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Abstract

We consider feed-forward and auto-regulation feed-forward neural (weighted) coupled cell networks. In feed-forward
neural networks, cells are arranged in layers such that the cells of the first layer have empty input set and cells of each
other layer receive only inputs from cells of the previous layer. An auto-regulation feed-forward neural coupled cell
network is a feed-forward neural network where additionaly some cells of the first layer have auto-regulation, that is,
they have a self-loop. Given a network structure, a robust pattern of synchrony is a space defined in terms of equalities
of cell coordinates that is flow-invariant for any coupled cell system (with additive input structure) associated with the
network. In this paper we describe the robust patterns of synchrony for feed-forward and auto-regulation feed-forward
neural networks. Regarding feed-forward neural networks, we show that only cells in the same layer can synchronize.
On the other hand, in the presence of auto-regulation, we prove that cells in different layers can synchronize in a robust
way and we give a characterization of the possible patterns of synchrony that can occur for auto-regulation feed-forward
neural networks.

AMS classification scheme numbers: 34C15 37C10 06B23 05C50

Many real-world applications can be modelled by
coupled cell networks which abstract the cells and
the type of interaction between pairs of cells. One
of the advantages of taking the network structure
into account is that the network encodes informa-
tion that impacts the dynamics, independently of
the specific equations used to model the original
application. An example is the existence of (ro-
bust) patterns of synchrony that occur for any
system that has structure consistent with a given
network - these are usually called the network syn-
chrony subspaces. These patterns, that are de-
fined in terms of equalities of cell coordinates,
can be described using only the network struc-
ture. In a feed-forward neural network, cells are
disposed in layers and it is possible to order the
layers such that cells in one layer receive inputs
only from cells from the previous layer, except for
the cells of the first layer. If some cells of the first
layer have self-loops we say that the cells are auto-
regulated. Feed-forward and auto-regulation feed-
forward neural networks are broadly used in the
modelling of real-world applications in many dif-
ferent areas with special emphasis in neurosciense.

In particular, the models that are most used to ex-
plain how the brain processes information are the
feed-foward artificial neural networks. We con-
sider both network types and we describe their
robust patterns of synchrony. For feed-forward
neural networks we prove that cells can only syn-
chronize if they are in the same layer. For feed-
forward neural networks with auto-regulation we
show that cells in different layers can synchronize
in a robust way. Moreover, for any path starting
at a cell of the first layer, the synchrony pattern is
characterized by the first cells being synchronized
and the subsequent cells being desynchronized. In
particular, the cells in the path can be all synchro-
nized or desynchronized.

1 Introduction

Feed-forward Neural Networks are used in many practi-
cal applications in different fields such as, for example,
Neuroscience [22, 25], Neural and Biomedical Engineering
[5, 28, 4], Robotics [6] and Economics [26].

A Feed-forward Neural Network (FFNN) is a network
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without self-loops (auto-regulations) or cycles (feedback
loops). In this type of network the cells are arranged in
layers, where the information moves in only one direction,
forward, from the input nodes (first layer), through the
hidden nodes (middle layer(s)), and to the output nodes
(last layer). There is no connection among cells in the
same layer. Each cell in a layer only receives connections
from cells in the previous layer. The sum of the weights
of the connections directed to a cell is the valency of that
cell. Thus, in a FFNN, the cells of the first layer have
valency zero. According to the concept of artificial neural
network, cells in the same layer must be of the same type.
Here we consider feed-forward neural networks where all
cells are of the same type from the dynamics point of
view. That is, all the cells of the network have the same
(internal) dynamics if the connections between the cells
are switched off.

In this paper, as well as FFNNs, we consider another
special type of networks, Auto-regulation Feed-forward
Neural networks (AFFNNs) that are FFNNs with auto-
regulation input, that is, with self-loops. The AFFNNs
are examples of recurrent networks.

We focus our analysis on synchronization patterns. The
experimental and also theoretical study of synchrony in
FFNNs and AFFNNs and its impact, from the applica-
tions point of view, has attracted the interest of many sci-
entists in the last decades. Different studies have come to
the conclusion that synchrony in such networks seems to
be the explanation for various phenomena as, for example,
the precisely timed spike patterns of the brain observed
in experiments. For instance, there is evidence that the
brain exhibits synchronous firing patterns in its normal
functioning, which may be crucial for information pro-
cessing, but also synchronous pathological events as those
occurring, for example, during a seizure. See [7], [11], [17],
[21], [23], [29] and references therein.

Our approach is from the point of view of the theory of
coupled cell networks developed by Golubitsky, Stewart
and collaborators [27, 15] and Field [9]. In the context
of this theory, Aguiar and Dias [1] give a characterisa-
tion, in terms of the eigenvectors of the adjacency ma-
trices of a network, of the patterns of synchrony of the
network and provide an algorithm to compute those pat-
terns. Although they consider networks with nonnegative
integer adjacency matrices their results follow trivially for
the more general situation that we are considering here
of networks with real adjacency matrices. In this work,
since the networks have a special structure, a feed-forward
structure, we are able to give a more specific characteri-
sation of the patterns of synchrony for this kind of net-
works explicitly in terms of the topological structure of
the network, and to give a simpler algorithm to find those
synchrony patterns. We start by defining an extension
of the aforementioned theory to accommodate the fact
that in the types of networks that we are considering, the
most commonplace, is that each edge has an associated
numerical value called a weight, which in principle, is not

necessarily a nonnegative integer number. Note that in
the theory of coupled cell networks, as self-loops and mul-
tiarrows (arrows with the same head and tail cells) are al-
lowed, this corresponds to take classes of networks where
the connections weights are all nonnegative integer num-
bers. We define coupled cell systems in a way that codifies
general weights for connections by considering coupled cell
systems with additive input structure. We then remark
that the results of [27, 15] concerning the characteriza-
tion of the network synchrony patterns are valid as well
in our setup where the proofs are a trivial extension (or
restriction) of the proofs presented in [27, 15].

We focus then at the possible patterns of robust syn-
chrony that can occur for FFNNs and AFFNNs. Our
interest lies, not at a particular network, but at intrin-
sic properties for each class of networks with respect to
synchronisation. Moreover, we provide an insight at gen-
uine and relevant differences between these two types of
networks corresponding to their performances at the syn-
chrony patterns that can occur due to their distinct ar-
chitecture types. We prove that, in the patterns of syn-
chrony that can occur for a given FFNN structure each
group of cells behaving synchronously is contained in a
unique layer. That is, there cannot be synchronous cells
in different layers. This fact is implicit in one of the ques-
tions that the neuroscience community has been devoted
to trying to understand, that is how synchronous activity
may propagate along the layers of a FFNN, Diesmann et
al. [7], Jahnke et al.[17]. We characterise the set of all
patterns of synchrony of a FFNN based only on its con-
nectivity structure. Taking into account the conclusion in
Nowotny and Huerta [21] that synchrony in feed-forward
neural networks is independent of the neuron internal dy-
namics and results entirely from the network topology, it
follows that the patterns of synchrony that we obtain for
a given network structure constitute the complete set of
patterns of synchrony for any neural dynamics with that
network topology.

In contrast to FFNNs, for AFFNNs, cells in different
layers can synchronize in a robust way. Given a cell, we
can consider the cell input subnetwork given by the sub-
network formed by all paths (and the cells involved in
the paths) directed to the cell (Definition 4.3). We prove
that, for AFFNNs, if the input subnetwork of a cell con-
tains another cell synchronized with it, then all the cells
of the input subnetwork are synchronized (with the cell).

The paper is organized in the following way. In Sec-
tion 2 we introduce briefly the basics on coupled cell
networks and synchronization considering our extension
to the coupled cell network formalism of Golubitsky and
Stewart. The formal definition of FFNNs is given in Sec-
tion 3 and the main result on synchronization in FFNNs is
given by Theorem 3.4. In Section 4 we describe AFFNNs
and we characterize their robust patterns of synchrony.
Our main result is Theorem 4.9. In both sections 3 and
4 we propose a simple algorithm to enumerate the robust
patterns of synchrony (Algorithms 3.10 and 4.14). The
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algorithms are implemented in Python and available from
http://www.fc.up.pt/cmup/adfsoftware.

2 Background

Given a network structure G, that is, a weighted directed
graph, a coupled cell system consistent with G is a net-
work of interacting individual dynamical systems − the
cells. Thus the nodes of the graph represent the cells and
the arrows of the graph the interactions or couplings. Fol-
lowing [27, 15, 9], we take a cell to be a system of ordinary
differential equations.

Let C = {1, ..., n} denote the set of cells of the network.
Each coupled cell c in C is associated with a phase space
Pc, which is assumed to be a nonzero finite-dimensional
real vector space, say Rk, for some k > 0. If cells c and
d are assumed identical, it is required then that Pc = Pd,
that is, the two spaces must be identified canonically, and
the internal dynamics of the cells is defined by the same
differential equation.

We consider weighted networks of equivalent cells where
there is only one kind of coupling which can have associ-
ated a different weight. A system associated with cell j of
such an n-cell weighted network G has the form

ẋj = f(xj) +

n∑
i=1

wjig (xj , xi), j = 1, ...n, (2.1)

where f : Rk → Rk and g : Rk ×Rk → Rk are smooth
functions; also, each wji ∈ R is the value of the weight of
the coupling strength from cell i to cell j. In particular,
the equality wji = 0 occurs when there is no connection
from cell i to cell j. Note that the function f characterizes
the internal dynamics. Moreover, the function g is the
coupling function. Thus, we are assuming xi ∈ Rk, for
k ≥ 1. When k > 1, the term wjig (xj , xi) refers to scalar
multiplication. We say that the coupled cell system (2.1)
is G-admissible and denote by W = [wij ]1≤i,j≤n the n×n
weighted adjacency matrix of G.

Coupled cell systems of the form (2.1) are a special class
of coupled cell systems with additive input structure, see
Definition 2.9 of Field [10], which as mentioned there, al-
lows the addition and deletion of connections. Moreover,
networks of Kuramoto phase oscillators and pulse cou-
pled systems are coupled cell systems with additive input
structure, see for example, Ashwin et al. [3] and Neves
and Timme [19].

Example 2.1 Consider the weighted networks G (left)
and Q (right) in Figure 1. The arrows correspond to di-
rected edges between two cells with weight equal to value
written above. The weight connection is 0 when there is
no arrow between two cells. The network weighted adja-

cency matrices are

W =


1 −1 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 1 0

 and

[
0 0 0
1 0 0
0 2 0

]
,

respectively. A coupled cell system admissible for the net-
work G has the form:

ẋ1 = f (x1) + g (x1, x1)− g (x1, x2)
ẋ2 = f (x2)
ẋ3 = f (x3) + g (x3, x1)
ẋ4 = f (x4) + g (x4, x2)
ẋ5 = f (x5) + g (x5, x3) + g (x5, x4)

(2.2)

where f : Rk → Rk and g : Rk ×Rk → Rk are smooth
functions. We are assuming that the internal cell phase

space is Rk and so the total phase space P =
(
Rk
)5

.
Note that equations (2.2) restricted to the polydiagonal
subspace ∆ defined by x1 = x2, x3 = x4, that is when
cells 1 and 2 are synchronized and cells 3 and 4 are syn-
chronized, are

ẋ2 = ẋ1 = f(x1)
ẋ4 = ẋ3 = f(x3) + g (x3, x1)
ẋ5 = f(x5) + 2g (x5, x3)

,

and are consistent with the network Q. We see below that
the network Q is the quotient network of the network G
by the (balanced) relation on the network set of cells with
classes {1, 2}, {3, 4}, {5}. 3
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1
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1

1

1

1

1 2

Figure 1: (Left) A 5-cell weighted network G. (Right)
A 3-cell weighted network Q. Any coupled cell system
consistent with G restricted to the polydiagonal subspace
defined by x1 = x2, x3 = x4, is consistent with Q. That
is, the network Q is the quotient network of the network
G by the (balanced) relation with classes {1, 2}, {3, 4},
{5}.

2.1 Patterns of synchrony

In [27, 15] the concept of network synchrony pattern is
defined. More precisely, given an n-cell network structure
G, a subspace ∆ of P defined by certain equalities of coor-
dinates is said to be a network synchrony subspace when
it is left invariant under the flow of any G-admissible cou-
pled cell system. Thus, for any system Ẋ = F (X), where
F is G-admissible, F (∆) ⊆ ∆.
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In [27, 15] a necessary and sufficient condition is also
given in terms of the network structure, for such a sub-
space ∆ (which is also called a polydiagonal space) to be
a synchrony subspace. Precisely, consider the equivalence
relation ./ on the network set of cells defined in the fol-
lowing way: i ./ j if and only if all the vectors in ∆ satisfy
the equality xi = xj . Write then ∆ = ∆./. In [27, 15] it is
proved that ∆./ is a network synchrony space if and only
if ./ satisfies certain conditions, in which case, ./ is said to
be balanced. We describe now the conditions for ./ to be
balanced. Two cells i and j are said to be ./-related for
balanced ./ when there is a bijection between the sets of
directed edges to i and j which preserves the edge types
and the ./-class of the edges tail cells. Moreover, it is
remarked, for example in [1], that ./ is balanced if and
only if ∆./ is left invariant under the network adjacency
matrices.

In this section, we adapt the above definition of bal-
anced relation to networks where the network adjacency
matrix is a weighted matrix. An analogue to Definition
6.4 of [27] is the following:

Definition 2.2 An equivalence relation ./ on the set of
cells {1, . . . , n} of a network is said to be balanced when
satisfies the following condition: we have i ./ j if and only
if the sum of the weights of the couplings directed to i and
j, from cells in the same ./-class, are equal. 3

Following [15], an equivalence relation ./ can be visu-
alized graphically by colouring equivalent cells with the
same colour. Then, by Definition 2.2, ./ is balanced if
and only if, whenever two cells i and j have the same
colour, the sums of the weights of the couplings directed
to i and j from cells of the same colour, are equal.

Examples 2.3 (i) Returning to the network G on the left
of Figure 1, the relation ./ with classes {1, 2}, {3, 4}, {5} is
balanced: cells in {1, 2} and the cells in {3, 4} only receive
couplings from cells in {1, 2}; the sum of the weights of
the input couplings to cells 1 and 2 is 0, and to cells 3 and
4 is 1.
(ii) Consider the network in Figure 2. The equivalence
relation on the network set of cells C = {1, . . . , 12} with
classes with classes I1 = {1, 2, 3}, I2 = {4, 5, 6}, I3 = {7},
I4 = {8}, I5 = {9, 10} and I6 = {11, 12} is balanced:
every cell in I1 has no inputs; every cell in I2 has inputs
from cells in I1 with weight sum 2; every cell in I5 has
inputs from cells in I2 with weight sum -1 and from cell
7 (with weight 2), and every cell in I6 has an input from
cell 8 (with weight -1) and from cells I5 with weight sum
1.5. 3

If we take now admissible coupled cell systems with
additive input structure as defined in (2.1), then we also
have an analogue to Theorem 6.5 of [27]:

Theorem 2.4 Let G be an n-cell weighted network. Con-
sider the admissible coupled cell systems for G, as in (2.1),

for a given choice of total phase space
(
Rk
)n

. Then, a
polydiagonal subspace ∆./ is a synchrony subspace for G
if and only if the ./-relation is balanced on the set of cells
of G. 3

Proof Trivially, if ./ is balanced, then for any coupled
cell system (2.1), for a given choice of the internal phase
space Rk, if x = (x1, . . . , xn) ∈ ∆./ and i ./ j, the equa-
tions for cell i and j evaluated at x coincide. Thus, ∆./

is flow-invariant for equations (2.1).
To prove the inverse, we assume that for any coupled

cell system as (2.1) for a given choice of Rk, ∆./ is flow-
invariant for (2.1), and show that then ./ has to be bal-
anced. An analogue of the proof given in Theorem 6.5
of [27] can be given and uses the fact that ∆./ has to
be, in particular, left invariant taking linear admissible
vector fields. Briefly, let W = [wij ] be the weighted ad-
jacency matrix of G, and consider the following (linear)
G-admissible coupled cell system:

ẋj =

n∑
i=1

wjixi, j = 1, . . . , n, (2.3)

where we are taking xi ∈ R, for i = 1, . . . , n. We have
that (2.3) leaves ∆./ invariant if and only if the weighted
adjacency matrix W leaves ∆./ invariant. 2

Example 2.5 Taking G to be the network on the left of
Figure 1, recall that the relation ./ with classes {1, 2},
{3, 4}, {5} is balanced. Thus, by Theorem 2.4, the poly-
diagonal ∆./ defined by the equalities x1 = x2, x3 = x4 is
a network synchrony subspace. As well, for the network
in Figure 2 since the equivalence relation on the network
set of cells C = {1, . . . , 12} with classes I1 = {1, 2, 3},
I2 = {4, 5, 6}, I3 = {7}, I4 = {8}, I5 = {9, 10} and
I6 = {11, 12} is balanced, the polydiagonal ∆./ defined by
the equalities x1 = x2 = x3, x4 = x5 = x6, x9 = x10, x11 =
x12 is a network synchrony subspace. 3

Definition 2.6 We call the valency of a cell c of a net-
work G the sum of the weights of the couplings directed
to c. 3

Remark 2.7 A necessary condition for an equivalence re-
lation on the set of cells of a network to be balanced is
that cells in the same class must have the same valency.
3

It is proved in Section 7 of [27] that if ∆./ is a synchrony
subspace for a network G then any G-admissible coupled
cell system restricted to ∆./ is an admissible coupled cell
system for a smaller network called the quotient network
of G by ∆./ , and denoted by Q = G/ ./. The same
holds in our setup. The network Q is obtained from G
in the following way: the cells of Q correspond to the ./-
equivalence classes and the directed edges of Q are the
projections of the directed edges of G. More precisely, if
Ii and Ij are two ./-equivalence classes, as ./ is balanced,

4
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Figure 2: A FFNN with four layers and twelve cells.
The equivalence relation on the network set of cells with
classes {1, 2, 3}, {4, 5, 6}, {7}, {8}, {9, 10} and {11, 12} is
balanced.

then the sum of the weights of all directed edges from the
cells in Ii to any given cell in Ij does not depend on
the cell of Ij considered.Thus if Ii = {i1, . . . , il} and we
choose j1 ∈ Ij , then there will be a directed edge from Ii
to Ij with weight wj1,i1 + · · ·+wj1,il . We also say that G
is a lift of Q. In particular, it follows that the valency of
each cell in Q is the valency of any cell in the lift belonging
to the ./-class of that cell.

Example 2.8 The network Q in Figure 1 (right) is the
quotient of the network G in Figure 1 (left) by the ./-
equivalence relation with classes {1, 2}, {3, 4}, {5}. In
fact, taking any coupled cell system admissible for G, as
in (2.2), we have that, the restriction to the synchrony
subspace ∆./ defined by x1 = x2, x3 = x4 is consistent
with the network Q on the right of Figure 1. Equivalently,
the network G is a lift of Q. 3

Definition 2.9 Let G be a network and ./ a balanced
equivalence relation on the network set of cells. We say
that ./ is a spurious balanced equivalence relation if there
is a directed edge with nonzero weight projecting in the
quotient network G/ ./ into an edge with zero weight. We
also say that ∆./ is a spurious synchrony pattern. 3

See Figure 3 for two network examples where the colour-
ings of the cells correspond to spurious balanced equiva-
lence relations.

3 Synchronisation in FFNNs

We formalize the definition of FFNN.

Definition 3.1 Let G be an n-cell weighted network with
set of cells C. If there is a partition Li, i = 1, . . . , r, with

1
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4

5

6

7

8

9

10

1

2

3

4

-1

-1

Figure 3: Two networks with cell colourings correspond-
ing to spurious balanced equivalence relations. The edges
with weight 1 have the weight omitted.

r ≤ n, of the set C such that
(i) cells in L1 have valency zero and receive no connec-
tions;
(ii) for each j ∈ {2, ..., r}, all the cells in Lj have nonzero
valency and receive connections only from cells in Lj−1;
then the network G is a FFNN and each subset Li is called
a layer. 3

We now characterize FFNNs using weighted adjacency
matrices. According to Definition 3.1 the cells of a FFNN
can be enumerated such that the corresponding weighted
adjacency matrix has the following lower-triangular block
form:

W =


01,1 01,2 . . . 01,r−1 01,r
W2,1 02,2 . . . 02,r−1 02,r
03,1 W3,2 . . . 03,r−1 03,r
. . . . . . . . . . . . . . .
0r,1 0r,2 . . . Wr,r−1 0r,r

 . (3.4)

Denoting by li = #Li, for i = 1, . . . , r, then the block
Wi,i−1 is a li × li−1 matrix and 0i,j is the li × lj zero
matrix. The entries of Wi,i−1 correspond to the weights
of the connections from the cells in layer Li−1 to the cells
in layer Li.

Remark 3.2 Observe that, assumption (ii) in Definition
3.1 implies that the rows of each matrix Wi,i−1, for i =
2, . . . , r, have nonzero sum. 3

Example 3.3 Figure 2 shows an example of a FFNN
with four layers, Li, i = 1, . . . , 4. Note that the cells
are ordered such that the weighted adjacency matrix W
has lower-triangular block form as in (3.4). For example,

W4,3 =

[
−1 0.5 1
−1 −1 2.5

]
. 3

3.1 Patterns of synchrony

The next theorem states that for the synchrony patterns
that can occur for a FFNN there are no two synchronous
cells in different layers.

Theorem 3.4 Cells in different layers of a FFNN cannot
synchronise.

5

http://dx.doi.org/10.1063/1.4973234


Proof Let G be a FFNN with set of cells {1, . . . , n}.
Assume the ordering of the cells of G is such that its
weighted matrix W has block structure as in (3.4). Thus
{1, . . . , n} = L1∪L2∪· · ·∪Lr, where Li = {li−1+1, . . . , li},
taking l0 = 0. Note that, as the valency of the cells in the
layer L1 is zero and for the other cells is nonzero, then
cells in layer L1 cannot synchronize with cells of other
layers (Remark 2.7).

Now, assume that ∆./ is a synchrony subspace for G and
consider the associated balanced equivalence relation ./
on {1, . . . , n}. Let I1, . . . , Ik be the ./-classes. Assume,
by contradiction, that there is at least one ./-class con-
taining cells in two different layers. Let Lp be the first
layer containing cells that synchronize with cells of other
layer Lq, with 1 < p < q.

Note that if X ∈ ∆./ and has the form

X =
(

0L1
, . . . , 0Lp−1

, 1Lp
, . . . , 1Lr

)
,

then

W (X) =
(

0L1
, . . . , 0Lp

,Wp+1,p1Lp
, . . . ,Wr,r−11Lr−1

)
and W (X) ∈ ∆./. Thus Wq,q−11Lq−1

must have all co-

ordinates zero, which is a contradiction since, by assump-
tion, the cells in Lq have nonzero valency. 2

Corollary 3.5 In a FFNN, we have the following:
(i) Two cells can synchronise only if they are in the same
layer and have the same valency.
(ii) If each layer has exactly one cell then no two cells in
the network can synchronize.

Proposition 3.6 Any quotient network of a FFNN is
also a FFNN.

Proof Let G be an n-cell FFNN with layers L1, . . . ,Lr

and ./ be a balanced equivalence relation on the network
set of cells. By Corollary 3.5 just cells in the same layer
can syncronise. Thus, ./ refines the equivalence relation
with classes L1, . . . ,Lr. Let W be the network weighted
adjacency matrix and ./i be restriction of ./ to the layer
Li, say with classes I1, ..., Ipi . Then the weighted ad-
jacency matrix of the quotient network Q has a lower-
triangular block structure as in (3.4) where each nonzero
submatrix Qi,i−1 for i ∈ {2, ..., r} has pi columns whose
jth column is equal to the sum of the columns in Wi,i−1
associated to the cells in the class Ij , j ∈ {1, . . . , pi}. 2

Remark 3.7 It is not true that any lift of a FFNN is also
a FFNN. For example, the network G of Figure 1 (left)
is a lift of the network Q in Figure 1 (right) but Q is a
FFNN and G is not. 3

The next proposition is useful for the development of
Algorithm 3.10 below.

Proposition 3.8 Let G be a FFNN with layers
L1,L2, . . . ,Lr and set C = ∪ri=1Li. For i = 2, . . . , r,
denote by Gi the subnetwork of G with layers Li−1, Li

and containing the connections in G from the cells in
the layer Li−1 to the cells in the layer Li. An equiva-
lence relation ./ on C refining the equivalence relation with
classes {L1,L2, . . . ,Lr} is balanced for G if and only if,
for i = 2, . . . , r, the restriction of ./ to Li−1 ∪Li, denoted
by ./|Li−1∪Li

, is balanced for Gi.

Remark 3.9 Following the notation of Proposition 3.8
above, consider that the cells of G are enumerated such
that the weighted adjacency matrix W of G has the lower-
triangular block form as in (3.4). Observe that the subma-
trix Wi,i−1 corresponds to the weighted adjacency matrix
of the subnetwork Gi. We establish a condition on Wi,i−1
for ./|Li−1∪Li

to be balanced for the subnetwork Gi: con-

struct W i,i−1 from Wi,i−1 where each column is the sum
of the columns of Wi,i−1 indexed by the cells in each class
of ./|Li−1

. Then ./|Li−1∪Li
is balanced for Gi if and only

if two cells in Li in the same ./-class correspond to equal
rows of W i,i−1. See for example Definition 2.1 and Propo-
sition 2.2 of Aguiar et al. [2]. 3

Based on the previous results, we describe below an
algorithm that, given a FFNN, enumerates all the bal-
anced equivalence relations for that network. By Propo-
sition 3.8, the cells of a layer Li synchronise according to
a certain pattern depending on how the cells in the pre-
vious layer Li−1 are grouped into a synchrony pattern.
Thus, the algorithm starts by considering the cells of the
first layer and, since these cells have no input, they can
synchronise according to any synchrony pattern. Then,
for each possible synchrony pattern of the cells in the first
layer, the algorithm determines recursively the possible
synchrony patterns for the cells in L2, . . . ,Lr.

Algorithm 3.10 Input: A FFNN with the cells enu-
merated such that the weighted adjacency matrix has
the lower-triangular block form as in (3.4) determined by
W2,1,W3,2, . . . ,Wr,r−1, where li = #Li, for i = 1, . . . , r,
and each block Wi,j is an li × li−1 submatrix.

1. Set R to be the equivalence relation on the set of cells
C with classes L1 and {i}, for i ∈ C\L1.

2. Let S1 to be the set of all refinements of R.

3. Set Si := ∅, i = 2, . . . , r.

4. For i = 2, . . . , r:

4.1 For each ./ in Si−1:

4.1.1 Let k := # classes ./|Li−1
.

4.1.2 Construct the li × k matrix W i,i−1 from
Wi,i−1 in the following way: each column of
W i,i−1 is the sum of the columns of Wi,i−1
indexed by the cells in each class of ./|Li−1

.
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4.1.3 Define an equivalence classe ./i on the set
of cells Li in the following way: p, q ∈ Li,
p ./i q ⇔ rows p, q of W i,i−1 are equal.

4.1.4 For each refinement Ri of ./i:

4.1.4.1 Set Pi := Join (Li, Ri, ./);

4.1.4.2 Si := Si ∪ {Pi}.

5. Output Sr.

3

Join (Li, Ri, ./) removes the classes {j}, j ∈ Li from ./
and adds the classes of Ri; thus outputs an equivalence
relation that is balanced (for the layers L1∪· · ·∪Li), where
the classes contained in Li+1 ∪ · · · ∪ Lr are singletons:
{j}, j ∈ Li+1 ∪ · · · ∪ Lr.

4 Synchronisation in AFFNNs

We consider now AFFNNs.

Definition 4.1 A FFNN where at least one cell in L1 has
a self-loop is an AFFNN. 3
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Figure 4: An AFFNN with four layers and twelve cells.
The equivalence relation on the network set of cells with
classes {1, 2, 4, 5, 6, 8, 10}, {3, 7}, {9}, {11, 12} is balanced.

Example 4.2 Figure 4 shows an example of an AFFNN
with 4 layers. 3

The weighted adjacency matrix of an AFFNN has a
lower-triangular block structure similar to that in (3.4):

W =


W1,1 01,2 . . . 01,r−1 01,r
W2,1 02,2 . . . 02,r−1 02,r
03,1 W3,2 . . . 03,r−1 03,r
. . . . . . . . . . . . . . .
0r,1 0r,2 . . . Wr,r−1 0r,r

 , (4.5)

where W1,1 is a non-zero l1×l1 diagonal matrix describing
the self-loop connections of cells in the first layer.

Two cells c, d of a network are connected if there is a
directed path between the two cells in the network.

Definition 4.3 [20, Section 6] Let G be a network with
set of cells C and let c, d ∈ C. We call the input subnetwork
of cell c in G, which we denote by Gc, the subnetwork of
G containing all the cells in C that are connected to c and
all the corresponding paths leading to cell c. 3

Remark 4.4 (i) Let G be a FFNN (or AFFNN) with
layers L1, . . . ,Lr and let ci ∈ Li for i > 1. Then the
set of cells of the input subnetwork Gci is a subset of
L1 ∪ · · · ∪ Li−1 ∪ {ci}.
(ii) An input subnetwork of a FFNN (AFFNN) is also a
FFNN (AFFNN).
(iii) Let G be a FFNN (AFFNN) and ci ∈ Li, cj ∈ Lj ,
with i < j. If ci and cj are connected then Gci ⊂ Gcj .

3

4.1 Patterns of synchrony

We characterize the patterns of synchrony for an AFFNN.

Remark 4.5 In an AFFNN, just cells in L1 with auto-
regulation can synchronize with cells in a different layer
Li, i > 1, since we are assuming that all cells in L2∪· · ·∪Lr

have nonzero valency. 3

Remark 4.6 Recall Definition 2.9 of spurious synchrony
pattern and the examples in Figure 3. The spurious syn-
chrony patterns occur when the weights of the input edges
of a cell, from the cells in a synchrony class, sum up to
zero. Thus, we have a fictitious situation since it is as if
those edges do not exist. This kind of situation is not ex-
pected to occur in general AFFNN. In particular, it does
not occur when the weights are nonnegative. The results
in this section characterize the non spurious synchrony
patterns for AFFNNs. 3

Lemma 4.7 Let G be an AFFNN with layers L1, . . . ,Lr

and consider a non spurious synchrony pattern on the net-
work set of cells. Consider two cells c1 ∈ L1, cs ∈ Ls, with
s > 1, which are connected. If c1 and cs are synchronised
then all the cells in Gcs are synchronised.

Proof Consider the weighted adjacency matrix W of
G as in (4.5). Since c1 and cs are synchronised, then cell
c1 has a self-loop. Moreover, cells c1 and cs have the
same valency, which is the weight of the self-loop of c1
(Remark 2.7). We show first that all the cells in the input
set of cs (in Ls−1) have to synchronize with cells c1 and
cs. Take the vector X ∈ Rn, where xi = 0 if cell i is not
synchronised with c1 and cs, and 1 otherwise. Applying
W to X we have that WX has the form:

WX = (Y1, . . . , Yr), with Y1 = W1,1XL1
,

and Yi = Wi,i−1XLi−1
(i = 2, . . . , r) .

(4.6)
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At the c1 position of WX (taken from the vector
W1,1L1), we have the weight of the self-loop of cell c1,
which is also its valency. At the cs position of WX (taken
from the vector Ws,s−1Ls−1) we have the sum of weights
of the directed edges from cells in Ls−1 to cell cs that are
also synchronised with c1, cs. Since c1 and cs are synchro-
nised, these two entries of W at the c1 and cs positions
must be equal and so the sum of weights in the cs position
is the valency of cell cs (and c1). As the synchrony pattern
is not spurious, then cell cs only receives directed edges
from cells in Ls−1 that are synchronised with cs. Apply-
ing this recursively, we obtain that any directed path from
a cell in L1 to cell cs has to be of synchronised cells in the
same synchrony class as c1, cs. Thus, all the cells in the
subnetwork Gcs are synchronised with c1 and cs. 2

Lemma 4.8 Let G be an AFFNN with layers L1, . . . ,Lr

and consider a non spurious synchrony pattern on the net-
work set of cells of G. Let cp ∈ Lp and cq ∈ Lq, with
p < q, be two cells that are connected. If cells cp and cq
are synchronised then all the cells in Gcq are synchronised
(with cq and cp).

Proof Let cp ∈ Lp and cq ∈ Lq, with p < q, be two
cells of G that are connected and synchronised. Consider
the input subnetwork of cp and take a cell, say cm, such
that m is the minimal integer for each cm ∈ Gcp ∩Lm and
cm is synchronized with cp, cq. Thus m ≤ p < q. Fix a
directed path P from the cell cm to cell cq through the cell
cp. Because cm and cq are synchronized and the synchrony
pattern is not spurious, then the cell in that path belong-
ing to Gcq∩Lq−1, say cq−1, must be synchronized with (at
least) one cell belonging to Gcm ∩ Lm−1, say cm−1. Now,
join the directed edge from cm−1 to cm to P . Consider
the cell in the path belonging to Gcq ∩ Lq−2, say cq−2,
which has to be synchronized with some cell belonging to
Gcm−1

∩Lm−2, say cm−2, and join the directed edge from
cm−2 to cm to the path P . Continuing, we construct a
directed path from a cell c1 in L1 to the cell cq passing
through cq−m+1 where cell c1 and cq−m+1 are synchro-
nized. Thus, by Lemma 4.7 we have that all the cells in
the path between c1 and cq−m+1 are synchronized. But,
from the choice of m, we have that q−m+1 ≥ p, otherwise
m would not be minimal as cp belongs to the path. Thus,
cell cp is also synchronized with c1 and cq−m+1. But then
we have cells in the first layer, L1, that are synchronised
with cq, and are connected to cq (as there is at least the
connected path P from cp to cq). By Lemma 4.7 we obtain
that all the cells in Gcq are synchronised.

2
We can now make the following conclusion:

Theorem 4.9 Let G be an AFFNN. Consider a non spu-
rious synchrony pattern on the set of cells of G and the as-
sociated balanced colouring. We have that the only colours
that can appear sequentially repeated are the colours of the
auto-regulation cells in the first layer. More concretely,
given a path with first cell in L1 on the network, there are

the following three possibilities:
(a) all the cells have the same colour;
(b) the first cells have the same colour and all the subse-
quent cells have different colours;
(c) all the cells have different colours.

Proof The result follows from Lemma 4.8. Given a
path, if the first cell does not synchronise with any other
cell in the path then there is only the third possibility.
This happens, in particular, if the first cell has no self-
loop. If the first cell has a self-loop and synchronises with
some cell in the path then both the first and second pos-
sibilities can occur.

2
As a consequence of Theorem 4.9 we have the follow-

ing corollary that gives another necessary condition for
a pattern on the cells of an AFFNN to be a pattern of
synchrony.

Corollary 4.10 Let G be an AFFNN. Consider a non
spurious synchrony pattern on the set of cells of G and the
associated balanced colouring. Let cp ∈ Lp and cq ∈ Lq

be two cells that are synchronised but are not connected.
Then, for each path in the input subnetwork Gcp there is
at least one path in the input subnetwork Gcq such that the
sequence of colours for the two paths is the same. Nev-
ertheless, the number of cells with the first colour in the
sequence can differ for the two paths.

Remark 4.11 The results of this section do not hold for
balanced spurious patterns. Figure 3 on the left is an ex-
ample of a spurious synchrony pattern that does not lie in
any of the synchrony patterns described in Theorem 4.9:
note that for example cells 4 and 10 have the same colour,
are connected and there are cells in the path between the
two of black colour. Nevertheless, a similar result could
be obtained for spurious patterns where now the colour-
ings would include patterns as the one illustrated at the
network on the left of Figure 3. The directed edges from
cells 7 and 8 project in the quotient into a zero weight
connection. That is, the dynamics of the cell in the ./-
class of 10 does not depend on the dynamics of the cell
in the ./-class of 7, 8. Equivalently, this spurious pattern
is balanced because it is a non spurious balanced pattern
for the subnetwork of the network on the left of Figure 3
where the directed edges from cells 7 and 8 to cell 10 are
ignored. 3

The observations in the following remark are useful for
the development of Algorithm 4.14 below.

Remark 4.12 Given G an AFFNN and a synchrony pat-
tern for G associated with a non spurious balanced rela-
tion ./ on the set of cells of G, consider the refinement ./r
of ./ such that the ./r-classes with more than one cell are
the ./-classes with more than one cell and containing at
least one cell in the first layer. Trivially, the relation ./r
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is balanced for G and we can consider the quotient net-
work Q = G/ ./r. It follows from Theorem 4.9 that Q is a
network where all the cells in the first layer are desynchro-
nised. The restriction ./q of ./ to the cells of Q is a bal-
anced relation for Q. Moreover, we have G/ ./= Q/ ./q.
3

Remark 4.13 It is not true that a quotient network of
an AFFNN has to be an AFFNN. See Figure 5 for an
example. 3

1
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4

5

6

7

1 4 6

7

Figure 5: On the left an AFFNN with a balanced colour-
ing. On the right the corresponding quotient which is not
an AFFNN.

Based on Remark 4.12 and Theorem 4.9, we describe
below an algorithm that enumerates all possible non-
spurious balanced equivalence relations on the set of cells
of an AFFNN. Steps 1 − 4 compute the set S of all the
balanced relations ./r corresponding to the refinements
of non-spurious balanced relations ./ of the AFFNN such
that the ./r-classes with more than one cell are the ./-
classes with more than one cell and containing at least
one cell in the first layer. Step 5 computes the balanced
relations for the quotient network associated to each rela-
tion in S and then their lift to a (non-spurious) balanced
relation for the given AFFNN.

Algorithm 4.14 Input: An AFFNN with the cells enu-
merated such that the weighted adjacency matrix has
the lower-triangular block form as in (4.5) determined
by W1,1,W2,1,W3,2, . . . ,Wr,r−1, where li = #Li, for i =
1, . . . , r, and each block Wi,i−1 is an li × li−1 submatrix.

1. In L1 only the cells with the same valency can syn-
chronize. Set ∼v1 to be the equivalence relation on
the set of cells C such that cells in C \ L1 are not
related to any other cell and for the cells in L1 the
relation is defined by the following: given c, d ∈ L1,
we have that c ∼v1 d if and only if c and d have the
same valency.

2. Set S1 as the the set of all the refinements of ∼v1 and
i := 1.

3. Set i := i + 1 and Si := ∅:

3.1 For each ./ in Si−1:

3.1.1 Identify the ./ -classes that contain at least
one cell of Li−1. Set B as the set of those
classes and t := #B.

3.1.1.1 Consider the subset B1 of the ./ -classes
in B that contain at least one cell of L1.
Set k := #B1. For each class Il ∈ B1,
l = 1, . . . , k, let vl be the valency of the
cells in Il.

3.1.2 Construct an li × t matrix W i,i−1 from
Wi,i−1 in the following way: each column
l ∈ {1, . . . , k} of W i,i−1 is the sum of the
columns of Wi,i−1 indexed by the cells in
Il ∩ Li−1.

3.1.3 For each column l ∈ {1, . . . , k} of W i,i−1:
identify the rows such that the element at
column l is vl and the others elements are
equal to zero. Set Rl as the set of rows
under these conditions.

3.1.4 If every Rl is empty then go to step 3.1.

3.1.5 Set K = {1, . . . , k}.
3.1.6 For each l ∈ K

3.1.6.1 If Rl 6= ∅: set SPl as the power set of
Rl. For each subset in SPl replace it by
its union with Il.

3.1.6.2 If Rl = ∅, set K := K \ {l}.
3.1.7 Set SP to be the set of all possible combi-

nations of one subset in each SPl, l ∈ K.

3.1.8 For every P ∈ SP : consider the new equiva-
lence relation .̃/ on C obtained from the ini-
tial relation ./ by removing the classes that
are contained in a subset in P and adding
the subsets in P as new classes. Add the
new relation .̃/ to the set Si.

3.2 If i < r and Si 6= ∅ then go to step 3.

4. Set S := S1 ∪ · · · ∪ Si, F1 := S, L = F1 and j = 1.

5. While Fj 6= ∅:

5.1 Set j = j + 1 and Fj = ∅.
5.2 While Fj−1 6= ∅:

5.2.1 Let ./ in Fj−1, Fj−1 := Fj−1 \ {./}.
5.2.2 Set W./ to be the weighted adjacency ma-

trix of the quotient network Q determined
by ./ and q the number of rows (columns)
of W./.

5.2.3 Let DQ to be the set of cells such that the
off-diagonal elements of the corresponding
row in W./ are all zero.

5.2.4 Define the equivalence relation ∼v on the
set of cells of Q such that c ∼v d if and
only if cells c and d are not in DQ and the
corresponding rows of the matrix W./ are
equal.

5.2.5 For each refinement Rn of the relation ∼v

excluding the trivial relation where all the
classes are singletons:

5.2.5.1 Set Pn := Mutate(Rn, ./);
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5.2.5.2 Fj := Fj ∪ {Pn}.
5.2.6 L = L ∪ Fj .

6. Output L.

3

Mutate(Rn, ./) removes from ./ all the classes {c} such
that {c} is a subset of some element of Rn and adds the
classes of Rn.

5 Conclusion and future direc-
tions

One common question in neuroscience is why synchrony is
so persistent in feed-forward networks. One of the strate-
gies that has been used in that setup is to investigate how
the common input stimulus (excitatory or inhibitory) of
neurons in one layer affects the synchronization of the neu-
rons of that and subsequent layers. Moreover, it is com-
mon for the propagation of synchronization along the lay-
ers to occur in a robust way. See for example [16, 22, 25].

In our approach, we associate to feed-forward neural
like networks, dynamical systems that evolve with time
and we ask how auto-regulation in one layer (the first
layer) influences the synchrony patterns of the system.
Here, the auto-regulation corresponds to the addition of
auto-connections from neurons to themselves. And, ro-
bust patterns of synchrony correspond to the existence of
dynamical solutions where groups of neurons (of different
layers) evolve in a synchronous way for all time.

We prove that the reason for the existence of such so-
lutions is the feed-forward network structure itself. We
show how the feed-forward and auto-regulation structure
force the existence of patterns that appear as a ‘propa-
gation’ of the synchronization of the neurons of the first
layer along the subsequent layers; taking paths in the net-
work starting at neurons of the first layer the, synchrony
pattern can in fact be characterized by the cells of the
first layers (up to a certain layer, that may be the last)
being synchronized and the cells of the subsequent layers
(if any) being desynchronized.

One future direction is to extend this study to other
classes of recurrent networks. A recurrent network is a
FFNN with additional connections between cells of differ-
ent layers forming a directed cycle. See for example the
overview paper by Lipton, Berkowing and Elkan [18].

Feed-forward networks that have been studied theoret-
ically from the bifurcation point of view are the feed-
forward chains, see [12], [8], [14], [13], [24]. Another inter-
esting direction is to explore more the study of synchrony-
breaking bifurcations for general feed-forward networks.
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