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We consider feed-forward and auto-regulation feed-forward neural
neural networks, cells are arranged in layers such that the cells
other layer receive only inputs from cells of the previous layer
network is a feed-forward neural network where additionaly §om

they

network. In this paper we describe the robust patterns
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Abstract

oupled cell networks. In feed-forward
ayef have empty input set and cells of each
An-auto- regulatlon feed-forward neural coupled cell
lls oflthe first layer have auto-regulation, that is,
have a self-loop. Given a network structure, a robust pattern of sgchrony is a space defined in terms of equalities

ronyyfor feed-forward and auto-regulation feed-forward

of cell coordinates that is flow-invariant for any coupled céll system™“(with additive input structure) associated with the
Sy
s

neural networks. Regarding feed-forward neural ne
On the other hand, in the presence of auto-regulatio
way and we give a characterization of the possible patter
neural networks.

orks, that only cells in the same layer can synchronize.
xwhat cells in different layers can synchronize in a robust
s of synchrony that can occur for auto-regulation feed-forward

-
AMS classification scheme numbers: 34015& 23 05C50
Many real-world applications can In particular, the models that are most used to ex-
coupled cell networks which abstract and plain how the brain processes information are the
the type of interaction between pairs of cells. One feed-foward artificial neural networks. We con-

of the advantages of taking t
into account is that the netwo
tion that impacts the dynamics, 1

the specific equations use
application. An exa"{e i

bust) patterns of synchr

ture. In a eed-forgv

network structure
encodes informa-
ependently of
t m(ye the original
xistence of (ro-

that occur for any
consistent with a given
ly called the network syn-
. e patterns, that are de-
f téqua ities of cell coordinates,
Wg only the network struc-
ard neural network, cells are
nd it is possible to order the
Ils in one layer receive inputs
cells\from the previous layer, except for
he'first layer. If some cells of the first
self-loops we say that the cells are auto-
eed-forward and auto-regulation feed-
eural networks are broadly used in the

sider both network types and we describe their
robust patterns of synchrony. For feed-forward
neural networks we prove that cells can only syn-
chronize if they are in the same layer. For feed-
forward neural networks with auto-regulation we
show that cells in different layers can synchronize
in a robust way. Moreover, for any path starting
at a cell of the first layer, the synchrony pattern is
characterized by the first cells being synchronized
and the subsequent cells being desynchronized. In
particular, the cells in the path can be all synchro-
nized or desynchronized.

=t

1 Introduction

Feed-forward Neural Networks are used in many practi-
cal applications in different fields such as, for example,
Neuroscience [22, 25], Neural and Biomedical Engineering

modelling of real-world applications in many dif-
ferent areas with special emphasis in neurosciense.

[, 28, [], Robotics [6] and Economics [26].
A Feed-forward Neural Network (FFNN) is a network
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without self-loops (auto- regulatlonb) or cyclee (feedback
loops). In this type et . are arTats :
laff ST Ywhere the 1n atich moves 1458 ectich:
A@I IQV from the input nodes (first layer), through the
Pulf 4 es (middle layer(s)), and to the output nodes
There is no connection among cells in the
same layer. Each cell in a layer only receives connections
from cells in the previous layer. The sum of the weights
of the connections directed to a cell is the valency of that
cell. Thus, in a FFNN, the cells of the first layer have
valency zero. According to the concept of artificial neural
network, cells in the same layer must be of the same type.
Here we consider feed-forward neural networks where all
cells are of the same type from the dynamics point of
view. That is, all the cells of the network have the same
(internal) dynamics if the connections between the cells
are switched off.

Aast, lnv

In this paper, as well as FFNNs, we consider another
special type of networks, Auto-regulation Feed-forward
Neural networks (AFFNNs) that are FENNs with auto-
regulation input, that is, with self-loops. The AFFNNs
are examples of recurrent networks.

We focus our analysis on synchronization patterns. The
experimental and also theoretical study of synchrony in
FFNNs and AFFNNs and its impact, from the applica-
tions point of view, has attracted the interest of many sci-
entists in the last decades. Different studies have come t

necessarily a nonnegative integer number. Note that in
f-loops and mul-

ows (SrrPaws o cad andltail cells) are al-
lowed thls corresponds to take classes of networks where
the connections weights are all nonnegative integer num-
bers. We define coupled cell systems in a way that codifies
general weights for connections by considering coupled cell
systems with additive input structure. We then remark
that the results of [27], [I5] concerning the characteriza-
tion of the network synchrony patterns are valid as well
in our setup where the proofs are a trivial extension (or

restriction) of the proj()zis/presented in [27, [15].

We focus then at t ssible patterns of robust syn-
chrony that can o INs and AFFNNs. Our
interest lies, not :lérticular network, but at intrin-
sic properties fi lass of networks with respect to
synchronisation. we provide an insight at gen-
uine and relévant, differences between these two types of
networks corresponding to their performances at the syn-
at can occur due to their distinct ar-

chrony

gréﬁéof cells“behaving synchronously is contained in a
1ni layer. That is, there cannot be synchronous cells
ifferent’layers. This fact is implicit in one of the ques-

1at the neuroscience community has been devoted
trying to understand, that is how synchronous activity

the conclusion that synchrony in such networks seenis K;Lay ropagate along the layers of a FFNN, Diesmann et

be the explanation for various phenomena as, for exam
the precisely timed spike patterns of the brain
in experiments.
brain exhibits synchronous firing patterns i normal
functioning, which may be crucial for i formN -
cessing, but also synchronous pathologicalevengs as those
occurring, for example, during a seizure. See’e‘.‘h~7 [17],

[21], [23], [29] and references thereins

Our approach is from the point4f view of the theory of
coupled cell networks develop olubitsky, Stewart
a characterisa-

and collaborators [27] [15] a

of this theory, Aguiar an ia;

tion, in terms of the eiggl/D ctors of the adjacency ma-

trices of a network, ofgt eMs of synchrony of the
i rithm to compute those pat-

ider networks with nonnegative

ved

terns. Although th

of networks
since the net

cency matrices. In this work,
> a special structure, a feed-forward
able to give a more specific characteri-
the pagterns of synchrony for this kind of net-

.Citl;&l terms of the topological structure of
stagork, to give a simpler algorithm to find those

ny patterns. We start by defining an extension
rementioned theory to accommodate the fact
that in the types of networks that we are considering, the
most commonplace, is that each edge has an associated
numerical value called a weight, which in principle, is not

For instance, there is evidence that the«,

[7, Jahnke et al.[I7]. We characterise the set of all
patterns of synchrony of a FFNN based only on its con-
nectivity structure. Taking into account the conclusion in
Nowotny and Huerta [21] that synchrony in feed-forward
neural networks is independent of the neuron internal dy-
namics and results entirely from the network topology, it
follows that the patterns of synchrony that we obtain for
a given network structure constitute the complete set of
patterns of synchrony for any neural dynamics with that
network topology.

In contrast to FFNNs, for AFFNNs, cells in different
layers can synchronize in a robust way. Given a cell, we
can consider the cell input subnetwork given by the sub-
network formed by all paths (and the cells involved in
the paths) directed to the cell (Definition [4.3)). We prove
that, for AFFNNSs, if the input subnetwork of a cell con-
tains another cell synchronized with it, then all the cells
of the input subnetwork are synchronized (with the cell).

The paper is organized in the following way. In Sec-
tion [2] we introduce briefly the basics on coupled cell
networks and synchronization considering our extension
to the coupled cell network formalism of Golubitsky and
Stewart. The formal definition of FFNNs is given in Sec-
tion[3]and the main result on synchronization in FFNNs is
given by Theorem In Section [f] we describe AFFNNs
and we characterize their robust patterns of synchrony.
Our main result is Theorem 9 In both sections Bl and
we propose a simple algorithm to enumerate the robust
patterns of synchrony (Algorithms and . The
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algorithms are implemented in Python and available from

cency matrices are

http://WV w.fc -Gp .yt/wuy/adeuft‘waL
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Given a network structure G, that is, a weighted directed
graph, a coupled cell system consistent with G is a net-
work of interacting individual dynamical systems — the
cells. Thus the nodes of the graph represent the cells and
the arrows of the graph the interactions or couplings. Fol-
lowing [27, 15, @], we take a cell to be a system of ordinary
differential equations.

Let C = {1, ...,n} denote the set of cells of the network.
Each coupled cell ¢ in C is associated with a phase space
P,, which is assumed to be a nonzero finite-dimensional
real vector space, say R*, for some k > 0. If cells ¢ and
d are assumed identical, it is required then that P, = Py,
that is, the two spaces must be identified canonically, and
the internal dynamics of the cells is defined by the same
differential equation.

We consider weighted networks of equivalent cells where
there is only one kind of coupling which can have associ-
ated a different weight. A system associated with cell j of
such an n-cell weighted network G has the form

n
i'j = f(.’E]) + Zwﬂg (xjuxi)a J = 17 -1,
=1

the internal dynamics. Moreove
coupling function. Thus, we a
k> 1. When k > 1, the term
multiplication. We say that,

the ction g is the
ming\z; € RF, for

9,
ith additive input structure, see

lows the addition amd‘deletion of connections. Moreover,
networks of Kuramot l‘ésoe oscillators and pulse cou-
pled systems ‘are coupled cell systems with additive input
structuregsee for exatnple, Ashwin et al. [3] and Neves

and Tinmume [19],
)

Exa }2\1 Consider the weighted networks G (left)
and @ (sight) in Figure [} The arrows correspond to di-
rected edges between two cells with weight equal to value
written above. The weight connection is 0 when there is
no arrow between two cells. The network weighted adja-

\ P

|
0o 0 0 0 O 0 0 0
W=|]1 0 0 0 0 and[l 0 O],
0 1 0 0 O 0 2 0
0o 0 1 1 0

respectively. A coupled cell system admissible for the net-
work G has the form:

i =

To =

T3 =

Ty =

Iy =
where f : RF
functions. asSwining that the internal cell phase
space is R so the total phase space P = (Rk)s.
Note that-equati restricted to the polydiagonal

A defined*by x1 = x3, T3 = 34, that is when
2 arefsynchronized and cells 3 and 4 are syn-

‘) &g =21 = f(z1)
\“— iy =d3 = f(x3) + g (x3,21) ,
\\ i5 = f(x5) + 29 (v5,23)

nd are consistent with the network ). We see below that
the network @ is the quotient network of the network G
by the (balanced) relation on the network set of cells with
classes {1,2}, {3,4}, {5}. &

1

é_ .1/0 O—0—®

Figure 1: (Left) A 5-cell weighted network G. (Right)
A 3-cell weighted network ). Any coupled cell system
consistent with G restricted to the polydiagonal subspace
defined by x1 = x93, x3 = 4, is consistent with ¢). That
is, the network @ is the quotient network of the network
G by the (balanced) relation with classes {1,2}, {3,4},

{5}

?
f

2.1 Patterns of synchrony

In 27, [15] the concept of network synchrony pattern is
defined. More precisely, given an n-cell network structure
G, a subspace A of P defined by certain equalities of coor-
dinates is said to be a network synchrony subspace when
it is left invariant under the flow of any G-admissible cou-
pled cell system. Thus, for any system X = F (X), where
F is G-admissible, F'(A) C A.
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In 27, [15] a necessary and sufficient condition is also
glvenlnt<rmsof he k—structur —stich 3

&c which id 2 $
Ar rory Subspace Premsely, con81der the equlvalence
g on the network set of cells defined in the fol-

: 4 j if and only if all the vectors in A satisfy
the equality x; = x;. Write then A = Ay, In [27] [15] it is
proved that Ay, is a network synchrony space if and only
if < satisfies certain conditions, in which case, < is said to
be balanced. We describe now the conditions for > to be
balanced. Two cells 7 and j are said to be <-related for
balanced > when there is a bijection between the sets of
directed edges to ¢ and 7 which preserves the edge types
and the <-class of the edges tail cells. Moreover, it is
remarked, for example in [I], that < is balanced if and
only if Ay, is left invariant under the network adjacency
matrices.

In this section, we adapt the above definition of bal-
anced relation to networks where the network adjacency
matrix is a weighted matrix. An analogue to Definition
6.4 of [27] is the following:

OWINOo W

Definition 2.2 An equivalence relation 0t on the set of
cells {1,...,n} of a network is said to be balanced when
satisfies the following condition: we have ¢ > j if and only

4, from cells in the same p<-class, are equal.

for a gwen choice of total phase space (Rk) . Then, a
‘ SHpchTom), subspace for G
ed=retatron—ts—batanced—on the set of cells

of G. <

Proof Trivially, if > is balanced, then for any coupled
cell system (2.1)), for a given choice of the internal phase
space R if x = (21,...,2,) € Ap and i <1 j, the equa-
tions for cell 7 and j evaluated at x coincide. Thus, Ay,
is flow-invariant for equations (2.1)).

To prove the inverse, we assume that for any coupled
cell system as D fo given choice of RF, Ay is flow-
invariant for l 1), a ow that then has to be bal-
anced. An analogue<o Nd given in Theorem 6.5

i and uses the fact that Ay has to
i varlant takmg linear admlss1ble

(2.3)

gre We‘ﬁ() taking z; € R, for i = 1,...,n. We have
at ([2.3)) leaves Ay, invariant if and only if the weighted

if the sum of the weights of the couplings directed to i and{nnc matrix W leaves Ay, invariant. O
E

Following [15], an equivalence relation i can be
alized graphically by colouring equivalent cells
same colour. Then, by Definition > is bal
and only if, whenever two cells i and j ha
colour, the sums of the weights of the coupli
to ¢ and j from cells of the same colour,

only receive
e weights of
to cells 3 and

couplings from cells in {1, 2};
the input couplings to cclls 1

4is 1. /

(ii) Consider the networ The equivalence

relation on the netwo Rc?f%&k C ={1,...,12} with
2 3} I = {4’576}v I3 = {7}5
d Is = {11,12} is balanced:

s every cell in I5 has inputs

sum 2; every cell in I5 has
ith weight sum -1 and from cell

I4 - {8}7 I-5 =
every cell in Iy
from cells in

cell 8 (with*weight,-1) and from cells I5 with weight sum
1.5. <&
1 tak w admissible coupled cell systems with

e puf, structure as defined in (2.1)), then we also
have an%analogue to Theorem 6.5 of [27]:

Theorem 2.4 Let G be an n-cell weighted network. Con-
sider the admissible coupled cell systems for G, as in ,

ple 2.5 Taking G to be the network on the left of

X . i
"h’gure recall that the relation > with classes {1,2},

{3,4}, {5} is balanced. Thus, by Theorem the poly-
iagonal Ay defined by the equalities 1 = xo, 3 = x4 i
a network synchrony subspace. As well, for the network
in Figure [2] since the equivalence relation on the network
set of cells C = {1,...,12} with classes I = {1,2,3},
I, = {4,5,6}, Is = {7}, I, = {8}, I = {9,10} and
Is = {11, 12} is balanced, the polydiagonal Ay defined by
the equalities ©1 = r5 = x3, x4 = x5 = X4, 29 = T10,T11 =
Z12 1s a network synchrony subspace. <&

Definition 2.6 We call the valency of a cell ¢ of a net-
work G the sum of the weights of the couplings directed
to c. <&

Remark 2.7 A necessary condition for an equivalence re-
lation on the set of cells of a network to be balanced is
that cells in the same class must have the same valency.
&

It is proved in Section 7 of [27] that if Ay is a synchrony
subspace for a network G then any G-admissible coupled
cell system restricted to Ay is an admissible coupled cell
system for a smaller network called the quotient network
of G by Ay, , and denoted by Q = G/ <. The same
holds in our setup. The network @ is obtained from G
in the following way: the cells of @) correspond to the ><-
equivalence classes and the directed edges of () are the
projections of the directed edges of G. More precisely, if
Z; and I; are two d-equivalence classes, as i< is balanced,
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A FFNN with four layers and twelve cells.

Figure 2:
The equivalence relation on the network set of cells with
classes {1,2,3}, {4,5,6}, {7}, {8}, {9,10} and {11,12} is
balanced.

then the sum of the weights of all directed edges from the
cells in Z; to any given cell in Z; does not depend on
the cell of Z; considered.Thus if Z; = {i1,...,4} and we
choose j; € Z;, then there will be a directed edge from Z;

to I; with weight wj, 4, +---+wj, ;. We also say that b\

is a lift of Q. In particular, it follows that the vale

each cell in @ is the valency of any cell in the lift belongt K W=

Y 3
t) is\the
'4 C |-

to the x-class of that cell.

Example 2.8 The network @ in Figure
quotient of the network G in Figure
equivalence relation with classes {1,2},

)

T3 = is consistent
re[I}JEquivalently,
O

subspace Ay defined by 7 =
with the network @ on the right6f
the network G is a lift of Q. y

Definition 2.9 Let G b 41d > a balanced
We say

netw
equivalence relation on the%ﬂao;l; set of cells.
that > is a spurious balanced equivalence relation if there
is a directed edge ofzero weight projecting in the
quotient network &/ > intovan edge with zero weight. We

£

¢ Spw?us synchrony pattern. <

ork examples where the colour-
corre&mnd to spurious balanced equiva-

lence relétions.

)

3 n onisation in FFNNs
St

We for

lize the definition of FFNN.

Definition 3.1 Let G be an n-cell weighted network with
set of cells C. If there is a partition £;, i = 1,...,7, with

e

(O—00—0—= 60

o—o—a o

Figure 3: Two networks with cell colourings correspond-
ing to spurious balanced equivalence relations. The edges
with weight 1 have the weight omitted.

r < n, of the set C Sucé
(i) cells in £4 hawv vﬁjcy zexg and receive no connec-

tions;

(ii) for each j € 42, ..., ™, all the cells in £; have nonzero
valency and ive ‘e@nnections only from cells in £;_q;
then the ne (‘33 is a BFNN and each subset £; is called
a layer — O

We new chardcterize FFNNs using weighted adjacency
ccording to Definition [3.1] the cells of a FFNN

majrices.
cal be enumerated such that the corresponding weighted

ad) cy‘aatrix has the following lower-triangular block
&1:\ o~
01,0 012 ... O1p—1 O

Wai1 02 O2r—1 O,
03,1 W372 03,7"—1 Ogm (3.4)
07" 1 O’F 2 Wr,rfl Or r

) s )

Denoting by I; = #L;, for ¢ = 1,...,r, then the block
Wis—1 is a l; x l;_1 matrix and 0;; is the [; x [; zero
matrix. The entries of W; ;1 correspond to the weights
of the connections from the cells in layer £;_1 to the cells
in layer £;.

Remark 3.2 Observe that, assumption (ii) in Definition
implies that the rows of each matrix W;;_1, for i =
2,...,r, have nonzero sum. <&

Example 3.3 Figure 2| shows an example of a FFNN
with four layers, £;, i = 1,...,4. Note that the cells
are ordered such that the weighted adjacency matrix W
has lower-triangular block form as in (3.4). For example,

-1 05 1
W4»3_[—1 ~1 2.5} ©

3.1 Patterns of synchrony

The next theorem states that for the synchrony patterns
that can occur for a FFNN there are no two synchronous
cells in different layers.

Theorem 3.4 Cells in different layers of a FFNN cannot
synchronise.
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a FFNN with layers

Proot let G be a FFNN with set of cells {1,...,n}.  Proposition 3.8 Let G be
Assume the ordeping—of L1Ls : i Hhat—it R Sy ,L’Tuu,d set—€———" ,C —or 1 = 2,...,71,

rhatrix Wha e = H
} LiULyU- - UCT, Whereﬁ = {lz 141, 0}
= 0. Note that, as the valency of the Cells in the
¢ zero and for the other cells is nonzero, then
cells in layer £; cannot synchronize with cells of other
layers (Remark [2.7)).
Now, assume that Ay is a synchrony subspace for G and
consider the associated balanced equivalence relation <
on {1,...,n}. Let Zy,...,Z) be the px-classes. Assume,
by contradiction, that there is at least one t<-class con-
taining cells in two different layers. Let £, be the first
layer containing cells that synchronize with cells of other
layer L4, with 1 <p < gq.
Note that if X € Ay and has the form

owllg 11U

Puljfish

aver /..

X — (OEI,...,0£p71;1£p7""1£r>’

then

W(X) = <0£1,.. OE 5 p—‘,—l,pl‘c 7"'?WT77'_11£T,1)

and W(X) € Ay. Thus Waq-1lg,  must have all co-

ordinates zero, which is a contradiction since, by assump- algor
tion, the cells in £, have nonzero valency. \T
1t10

Corollary 3.5 In a FFNN, we have the following:
(i) Two cells can synchronise only if they are in the sam
layer and have the same valency.

(ii) If each layer has exactly one cell then noltwo cels Z?’Z\
the network can synchronize. \

Proposition 3.6 Any quotient network OMN 1
also a FFNN.

Proof Let G be an n-cell FFNN with layers £4,..., L,
and > be a balanced equivalerce rglatl n the network
set of cells. By Corollary Justicells in the same layer
can syncronise. Thus, NF nes t e{ﬁvalence relation
with classes Lq,...,L,. eNth network weighted
adjacency matrix an restrietion of <1 to the layer
L;, say with class .4£Z,,. Then the weighted ad-
ient network @ has a lower-

n where each nonzero
{Zs .,7} has p; columns whose
sum of the columns in W; ;_;
in the class Z;, j € {1,...,p;}. O

jth column i§ equal
associated-to the cells
ﬁ

Remark 8.7 It} not true that any lift of a FFNN is also
a Fo mple, the network G of Figure [1] (left)
is a li the network @ in Figure [I] (right) but @ is a
FFNN and G is not. <&

The next proposition is useful for the development of
Algorithm below.

C the” S & withl layers L;_1, Ei
(md contammg the connectwns in G from the cells in
the layer L;_1 to the cells in the layer L;. An equiva-
lence relation 1 on C refining the equivalence relation with
classes {L1,La,..., L.} is balanced for G if and only if,
fori=2,... r, the restriction of <1 to L;_1UL;, denoted
by e p, . s balanced for G;.

Remark 3.9 Following the notation of Proposition [3.§|
above, consider that thefcells of G are enumerated such

that the weighted adja nb% matrix W of G has the lower-
triangular block for n . Observe that the subma-
trix W; ,_1 corres (??b) the weighted adjacency matrix
e establish a condition on W; ;1

Aguiar et al. [2]. <&

asediofi the previous results, we describe below an
1m that, given a FFNN, enumerates all the bal-
edquivalence relations for that network. By Propo-
3.8] the cells of a layer £; synchronise according to

ertain pattern depending on how the cells in the pre-
vious layer L£; 1 are grouped into a synchrony pattern.
hus, the algorithm starts by considering the cells of the
first layer and, since these cells have no input, they can
synchronise according to any synchrony pattern. Then,
for each possible synchrony pattern of the cells in the first
layer, the algorithm determines recursively the possible
synchrony patterns for the cells in Lo, ..., L,.

Algorithm 3.10 Input: A FFNN with the cells enu-
merated such that the weighted adjacency matrix has
the lower-triangular block form as in determined by
W2,17 W372, ey WT’Tfl, where ll = #ﬁz, for i = ].7 ceey Ty
and each block W; ; is an I; x [;_; submatrix.

1. Set R to be the equivalence relation on the set of cells
C with classes £1 and {i}, for i € C\L;.

2. Let S7 to be the set of all refinements of R.

3.8t S; :=0,i=2,...,7

4. Fori=2,...,r

4.1 For each <1 in S;_1:
4.1.1 Let k := # classes >|p

4.1.2 Construct the [; x k matrix Wi7i_1 from
Wi; i1 in the following way: each column of
Wm-,l is the sum of the columns of W, ;_;
indexed by the cells in each class of | L.,
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4.1.3 Define an equivalence classe <; on the set
of qels in—the—fellowing—way:—p¢

P <l oW Loy SETY 4
AI I 4.1.4 For each refinement R; of tx;:

Pub||sh|ng .1.4.1 Set P; := Join (L;, R;,x);

5. Output S;..

<

Join (L;, R;,1<1) removes the classes {j},j € £; from
and adds the classes of R;; thus outputs an equivalence
relation that is balanced (for the layers £,U- - -UL;), where
the classes contained in £;41 U --- U L, are singletons:
{]}a] € £i+1 U--- U‘CT“

4 Synchronisation in AFFNNs

We consider now AFFNNs.

Definition 4.1 A FFNN where at least one cell in £ has
a self-loop is an AFFNN. O

El LQ Lg [,4

Figure 4: An AFFN vﬁ?ﬁyem and twelve cells.
0

The equivalence relat the network set of cells with
classes {1,2,4,5, 10}, 498, 7}, {9}, {11, 12} is balanced.
£

- 4

Example 4.2 Figur ows an example of an AFFNN

with 4 layers. O
ﬁ

ighted€adjacency matrix of an AFFNN has a
lock structure similar to that in (3.4]):

012 ... Orp_1 O
022 ... 0,1 02,
03,,—1 O3, |, (4.5)

W3 o

Or2 ... Wirp—1 0Opp

)

Definition 4.3 [20, Section 6] Let G be a network with
set of cells C and let ¢, d € C. We call the input subnetwork
of cell c in G, which we denote by G, the subnetwork of
G containing all the cells in C that are connected to ¢ and
all the corresponding paths leading to cell c. &

Remark 4.4 (i) Let Ge a FFNN (or AFFNN) with
layers Lq,...,L, anda(bci € L; for i > 1. Then the
set of cells of the ipput subnetwork G., is a subset of
£1U~'~U£i_1U{ i}
(ii) An input supne
FFNN (AFFNN).

(iii) Let G F (AFFNN) and ¢; € L;, ¢; € L;,
with ¢ < 5.9 ¢; c; are connected then G, C G;.
&

} of a FFNN (AFFNN) is also a

-

terhs of synchrony

4.1
charaetﬁrize the patterns of synchrony for an AFFNN.

Reémark4.5 In an AFFNN, just cells in £; with auto-

egulaion can synchronize with cells in a different layer
\]Z i > 1, since we are assuming that all cells in LoU- - -UL,

Sy nonzero valency. &
Remark 4.6 Recall Definition 2.9 of spurious synchrony

pattern and the examples in Figure |3} The spurious syn-
chrony patterns occur when the weights of the input edges
of a cell, from the cells in a synchrony class, sum up to
zero. Thus, we have a fictitious situation since it is as if
those edges do not exist. This kind of situation is not ex-
pected to occur in general AFFNN. In particular, it does
not occur when the weights are nonnegative. The results
in this section characterize the non spurious synchrony
patterns for AFFNNs. O

Lemma 4.7 Let G be an AFFNN with layers Ly, ..., L,
and consider a non spurious synchrony pattern on the net-
work set of cells. Consider two cells c; € L1, cs € Ly, with
s > 1, which are connected. If ¢y and cs are synchronised
then all the cells in G., are synchronised.

Proof Consider the weighted adjacency matrix W of
G as in . Since ¢; and ¢y are synchronised, then cell
c1 has a self-loop. Moreover, cells ¢; and ¢; have the
same valency, which is the weight of the self-loop of ¢y
(Remark [2.7). We show first that all the cells in the input
set of ¢, (in L£4_1) have to synchronize with cells ¢; and
cs. Take the vector X € R"™, where x; = 0 if cell ¢ is not
synchronised with ¢; and ¢y, and 1 otherwise. Applying
W to X we have that WX has the form:

WX = (Yi,....Y,), with Y1 = W1 X,

and Y; = Wi, 1 Xy (i=2,...,7). (4.6)
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At the ¢ pomtlon of WX (taken from the vector
Wllﬁl) we have e—weip O ¢ —SE O CC ”
whifT % also its va sk :
i “The vector W s 1£S 1) we have the sum of weights
Pul.?".lg'ﬁlﬁg teq edge§ from cells i in L,_1 to cell ¢, that are
also synronised with ¢, ¢s. Since ¢ and ¢4 are synchro-
nised, these two entries of W at the ¢; and ¢, positions
must be equal and so the sum of weights in the ¢s position
is the valency of cell ¢s (and ¢1). As the synchrony pattern
is not spurious, then cell ¢s; only receives directed edges
from cells in £;_; that are synchronised with c¢s. Apply-
ing this recursively, we obtain that any directed path from
a cell in £ to cell ¢s has to be of synchronised cells in the
same synchrony class as ¢y, ¢;. Thus, all the cells in the
subnetwork G, are synchronised with ¢; and c;. O

Lemma 4.8 Let G be an AFFNN with layers Ly, ..., L,
and consider a non spurious synchrony pattern on the net-
work set of cells of G. Let ¢, € L, and c¢q € Ly, with
p < g, be two cells that are connected. If cells ¢, and cq
are synchronised then all the cells in G, are synchronised
(with ¢q and cp).

Proof Let ¢, € £, and ¢4 € L, with p < ¢, be two
cells of G that are connected and synchronised. Consider
the input subnetwork of ¢, and take a cell, say c,,, such
that m is the minimal integer for each ¢,,, € G, NL

¢m is synchronized with ¢,, c,.

sequ
Cp m a . .
Thus m < p % o Fix&y heléss, the number of cells with the first colour in the

the following three possibilities:

and all the subse-

quent cells have different colours;
(c) all the cells have different colours.

Proof The result follows from Lemma B8 Given a
path, if the first cell does not synchronise with any other
cell in the path then there is only the third possibility.
This happens, in particular, if the first cell has no self-
loop. If the first cell has a self-loop and synchronises with
some cell in the path thefi both the first and second pos-

sibilities can occur.
E% We have the follow—

s"another necessary condition for
n AFFNN to be a pattern of

As a consequen
ing corollary that gi
a pattern on the

synchrony. ‘)
—~—

et G be an AFFNN. Consider a non
spuriou syncimsny attern on the set of cells of G and the
associatedsbalanced colouring. Let c, € L, and cq € L4
beé:: cells are synchronised but are not connected.
Thems-for each path in the input subnetwork G., there is
ast oueé path in the input subnetwork G., such that the
e of colours for the two paths is the same. Nev-

directed path P from the cell ¢, to cell ¢, through t Cd‘\equ nce can differ for the two paths.

c¢p- Because ¢, and ¢, are synchronized and the synchro

least) one cell belonging to G.,, N L,—1, say
join the directed edge from c¢,,—1 to ¢, o P.
the cell in the path belonging to G, N
which has to be synchronized with some cell
Ge,,_, NLp_2, say Cm—2, and join
Cm—2 t0 ¢, to the path P. Con
directed path from a cell ¢; i
through cq—_y,4+1 where cell
nized. Thus, by Lemma ? ve tyﬁt all the cells in

the path between c¢; and{, synchronized. But,
from the choice of m, w VN m~+1 > p, otherwise

e construct a
1l ¢, passing

?to ¢, (as there is at least the
connected path Pfrom ¢q)- By Lemma.we obtain
that all the cells in 63 are synchronised.
— O
We can now rSake the following conclusion:

Th et G be an AFFNN. Consider a non spu-
TIOUS l'$z7ﬂ@y pattern on the set of cells of G and the as-
alanced colouring. We have that the only colours
that can appear sequentially repeated are the colours of the
auto-regulation cells in the first layer. More concretely,
given a path with first cell in L1 on the network, there are

Remark 4.11 The results of this section do not hold for
balanced spurious patterns. Figure [3]on the left is an ex-
ample of a spurious synchrony pattern that does not lie in
any of the synchrony patterns described in Theorem
note that for example cells 4 and 10 have the same colour,
are connected and there are cells in the path between the
two of black colour. Nevertheless, a similar result could
be obtained for spurious patterns where now the colour-
ings would include patterns as the one illustrated at the
network on the left of Figure [3| The directed edges from
cells 7 and 8 project in the quotient into a zero weight
connection. That is, the dynamics of the cell in the t<-
class of 10 does not depend on the dynamics of the cell
in the <-class of 7,8. Equivalently, this spurious pattern
is balanced because it is a non spurious balanced pattern
for the subnetwork of the network on the left of Figure
where the directed edges from cells 7 and 8 to cell 10 are
ignored. <

The observations in the following remark are useful for
the development of Algorithm below.

Remark 4.12 Given G an AFFNN and a synchrony pat-
tern for G associated with a non spurious balanced rela-
tion <1 on the set of cells of G, consider the refinement <,
of > such that the ,-classes with more than one cell are
the <-classes with more than one cell and containing at
least one cell in the first layer. Trivially, the relation <,
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1s balanced for G and we can consider the quotient net-

3.1.1.1 Consider the subset B; of the < -classes

work @ = G/ 1. ¥ 49 Q-isA - rPB-that-containatleast one cell of L;.
ndts where alllthe ce A OYREIIAL WAS TELEAEY, D (haos. Click here to see ‘h“qﬁéﬁ’“f}"n—"%‘iﬁ? Eor each class I; € By,
Ai epf‘h( restriction >, of > to the cells of Q is a bal- l=1,...,k, let v; be the valency of the

PUBLJI%QHIWE ion for Q. Moreover, we have G/ <= Q/ <.

Remark 4.13 It is not true that a quotient network of
an AFFNN has to be an AFFNN. See Figure [5| for an
example. &

soFoToN @
0-0-0° (O--@

Figure 5: On the left an AFFNN with a balanced colour-
ing. On the right the corresponding quotient which is not
an AFFNN.

Based on Remark and Theorem we describe
below an algorithm that enumerates all possible non-

of an AFFNN. Steps 1 — 4 compute the set S of all the
balanced relations >, corresponding to the refinements
of non-spurious balanced relations < of the AFFNN suc

cells in I;.

3.1.2 Construct an l; x ¢t matrix W;,_1 from
Wi -1 in the following way: each column
I €{1,...,k} of W;;_1 is the sum of the
columns of W;;_; indexed by the cells in
LNL;_q.

3.1.3 For each column [ € {1,...,k} of Wm-,l:
identify % rows such that the element at
column INis 'y _and the others elements are

equal ojro. t R; as the set of rows
undersghesé conditions.

3.14 3 is empty then go to step 3.1.
3.1.5 1,5k}

1. For each subset in S P, replace it by
Sits union with Ij.

If R =0, set K := K\ {l}.

L2 nations of one subset in each SP;, [ € K.
3.1.8 For every P € SP: consider the new equiva-

3.1.6.
spurious balanced equivalence relations on the set of cells \& 3,‘1)7 Set SP to be the set of all possible combi-

that the pq,-classes with more than one cell are t
classes with more than one cell and containing at le
one cell in the first layer. Step 5 computes the
tion in S and then their lift to a (non-spurio alance
relation for the given AFFNN.

Algorithm 4.14 Input: An AFFNN Wm enu-

merated such that the weighted adjacency matrix has
the lower-triangular block form in determined
by W1,1, W271, VV3727 ey Wr’r_ whe lL = #ﬁl, for i =

1,...,r, and each block W, ; i1 submatrix.

iS%ﬂliX

1. In £; only the cells vith the same valency can syn-
chronize. Set ~, b‘eNluivalence relation on
the set of cells s@ that cells in C \ £1 are not
related to anyfothercell and for the cells in £; the
relation is

we have that
same valency:

2. Set

jas t the)et of all the refinements of ~,,, and

1
}and S; =10

Fo?‘each > in S;_q:

3.3.1 Identify the < -classes that contain at least
one cell of £;_1. Set B as the set of those
classes and t := #B.

lanced
relations for the quotient network associated (xc%a-\

lence relation <t on C obtained from the ini-
tial relation 1 by removing the classes that
are contained in a subset in P and adding
the subsets in P as new classes. Add the
new relation <1 to the set S;.

3.2 If i < r and S; # ) then go to step 3.
4. Set S:=5,U---US;, F1:=5,L=F, and j = 1.
5. While F; # 0:

5.1 Set j =j+ 1 and F; = 0.
52 Whlle Fj—l 7é 01

5.2.1 Let = in ijlv ijl = ijl \ {[><]}

5.2.2 Set Wy, to be the weighted adjacency ma-
trix of the quotient network @@ determined
by >t and ¢ the number of rows (columns)
of W

5.2.3 Let Dg to be the set of cells such that the
off-diagonal elements of the corresponding
row in Wy, are all zero.

5.2.4 Define the equivalence relation ~, on the
set of cells of @) such that ¢ ~, d if and
only if cells ¢ and d are not in D¢ and the
corresponding rows of the matrix Wy, are
equal.

5.2.5 For each refinement R,, of the relation ~,
excluding the trivial relation where all the
classes are singletons:

5.2.5.1 Set P, := Mutate(R,,x);
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5.25.2 Fj:=F; U{P,}. (UID/MAT/00144/2013), which is funded by FCT

al\ wltlﬁ]uaﬁuual /“V{EC\ arre uropean struc-
S| € Wersyon o1 re: .
DER, under the

¢ /T)U +
5.2.6 L F1 0 ;g manuscript was accepted by Chaos. Elick "or¢
Al.Qtpl t L. partnership agreement PT2020.
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