a set of environment

parameters that can be user adjusted or randomly selected.

A generic optimization system must to cover as many different configurations as

possible. However, creating a system that is to complicated to use should be avoided.

So, a few concessions had to be made in order to keep the system simple. However,

the system should allow different simulation configurations to be used by means of

system extensibility.

The system will be composed of several modules that will be introduced in the

following paragraphs and explained in full detail in the subsequent sections.

To begin, a module that will interact with the different type of simulations will be

needed. This module should, first of all, be distributable so we can have several

4.1. Architecture 37

Figure 4.1: Master-Slave Architecture

instances of it running in different machines (see Figure 4.1). It should also be able

to receive a binary file for a certain simulation, instructions on how to run it with

different parameters and how to gather results from it.

A second module, that will work closely with the one just described, will be respon-

sible for evaluating simulation runs. Another task of this module will be to mask

the fact that simulations are normally stochastic in nature.

Optimization is obviously the major goal of the system so an optimization module

is essential. This module will use the evaluator module in order to get the results

from various simulation runs and use these results to find the optimum parameters

for a given scenario.

A final module will aggregate and analyze results from the optimizer, in order to

create a dynamic optimization schedule for the simulation, and allow the user to

better understand how parameters and scenarios influence each others. The aggre-

gator module will talk to the optimizer as well as with the evaluator. Figure 4.2

captures the various modules and their interaction.

4.2. Technology 38

Figure 4.2: System Modules Interaction

4.2 Technology

The most important choices made when deciding the technology to be used in the

project, were selecting the programming language and the communication proto-

cols to be used. The choice was the Java programming language because of its

multi-platform characteristics, as it would make it easier to find a large set of com-

puters available for hosting simulation runners, and the XML-RPC communication

protocol for its excellent Java implementation, easiness of use and multi-platform

characteristics.

4.3 Modules

In the next sections we will take a more detailed look into the inner workings of

each of the modules that compose the optimization system.

4.3.1 Simulation Runners

Simulation Runners are responsible for the interaction between the optimization

system and the simulations being optimized. Three particular aspects have to be

dealt with:

4.3. Modules 39

• Simulation version awareness and differentiation;

• Communication with the optimization system;

• Interaction with a diversity of simulations.

Simulation runners have to be able to differentiate between simulation projects and

even between versions from the same project. One solution could be to send the

project code every time a simulation run was demanded from a simulation runner.

This solution has obviously a great drawback, as sometimes the simulation code can

be quite large and time would be wasted in communications.

The solution found to this problem was a simple one. Every time the server starts

working on a new project it calculates a fingerprint for that specific project. The

fingerprint is calculated simply by means of a MD5 hash function applied to the

name of the simulation file and its size in bytes. This solutions assumes that two

different projects with the same filename and the same file size are very uncommon.

To allow the simulation runners to receive orders from the optimization system a

simple communication protocol had to be developed. The protocol consists of three

simple messages:

• hasProject(String hash) - This method will allow the optimizer to query the

simulation runners if they already have the code for a certain project, thus

preventing unnecessary communications. The single parameter of this function

is the hash code of the project.

• createProject(String hash, String filename, byte[] contents) - If the simulation

runner does not have the code for the project the optimizer will then issue a

request for the project creation. The parameters for this request will be the

hash code of the project, the filename where the project code has to be stored

and the contents of the project themselves.

• receiveWorkloadRequest(String hash, String commandline, Vector params, Vec-

tor values) - After the simulation runner receives the code of the project the

4.3. Modules 40

Figure 4.3: Simulation Communication

optimizers can start issuing requests for the execution of workloads. Besides

sending the hash of the project to be executed, the optimizer will also send

the command line that the simulation runner should use and two vectors con-

taining the parameters for this concrete execution and their respective values.

Simulation runners would also have to communicate the results of the simulations

back to the optimizer system. This communication will be detailed in the following

section.

Another situation that had to be dealt with the simulation runners was how to com-

municate the different parameter values to diverse simulations. Each simulation will,

of course, expect to receive their parameters in a different form. As it is impossible

to imagine all the forms of interfacing with different simulations we resorted to the

possibility of extension.

An abstract class (see Figure 4.3) was created with a single method: communi-

cateParameters. This method would receive the parameters, and their respective

values, that are to be communicated to the simulation. The several implementa-

tions of this class could then write to the correct files, and in the correct form,

the values to be passed to the simulation. The possibility of this method chang-

ing the command line, in order to communicate the values by that mean, was also

contemplated by adding a return value.

For testing purposes, a simulation communicator capable of writing to property files

(a common file type used in the Java language) was implemented.

4.3. Modules 41

A simple change had to be made to the communication system between the optimizer

and the simulation runners so that the correct Simulation Communicator class could

be selected: a new parameter, the communicator class name, was added to the

createProject message:

• createProject(String hash, String filename, String communicator, byte[] con-

tents)

The following section will analyze how the evaluator module was conceived.

4.3.2 Evaluator

The evaluator, is the module responsible for communicating with the simulation

runners. The evaluator must be capable of, as the name already indicates, evalu-

ate simulations, given a set of parameters and a specific scenario. To handle this

responsibility it has to be able to perform the following tasks:

• Distribute workloads amongst the different simulation runners;

• Receive results from simulation runs;

• Cope with the fact that simulation are often stochastic in nature.

To be able to distribute workloads properly, the evaluator must be aware of which

simulation runners are currently connected to the system and, from them, which

are currently available. When a simulation runner is started it issues a connect

message to the optimizer system. This message is intercepted by the evaluator and

the simulation runner is marked as being available.

Distributing workloads is then just a matter of knowing which workloads are still

in need of being evaluated, which simulator runners are available and sending the

correct sequence of hasProject, createProject and receiveWorkloadRequest to the

simulation runners.

4.3. Modules 42

Figure 4.4: Evaluator Sample Communication

As soon as a simulator runner finishes a simulation run it issues a workloadFinished

message to the evaluator. The evaluator then marks this simulation runner as avail-

able again. The existence of pending workloads is then considered and, if they exist,

one is sent to the simulation runner that has just finished its work.

As said before, simulations are often stochastic, this means that a single simulation,

even having the same parameters and the same scenario, might not give the same

results every time. In this way, it is the evaluator’s task to ensure that each workload

is executed more than one time and to calculate the means and average deviations

of each result value for each workload. The evaluator is also responsible for knowing

how many times each workload should be, and has been, executed.

A sample communication between the evaluator and a simulation runner can be seen

in Figure 4.4.

In the next Section, the implementation of the optimizer module will be analyzed,

as well as the way it uses the evaluator capacities.

4.3. Modules 43

4.3.3 Optimizer

The optimizer module has the task of using the evaluator to optimize a given project.

A project will have the following set of attributes:

• The source code and command line to execute the simulation;

• The number of times each simulation scenario must be evaluated;

• A set containing the parameters for the simulation (including their minimum

and maximum values);

• A set of environment parameters (each simulation will run with different en-

vironment parameters);

• A set of results variables (the results returned from each simulation).

The optimizer will then create several sets of workloads and pass them to the eval-

uator. A workload will have the following components:

• The project it belongs to;

• The values for each parameter from the project;

• The identification of the scenario currently being evaluated.

The scenario identification has been introduced for aggregation purposes. As we

are not trying to get get an optimized solution that will work in every scenario the

aggregator module will have to inform the optimizer of which scenario to use in its

optimization process.

One way of doing it would be to pass the values of each environmental parameter

to the optimizer, with the optimizer then passing them to the simulation runners.

However we discarded this solution for three main reasons:

4.3. Modules 44

• Environment parameters could have complicated constraints in some simula-

tions;

• The distribution of the environment parameters might not be linear;

• The environmental parameters might not be easily settable by the simulation

but instead be calculated based on other variables.1

So we give the simulation the responsibility of generating the environmental param-

eters. However we still need some control in order to repeat simulations with the

same environmental parameters. The solution found was to allow the aggregator to

set the random seed that the simulation will use to create the initial environment

for the simulation (the scenario identification).

After evaluating a workload the evaluator should have appended the following com-

ponents to the workload:

• The result values from the simulation;

• The environment parameter values from the simulation.

A simplified diagram of the optimizer classes can be seen in Figure 4.5. In this

Figure we can observe how a Project is composed by three sets: Results, Parameters

and EParameters (environmental parameters). Projects also have a set of Work-

loads with each one of them having a set of values for each Parameter, Result and

EParameter of its Project.

In order to make the system extendable and generic an abstract class, called Opti-

mizer, was developed. The class has two methods: optimize() that is called when

1For example, in a simulation where agents act in a virtual city, the environmental parameters
might be the average size of the buildings and length or width of the roads. However this parameters
depend on the actual composition of the city. It would not be easy for a simulation to create a
city from scratch that would have exactly the environmental parameters asked by the aggregator.

4.3. Modules 45

Figure 4.5: Optimizer Project Classes

a new project is starting and evaluationFinished() that is called whenever the eval-

uator finishes processing a batch of workloads. New optimization methods can be

easily added simply by extending this class (see Figure 4.6).

Three extensions to these abstract class have been implemented for testing purposes:

• HCOptimizer - An optimizer based on the Steep Ascent Hill Climb algorithm

(see Section 2.2.1).

Figure 4.6: Optimizer Classes

4.3. Modules 46

• SAOptimizer - An optimizer based on the simulated annealing algorithm

(see Section 2.2.2).

• GAOptimizer - An optimizer based on Genetic Algorithms (see Section

2.2.4).

4.3.3.1 Hill Climbing Optimizer Implementation

Developing the Hill Climbing optimizer was rather straightforward, thanks to the

capabilities of the evaluator module.

The basic idea behind the method, is to start with an initial population of solutions.

Then, workloads for each one of those solutions are sent to the evaluator module.

After receiving the results for those solutions, the best one of them is picked. The

optimizer then generates workloads for each of the neighbours of that best solution

and sends them to the evaluator again. If a better solution is found, it continues

working from that solution. If not, it starts a new batch of random solutions. In

fact the algorithm implemented is, in reality, the Random Restart Hill Climbing

(see Section 2). The algorithm used for the Hill Climbing Optimizer can be seen

in Algorithm 6. For clarification purposes, a simplified version of the implemented

HCOptimizer main methods can be seen in Listings C.1 and C.2.

4.3.3.2 Simulated Annealing Optimizer Implementation

The implementation of the SA optimizer module was much similar to the imple-

mentation of the HC optimizer module. Two new variables were defined, one with

the values of the current temperature and the other with the decrement to be made,

to that same temperature, in each iteration. The only other alteration done was to

start accepting worse solutions with a probability given by the following formula:

4.3. Modules 47

Algorithm 6 Hill Climber Optimizer Algorithm

1. Generate random workloads

2. Set current and best workload as none

3. Evaluate workloads

4. For each finished workload do:

(a) If workload result is better than current best workload then set best
workload as this finished workload

(b) If workload result is better than current workload then set current current
workload as this finished workload

5. If current workload changed generate neighbours to current workload

6. Else generate random workloads and set current workload as none

7. If maximum number of simulation runs reached stop

8. Goto step 3

P (t, ∆f) = e
−∆f

t (4.1)

were ∆f represented how much worse the current solution was relatively to the

best solution and t was the current system temperature. The algorithm used for

the Simulated Annealing Optimizer can be seen in Algorithm 7. For clarification

purposes, a simplified version of the implemented SAOptimizer main methods can

be seen in Listings C.3 and C.4.

4.3.3.3 Genetic Algorithm Optimizer Implementation

Developing a generic GA optimizer modules poses several problems. GA optimiza-

tion algorithms generally use bit strings in order to represent a certain individual

solution. The way each solution is coded affects the optimization performance to a

large extent.

4.3. Modules 48

Algorithm 7 Simulated Annealing Optimizer Algorithm

1. Generate random workloads

2. Set current and best workload as none

3. Evaluate workloads

4. For each finished workload do:

(a) If workload result is better than current best workload then set best
workload as this finished workload

(b) If workload result is better than current workload then set current current
workload as this finished workload

(c) Else, with a probability given by equation 4.1, set current current work-
load as this finished workload

5. If current workload changed generate neighbours to current workload

6. Else generate random workloads and set current workload as none

7. If maximum number of simulation runs reached stop

8. Goto step 3

For instance, in the classic Travelling Salesman Problem (TSP) there are several

ways a path can be encoded. [Larrañaga 99] identified five different representations

for this particular problem: Binary Representation, Path Representation, Adjacency

Representation, Ordinal Representation and Matrix Representation.

The Path Representation model is the most natural form of representing a TSP

path. For example, a path going through four cities in this order 1-3-4-2 would be

represented just as 1-3-4-2. The Adjacency Representation model would represent

the same path as 3-1-4-2. In this last model, the fact that the third city in the

representation is city number four, means that that city will be visited just after

city number three. The Adjacency Representation model gives more importance to

the order in which cities are represented and less importance to the specific position

of each city in the path. Besides that, it uses different mutation and crossover

operators and has different success rates.

This example shows that when using GAs each problem is a unique case and a

4.3. Modules 49

generic GA optimizer will never be able to reach solutions that are as optimal as

those given by a GA created specifically for a concrete problem.

However, in this particular case, a generic GA optimizer had to be implemented.

The solution found to this problem, although non-optimal, was to code each gene

as the value of each parameter that had to be optimized. The next paragraphs will

explain how the selection, crossover and mutation operators were implemented.

The selection operator starts by creating a set of possible parents. Each individual

had a probability equal to value−worst
best−worst

to be selected as a parent candidate (where

result is the value of the individual being analyzed, worst is the lowest simulation

result amongst the current generation of individuals and best is the highest value of

those same results). Each individual of the next generation was then created based

on two randomly selected individuals from this set using the crossover operator.

The crossover operator was defined as taking parameters from each of the two indi-

vidual solutions that were being mated, with a probability of 50% for each parent,

and mix them to form a new solution.

A mutation operator was also implemented. This operator was simply defined by

incrementing or decrementing each parameter by one with a very small probability

factor.

The algorithm used for the Simulated Annealing Optimizer can be seen in Algorithm

8. For clarification purposes, a simplified version of the implemented GAOptimizer

main methods can be seen in Listings C.5, C.6 and C.7.

4.3.4 Aggregator

The last module to be explained will be the aggregator. The aggregator has two

specific tasks:

• Run the optimizer for several different scenarios;

4.3. Modules 50

Algorithm 8 Genetic Algorithm Optimizer Algorithm

1. Randomly generate a set of workloads representing the first generation of in-
dividuals

2. Set current and best workload as none

3. Evaluate workloads

4. Calculate difference between best and worst workload

5. For each finished workload do:

(a) If workload result is better than current best workload then set best
workload as this finished workload

6. For each finished workload, with a probability equal to value−worst
best−worst

, add the
workload to the pool of parents of the next generation of individuals

7. Generate each individual of the next generation as:

(a) Randomly select two individuals from the pool of parents

(b) Create a new individual by mixing parameters from both of the parents
(for each parameter, each parent as a 50% probability of having its value
chosen)

(c) For each parameter, with a probability of 10%, add or subtract one unit
(50% probability for each case)

8. If maximum number of simulation runs reached stop

9. Goto step 3

4.3. Modules 51

• Analyze the results from the optimizer.

Running different scenarios through the optimizer is a matter of executing the same

project several times with different scenario identifications. The real challenge in

this module is the result analysis.

Optimizing n different scenarios for a simulation S, will produce a set of results
−→
R , in the form

−→
R = (r1,...,rn). Each one of those results r is the union of three

other values r = (−→s ,−→p , v), where −→s is a set of environmental parameters, in the

form −→s = (s1, . . . , sm), −→p is a set containing the parameters that optimize that

scenario, in the form −→p = (p1, . . . , pk), and each v is the best value achieved in

that optimization. The values n, m, and k represent, respectively, the number of

different scenarios optimized, the number of different environmental parameters and

the number of different parameters optimized in each scenario.

If we take all −→p from the set
−→
R we get a set

−→
P containing all good solutions for the

problem (although each solution is optimum only for a specific scenario). Having

the same approach we can derive a set
−→
S from all the −→s values from

−→
R .

Conjecture 1: In certain simulations, given a set
−→
P , containing the optimum solu-

tions for a set of representative scenarios
−→
S , it is possible to construct subsets

−→
P 1, . . . ,

−→
P q whose elements are similar, inside each one of those subsets, but

dissimilar to elements of the other subsets.

In other words, what we are stating is, that for some simulations, classes of solutions

should emerge from the set of all possible solutions.

Conjecture 2: For a given class of solutions
−→
Pa and the scenarios that this class

of solutions solves
−→
Sa, it is possible to construct subsets

−→
S a1, . . . ,

−→
S an whose

elements are similar, inside each one of those subsets, but dissimilar to elements

of the other subsets.

4.3. Modules 52

Figure 4.7: Scattered Simulation Results

In other words, in some simulations, a specific class of solutions will also only solve

some specific classes of scenarios.

Understanding the composition of each one of these subsets can prove to be a valu-

able help in the field of simulation optimization.

4.3.4.1 Solution Aggregation

When analyzing the set
−→
P , of all the parameter configurations that were found to

be the optimum ones, for at least one simulation scenario, we can be presented with

two different cases that will be explained in the following paragraphs.

In Figure 4.7 we have an example of a simulation with two parameters (p1 and p2).

When the distribution of these two parameters is analyzed, the results appear to be

scattered throughout the entire space of solutions. This means that, in this case,

it would not be possible to disclose any kind of parameter classes. In these type of

simulations, every, or almost every, parameter configuration is the solution to some

scenario.

However, we expect that some simulations present a rather different scenario. In the

previous section we conjectured that in some simulations we could form clusters, or

groups, of parameter configurations that were similar. Figure 4.8 shows an example

of such a simulation. In this case, three different classes of parameter configurations

4.3. Modules 53

Figure 4.8: Clustered Simulation Results

can be clearly identified.

An example of how this situation can occur can be seen in Figure 4.9. For sake of

simplicity we used, as an example, a simulation with only one configurable parameter

(p1) and one environmental parameter (s1).

The left graph of this figure shows the optimum value of p1, as the variable s1

changes. It can clearly be seen that the optimum value for p1 revolves around a

value for lower values of s1, but at some point that values abruptly ceases to be a

good solution to the problem and the optimum value for p1 becomes a completely

different value. We can then identify two different classes of solutions: C1 and C2.

The right graph, of that same figure, shows how the output variable (v) behaves for

each one of the classes of solutions. We can observe how the first class of solutions

works very well for a definite set of possible scenario configurations and the second

class of solutions works for a different set of scenarios.

Now, a way of determining classes of solutions for a simulation must be determined.

One way of managing this will be by using the same clustering methods we saw in

Chapter 3.

As seen, in that same Chapter, all clustering methods need to calculate the distance

between elements. A simple way of calculating the distance between classes and

solutions from a simulation will be by using one of the distance heuristics seen in

4.3. Modules 54

Figure 4.9: Parameter and Scenario relations

Figure 4.10: Aggregating Scenarios

Section 3.4 and, for example, the euclidean distance metric.

4.3.4.2 Scenario Aggregation

Aggregating all solutions from a certain simulation will produce nc sets of solutions:

(
−→
C1,

−→
C2, . . . ,

−→
Cnc). A second step in the aggregation process would be taking each

one of the sets and analyze if their scenarios also obey any kind of pattern.

It is expected, from simulation scenarios, to be scattered without any scenario classes

emerging. However, if we look at a solution class at a time there is a clear possibility

that such classes appear. This happens because similar solutions are expected to

solve similar scenarios.

In Figure 4.10 we can see an example of a simulation with two input parameters

(p1 and p2) and two environmental parameters (s1 and s2). As can be seen, the

scenarios in this example are rather scattered but when we select only the scenarios

solved by the solution class C1 we can see a scenario cluster emerging (D1).

4.3. Modules 55

It is also possible, that one class of solutions solves more than one class of scenarios,

so the same clustering algorithms that can be applied in the Solution Aggregation

problem (as has just been seen in Section 4.3.4.1) should, and can, also be applied

in the Scenario Aggregation case.

4.3.4.3 Aggregation Implementation

To implement the aggregation of scenarios, the K-Means clustering algorithm (ex-

plained in Section 3.6.1) was used. In order to implement this particular algorithm

some choices had to be made:

• How to calculate the distance between clusters and scenarios?

• How many clusters to start with?

• How to choose the initial cluster centroids?

• How to characterize each one of the constructed clusters?

A first approach to measuring the distance between a cluster and a certain scenario

was to test how much would the scenario lose, relatively to its best parameter

configuration, if the parameters used were the ones of the modified cluster (i.e.

after the scenario has been added to the cluster). This, however, revealed very time

consuming. A second approach was to use a simple euclidean distance measurement,

even knowing that, if the system was too sensitive to small parameter configuration

changes, then bad results would be obtained. The latest method was chosen knowing

that if results were not satisfactory it was always possible to fall back to the slowest,

but more accurate, first method.

The K-Means algorithm suffers from the same problem as many of the other cluster-

ing algorithms seen in Chapter 3 as it does not have a way of determining how many

clusters exist. This happens because there is no sense of scale, so some information

must be given by the user. An alternative would be to start with as many clusters

4.4. Scenario Adaptation 56

as scenarios and hope that most of the clusters are empty in the end of the process.

This alternative was chosen for the implementation of the aggregation module of

the developed optimization system.

The centroids of the initial clusters still have to be generated in some way. From

the methods presented in Section 3.5 the one that seemed most promising was the

Spread method. This method was the one used in this particular case.

After performing the aggregation step, and in order to perform the adaptation step

of the process (as explained in Section 4.4), a set of parameters and its corresponding

scenario variables must be chosen for each cluster. A solution would be to use the

centroid of each cluster, but nothing can guarantee that a solution near the center

of a set of good solutions would also be a good solution. In this way, it was decided

to use the closest scenario from the centroid of the cluster as the representative

scenario of that same cluster. This will not guarantee that the chosen scenario will

have a parameter configuration that is good for all elements in the cluster, but at

least its configuration is good for itself and will probably be reasonably good for the

other elements in the cluster.

The algorithm used for the Simulated Annealing Optimizer can be seen in Algorithm

9. For clarification purposes a simplified version of the implemented KMeansClus-

terCreator main methods can be seen in Listing C.8.

4.4 Scenario Adaptation

Simulations are often created in order to mimic real world situations. For that

reason, most of the time, they are dynamic. Therefore any system or agent trying

to get the most out of a simulation must adapt itself to the current scenario.

In Section 4.3.3, we have described a method of generating optimized solutions per

scenario and in Section 4.3.4 a method to aggregate solutions into classes of solutions

and scenarios into classes of scenarios.

4.4. Scenario Adaptation 57

Algorithm 9 K-Means Clustering Algorithm

1. Create a number of random empty clusters larger than the number of work-
loads to be clustered

2. For each workload:

(a) Find the nearest cluster using the euclidean distance to the cluster cen-
troid

(b) Add the workload to the found cluster

(c) Calculate the new cluster centroid

3. For each non empty cluster:

(a) Find the closest workload, from those in the cluster, nearest to the cluster
centroid

(b) Set the cluster centroid equal to the found workload

This Section, will explain how those results can be used to create an agent, agents or

a system that can optimize the result of a simulation running in a dynamic scenario.

Figure 4.11 shows the optimizer system interacting with the simulation in order

to get the optimum parameters for a set of scenarios. These scenarios and their

optimum parameters are then analyzed by the aggregator in order to create classes

of solutions and scenarios. These results can then be written into a configuration

file that will allow the simulation to adapt to dynamic scenarios.

We can approach the problem of creating an adaptive simulation in two different

ways that we will call the Nearest Scenario and Nearest Aggregate approaches. In

the following sections we will explain these two approaches and give a brief insight

on their implementation.

4.4.1 Nearest Scenario Approach

One way of implementing scenario adaptation will be by simply listing all scenarios

tested with their optimum parameter as calculated by the optimizer in the form:

4.4. Scenario Adaptation 58

Figure 4.11: Scenario Adaptation

S(i) = si1, . . . , sin, pi1, . . . , pim

The simulation could then just find the scenario from the listing that was nearest

to the present simulation conditions. A simple metric, like the euclidean distance,

could be used to determinate the correct scenario. This approach, although simple,

has some disadvantages:

• The scenario listing might be to extensive. This could make finding the best

scenario computationally impossible.

• In some simulations constantly changing parameters can be complicated or

undesired. This method would force simulations to change their parameters

only due to small scenarios fluctuations.

The second problem could be solved by only changing the simulation parameters in

regular intervals. This would unfortunately cause other problems:

• In simulations where conditions do not change often, at least not dramatically,

but that need a swift response when they do, this method could cause a slow

4.4. Scenario Adaptation 59

reaction to environmental changes.

• Even if not as regularly this method would force configuration changes even

when not strictly necessary.

A different approach would be to only change the configuration when the current

scenario had an optimum configuration that differed significantly from the current

one (or when the current scenario changed dramatically).

The problem with this approach is how to evaluate if a configuration/scenario differs

greatly from another one. With no sense of scale it becomes tricky to make any type

of decision on when to change to another parameter configuration. One solution

would be to first analyze, for example, average distances between elements. A better

one would be to classify the solutions and group them according to their similarity.

This later solution is what we will discuss in the following Section.

4.4.2 Nearest Aggregate Approach

A different method of implementing adaptiveness could be developed by using the

optimum parameter and scenario classes that the aggregator module produces. This

could be done, if for every scenario class we had a representative parameter config-

uration. This configuration could be for example the centroid of the configuration

class or the tested configuration most near to the centroid. To use this method we

would need the aggregator to output its results in the following form:

S(i) = sci1, . . . , scin, pi1, . . . , pim

Where scij is the coordinate j of the centroid of scenario class i and pik is the value

of the parameter k that was found to be optimum for that same scenario class.

Some different methods can be used to find which parameter configuration to use

for each scenario class:

4.5. Conclusions 60

• Test all parameters configurations found for that class against all scenarios.

This method might reveal impracticable due to performance reasons;

• Find the nearest tested parameter configuration to the class centroid;

• Select a sample of the parameter configurations of that class and test them

against the class scenarios;

• Select random parameter configurations nearer the class centroid and test them

against the class scenarios;

• Apply an optimization algorithm but this time use the average result from the

complete scenario class instead of testing one scenario at a time.

The advantages of this method over the Nearest Scenario approach are that we can

react to sudden changes quickly and, at the same time, we are not changing the

simulation configuration constantly as a reaction to small environmental changes.

Then main concern one has to have when using the Nearest Aggregate approach,

is to be sure that the parameter configuration chosen for each scenario is good

enough for all the elements in that scenario. This can be easily done by testing that

configuration against all representatives of the scenario class. As we do not know

the scale of the simulation results we need some kind of input from the user to be

able to determine how much of a loss is admissible.

4.5 Conclusions

In this Chapter, the architecture of a generic optimization system has been pre-

sented. This system was designed having in mind the following problems:

• The great amount of work that represents testing and implementing optimiza-

tion procedures;

• The CPU workload posed by an optimization system;

4.5. Conclusions 61

• The fact that optimization algorithms were created having in mind static sce-

narios and do not work with dynamic scenarios;

To tackle these problems, the designed system will be: generic, extendable, dis-

tributable and adaptable.

Some classic optimization algorithms have also been implemented: Hill Climbing,

Simulated Annealing and a Genetic Algorithm. To enable the use of these kind

of optimization methods in highly dynamic scenarios the use of clustering in opti-

mization problems has been introduced. Clustering optimization results, allows the

creation of sets of results that can be applied to different scenarios.

In Chapter 5, an example simulation will be introduced. The implemented system

will be tested against this same example. The results of this testing procedure will

be presented and analyzed in Chapter 6.

Chapter 5

Traffic Lights Simulator

In this chapter, the simulation used to test the optimization and aggregation system

will be explained and analyzed.

5.1 Traffic Simulation Scenario

In order to find a simulation that allowed the testing of all the desired aspects of

the implemented system, several characteristics were sought:

• Different Scenarios - The simulation had to have different scenarios that re-

quired completely different parameter configurations. This would allow testing

the optimization module, as well as the aggregation module.

• Different Results - The simulation should output at least one result. This

result should allow the ranking of parameter configurations for the same sce-

nario. Several result outputs would allow the optimization according to differ-

ent parameters and applying constraints to some of the secondary results.

• Parameter Configurations - The simulation should have a set of config-

urable parameters. The optimum configuration of these parameters should

depend on the current scenario.

62

5.1. Traffic Simulation Scenario 63

• Dynamic Scenarios - It should be possible to create a dynamic scenario.

In this way the simulation would experiment different parameter configura-

tion needs during each run. This would allow testing the scenario adaptation

capabilities of the system.

• Simulation Speed - A simulation run should not take too long in order to

allow the maximum number of tests possible.

• Stochasticity - A stochastic simulation would allow testing if the simulation

adapted well to this type of situations.

Several possible simulations were considered, and in the end the choice was to im-

plement a very simple traffic simulation system.

This simulation has all the characteristics listed previously and was fairly easy to

implement. The model chosen was very simple:

• Several roads, each with only one lane in either direction;

• Roads could be either vertical or horizontal;

• Each car would enter the city in a certain lane and exit the city in that same

lane. Lane changing, or turning, were not considered to keep the simulation

simple;

• Traffic lights at each road intersection. A traffic light could be in one of three

states: open for vertical traffic, open for horizontal traffic or changing states

(yellow light);

• Cars would follow the car in their front according to a driver model (explained

in the next section).

Besides having the characteristics just listed, in this simulation it was expected that

classes of solutions (containing different parameter configurations) and scenarios

emerge (see Section 4.3.4).

5.1. Traffic Simulation Scenario 64

5.1.1 Intelligent Driver Model

The driver model chosen was one recently developed by [Treiber 00] in order to

study traffic in freeways. This driver model, named Intelligent Driver Model (IDM),

defines a follow the leader behaviour for each driver based in the following concepts:

• Every car has a desired velocity. It should be possible to have different types

of cars with different desired velocities.

• Every car has a set of parameters that represent its acceleration and breaking

capabilities.

• Following the next car in the lane is done by updating the current acceleration

of the car.

• The acceleration of the car depends on two components: desire to accelerate

and desire to brake.

• The desire to accelerate depends on how close the velocity of the car is from

its desired velocity.

• The desire to break depends on the safety distance, distance to the next ob-

stacle (car or traffic light) and the rate of approximation.

• Safety distance is calculated depending on the car characteristics and current

speed.

The formulas that regulate the current velocity are the following:

s∗ = sm + (vT +
v∆v

2
√

ab
) (5.1)

dv

dt
= a[1 − (

v

vd

)δ − (
s∗
s

)2] (5.2)

5.1. Traffic Simulation Scenario 65

Where s∗ is the desired distance (m) to traffic ahead, having in count the driver

and car characteristics and the current velocity, and dv
dt

is the desired acceleration

to achieve that same distance.

Some other variables have to be calculated based on the current velocity, distance

to following obstacle and speed of the next obstacle:

• v - Current velocity of the car (m/s)

• ∆v - Rate of approximation of the next obstacle (m/s)

The following variables define the behaviour of each car:

• vd - Desired velocity (m/s)

• T - Desired safety time to traffic ahead (s)

• a - Comfortable maximum acceleration (m/s2)

• b - Comfortable breaking acceleration (m/s2)

• sm - Minimum distance to front car (m)

• δ - Acceleration exponent

This model allows the inclusion of several types of drivers as well as slight variations

in the same class of drivers. Trucks are characterized by low values of vd, a, and

b, careful drivers drive at a high safety time headway T and aggressive drivers are

characterized by a low T in connection with high values of vd, a, and b.

In the implemented system, this same three types of drivers/vehicles were imple-

mented: careful drivers, aggressive drivers and trucks. Every time a new vehicle was

generated, one of these types was chosen based on a probability function. In order

to make the simulation more realistic, small variations were introduced in each of

these classes.

5.1. Traffic Simulation Scenario 66

5.1.2 Traffic Generation

Traffic is generated according to a parameter defining the number of cars per minute

that enter the city by each lane. In order to allow the implementation of different

scenarios, that parameter can be set individually at each lane, for each direction or

it can be set equal for the entire scenario.

As each car is generated, it is placed in the beginning of its lane. If the lane is full

that car stays in a waiting queue and enters as soon as there is free space in the lane.

In order to calculate accurately the time spent by each car as it traverses the city,

the time spent in this queue must be also counted. To avoid having to keep record

of every car in the waiting queue, we keep only the number of cars waiting, or car

pressure (cp), and the mean time each car in the queue has spent there, or waiting

time (wt). To calculate the time a car exiting the queue has already spent waiting

(in order to calculate the initial value for the timer (t) of that car) the following

formula is used:

t =
wt

cp
(5.3)

And to calculate the new mean time of the waiting queue we use the following

formula:

wt =
wt

cp
(cp − 1) (5.4)

When the cars exit the simulation area they are removed from the simulation. This

approach considers that outside the simulation area there are no traffic constraints.

Besides that, with this, we are simplifying the model as slower cars outside the

simulation area would prevent faster cars from moving quicker.

In the next section the traffic lights model will be explained.

5.1. Traffic Simulation Scenario 67

Figure 5.1: Traffic Lights Schedule Example

5.1.3 Traffic Lights

The chosen traffic light model selected is one of the simplest ones possible. In this

model each traffic light is assigned three values: the amount of time the traffic light

is open for vertical traffic, the amount of time the traffic light is opened for horizontal

traffic and a delay that will allow traffic lights to have synchronized schedulings.

With this model we expect the optimizer to:

• Assign larger opened times to roads with more traffic;

• Assign the same opening times to traffic lights in the same road;

• Assign delays that allow cars to go pass traffic lights without stopping.

In Figure 5.1 we can observe how delays can help traffic to flow more smoothly. In

this figure, a car (c), with a constant velocity, goes trough two traffic lights (tl1

and tl2) without stopping. In this case the delay was well chosen for maximum

throughput in that direction.

More complex traffic light models could be used. For example, an agent-based traffic

lights system, where each traffic light would be an agent and communicate with the

neighbouring traffic lights, could have been used. Learning and cooperation could

5.1. Traffic Simulation Scenario 68

Algorithm 10 Traffic Simulation
1. Move cars;

2. Generate new traffic;

3. Update cars velocities;

4. Change traffic lights according to schedule;

5. Remove cars outside scenario;

6. Goto step 1;

also have been added to the simulation. These more complex models could also

have been the target for an optimizer, as even intelligent agents have configuration

parameters, but this simpler model will allow a better understanding of how the

optimizer is progressing.

5.1.4 Simulation

The previous sections addressed the road model, traffic generation and the traffic

light scheduling systems. In this section, the simulation system will be analyzed.

Like most simulation systems, the traffic control environment developed tries to

recreate reality by taking a small step at a time. Smaller steps will give results that

are more approximate to the reality while larger steps will make the simulation run

faster.

The step being used in this particular simulation is 25 milliseconds, meaning that

the current velocity of the car is recalculated each 25 milliseconds in simulated

time. This is a particularly small step for a traffic simulation but still it manages

to run relatively fast. Tests show that the simulation step can be raised up to 250

milliseconds without great loss in simulation quality but with a great performance

improvement. By raising the step to 250 milliseconds the simulation results did not

differ largely from the ones using 25 milliseconds but the simulation would take 10

times less to run.

5.1. Traffic Simulation Scenario 69

In each one of these simulation steps certain events are fired. The events that occur

in these steps can be seen in Algorithm 10 and will be analyzed next.

Moving cars is just a matter of adding to the current position of the car, the distance

that it should have traveled at the current velocity in the time given by the simulation

step. As stated previously, each road has its own rate of new cars per minute. To

generate new cars, the rate of cars has to be adjusted to the simulation step and then

with a simple random function the entry of a new car in the road can be decided.

Car velocities are updated as explained in Section 5.1.1. To change the traffic lights,

one just has to analyze the current simulation step, vertical and horizontal timings

for each traffic light and the traffic light delay.

With this last step the simulation is ready to run. In the following sections the

parameters, both input and output, as well as the user interfaces will be addressed

and explained.

5.1.5 Parameters

Obviously, the simulation will have to communicate with the optimizer system in

some way. As seen in Section 4.3.1 and Figure 4.3 the optimizer system allows several

communication standards, and even allows easy adding of other communication

forms. The chosen method of communication, for this simulation, was the use of

Java property files.

Three different files are used in this communication process, one for receiving the

configuration parameters, one to inform about the scenario parameters and another

to report the simulation results.

In this particular simulation, the configuration parameters received are just the

traffic light scheduling values. Each traffic light is assigned two coordinates. The

first one refers to the vertical road where the traffic light is situated, while the second

one refers to the horizontal one (see Figure 5.2). Three variables are also assigned

5.1. Traffic Simulation Scenario 70

Figure 5.2: Traffic Light Coordinates

to each traffic light: the time the traffic light is opened for horizontal traffic, the

time the traffic light is opened for vertical traffic and the delay for the traffic light

first state change (all this three variables are in seconds).

An example configuration file for a simulation with two traffic lights would look like

this:

trafficlight.0.0.h = 10

trafficlight.0.0.v = 5

trafficlight.0.0.d = 0

trafficlight.0.1.h = 10

trafficlight.0.1.v = 5

trafficlight.0.1.d = 5

In order to reduce the number of parameters of the simulation some simplifications

have been made to this model. A fixed cycle time was introduced so that all traffic

lights take the same time in each cycle. The cycle time is a configuration parameter

and can be optimized. Having a fixed cycle time, the system only has to optimize

the percentage of time each traffic light stays open for horizontal traffic and the

percentage1 of delay. An example of this simplified configuration file follows:

cycle = 30

1In fact only values from 1 (10%) to 9 (90%) are used to reduce the search space. The values
0 (0%) and 10 (100%) are not used as they would imply that the traffic light never changed state.

5.1. Traffic Simulation Scenario 71

trafficlight.0.0.h = 5

trafficlight.0.1.h = 5

trafficlight.0.1.d = 7

In this example, the first and second traffic lights would be opened for horizontal

traffic half of the cycle time (15 s). The second traffic light would have a delay of

70% of the cycle (21 seconds).

The second file will contain the traffic entering each lane, in each direction (cars/minute).

These values will define the different scenarios. An example scenario output file fol-

lows:

north = 10

east = 20

south = 30

west = 10

The third file mentioned will contain the output results from the simulation. This

file will contain all the variables the optimization system will need in order to eval-

uate each simulation run. In this particular case, the variables considered were:

the average time each car stays inside the city (including the time waiting in the

road queue), the maximum time a car as spent in the city and the number of cars

that entered/exited the simulation scenario. A result output file for an example

simulation would look like this:

average = 45.64

maximum = 72.23

entered = 3412

exited = 3289

These three files, along with the command line interface that will be described

in the next section, are the communication means between the optimizer system

and the simulation. For other simulations, with different needs, other forms of

communicating can be implemented by extending the existing classes.

5.2. Other Possible Scenarios 72

Figure 5.3: Traffic Simulator Interface

5.1.6 Graphical Interface

Besides the actual simulation, a simple graphical interface was also developed (see

Figure 5.3). The main purpose of developing this interface was to verify if the

simulation was behaving correctly.

5.2 Other Possible Scenarios

The optimization system described in Chapter 4 can be applied to several other

simulations. The only requisites needed for a simulation to be compatible with the

mentioned optimization system are:

• Being able to receive configuration parameters through Java property files

(other possible communication protocols can be easily added into the system).

• Being able to communicate the simulation results and its scenario parameters

5.3. Conclusions 73

(again by means of Java property files).

• Being able to generate static and repeatable scenarios.

If the first two of these requirements are not met by some simulation it should still

be easy to either adapt the optimizer or the simulation itself. If the last of the

requirements is not met, because scenarios are not repeatable, then the simulations

have to be changed so that the optimization step can be performed. If the problem

lies in the fact that scenarios are not static then a way to create static or near static

scenarios must be found like for example slicing the simulation into several time

slots or making shorter simulation runs.

RoboCup ([Rob 06]) Soccer and Rescue simulation leagues are very good examples

of possible candidates for further testing the implemented optimization system. In

these scenarios, teams of heterogeneous agents try to accomplish a complex collec-

tive task in a dynamic, multi-agent environment. In both simulations, the team

strategy may be configurable at a very high-level, enabling the optimization of the

team behaviour to depend mostly on the optimization of a small set of high-level

parameters. Also, in both simulations, supervision agents are available that already

perform a high level analysis of the simulations, providing statistics and results that

may be used to evaluate the team performance ([Reis 03]). Besides that, teams are

highly configurable making them very good subjects for optimization using the pro-

posed methodologies. The Coach Unilang ([Reis 02]) coaching language, developed

specifically for high level coordination of agents in this type of competitions, may

be used by the supervision agent to communicate the optimum strategy and tactics,

to the worker agents, during the simulation process.

5.3 Conclusions

In this Chapter, a simulation to be used as a test subject for the optimization system

being developed, has been described. This simulation has most of the characteristics

5.3. Conclusions 74

needed to make it a good candidate for testing, namely: configurable parameters,

different / dynamic scenarios, short simulation runs and stochasticity.

In Chapter 6 the results of applying the system described in Chapter 4 to the

simulation just described will be presented and analyzed.

Chapter 6

Results and Analysis

This chapter, will describe the methods used to test each one of the major system

components. Tests will be performed to assert the system regarding its optimization

capabilities, aggregation performance and adaptiveness.

Each section of this chapter will start by defining the different scenarios tested. The

obtained results will then be addressed.

6.1 Optimization

To test the optimization capabilities of the implemented system, a scenario con-

taining two horizontal and two vertical roads was chosen. This scenario consists of

eight different input parameters that must be optimized. The output value being

optimized, will be the maximum time a car will spend inside the city. This param-

eter was chosen, over the maximum queue size generated, as this other parameter

would be zero in many of the tested scenarios, making it impossible to differentiate

between parameter configurations. Another solution would be to use the maximum

queue size as the primary comparison term and in cases where it was equal use the

maximum time in city.

75

6.1. Optimization 76

Three different traffic configurations will be tested:

• Low traffic scenario: north, east, south, west = 5 cars/min;

• Migration traffic scenario: north, east, south = 10 cars/min and west =

50 cars/min;

• High traffic scenario: north, east, south, west = 50 cars/min;

Each simulation was allowed to run for 3000 seconds (5 minutes). This value was

chosen because it was high enough to allow the establishment of traffic patterns, but

still low enough not to take to much time to simulate.

The maximum number of simulation runs was stipulated as 5000, meaning that each

method was allowed to run this number of simulations regardless of the number of

different algorithm iterations performed. This will allow a fair comparison between

the different optimization methods, although nothing can guarantee that a certain

simulation method would not overcome another one after these number of iterations

due to its own characteristics. So the results obtained might not reflect the true

performance of each method. Each different algorithm will run a different number

of simulation runs in each of its iterations.

6.1.1 Optimization Methods

In order to have a method that could be used to estimate the success of the other

optimization methods, a Random Optimization algorithm has been implemented

(not to be confused with the Random Search Algorithms, or Meta-Heuristics Algo-

rithms, seen in Section 2.2). The name says it all, as this method just keeps trying

new random parameter configuration in order to find good solutions.

A Hill Climbing Algorithm, as described in Section 4.3.3.1, was also implemented.

The specific flavour of the implemented version features Random Restarts, to prevent

it from getting stuck into a local optimum.

6.1. Optimization 77

Figure 6.1: Solution Neighbourhood Structure

The neighbourhood of each solution was defined as: all solutions that had parameter

values that differed at most of one from the current solution. As traffic lights syn-

chronization is very sensible to small changes in the time of the light states, mainly

because normally all traffic lights must have the same pattern for synchronization

even to exist, this neighbourhood structure allowed walking from good parameteri-

zations to other good parameterizations easily. If the chosen structure only allowed

moves to solutions where only one parameter add a different value (a common way

of defining this kind of structures), local maximums would be very common.

For better understanding this particular problem, Figure 6.1 shows the neighbour-

hood structure of a simple problem with only two parameters. Imagine that this two

parameters were the opened for vertical traffic times of two traffic lights in the same

road. If the current solution, represented in the center of the figure, was a good

solution, then both times would have to be equal. Moving only in the direction

represented by the lighter shaded arrows would mean losing that property making

this a local maximum. On the other hand, if the current solution was a bad solution

but of by one (e.g. one traffic light had the value 3 while the other had the value 4),

moving only in the directions represented by the darker shaded arrows would never

allow a move to the near good solution. In this way, the choice was to allow all kinds

of moves even knowing that it would force the algorithm to make more simulation

runs in each iteration. In this particular case, as their are 8 different parameters

to optimize, instead of testing 2 ∗ 8 = 16 alternative configurations, the algorithm

would have to test 28 = 256. Applying this idea only to the critical parameters

(traffic light timings) it was possible to reduce the number of configurations needed

to be tested to 24 + 2 ∗ 4 = 16 + 8 = 24.

6.1. Optimization 78

A Simulated Annealing algorithm was also used in the optimization tests. The

implementation of this method is detailed in Section 4.3.3.2. The SA algorithm was

parametrized using 100 as the system initial temperature and 0.5 as the temperature

decrement in each iteration. This values were chosen so that the algorithm would

run a significant part of the time with a HC like behaviour. The neighbourhood

structure used in this algorithm was, for the same reasons, the same that was used

in the HC algorithm.

Finally, a Genetic Algorithm optimization method was used. This algorithm was

implemented as explained in Section 4.3.3.3. A number of 50 individuals per gener-

ation was used.

6.1.2 Optimization Results

Figure 6.2, Figure 6.3 and Figure 6.4 show the evolution of the best solution found,

by the the four optimization algorithms, as new simulation runs were performed.

As new best solutions are more common in the first few iterations, and get rarer as we

approach the global optimum, to improve readability these charts use a logarithmic

scale in the simulation runs axis.

Figure 6.2 shows the evolution of the three algorithms in the low traffic scenario. In

this chart we can see that all four algorithm achieved more or less the same result

with the best algorithm being the SA.

Not many conclusions can be drawn from these results as the scenario was very

simple and nothing can assure us that in the next few iterations a better result

found by one of the four algorithms would not change the outcome of this test.

Nevertheless some curiosities can be spotted. The SA algorithm found a gold mine

in the end of the test, having improved successfully a large number of times. This

happened when the temperature of the system was already very low and its be-

haviour was already very similar to the HC algorithm. The RO algorithm had a

6.1. Optimization 79

Figure 6.2: Low Traffic Optimization Results

very lucky start finding a very good solution with its first random attempt.

Figure 6.3 shows the evolution of the three algorithms in the migration traffic sce-

nario. In this scenario the GA achieved the best results with a steady evolution over

the simulation runs.

Figure 6.4 shows the evolution of the three algorithms in the high traffic scenario.

Once again, the GA achieved the best results, this time by an even bigger margin.

6.1.3 Comparison of Methods

Table 6.1 shows how the different algorithms compare to one another. Each column

features a different traffic scenario, while each row belongs to a different optimization

algorithm. The values represent the maximum waiting time, in seconds, of a vehicle

in the system. Marked in bold are the best results for each scenario.

The GA algorithm proved to be the best choice in the two more complicated scenar-

ios, only loosing to the SA algorithm in the first scenario, which was easier and more

prone to lucky guesses. Taking this into account the GA algorithm was selected for

6.1. Optimization 80

Figure 6.3: Migration Traffic Optimization Results

Figure 6.4: High Traffic Optimization Results

6.2. Aggregation 81

Method Low Traffic High Traffic Migration Traffic

Random Optimization 40.4 s 249.6 s 203.8 s
Hill Climbing 35.2 s 251.7 s 161.6 s

Genetic Algorithm 36.2 s 235.6 s 154.7 s
Simulated Annealing 34.2 s 244.1 s 166.8 s

Table 6.1: Comparison of Different Optimization Methods

the aggregation testing phase.

6.2 Aggregation

Several different scenarios were randomly generated with the most promising opti-

mization algorithm (in this case the GA algorithm) applied to each one of them.

This generated approximately one hundred different scenarios and their respective

optimum parameter configuration (these results can be consulted in Appendix A).

A quick inspection on these results yields a curious, but easy to explain, phenomena.

In almost every scenario the green-red traffic light timings are equal in every crossing.

This happens because synchronizing traffic lights with different opening times, would

reveal rather difficult, if not impossible.

What is interesting about this, is that the optimizer was not told to keep these

timings equal and was equally not told to try any type of synchronization. The fact

that the parameters allowed some kind of synchronization and that synchronizing

traffic lights is a good way of improving traffic flow, made this kind of patterns

emerge as good solutions. This shows that the optimization module is clearly doing

what it is supposed to.

These results were then aggregated into several representative clusters using the

K-Means algorithm as explained in Section 4.3.4.3. This step, produced a set with

only nine different scenarios (these results can be consulted in Appendix B). In the

next Section, the use of these two sets of results to create dynamically adaptable

6.3. Adaptive Simulations 82

simulations will be analyzed.

6.3 Adaptive Simulations

The final step, was to test if the nine scenarios generated by the aggregation step

could be used successfully in a dynamic simulation enabling it to adapt to different

traffic patterns. For this purpose a dynamic traffic generator was developed.

The dynamic traffic generator was created as a plug-in of the simple traffic simulator

described in Chapter 5. This plug-in would simply read different traffic values

for each direction and for each hour of the day and generate traffic accordingly,

simulating an entire day of traffic. In selecting the values of traffic special care was

taken in order to:

• Have sufficiently high values of traffic at some times of the day so that some

optimization of the traffic lights was needed;

• Not having to much traffic, so that at least one optimized parameter configu-

ration existed that would make traffic flow smoothly;

• Have traffic flow more intensely in one direction in the first hours of the day

and in the other direction as the end of the day drew nearer. This would

simulate typical migration traffic during rush hours.

An altered version of the traffic light simulator was developed, that instead of re-

ceiving a static traffic light schedule, would receive a set of scenario and parameter

configuration pairs. This version of the simulator would constantly select the sce-

nario, from that set, that most resembled the current scenario and use the traffic

light configuration that was considered as the best for that particular case. This

setting was run with three different configuration files:

6.3. Adaptive Simulations 83

Avg/Max Waiting Time Max Queue Size Configuration Changes

Complete 30 / 94 s 130 cars 1116
Clustered 23 / 82 s 17 cars 162

Single 28 / 87 s 610 cars 0

Table 6.2: Adaptive Simulation Results

• The complete set of scenarios (one hundred) and their optimum parameter con-

figurations (as explained in the Nearest Scenario Approach in Section 4.4.1).

• A significantly smaller set of scenarios created with base in the larger set using

the aggregation process (as explained in the Nearest Aggregate Approach in

Section 4.4.2).

• A set containing a single scenario and its optimum parameter configuration.

Figures 6.5, 6.6 and 6.7 show the evolution of the various simulation parameters for

each one of the configuration files tested. In each one of these figures three different

charts are represented.

The top chart shows the traffic volume evolution having two different lines, one for

the number of cars arriving at the crossroad (blue) and the other for the number of

cars effectively entering the crossroad (red).

The middle chart represents the maximum(green) and average(yellow) times, in

seconds, cars take to cross the scenario. The maximum time was calculated for

every chunk of five minutes while the average time is always calculated from the

beginning of the simulation.

Finally, the bottom chart represents the number of cars waiting to enter the cross-

road in every slot of five minutes. Notice that this last chart uses a very different

scale in each one of these Figures due to the different performances of each method.

Table 6.2 captures the most important results from each test run.

Figure 6.7 shows the evolution of several measurements when a single result from

6.3. Adaptive Simulations 84

Figure 6.5: Complete Scenario Set Results

Figure 6.6: Clustered Scenario Set Results

6.3. Adaptive Simulations 85

Figure 6.7: Single Scenario Set Results

the optimization was used. This experiment was solely done in order to have com-

parison values for the other two tested methods. Table 6.2 shows just how bad using

static optimization parameters with dynamic scenarios can be. The method used to

choose this single parameter configuration probably did not produce the best possi-

ble configuration for this dynamic scenario. However finding a better configuration

would reveal rather difficult for several different reasons:

• Using the same optimization methods that were used in the optimization pro-

cess (discussed in Section 6.1.1), with a dynamic scenario, would be imprac-

ticable. In the optimization process each one of these methods executed the

simulation 5000 times. Each one of these simulation runs would simulate 5

minutes of traffic. The chosen dynamic scenario simulated a complete day of

traffic, taking about 3000 times more to complete, making the process excru-

ciatingly slow.

• Even if the the optimizer was used against this particular dynamic scenario it

6.3. Adaptive Simulations 86

would not mean that the selected parameters were the best for every dynamic

scenario. Dynamic scenarios are usually unpredictable.

• If the optimization process was used against randomized dynamic scenarios it

would just increase the stochasticity of the function to be optimized making

the optimization process need even more simulation runs to achieve a good

result.

Figure 6.5, shows the evolution of several measurements when all the results from the

optimization process were used. By using this complete set of results the simulation

would always have information about which parameters were best for some very

similar scenario. As can be seen in Table 6.2, this method achieved much better

results.

The third method used to adapt the optimization results to dynamic scenarios,

involved clustering the obtained scenarios and their optimum parameter configura-

tions. This step created a smaller, but hopefully still representative, set of scenarios.

Figure 6.6 shows the evolution of several measurements using this method.

As this method uses a smaller subset of results one would expect fewer changes in

the used configuration. In fact Table 6.2 shows exactly that. Using the complete set

of results the simulation changed parameters 1116 different times against 162 times

using the clustered subset.

As less information was available, theoretically the simulation could not adapt as

well as in the previous method. However , Table 6.7 shows that using the clustered

results did not affect the simulation performance and even made it more efficient.

There is a simple reason that explain this, at first glance, awkward behaviour. This

happened because constantly changing parameters can lead to a loss in performance.

In this particular case each time the parameters changed the timing of the traffic

lights would be affected momentarily causing smaller, or longer, traffic light patterns

than the optimum ones. In other scenarios the cost of changing parameters could be

even higher (e.g. if the simulation had to stop every time the parameters changed).

6.4. Conclusions 87

6.4 Conclusions

In this Chapter the results of applying the optimization system described in Chapter

4 to the simulation introduced in Chapter 5 have been presented. The results have

been separated according to the different steps of the process, namely: optimization,

clustering and adaptation. Three scenarios have been used, with each one of them

presenting different characteristics and difficulties.

The optimization algorithms tested have all performed as expected. The Generic

Algorithm optimization seems to be best algorithm for this particular scenario and

with the parameterizations used. The Simulated Annealing algorithm might have

done better with a more careful choice of initial temperatures and temperature

scheduling.

The aggregation process used obtained very good results as shown by the adapta-

tion tests, where using the clustered results has been more effective than using the

complete optimization results.

Chapter 7

Conclusions and Future Work

This chapter summarises the work described in this dissertation, proposes areas in

which further work is required and draws the final conclusions.

7.1 Summary

Chapter 1 Introduces the field of Simulation Optimization and explains the need of

adapting the current simulation optimization algorithms to dynamic scenarios.

A brief explanation of how clustering algorithms can be used for this is also

given.

Chapter 2 Presents the state of the art in the field of Simulation Optimization.

Greater emphasis is given to discrete variable simulations. Other type of simu-

lations are also discussed for sake of completeness and for better understanding

the differences between these kind of problems.

Chapter 3 Presents the state of the art in the field of Clustering. An explanation

of the difficulties and terminology used in the area is given. Several algorithms

are presented and analyzed.

Chapter 4 Introduces the main idea behind this dissertation. The use of clustering

techniques to create groups of simulation optimization results, in order to

88

7.2. Future Work 89

reduce the number of different scenarios, is explained. The optimizing system

developed to support this thesis is also explained.

Chapter 5 Presents the simulation used to validate this thesis results. Other pos-

sible scenarios are also discussed.

Chapter 6 Describes and analyzes the results of applying clustering techniques to

simulation optimization results in the context of dynamic scenarios.

7.2 Future Work

In this section some pointers for possible future work will be presented. These

pointers will be organized by topic.

Optimization

• The optimization process used in the developed application only used three

different optimization methods (four counting the random optimization one).

These optimization methods were implemented in their most basic form and

none, or almost none, parametrization has been made. Implementing different

optimization methods, like the promising Nested Partitions method [Shi 97,

Shi 00], in a generic form, could be an interesting research path.

• This dissertation focused only in discrete variable optimization problems. An-

other interesting research area would be to adapt the main idea to continuous

variable scenarios. If this path was followed new optimization algorithms had

to be implemented.

• Some limitations to the simulations that could be optimized by the system

had to be implemented for simplicity sake. For example, many simulations

have complex constraints over their input variables. These constraints might

be given by a mathematical formula or can be a direct result of the simulation

process. Adding the possibility of defining these constraints directly into the

7.2. Future Work 90

optimization system or giving the possibility to the simulation to abort in case

of a constraint violation would be necessary for a completely generic optimizer.

• In this dissertation the approach to multi-objective scenarios has been rather

simplistic. The approach has been to use only one of the objective functions. It

has also been shown, in Section 2.4, that coping with multi-objective scenarios

is not as easy as simply assigning a weight to each different objective function.

To adapt the implemented system, in order for it to deal properly with these

kind of scenarios, one would have to allow the definition of utility functions

for each one of the simulation objectives.

Clustering

• The only clustering method implemented as support for this dissertation has

been the K-Means algorithm. Further testing could be done with different

clustering algorithms or with variations of the used algorithm.

• In this thesis it has been assumed that clusters always have a n-dimensional

spherical form. This is not always true. Optimization results can form very

different types of clusters like ellipsoids and stripes or even have a completely

different formations that can only be defined mathematically. In the later case,

clustering algorithms would no longer be useful and other methods had to be

studied.

Scenario Adaptation

• The method presented for scenario adaptation is just one of many different

possible approaches. Several other methods could be researched. Investigating

how simulations that cannot be run in a static scenario (e.g. Robo Soccer

Simulated League) and are difficult to assess using small time sections of the

simulation, could also prove interesting.

Graphical Analysis

7.3. Conclusions 91

Figure 7.1: Single Variable Graphical Analysis Mock-up

• Another interesting development would be to add graphical analysis tools. As

simulation have normally multiple variables it would be hard to represent the

whole process in a single chart. An alternative would be to show one (see

Figure 7.1) or two variables (see Figure 7.2) at a time. With this kind of

charts a user could manually add constraints to the simulation and, in that

way, direct the optimizer to better solutions more rapidly. Besides aiding the

optimization process it would also help the user understanding how variables

affect the simulation output. The clustering process could also benefit from

this kind of approach.

Other Scenarios

• Finally, testing other scenarios to increase the confidence in the presented

algorithms and their advantages should be done.

7.3 Conclusions

Simulations involving complex and dynamic scenarios have poor results when single

static configurations are used. One way of coping with this problem is to have a

7.3. Conclusions 92

Figure 7.2: Multi Variable Graphical Analysis Mock-up

large set of configurations that will be used in each specific scenario. The problem

is that some simulations do not cope well with configuration changes. This can be

true either because changing the configuration is expensive or because a period of

instability is created when the configuration is changed.

In this dissertation, it has been shown that using clustering algorithms to create

smaller, but still meaningful, sets of configurations is a method that can be used

to minimize the number of possible configuration thus minimizing the number of

configuration changes. In the particular simulation tested it has also been shown

that using this same method, better results can be achieved. The K-Means clustering

algorithm has been shown as an effective clustering algorithm for this particular

problem. More complex simulations might require different clustering algorithms.

Other tactics to minimize the number of times the configuration is changed have

been discussed like, for example, only changing the configuration when the current

scenario differed significantly from the last scenario where the configuration has

been changed. It has been explained that this alternative can create some other

problems, like estimating how much change is needed for a scenario to be signif-

icantly different from another. Other problems would exist if two close scenarios

needed radically different approaches. Another approach would be to analyze if a

7.3. Conclusions 93

configuration change is needed from time to time. This alternative approach would

not work well if the simulation was very dynamic and a quick response was needed

when the scenario changes.

It has also been shown that it is possible to create a generic optimization platform

having simple extension mechanisms. As it is often the case, having generic mecha-

nisms has its advantages, but some flexibility is lost. Some optimization algorithms

have been implemented to prove that the platform was extensible.

Optimization algorithms are normally very CPU intensive. As in this case it was

necessary to optimize the simulation in several different scenarios, the CPU time

used was an ever bigger concern. It has been shown that it is possible to develop

this kind of platform using distributed processing to minimize the time needed for

the optimization process to finish.

Final Remarks

Most drivers have already noticed how annoying traffic lights can be outside peak

hours. Waiting for a long time in a traffic light, when no car is passing in the cross-

road, just because the traffic light has a static configuration, is a normal situation

for anyone driving later at night.

Drivers are also very perceptive about traffic light behaviour and, normally, prefer

traffic lights to be predictable, keeping approximately the same pattern. Thus,

constant changes in traffic light patterns would confuse most drivers. Besides that,

traffic lights cannot change their behaviour abruptly, because during the change, a

period with no cars being allowed to pass the crossing would be needed to prevent

accidents.

Observation of traffic patterns also shows how instable traffic can be. Queues of cars

following slower cars are formed quite often, making several cars arrive at the same

crossing at the same time. Constantly changing traffic light behaviour because of

these fluctuations would disrupt traffic flow instead of helping it become smoother.

7.3. Conclusions 94

This thesis showed how clustering can be used to help optimization algorithms to

solve these problems, making traffic lights react to changes in traffic conditions

without constant, and unnecessary, changes. Although the simulation used was

merely academic, and without any intention to mimic real world traffic patterns, it

showed how effective these two methods can work together. The technique used can

also be easily applied to other problems having the same characteristics.

Bibliography

[Aarts 89] Emile H. Aarts and Jan Korst. Simulated annealing and boltzmann

machines: a stochastic approach to combinatorial optimization and

neural computing. N.Y. John Wiley and Sons, New York, NY,

USA, 1989.

[Azadivar 92] Farhad Azadivar. A tutorial on simulation optimization. In WSC

’92: Proceedings of the 24th conference on Winter simulation,

pages 198–204, New York, NY, USA, 1992. ACM Press.

[Bäck 96] Thomas Bäck and Hans-Paul Schwefel. Evolutionary computation:

An overview. In T. Fukuda, T. Furuhashi and D. B. Fogel, editeurs,

Proceedings of 1996 IEEE International Conference on Evolution-

ary Computation (ICEC ’96), Nagoya, pages 20–29, Piscataway

NJ, 1996. IEEE Press.

[Ben-Dor 99] Amir Ben-Dor, Ron Shamir and Zohar Yakhini. Clustering gene

expression patterns. Journal of Computational Biology, vol. 6,

no. 3/4, pages 281–297, 1999.

[Biles 74] William Ernest Biles. A gradient–regression search procedure for

simulation experimentation. In WSC ’74: Proceedings of the 7th

conference on Winter simulation, pages 491–497, New York, NY,

USA, 1974. ACM Press.

[Carson 97] Yolanda Carson and Anu Maria. Simulation optimization: methods

and applications. In WSC ’97: Proceedings of the 29th conference

95

Bibliography 96

on Winter simulation, pages 118–126, New York, NY, USA, 1997.

ACM Press.

[Fasulo 99] Daniel Fasulo. An analysis of recent work on clustering algorithms.

Rapport technique 01-03-02, Department of Computer Science and

Enginnering, University of Washington, 1999.

[Fayyad 98] Usama M. Fayyad, Cory Reina and Paul S. Bradley. Initializa-

tion of iterative refinement clustering algorithms. In Knowledge

Discovery and Data Mining, pages 194–198, 1998.

[Fleischer 95] Mark Fleischer. Simulated annealing: past, present, and future. In

WSC ’95: Proceedings of the 27th conference on Winter simulation,

pages 155–161, New York, NY, USA, 1995. ACM Press.

[Fogel 95] David B. Fogel. Evolutionary computation: toward a new philos-

ophy of machine intelligence. IEEE Press, Piscataway, NJ, USA,

1995.

[Fraley 98] C. Fraley and A. E. Raftery. How many clusters? Which clustering

method? Answers via model-based cluster analysis. The Computer

Journal, vol. 41, no. 8, pages 578–588, 1998.

[Fung 01] Glenn Fung. A comprehensive overview of basic clustering algo-

rithms

http://www.cs.wisc.edu/ gfung/, 2001.

[Glover 93] Fred Glover and Manuel Laguna. Tabu search. John Wiley & Sons,

Inc., New York, NY, USA, 1993.

[Glynn 90] Peter W. Glynn. Likelihood ratio gradient estimation for stochastic

systems. Communications of the ACM, vol. 33, no. 10, pages 75–84,

1990.

[Goldsman 94] David Goldsman and Barry L. Nelson. Ranking, selection and mul-

tiple comparisons in computer simulations. In WSC ’94: Proceed-

ings of the 26th conference on Winter simulation, pages 192–199,

Bibliography 97

San Diego, CA, USA, 1994. Society for Computer Simulation In-

ternational.

[Goldsman 98] David Goldsman and Barry L. Nelson. Statistical screening, se-

lection, and multiple comparison procedures in computer simula-

tion. In WSC ’98: Proceedings of the 30th conference on Winter

simulation, pages 159–166, Los Alamitos, CA, USA, 1998. IEEE

Computer Society Press.

[Gowda 91] K. Chidananda Gowda and E. Diday. Symbolic clustering using

a new dissimilarity measure. Pattern Recognition, vol. 24, no. 6,

pages 567–578, 1991.

[Holland 75] John H. Holland. Adaptation in natural and artificial systems.

University of Michigan Press, Ann Arbor, 1975.

[Huang 86] M.D. Huang, F. Romeo and A. Sangiovanni-Vincentelli. An effi-

cient general cooling schedule for Simulated Annealing. IEEE In-

ternational Conference on Computer Aided Design, pages 381–384,

1986.

[Jain 99] A. K. Jain, M. N. Murty and P. J. Flynn. Data clustering: a review.

ACM Computing Surveys, vol. 31, no. 3, pages 264–323, 1999.

[Kanungo 02] T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silverman

and A. Wu. A local search approximation algorithm for k-means

clustering. In Proceedings of the 18th Annual ACM Symposium

on Computational Geometry, pages 10–18, 2002.

[Karkkainen 02] Ismo Karkkainen and Pasi Franti. Dynamic local search for clus-

tering with unknown number of clusters. Internation Conference on

Pattern Recognition, vol. 02, page 20240, 2002.

[Kirkpatrick 83] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi. Optimization by

simulated annealing. Science, Number 4598, 13 May 1983, vol. 220,

4598, pages 671–680, 1983.

Bibliography 98

[Larrañaga 99] P. Larrañaga, C. Kuijpers, R. Murga, I. Inza and S. Dizdarevic.

Genetic algorithms for the travelling salesman problem: A review of

representations and operators. Articial Intelligence Review, vol. 13,

pages 129–170, 1999.

[Luke 02] Brian T. Luke. K-Means clustering

http://fconyx.ncifcrf.gov/ lukeb/kmeans.html, 2002.

[Olafsson 02] Sigurdur Olafsson and Jumi Kim. Simulation optimization: simula-

tion optimization. In WSC ’02: Proceedings of the 34th conference

on Winter simulation, pages 79–84. Winter Simulation Conference,

2002.

[Pal 95] Nikhil R. Pal and James C. Bezdek. On cluster validity for the

fuzzy c-Means model. IEEE Transactions on Fuzzy Systems, vol. 3,

no. 3, pages 370–379, August 1995.

[Pierreval 00] Henri Pierreval and Jean-Luc Paris. Distributed evolutionary algo-

rithms for simulation optimization. IEEE Transactions on Systems,

Man and Cybernetics, vol. 30, no. 1, January 2000.

[Reis 02] Lúıs Paulo Reis and Nuno Lau. Coach Unilang - A standard lan-

guage for coaching a (Robo)Soccer team. In RoboCup 2001: Robot

Soccer World Cup V, pages 183–192, London, UK, 2002. Springer-

Verlag.

[Reis 03] Lúıs Paulo Reis. Coordenação em Sistemas Multi-Agente:

Aplicações na Gestão Universitária e Futebol Robótico. PhD thesis,

Faculdade de Engenharia da Universidade do Porto, June 2003.

[Rich 90] Elaine Rich and Kevin Knight. Artificial intelligence. McGraw-Hill

Higher Education, 1990.

[Rob 06] RoboCup International Homepage (http://www.robocup.org/),

2006.

Bibliography 99

[Rose 90] Kenneth Rose, Eitan Gurewitz and Geoffrey C. Fox. Statistical

mechanics and phase transitions in clustering. Physical Review

Letters, vol. 65, no. 8, pages 945–948, Aug 1990.

[Russell 02] Stuart Russell and Peter Norvig. Artificial intelligence: A modern

approach. Prentice Hall, 2002.

[Shi 97] Leyuan Shi and Sigurdur Olafsson. An integrated framework for

deterministic and stochastic optimization. In WSC ’97: Proceed-

ings of the 29th conference on Winter simulation, pages 358–365,

New York, NY, USA, 1997. ACM Press.

[Shi 00] Leyuan Shi and Sigurdur Olafsson. Nested partitions method for

global optimization. Operations Research, vol. 48, no. 3, pages 390–

407, 2000.

[Spears 93] W. M. Spears, K. A. De Jong, T. Bäck, D. B. Fogel and H. de Garis.

An Overview of evolutionary computation. In Pavel B. Brazdil, edi-

teur, Proceedings of the European Conference on Machine Learn-

ing (ECML-93), volume 667, pages 442–459, Vienna, Austria, 1993.

Springer Verlag.

[Swisher 00] J. Swisher, P. Hyden, S. Jacobson and L. Scruben. A survey of

simulation optimization techniques and procedures. In K. Kang

J.A. Joines R.R. Barton and P.A. Fishwick, editeurs, Proceedings

of the 2000 Winter Simulation Conference, 2000.

[Treiber 00] Martin Treiber, Ansgar Hennecke and Dirk Helbing. Congested

traffic states in empirical observations and microscopic simulations.

Physical Review E, vol. 62, page 1805, 2000.

Appendix A

Scenario Optimization Results

The following table contains the complete set of results obtained by optimizing the

Traffic Control simulation in a series of random scenarios. Each line represents a

different scenario with the first 8 columns containing the best found parameters for

that scenario. The remaining columns contain the scenario variables (east, south,

north and west bound traffic) and the scenario output results (average and maximum

time in city and maximum car pressure).

Table A.1: Scenario Optimization Results

g.0.0 g.0.1 g.1.0 g.1.1 d.0.1 d.1.0 d.1.1 cyc w s e n avg max prs

5 5 5 5 8 7 5 13 22.0 22.0 13.0 21.0 44.344 71.555 476

4 3 3 3 6 3 0 13 13.0 26.0 13.0 13.0 37.914 69.942 0

5 5 5 5 8 6 3 12 17.0 11.0 9.0 12.0 26.625 49 2

3 4 3 4 3 4 2 12 27.0 39.0 7.0 5.0 71.976 147.511 2228

8 7 8 8 5 1 5 10 30.0 9.0 32.0 6.0 47.504 83.525 1686

7 7 6 7 6 4 2 14 20.0 17.0 30.0 6.0 48.875 92.217 1078

5 5 5 5 3 3 6 11 7.0 31.0 31.0 15.0 58.81 128.177 2132

6 6 6 5 6 2 8 14 29.0 8.0 7.0 24.0 54.909 105.007 1314

5 5 5 5 9 6 2 13 21.0 15.0 32.0 32.0 60.858 133.389 2650

4 5 4 5 8 5 2 14 38.0 39.0 22.0 34.0 88.018 174.786 4668

100

Chapter A. Scenario Optimization Results 101

g.0.0 g.0.1 g.1.0 g.1.1 d.0.1 d.1.0 d.1.1 cyc w s e n avg max prs

3 3 3 3 3 1 0 16 21.0 33.0 20.0 39.0 76.275 132.808 2674

4 4 4 4 9 6 5 12 8.0 36.0 29.0 24.0 64.731 141.077 2618

5 5 5 5 7 3 7 11 9.0 16.0 22.0 19.0 36.115 64.604 284

3 4 3 4 1 4 2 20 19.0 31.0 19.0 17.0 57.696 106.518 1578

5 6 6 6 1 2 2 11 12.0 33.0 37.0 26.0 78 154.603 3090

6 6 5 5 7 2 2 12 28.0 7.0 26.0 25.0 60.482 103.94 2558

4 6 5 5 5 3 6 14 9.0 5.0 12.0 13.0 25.971 48.6 0

4 4 4 3 6 6 2 10 18.0 15.0 15.0 27.0 44.541 80.574 410

6 6 6 6 6 0 3 15 27.0 28.0 35.0 19.0 69.495 131.446 3406

4 4 4 4 3 3 9 11 9.0 8.0 25.0 32.0 56.732 113.458 1532

6 5 6 6 5 4 8 12 31.0 27.0 32.0 27.0 76.076 124.996 4212

4 4 4 4 3 1 9 10 26.0 31.0 18.0 33.0 67.131 124.25 2088

5 5 5 5 5 6 1 12 22.0 26.0 26.0 9.0 54.038 102.146 1690

4 4 4 4 3 0 3 10 13.0 24.0 6.0 19.0 34.541 57.015 0

5 5 5 5 8 5 5 13 5.0 12.0 15.0 12.0 26.599 48.8 0

4 4 4 4 1 4 3 17 30.0 15.0 8.0 35.0 63.704 140.294 2522

4 4 4 4 9 1 4 10 9.0 33.0 33.0 39.0 81.138 157.98 3124

4 4 4 4 4 4 9 10 15.0 22.0 25.0 29.0 51.704 104.035 1440

3 3 3 3 0 4 5 13 24.0 36.0 8.0 11.0 61.964 130.038 1936

6 6 6 6 4 1 4 14 32.0 25.0 16.0 21.0 60.982 111.975 1742

3 3 4 4 2 6 5 14 6.0 19.0 27.0 36.0 60.246 139.977 2478

6 5 6 5 0 7 6 13 10.0 5.0 15.0 11.0 25.179 47.8 0

3 3 4 3 3 6 8 12 13.0 20.0 22.0 33.0 54.495 115.228 1538

7 7 7 6 5 2 8 10 36.0 27.0 38.0 6.0 77.583 142.926 5144

7 7 7 7 7 1 6 13 12.0 22.0 36.0 11.0 58.123 120.213 2042

4 4 4 4 3 8 6 12 26.0 6.0 23.0 34.0 68.615 122.867 3106

6 5 5 6 3 0 5 11 37.0 33.0 22.0 26.0 78.918 157.633 3522

7 6 7 7 6 8 4 12 21.0 9.0 25.0 11.0 35.042 57.6 234

6 6 6 6 7 6 0 10 39.0 28.0 16.0 34.0 78.972 162.555 3464

Chapter A. Scenario Optimization Results 102

g.0.0 g.0.1 g.1.0 g.1.1 d.0.1 d.1.0 d.1.1 cyc w s e n avg max prs

7 7 7 7 3 4 6 10 13.0 11.0 29.0 8.0 38.044 73.714 698

5 5 5 5 7 2 5 13 36.0 33.0 22.0 35.0 82.146 158.079 3682

6 6 6 6 9 6 6 11 14.0 11.0 39.0 30.0 65.476 152.965 3206

6 6 6 6 0 1 6 11 21.0 20.0 28.0 11.0 46.137 94.018 1120

5 5 5 5 4 7 1 15 21.0 15.0 30.0 29.0 60.126 123.232 2484

5 5 5 5 0 5 4 12 37.0 8.0 37.0 36.0 88.163 162.333 6628

4 4 4 4 6 4 5 11 8.0 21.0 6.0 21.0 32.284 48.4 0

3 3 3 3 9 6 3 13 23.0 35.0 5.0 31.0 68.041 121.191 1570

4 4 4 4 0 7 0 11 27.0 7.0 18.0 34.0 67.994 127.96 2404

5 4 5 5 1 9 1 13 25.0 12.0 20.0 28.0 57.61 106.218 1604

2 2 2 2 0 1 4 13 13.0 10.0 8.0 36.0 53.158 104.907 358

7 7 6 7 5 2 6 12 39.0 5.0 13.0 27.0 67.91 146.067 2868

3 4 4 4 7 1 5 11 5.0 25.0 17.0 26.0 49.368 80.29 316

3 3 3 3 0 8 8 21 13.0 36.0 18.0 29.0 59.279 114.346 950

4 3 3 3 0 1 1 14 12.0 29.0 11.0 26.0 44.592 74.406 0

5 5 5 5 2 4 5 13 7.0 19.0 21.0 19.0 39.921 61.337 108

7 7 7 7 0 0 0 13 16.0 9.0 29.0 13.0 39.685 75.169 572

5 5 5 5 6 6 2 12 21.0 19.0 14.0 6.0 33.884 56.242 74

4 5 5 5 3 6 0 12 7.0 31.0 30.0 18.0 59.733 128.898 2204

6 6 6 6 3 2 8 11 31.0 25.0 5.0 20.0 63.569 110.479 1714

5 5 5 6 4 0 3 16 26.0 9.0 27.0 24.0 60.955 106.243 2410

7 7 7 7 6 3 8 12 37.0 5.0 20.0 22.0 59.485 128.22 2244

3 3 3 3 7 7 7 13 16.0 33.0 7.0 24.0 49.887 96.566 540

7 8 8 8 3 2 9 16 8.0 5.0 33.0 10.0 47.477 87.774 1186

7 7 6 6 4 1 5 20 27.0 10.0 12.0 13.0 38.038 68.158 464

3 3 3 3 1 5 9 12 18.0 17.0 6.0 37.0 53.457 117.982 890

3 3 3 3 1 1 1 14 24.0 39.0 14.0 26.0 65.264 138.693 2060

7 7 7 6 1 0 5 10 31.0 5.0 30.0 19.0 61.047 101.526 2642

3 3 3 3 3 5 7 14 16.0 33.0 19.0 37.0 70.373 122.938 1438

Chapter A. Scenario Optimization Results 103

g.0.0 g.0.1 g.1.0 g.1.1 d.0.1 d.1.0 d.1.1 cyc w s e n avg max prs

7 7 7 7 7 1 6 12 32.0 13.0 17.0 12.0 42.61 94.769 1294

6 5 6 6 4 3 7 12 13.0 27.0 31.0 24.0 63.555 118.804 1978

5 5 6 5 9 3 7 13 36.0 24.0 36.0 34.0 86.611 157.243 6084

6 6 6 6 3 7 4 12 5.0 19.0 37.0 26.0 69.77 139.821 2686

6 6 7 7 7 6 0 10 36.0 26.0 17.0 23.0 68.239 138.891 2526

6 6 6 6 3 4 5 17 37.0 14.0 15.0 31.0 67.12 148.8 2884

4 5 5 4 2 8 7 16 19.0 26.0 27.0 29.0 66.078 118.347 2180

6 5 6 6 4 5 9 10 7.0 5.0 19.0 9.0 25.841 45.7 0

5 5 5 5 0 9 8 10 37.0 16.0 18.0 34.0 66.813 154.477 3280

6 6 6 6 3 7 1 10 22.0 14.0 19.0 7.0 31.584 52.394 40

5 6 5 5 2 4 4 11 14.0 21.0 34.0 31.0 65.654 137.172 2690

5 5 6 6 5 6 9 13 38.0 36.0 35.0 22.0 86.248 164.099 6326

2 2 2 2 2 6 7 17 14.0 33.0 12.0 39.0 63.535 111.979 792

3 3 3 3 2 1 3 14 7.0 6.0 18.0 33.0 55.293 97.564 714

5 5 5 6 7 6 9 11 18.0 16.0 36.0 32.0 61.149 146.976 2900

5 5 5 5 8 4 1 14 28.0 29.0 17.0 13.0 54.663 115.437 1844

5 5 5 5 2 0 6 13 18.0 16.0 30.0 30.0 56.485 125.076 1932

5 5 5 5 3 3 8 11 25.0 24.0 24.0 25.0 60.25 92.746 1928

5 5 5 5 7 4 9 10 23.0 24.0 35.0 34.0 74.817 144.744 3762

7 7 7 7 2 2 1 11 20.0 14.0 28.0 11.0 40.513 72.113 484

5 5 5 5 4 3 6 13 23.0 23.0 19.0 11.0 43.473 77.106 654

6 5 5 5 3 3 3 11 38.0 36.0 9.0 9.0 75.871 166.074 3556

3 3 3 3 4 1 4 12 18.0 30.0 11.0 36.0 65.826 113.344 902

6 6 6 6 5 1 6 16 39.0 5.0 6.0 31.0 76.621 155.404 2924

6 5 6 6 4 9 3 16 14.0 14.0 20.0 15.0 33.174 56.085 42

3 3 2 2 2 5 9 14 14.0 22.0 5.0 36.0 49.786 104.536 462

Appendix B

Scenario Aggregation Results

The following table contains the set of results obtained by aggregating the opti-

mization results listed in Appendix A. Each line represents a different scenario with

the first 8 columns containing the best found parameters for that scenario. The re-

maining columns contain the scenario variables (east, south, north and west bound

traffic) and the scenario output results (average and maximum time in city and

maximum car pressure).

Table B.1: Scenario Aggregation Results

g.0.0 g.0.1 g.1.0 g.1.1 d.0.1 d.1.0 d.1.1 cyc w s e n avg max prs

3 3 3 3 2 1 3 14 7.0 6.0 18.0 33.0 55.293 97.564 714

3 3 4 3 3 6 8 12 13.0 20.0 22.0 33.0 54.495 115.228 1538

7 8 8 8 3 2 9 16 8.0 5.0 33.0 10.0 47.477 87.774 1186

7 6 7 7 6 8 4 12 21.0 9.0 25.0 11.0 35.042 57.6 234

4 4 4 4 1 4 3 17 30.0 15.0 8.0 35.0 63.704 140.294 2522

5 5 5 5 8 6 3 12 17.0 11.0 9.0 12.0 26.625 49 2

5 5 5 5 0 5 4 12 37.0 8.0 37.0 36.0 88.163 162.333 6628

6 5 6 6 4 3 7 12 13.0 27.0 31.0 24.0 63.555 118.804 1978

104

Appendix C

Code Listings

C.1 Hill Climber Optimizer

A simplified version of the implemented Hill Climber Optimizer can be seen in the

following code listings. Listing C.1 shows the method that starts the optimization

process by creating random initial workloads and sending them to the evaluator.

Listing C.1: Hill Climbing Optimizer (start)

public void opt imize () {
WLGenerator gene ra to r = new WLRandomGenerator () ;

Co l l e c t i on wklds =

gene ra to r . generate (10 , this , g e tPro j e c t ()) ;

eva lua to r . setWorkload (wklds) ;

eva lua to r . addEva luat ionLis tener (this) ;

eva lua to r . s t a r t () ;

}

Every time the evaluator finishes processing workloads the method shown in Listing

C.2 is invoked. In this method processed workloads are analyzed and new workloads

are sent to the evaluator.

105

C.1. Hill Climber Optimizer 106

Listing C.2: Hill Climbing (iteration)

public void eva lua t i onF in i shed () {
I t e r a t o r i t = eva lua to r . f i n i shedWork load I t e ra to r () ;

boolean improved = fa l se ;

// I t e r a t e over the f i n i s h e d work loads

while (i t . hasNext ()) {
Workload wl = (Workload) i t . next () ;

double r e s u l t = wl . getResu l tVa lue () ;

// Compare f i n i s h e d work load wi th current

// work load .

i f (r e s u l t < getBestValue ())

{
setBestWorkload (wl) ;

se tBestValue (wl . getResu l tVa lue ()) ;

}
// Compare f i n i s h e d work load wi th current

// work load

i f (r e s u l t < getCurrentValue ()

| | Math . random () < prob))

{
setCurrentWorkload (wl) ;

setCurrentValue (wl . getResu l tVa lue (g)) ;

improved = true ;

}
//Update the current temperature va lue ;

i f (temp−a l f a >=0) temp −= a l f a ;

else temp = 0 ;

}

// I f improved cont inue from the current work load

// ne ighbours . E l se c rea t e new random work loads .

WLGenerator gene ra to r ;

i f (improved) gene ra to r = new WLNeighbourhoodGenerator () ;

C.2. Simulated Annealing Optimizer 107

else gene ra to r = new WLRandomGenerator () ;

Co l l e c t i on wklds =

gene ra to r . generate (10 , this , g e tPro j e c t ()) ;

i f (! improved) setCurrentWorkload (null) ;

eva lua to r . setWorkload (wklds) ;

// Send new work loads to the e va l ua t o r .

eva lua to r . s t a r t () ;

}

C.2 Simulated Annealing Optimizer

A simplified version of the implemented Simulated Annealing Optimizer can be

seen in the following code listings. Listing C.3 shows the method that starts the

optimization process by creating random initial workloads and sending them to the

evaluator.

Listing C.3: Simulated Annealing (start)

public void opt imize () {
WLGenerator gene ra to r = new WLRandomGenerator () ;

Co l l e c t i on wklds =

gene ra to r . generate (10 , this , g e tPro j e c t ()) ;

eva lua to r . setWorkload (wklds) ;

eva lua to r . addEva luat ionLis tener (this) ;

eva lua to r . s t a r t () ;

}

Every time the evaluator finishes processing workloads the method shown in Listing

C.3 is invoked. In this method processed workloads are analyzed and new workloads

are sent to the evaluator.

Listing C.4: Simulated Annealing (iteration)

C.2. Simulated Annealing Optimizer 108

public void eva lua t i onF in i shed () {
I t e r a t o r i t = eva lua to r . f i n i shedWork load I t e ra to r () ;

boolean changed = fa l se ;

// I t e r a t e over the f i n i s h e d work loads

while (i t . hasNext ()) {
Workload wl = (Workload) i t . next () ;

double r e s u l t = wl . getResu l tVa lue () ;

// Compare f i n i s h e d work load wi th current

// work load .

i f (r e s u l t < getBestValue ())

{
setBestWorkload (wl) ;

se tBestValue (wl . getResu l tVa lue ()) ;

}
// Compare f i n i s h e d work load wi th current work load

// I f b e t t e r or i f a random va lue i s lower t ha t

// the current acceptance p r o b a b i l i t y accept

// t h i s s o l u t i o n as the current work load .

double d e l t a f = r e s u l t − getBestValue () ;

double prob = Math . exp(−d e l t a f /temp) ;

i f (r e s u l t < getCurrentValue ()

| | Math . random () < prob))

{
setCurrentWorkload (wl) ;

setCurrentValue (wl . getResu l tVa lue (g)) ;

changed = true ;

}
//Update the current temperature va lue ;

i f (temp−a l f a >=0) temp −= a l f a ;

else temp = 0 ;

}

// I f current work load changed have improved cont inue

C.3. Genetic Algorithm Optimizer 109

// from the current work load ne ighbours . E l se c rea t e

// new random work loads .

WLGenerator gene ra to r ;

i f (improved) gene ra to r = new WLNeighbourhoodGenerator () ;

else gene ra to r = new WLRandomGenerator () ;

Co l l e c t i on wklds =

gene ra to r . generate (10 , this , g e tPro j e c t ()) ;

i f (! improved) setCurrentWorkload (null) ;

eva lua to r . setWorkload (wklds) ;

// Send new work loads to the e va l ua t o r .

eva lua to r . s t a r t () ;

}

C.3 Genetic Algorithm Optimizer

A simplified version of the implemented Genetic Algorithm Optimizer can be seen

in the following code listings. Listing C.3 shows the method that starts the op-

timization process by creating random initial workloads and sending them to the

evaluator.

Listing C.5: Genetic Algorithm (start)

public void opt imize () {
WLGenerator gene ra to r = new WLRandomGenerator () ;

eva lua to r . shutdown () ;

eva lua to r . addEva luat ionLis tener (this) ;

Co l l e c t i on populat ion = gene ra to r . generate (gene ra t i onS i z e ,

this , g e tPro j e c t ()) ;

eva lua to r . setWorkload (populat ion) ;

eva lua to r . s t a r t () ;

}

C.3. Genetic Algorithm Optimizer 110

Listing C.6: Genetic Algorithm (iteration)

public void eva lua t i onF in i shed () {
I t e r a t o r i t = eva lua to r . f i n i shedWork load I t e ra to r () ;

Vector su rv i v o r s = new Vector () ;

double best = Double .MIN VALUE, worst = Double .MAX VALUE;

boolean improved = fa l se ;

while (i t . hasNext ()) {
Workload wl = (Workload) i t . next () ;

double r e s u l t = wl . getResu l tVa lue (ge tPro j e c t () .

getPrimaryResult ()) ;

i f (r e s u l t > best) best = r e s u l t ;

i f (r e s u l t < worst) worst = r e s u l t ;

i f (getBestWorkload ()==null | | r e s u l t < getBestValue ())

{
se tBestValue (r e s u l t) ;

setBestWorkload (wl) ;

improved = true ;

}
}

i t = eva lua to r . f i n i shedWork load I t e ra to r () ;

while (i t . hasNext ()) {
Workload wl = (Workload) i t . next () ;

double r e s u l t = wl . getResu l tVa lue (ge tPro j e c t () .

getPrimaryResult ()) ;

i f (Math . random () ∗(best−worst) > (r e s u l t − worst))

su rv i v o r s . add (wl) ;

C.3. Genetic Algorithm Optimizer 111

}

i f (maxIterat ions !=−1 && eva lua to r . getTotalRuns ()>

maxIterat ions) {
opt im i za t i onF in i shed () ;

return ;

}

eva lua to r . r e s e t () ;

WLOffspringGenerator gene ra to r = new WLOffspringGenerator () ;

Co l l e c t i on wklds = gene ra to r . generate (gene ra t i onS i z e , this ,

g e tPro j e c t () , s u rv i v o r s) ;

eva lua to r . setWorkload (wklds) ;

eva lua to r . s t a r t () ;

}

Listing C.7: Genetic Algorithm (generator)

public c lass WLOffspringGenerator extends WLGenerator {

Random random = new Random() ;

public Co l l e c t i on generate (int num, Optimizer opt imizer ,

Pro j e c t p r o j e c t) {
return null ;

}

public Co l l e c t i on generate (int num, Optimizer opt imizer ,

Pro j e c t p ro j e c t , Vector su rv i v o r s)

{
Vector newpop = new Vector () ;

C.3. Genetic Algorithm Optimizer 112

for (int o = 0 ; o < num; o++)

{
Workload w1 = getRandomWorkload(su rv i v o r s) ;

Workload w2 = getRandomWorkload(su rv i v o r s) ;

Workload w3 = c ro s s ov e r (w1 ,w2) ;

newpop . add (w3) ;

}

I t e r a t o r i t = newpop . i t e r a t o r () ;

while (i t . hasNext ()) {
Workload wl = (Workload) i t . next () ;

I t e r a t o r pv i t = wl . parameterValueI te rato r () ;

boolean ok = true ;

while (pv i t . hasNext ()) {
ParameterValue pv = (ParameterValue) pv i t . next ()

;

i f (pv . getValue ()<pv . getParameter () . getMinvalue

()

| | pv . getValue ()>pv . getParameter () . getMaxvalue ()

)

{
ok = fa l se ;

break ;

}
}
i f (! ok) i t . remove () ;

}

return newpop ;

}

C.3. Genetic Algorithm Optimizer 113

private Workload crossoverAndMutation (Workload w1 , Workload

w2) {
I t e r a t o r i t = w1 . getOptimizer () . g e tPro j e c t () .

pa ramete r I t e ra to r () ;

Workload wl = new Workload () ;

wl . s e tOpt imizer (w1 . getOptimizer ()) ;

wl . setNumberRemainingRuns (w1 . getOptimizer () .

getNumberRunsPerWorkload ()) ;

while (i t . hasNext ()) {
Parameter p = (Parameter) i t . next () ;

int va lue ;

i f (Math . random () < 0 . 5)

va lue = w1 . getParameterValue (p) ;

else

va lue = w2 . getParameterValue (p) ;

i f (Math . random () < 0 . 1)

i f (Math . random () < 0 . 5) va lue++;

else value−−;

wl . addParameterValue (new ParameterValue (p , va lue)) ;

}

return wl ;

}

private Workload getRandomWorkload(Vector workloads)

{
return (Workload) workloads . elementAt (random . next Int (

workloads . s i z e ())) ;

}
}

C.4. K-Means Algorithm 114

Every time the evaluator finishes processing workloads the method shown in Listing

C.3 is invoked. In this method processed workloads are analyzed and new workloads

are sent to the evaluator.

C.4 K-Means Algorithm

Listing C.8: K-Means Clustering Algorithm

public Vector c r e a t eC lu s t e r s (Vector workloads) throws Exception

{
i f (! eva lua to r . i s I n i t i a l i z e d ()) eva lua to r . i n i t i a l i z e (

workloads) ;

Vector wklds = (Vector) workloads . c l one () ;

Vector c l u s t e r s = new Vector () ;

for (int c = 0 ; c < clusterNum ; c++){
Clus t e r c l = new Clus t e r () ;

Workload c en t r o i d = new Workload () ;

Workload base = (Workload) wklds . elementAt (0) ;

I t e r a t o r i t = base . parameterValueI tera to r () ;

while (i t . hasNext ()) {
ParameterValue pv = (ParameterValue) i t . next () ;

Parameter p = pv . getParameter () ;

ParameterValue npv = new ParameterValue (p , random .

next Int (p . getMaxvalue ()−p . getMinvalue ())+p .

getMinvalue ()) ;

c en t r o i d . addParameterValue (npv) ;

}

c l . s e tCent ro id (c en t r o i d) ;

c l u s t e r s . add (c l) ;

C.4. K-Means Algorithm 115

}

while (wklds . s i z e () >0){
Workload w = getRandomWorkload(wklds) ;

I t e r a t o r i t = c l u s t e r s . i t e r a t o r () ;

double minDistance = Double .MAXVALUE;

C lus t e r c l o s e s tC l u s t e r = null ;

while (i t . hasNext ()) {
Clus t e r c = (Clus t e r) i t . next () ;

double d i s t an c e = eva lua to r . eva lua t eD i s tance (w, c) ;

i f (d i s t an c e < minDistance) {
minDistance = d i s t an c e ;

c l o s e s tC l u s t e r = c ;

}
}
c l o s e s tC l u s t e r . addWorkload (w) ;

}

return c l u s t e r s ;

}

