
GENERATING ERROR CONTROL CODES
WITH AUTOMATA AND TRANSDUCERS

Stavros Konstantinidis(A) Nelma Moreira(B)

Rogério Reis(B)

(A)Department of Mathematics and Computing Science
Saint Mary’s University

Halifax, Nova Scotia, Canada
Email: s.konstantinidis@smu.ca

(B)CMUP & DCC
Faculdade de Ciências da Universidade do Porto
Rua do Campo Alegre, 4169007 Porto Portugal

Email: {nam,rvr}@dcc.fc.up.pt

Abstract
We introduce the concept of an f -maximal error-detecting block code, for some parameter f
between 0 and 1, in order to formalize the situation where a block code is close to maximal
with respect to being error-detecting. Our motivation for this is that constructing a maximal
error-detecting code is a computationally hard problem. We present a randomized algorithm
that takes as input two positive integers N, `, a probability value f , and a specification of the
errors permitted in some application, and generates an error-detecting, or error-correcting,
block code having up to N codewords of length `. If the algorithm finds less than N codewords,
then those codewords constitute a code that is f -maximal with high probability. The error
specification is modelled as a (nondeterministic) transducer, which allows one to model any
rational combination of substitution and synchronization errors. We also present some elements
of our implementation of various error-detecting properties and their associated methods. Then,
we show several tests of the implemented randomized algorithm on various error specifications.
A methodological contribution is the presentation of how various desirable error combinations
can be expressed formally and processed algorithmically.

1. Introduction

We consider block codes C, that is, sets of words of the same length `, for some integer ` > 0.
The elements of C are called codewords or C-words. We use A to denote the alphabet used for

(A)Research supported by NSERC.
(B)Research supported by FCT project UID/MAT/00144/2013.

2 Stavros Konstantinidis, Nelma Moreira, Rogério Reis

making words and

A` = the set of all words of length `.

Our typical alphabet will be the binary one {0, 1}. We shall use the variables u, v, w, x, y, z to
denote words over A (not necessarily in C). The empty word is denoted by ε. We also consider
error specifications er for specifying the error situations permitted in a channel—this could
be any communication or storage medium. An error specification er specifies, for each allowed
input word x, the set er(x) of all possible output words resulting by applying specified errors
on x. We assume that error-free communication is always possible, so x ∈ er(x) for every input
word x. On the other hand, if y ∈ er(x) and y 6= x then the channel introduces errors into x.

A typical problem in coding theory is the construction of block codes that are capable of
detecting or correcting a certain number of errors. An important requirement is that these
codes contain as many words as possible—in some cases this requirement is formalized via the
concept of maximal code, or even the concept of a largest cardinality code. Most of classical
coding theory deals with various types of substitutions errors, that is errors where a symbol of
the input word is replaced by another symbol. In this case, many block codes have a vector
space structure (they are linear codes) [13]. On the other hand, there is also research on error
control codes for synchronization errors, that is errors where a symbol of the input word is
deleted and/or a new symbol is inserted in the input word [16]. In this case, there is no known
algebraic structure on the set of codewords and code constructions are complex and specific
to the particular error combinations, often requiring several subtle assumptions on how errors
are permitted or not permitted to occur in input words. Few computational approaches for
aiding the construction problem are available almost exclusively for specific substitution error
types [3, 10].

Our approach of error specifications allows one to express various error combinations that
includes many of the existing ones as well as any “rational” error combinations (to be made
precise further below). Informally, a block code C is er-detecting if the channel specified by
er cannot turn a given C-word into a different C-word. It is er-correcting if the channel
cannot turn two different C-words into the same word. We model an error specification as a
(nondeterministic) transducer. Unlike automata which “accept” regular languages, transducers
“realize” rational relations, called channels in this paper. The channel realized by a transducer
er is the set of word pairs (x, y) such that y ∈ er(x).

In Section 2., we make the above concepts mathematically precise, and show how known exam-
ples of various channels can be defined formally with transducers (error specifications) so that
they can be processed by algorithms. In Section 3., we present two randomized algorithms:
the first one decides (up to a certain degree of confidence) whether a given block code C is
maximal er-detecting for a given error specification er. The second algorithm is given an error
specification er, an er-detecting block code C ⊆ A` (which could be omitted), and an integer
N > 0, and attempts to add to C N new words of length ` resulting into a new er-detecting
code. If less than N words get added then either the new code is 95%-maximal or the chance
that a randomly chosen word can be added is less than 5%. Our motivation for considering
a randomized algorithm is that embedding a given er-detecting block code C into a maximal
er-detecting block code is a computationally hard problem—this is shown in Section 4.. In

GENERATING ERROR CONTROL CODES 3

Section 5., we discuss with examples some capabilities of the new module codes.py in the open
source software package FAdo [1, 5, 7]. In Section 6., we discuss a few more points on channel
modelling and present some tests of the randomized algorithms on various error specifications.
In Section 7., we conclude with directions for future research.

2. Error Specifications and Error Control Codes

We need a mathematical model for error specifications that is useful for answering algorithmic
questions pertaining to error control codes. We believe the appropriate model for our purposes
is that of a transducer. This is because (a) there are many efficient algorithms working on these
objects, and (b) to our knowledge most, if not all, examples of combinatorial error control codes
in the coding theory literature refer to combinations of substitution and/or synchronization
errors whose effects can be expressed as transducers—this, however, is not the case for certain
DNA types of errors, which we do not consider here. We note that transducers have been defined
as early as in [21], and are a powerful computational tool for processing sets of words—see [2]
and pg 41–110 of [20].

A transducer is a 5-tuple1 t = (S,A, I, T, F) such that A is the alphabet, S is the finite set of
states, I ⊆ S is the set of initial states, F ⊆ S is the set of final states, and T is the finite set of
transitions. Each transition is a 4-tuple (si, xi/yi, ti), where si, ti ∈ S and xi, yi are words over
A. The word xi is the input label and the word yi is the output label of the transition. For two
words x, y we write y ∈ t(x) to mean that y is a possible output of t when x is used as input.
More precisely, there is a sequence

(s0, x1/y1, s1), (s1, x2/y2, s2), . . . , (sn−1, xn/yn, sn)

of transitions such that s0 ∈ I, sn ∈ F , x = x1 · · ·xn and y = y1 · · · yn. The relation R(t)
realized by t is the set of word pairs (x, y) such that y ∈ t(x). A relation ρ ⊆ A∗×A∗ is called
rational if it is realized by a transducer. If every input and every output label of t is in A∪{ε},
then we say that t is in standard form. We note that every transducer can be converted (in
linear time) to one in standard form realizing the same relation. The domain of the transducer
t is the set of words x such that t(x) 6= ∅. The transducer is called input-preserving if x ∈ t(x),
for all words x in the domain of t. The inverse of t, denoted by t−1, is the transducer that is
simply obtained by making a copy of t and changing each transition (s, x/y, t) to (s, y/x, t).
Then

x ∈ t−1(y) if and only if y ∈ t(x).

A set of words is called a language, with a block code being a particular example of a language.
We are interested in languages accepted by automata [20]. A (finite) automaton a is a 5-tuple
(S,A, I, T, F) as in the case of a transducer, but each transition has only one input label, that
is, it is of the form (s, x, t) with x being one alphabet symbol or the empty word ε. For a
transition (s, x, t), we say that it goes out of state s. The language accepted by a is denoted by

1The general definition of transducer allows two alphabets: the input and the output alphabet. Here,
however, we assume that both alphabets are the same.

4 Stavros Konstantinidis, Nelma Moreira, Rogério Reis

L(a) and consists of all words formed by concatenating the labels in any path from an initial to
a final state. The automaton is called deterministic, or DFA for short, if I consists of a single
state, there are no transitions with label ε, and there are no two distinct transitions with same
labels going out of the same state. Special cases of automata are constraint systems in which
normally all states are final (pg 1635–1764 of [19]), and trellises. A trellis is an automaton
accepting a block code, and has one initial and one final state (pg 1989–2117 of [19]). In the
case of a trellis a we refer to L(a) also as the code represented by a. A piece of notation that
is useful in the next section is the following, where W is any language,

t(W) =
⋃
w∈W

t(w) (1)

Thus, t(W) is the set of all possible outputs of t when the input is any word from W .

Definition 2.1 An error specification er is an input-preserving transducer. The (combinato-
rial) channel specified by er is R(er), that is, the relation realized by er.

Fig. 1 refers to examples of channels that have been defined informally in past research when
designing error control codes. Here these channels are shown as transducers, which can be used
as inputs to algorithms for generating error control codes. For example, for er = sub2, we have
00101 ∈ sub2(00000) because on input 00000, the transducer sub2 can read the first two input
0’s at state s and output 0, 0; then, still at state s, read the 3rd 0 and output 1 and go to state
t1; etc. If we modify id2 in Fig. 1 by removing state t2, then we get the error specification
id1 representing the channel that allows up to 1 symbol to be deleted or inserted in the input
word; then

id1({00, 11}) = {00, 0, 000, 100, 010, 001, 11, 1, 011, 101, 110, 111}.

Notation for transducer figures: A short arrow with no label points to an initial state (e.g.,
state s in Fig. 1), and a double circle indicates a final state (e.g., state t). An arrow with label
a/a represents multiple transitions, each with label a/a, for a ∈ A; and similarly for an arrow
with label a/ε—recall, ε = empty word. Two or more labels on one arrow from some state p
to some state q represent multiple transitions between p and q having these labels.

The concepts of error-detection and -correction mentioned in the introduction are phrased more
rigorously in the next definition. This definition is adapted from [9], where the concepts are
meaningful more generally for any channel that is simply an input-preserving binary relation
(not necessarily one realized by a transducer). As explained in the introductory paragraph of
this section, however, here we are interested in transducer-based channels.

Definition 2.2 Let C be a block code of length ` and let er be an error specification. We say
that C is er-detecting if

v ∈ C, w ∈ C and w ∈ er(v) imply v = w.

We say that C is er-correcting if

v ∈ C, w ∈ C and er(v) ∩ er(w) 6= ∅ imply v = w.

GENERATING ERROR CONTROL CODES 5

ssub2 = t1 t2

sid2 = t1 t2

sdel1 = r t

sins1 = r t

0/0, 1/1

0/1

1/0

0/0, 1/1

0/1

1/0

0/0, 1/1

a/ε

ε/a

a/ε

ε/a

a/aa/a a/a

a/ε ε/a

a/a a/a

ε/a a/ε

a/a a/a

Figure 1: Examples of error specifications (input-preserving transducers). sub2: uses the binary
alphabet {0, 1}. On input x, sub2 outputs x, or any word that results by performing one or two
substitutions in x. The latter case is when sub2 takes the transition (s, 0/1, t1) or (s, 1/0, t1), corre-
sponding to one error, and then possibly (t1, 0/1, t2) or (t1, 1/0, t2), corresponding to a second error.
In the following, a is any symbol of an alphabet A. id2: On input x, id2 outputs a word that results
by inserting and/or deleting at most 2 symbols in x. del1, ins1: considered in [18]. On input x, del1
outputs either x, or any word that results by deleting exactly one symbol in x and then inserting a
symbol at the end of x.

An er-detecting block code C is called maximal er-detecting if C ∪ {w} is not er-detecting for
any word w of length ` that is not in C. The concept of a maximal er-correcting code is similar.

Referring to Fig. 1, we have that a block code C is sub2-detecting iff the min. Hamming distance
of C is > 2. A block code C is id2-detecting iff the min. Levenshtein distance of C is > 2 [11].
The Hamming distance H(x, y) of two equal-length words x, y is the number of corresponding
positions on which they differ (e.g., H(0000, 0101) = 2). The Levenshtein distance V (x, y) of
any two words x, y is the smallest number of insertions, deletions required to turn x to y (e.g.,
V (00, 0110) = 2). The min. Hamming (resp. Levenshtein) distance of C is the min. Hamming
(resp. Levenshtein) distance of any two different C-words.

From a logical point of view (see Lemma 2.3 below) error-detection subsumes the concept of
error-correction. This connection is stated already in [9] but without making use of it there.
Here we add the fact that maximal error-detection subsumes maximal error-correction. Due to

6 Stavros Konstantinidis, Nelma Moreira, Rogério Reis

this observation, in this paper we focus only on error-detecting codes.

Notation: The operation ‘◦’ between two transducers t and s is called composition and returns
a new transducer s◦ t such that z ∈ (s◦ t)(x) if and only if y ∈ t(x) and z ∈ s(y), for some y.

Lemma 2.3 Let C ⊆ A` be a block code and er be an error specification. Then C is er-
correcting if and only if it is (er−1 ◦er)-detecting. Moreover, C is maximal er-correcting if and
only if it is maximal (er−1 ◦ er)-detecting.

Proof. The first statement is already in [9]. For the second statement, first assume that C is
maximal er-correcting and consider any word w ∈ A` \C. If C∪{w} were (er−1 ◦er)-detecting
then C∪{w} would also be er-correcting and, hence, C would be non-maximal; a contradiction.
Thus, C must be maximal (er−1 ◦ er)-detecting. The converse can be shown analogously. 2

The operation ‘∨’ between any two transducers t and s results into a new transducer which is
obtained by simply taking the union of their five corresponding components (states, alphabet,
initial states, transitions, final states) after a renaming, if necessary, of the states such that the
two channels have no states in common. Then,

(t ∨ s)(x) = t(x) ∪ s(x).

Let er be an error specification, let C ⊆ A` be an er-detecting block code, and let w ∈ A` \C.
In [4], the authors show that

C ∪ {w} is er-detecting if and only if w /∈ (er ∨ er−1)(C). (2)

Definition 2.4 Let C ⊆ A` be an er-detecting block code. We say that a word w can be added
into C if w /∈ (er ∨ er−1)(C).

Statement (2) above implies that

C is maximal er-detecting if and only if A` \ (er ∨ er−1)(C) = ∅. (3)

Definition 2.5 The maximality index of a block code C ⊆ A` w. r. t. a channel er is the
quantity

maxind(C, er) =
|A` ∩ (er ∨ er−1)(C)|

|A`|
.

Let f be a real number in [0, 1]. An er-detecting block code C is called f -maximal er-detecting
if maxind(C, er) ≥ f .

The maximality index of C is the proportion of the ‘used up’ words of length ` over all words
of length `. We have the following useful lemma.

Lemma 2.6 Let er be an error specification and let C ⊆ A` be an er-detecting block code.

1. maxind(C, er) = 1 if and only if C is maximal er-detecting.

GENERATING ERROR CONTROL CODES 7

2. Assuming that words are chosen uniformly at random from A`, the maximality index is the
probability that a randomly chosen word w of length ` cannot be added into C preserving
its being er-detecting, that is,

maxind(C, er) = Pr
[
w cannot be added into C

]
.

Proof. The first statement follows from Definition 2.5 and condition (3). The second statement
follows when we note that the event that a randomly chosen word w from A` cannot be added
into C is the same as the event that w ∈ A` ∩ (er ∨ er−1)(C). 2

3. Generating Error Control Codes

We turn now our attention to algorithms processing error specifications and sets of words. Our
main goal is to compute, for any given error specification er, integer N > 0, and deterministic
trellis a representing some er-detecting code C, a deterministic trellis accepting a superset of C
and containing either N new words, or fewer than N new words such that it is close to maximal
er-detecting with high probability. Solving this problem can be used to also solve the problem
of generating an er-detecting block code of up to N words of length `, for given er and integers
N, ` > 0, such that, if the generated code has fewer than N words, then it is close to maximal
er-detecting with high probability. We note that our focus on trellises is because most error
control codes in the literature are block codes, which are naturally accepted by trellises.

For computational complexity considerations, the size |m| of a finite state machine (automaton
or transducer) m is the number of states plus the sum of the sizes of the transitions. The size of
a transition is 1 plus the length of the label(s) on the transition. We assume that the alphabet
A is small so we do not include its size in our estimates.

An important operation between an automaton a and a transducer t, here denoted by ‘�’,
returns an automaton (a � t) that accepts the set of all possible outputs of t when the input
is any word from L(a), that is,

L(a � t) = t(L(a)).

Remark 3.1 We recall here the construction of (a � t) from given a = (S1, A, I1, T1, F1) and
t = (S2, A, I2, T2, F2), where we assume that a contains no transition with label ε. First, if
necessary, we convert t to standard form. Second, if t contains any transition whose input
label is ε, then we add into T1 transitions (q, ε, q), for all states q ∈ S1. Let T1 denote now the
updated set of transitions. Then, we construct the automaton

b = (S1 × S2, A, I1 × I2, T, F1 × F2)

such that ((p1, p2), y, (q1, q2)) ∈ T , exactly when there are transitions (p1, x, q1) ∈ T1 and
(p2, x/y, q2) ∈ T2. The above construction can be done in time O(|a||t|) and the size of b is
O(|a||t|). The required automaton (a � t) is the trim version of b, which can be computed in

8 Stavros Konstantinidis, Nelma Moreira, Rogério Reis

time O(|b|). (The trim version of an automaton m is the automaton resulting when we remove
any states of m that do not occur in some path from an initial to a final state of m.)

nonMax (er, a, f, ε)

b := (a � (er ∨ er−1));

n := 1 +
⌊

1/
(

4ε(1− f)2
)⌋

;

` := the length of the words in L(a);
tr := 1;
while (tr ≤ n):
w := pickFrom(A, `);
if (w not in L(b)) return w;
tr := tr+1;

return None;

Figure 2: Algorithm nonMax—see Theorem 3.2.

Next we present our randomized algorithms—we use [17] as reference for basic concepts. We
assume that we have available to use in our algorithms an ideal method pickFrom(A, `) that
chooses uniformly at random a word in A`. A randomized algorithm R(· · ·) with specific values
for its parameters can be viewed as a random variable whose value is whatever value is returned
by executing R on the specific values.

Theorem 3.2 Consider the algorithm nonMax in Fig. 2, which takes as input an error speci-
fication er, a trellis a accepting an er-detecting code, and two numbers f, ε ∈ [0, 1].

1. The algorithm either returns a word w ∈ A` \ L(a) such that the code L(a) ∪ {w} is
er-detecting, or it returns None.

2. If L(a) is not f -maximal er-detecting, then

Pr
[
nonMax returns None

]
< ε.

3. The time complexity of nonMax is O
(
`|a||er|

/
(ε(1− f)2)

)
.

Proof. The first statement follows from statement (2) in the previous section, as any w
returned by the algorithm is not in (er ∨ er−1)(L(a)). For the second statement, suppose that
the code L(a) is not f -maximal er-detecting. Let Cnt be the random variable whose value is
the value of tr − 1 at the end of execution of the randomized algorithm nonMax. Then, Cnt
counts the number of words that are in L(a) out of n randomly chosen words w. Thus Cnt

is binomial: the number of successes (words w in L(b)) in n trials. So E(Cnt) = np, where

p = Pr
[
w ∈ L(b)

]
. By the definition of n in nonMax, we get 1/(4n(1− f)2) < ε. Now consider

the Chebyshev inequality, Pr
[
|X − E(X)| ≥ a

]
≤ σ2/a2, where a > 0 is arbitrary and σ2 is the

variance of some random variable X. For X = Cnt the variance is np(1− p), and we get

Pr
[
|Cnt/n− p| ≥ 1− f

]
< ε,

GENERATING ERROR CONTROL CODES 9

where we used a = n(1− f) and the fact that p(1− p) ≤ 1/4.

Using Lemma 2.6 and the assumption that L(a) is not f -maximal, we have that maxind(L(a), er) <

f , which implies Pr
[
w ∈ L(b)

]
< f ; hence, p < f . Then

Pr
[
nonMax returns None

]
= Pr

[
Cnt = n

]
= Pr

[
Cnt/n = 1

]
= Pr

[
Cnt/n− p = 1− p

]
≤ Pr

[
|Cnt/n− p| ≥ 1− p

]
≤ Pr

[
|Cnt/n− p| ≥ 1− f

]
< ε,

as required.

For the third statement, we use standard results from automaton theory, [20], and Remark 3.1.
In particular, computing b can be done in time O(|a| · |er|) such that |b| = O(|a| · |er|). Testing
whether w ∈ L(b) can be done in time O(|w||b|) = O(`|b|). Thus, the algorithm works in time
O(`|a||er| /(ε(1− f)2)). 2

Remark 3.3 We mention the important observation that one can modify the algorithm nonMax

by removing the construction of b and replacing the ‘if’ line in the loop with

if (L(a) ∪ {w} is er-detecting) return w;

While with this change the output would still be correct, the time complexity of the algorithm

would increase to O
(
|a|2|er|

/(
ε(1−f)2

))
. This is because testing whether L(v) is er-detecting,

for any given automaton v and error specification er, can be done in time O(|v|2|er|), and in
practice |v| is much larger than `.

In Fig. 3, we present the main algorithm for adding new words into a given deterministic trellis
a.

Remark 3.4 In some sense, algorithm makeCode generalizes to arbitrary error specifications
the idea used in the proof of the well-known Gilbert-Varshamov bound [15] for the largest
possible block code M ⊆ A` that is subk-correcting, for some number k of substitution errors. In
that proof, a word can be added into the code M if the word is outside of the union of the “balls”
sub2k(u), for all u ∈M . In that case, we have that sub−1k = subk and (sub−1k ◦subk) = sub2k(u).
The present algorithm adds new words w to the constructed trellis c such that each new word
w is outside of the “union-ball” (er ∨ er−1)(L(c)).

Theorem 3.5 Algorithm makeCode in Fig. 3 takes as input an error specification er, a deter-
ministic trellis a of some length `, and an integer N > 0 such that the code L(a) is er-detecting,

10 Stavros Konstantinidis, Nelma Moreira, Rogério Reis

makeCode (er, a, N)

W := empty list; c:= a
cnt := 0; more := True;
while (cnt < N and more)

w := nonMax (er, c, 0.95, 0.05);
if (w is None) more := False;
else {add w to c and to W ; cnt := cnt+1;}

return c, W ;

Figure 3: Algorithm makeCode—see Theorem 3.5. The trellis a can be omitted so that the algorithm
would start with an empty set of codewords. In this case, however, the algorithm would require as
extra input the codeword length ` and the desired alphabet A. We used the fixed values 0.95 and
0.05, as they seem to work well in practical testing.

and returns a deterministic trellis c and a list W of words such that the following statements
hold true:

1. L(c) = L(a) ∪W and L(c) is er-detecting,

2. If W has less than N words, then either maxind(L(c), er) ≥ 0.95 or the probability that a
randomly chosen word from A` can be added in L(c) is < 0.05.

3. The algorithm runs in time O
(
`N |er||a|+ `2N2|er|

)
.

Proof. Let ci be the value of the trellis c at the end of the i-th iteration of the while loop.
The first statement follows from Theorem 3.2: any word w returned by nonMax is such that
L(ci)∪{w} is er-detecting. For the second statement, assume that, at the end of execution, W
has < N words and L(c) is not 95%-maximal. By the previous theorem, this means that the
random process nonMax(er, c, 0.95, 0.05) returns None with probability < 0.05, as required. For
the third statement, as the loop in the algorithm nonMax performs a fixed number of iterations
(=2 000), we have that the cost of nonMax is O(`|ci||er|). The cost of adding a new word w of
length ` to ci−1 is O(`) and increases its size by O(`), so each ci is of size O(|a| + i`). Thus,
the cost of the i-th iteration of the while loop in makeCode is O(`|er|(|a| + i`)). As there are
up to N iterations the total cost is

N∑
i=1

O
(
`|er| · (|a|+ i`)

)
= O

(
`N |er||a|+ `2N2|er|

)
.

2

Remark 3.6 In the algorithm makeCode, attempting to add only one word into L(a) (case
of N = 1), requires time O(`|er||a| + `2|er|), which is of polynomial magnitude. This case
is equivalent to testing whether L(a) is maximal er-detecting, which is shown to be a hard
decision problem in Theorem 4.1.

Remark 3.7 In the version of the algorithm makeCode where the initial trellis a is omitted,
the time complexity is O(`2N2|er|). We also note that the algorithm would work with the same
time complexity if the given trellis a is not deterministic. In this case, however, the resulting
trellis would not be (in general) deterministic either.

GENERATING ERROR CONTROL CODES 11

4. Why not Use a Deterministic Algorithm

Our motivation for considering randomized algorithms is that the embedding problem is com-
putationally hard: given a deterministic trellis d and an error specification er, compute (using
a deterministic algorithm) a trellis that represents a maximal er-detecting code containing
L(d). By computationally hard, we mean that a decision version of the embedding problem is
coNP-hard. This is stated next. The proof can be found in [8].

Theorem 4.1 The following decision problem is coNP-hard.

Instance: deterministic trellis d and error specification er.

Answer: whether L(d) is maximal er-detecting.

5. Implementation and Use

All main algorithmic tools have been implemented over the years in the Python package FAdo
[1, 5, 7]. Many aspects of the new module FAdo.codes are presented in [7]. Here we present
methods of that module pertaining to generating codes.

Assume that the string d1 contains a description of the transducer del1 in FAdo format. In
particular, d1 begins with the type of FAdo object being described, the final states, and the
initial states (after the character *). Then, d1 contains the list of transitions, with each one of
the form “s x y t\n”, where ‘\n’ is the new-line character. This shown in the following Python
script.

import FAdo.codes as codes

d1 = ’@Transducer 0 2 * 0\n’

’0 0 0 0\n0 1 1 0\n0 0 @epsilon 1\n0 1 @epsilon 1\n’

’1 0 0 1\n1 1 1 1\n1 @epsilon 0 2\n1 @epsilon 1 2\n’

pd1 = codes.buildErrorDetectPropS(d1)

a = pd1.makeCode(100, 8, 2)

print pd1.notSatisfiesW(a)

print pd1.nonMaximalW(a, m)

s2 = ...string for transducer sub_2

ps2 = codes.buildErrorDetectPropS(s2)

pd1s2 = pd1 & ps2

b = pd1s2.makeCode(100, 8, 2)

The above script uses the string d1 to create the object pd1 representing the del1-detection
property over the alphabet {0,1}. Then, it constructs an automaton a representing a del1-
detecting block code of length 8 with up to 100 words over the 2-symbol alphabet {0,1}. The
method notSatisfiesW(a) tests whether the code L(a) is del1-detecting and returns a witness
of non-error-detection (= pair of codewords u, v with v ∈ del1(u)), or (None, None)—of course,
in the above example it would return (None, None). The method nonMaximalW(a, m) tests

12 Stavros Konstantinidis, Nelma Moreira, Rogério Reis

whether the code L(a) is maximal del1-detecting and returns either a word v ∈ L(m) \ L(a)
such that L(a)∪{v} is del1-detecting, or None if L(a) is already maximal. The object m is any
automaton—here it is the trellis representing A`. This method is used only for small codes, as in
general the maximality problem is algorithmically hard (recall Theorem 4.1), which motivated
us to consider the randomized version nonMax in this paper. For any error specification er
and trellis a, the method notSatisfiesW(a) can be made to work in time O(|er||a|2), which
is of polynomial complexity. The operation ‘&’ combines error-detection properties. Thus, the
second call to makeCode constructs a code that is del1-detecting and sub2-detecting (=sub1-
correcting).

6. More on Channel Modelling, Testing

In this section, we consider further examples of error specifications and show how operations
on error specifications can result in new ones. We also show the results of testing our codes
generation algorithm for several different error specifications.

Remark 6.1 We note that the definition of error-detecting (or error-correcting) block code C
is trivially extended to any language L, that is, one replaces in Definition 2.2 ‘block code C’
with ‘language L’. Let er, er1, er2 be error specifications. By Definition 2.2 and using standard
logical arguments, it follows that

1. L is er1-detecting and er2-detecting, if and only if L is (er1 ∨ er2)-detecting;

2. L is er−1-detecting, if and only if it is er-detecting, if and only if it is (er−1∨er)-detecting.

The inverse of del1 is ins1 and is shown in Fig. 4, where recall it results by simply exchanging
the order of the two words in all the labels in del1. By statement 2 of the above remark, the
del1-detecting codes are the same as the ins1-detecting ones, and the same as the (del1∨ins1)-
detecting ones—this is shown in [18] as well. The method of using transducers to model channels
is quite general and one can give many more examples of past channels as transducers, as well
as channels not studied before. Some further examples are shown in the next figures, Fig. 4-6.

One can go beyond the classical error control properties and define certain synchronization
properties via transducers. Let OF be the set of all overlap-free words, that is, all words w
such that a proper and nonempty prefix of w cannot be a suffix of w. A block code C ⊆ OF is
a solid code if any proper and nonempty prefix of a C-word cannot be a suffix of a C-word. For
example, {0100, 1001} is not a block solid code, as 01 is a prefix and a suffix of some codewords
and 01 is nonempty and a proper prefix (shorter than the codewords). Solid codes can also be
non-block codes by extending appropriately the above definition [22] (they are also called codes
without overlaps in [12]). The transducer ov in Fig. 6 is such that any block code C ⊆ OF is
a solid code, if and only if C is an ‘ov-detecting’ block code. We note that solid codes have
instantaneous synchronization capability (in particular all solid codes are comma-free codes)
as well as synchronization in the presence of noise [6].

For ε = 0.05 and f = 0.95, the value of n in nonMax is 2 000. We performed several executions

GENERATING ERROR CONTROL CODES 13

0bsid2 = 0a

0b

1 1a

1b

2

ε/a, a/ε

0/1 1/0

1/0 0/1

0/1

1/0

1/0

0/1

ε/a, a/ε

a/a a/a a/a

Figure 4: The channel specified by bsid2 allows up to two errors in the input word. Each of these
errors can be a deletion, an insertion, or a bit shift: a 10 becomes 01, or a 01 becomes 10. The
alphabet is {0, 1}.

s0segd4 =

s1

t1

s2

t2

to state t1

to state s1

s3

t3

f0

f1

a/ε

a/a

a/a

a/a

a/ε

a/a

a/a

a/ε

a/a, a/ε

a/a

a/a

a/ε

a/ε

a/a

Figure 5: Transducer for the segmented deletion channel of [14] with parameter b = 4. In each of
the length b consecutive segments of the input word, at most one deletion error occurs. The length of
the input word is a multiple of b. By Lemma 2.3, segd4-correction is equivalent to (segd−14 ◦ segd4)-
detection.

0ov = 1 2

a/ε

a/a ε/a

a/a ε/a

Figure 6: This input-preserving transducer deletes a prefix of the input word (a possibly empty prefix)
and then inserts a possibly empty suffix at the end of the input word.

of the algorithm makeCode on various error specifications using n = 2 000, no initial trellis, and

14 Stavros Konstantinidis, Nelma Moreira, Rogério Reis

alphabet A = {0, 1}.

N=, `=, end= id2 del1 sub2 bsid2 ov

100, 8, 18, 20, 23 37, 42, 51 15, 16, 18 17, 19, 21 01, 07, 08
100, 7, 10, 12, 13 20, 23, 28 09, 10, 13 11, 11, 13 03, 04, 05
100, 8, 1 11, 13, 14 39, 50, 64 09, 10, 11 09, 12, 13 01, 05, 06
100, 8, 01 06, 07, 08 64, 64, 64 04, 06, 08 06, 07, 09 01, 04, 05
500, 12, 177, 182, 188 500, 500, 500 148, 157, 162 169, 173, 178 51, 59, 63
500, 13, 318, 327, 334 272, 273, 278 302, 303, 309 43, 111, 120

In the above table, the first column gives the values of N and `, and if present and nonempty,
the pattern that all codewords should end with (1 or 01). For each entry in an ‘N = 100’
row, we executed makeCode 21 times and reported smallest, median, and largest sizes of the
21 generated codes. For N = 500, we reported the same figures by executing the algorithm
5 times. For example, the entry 37,42,51 corresponds to executing makeCode 21 times for
er = del1, ` = 8, end = ε. The entry 64,64,64 corresponds to the systematic code of [18]
whose codewords end with 01, and any of the 64 6-bit words can be used in positions 1–
6. The entry for ‘` = 7, end = ε, er = sub2’ corresponds to 2-substitution error-detection
which is equivalent to 1-substitution error-correction. Here the Hamming code of length 7 with
16 codewords has a maximum number of codewords for this length. Similarly, the entry for
‘` = 7, er = id2’ corresponds to 2-synchronization error-detection which is equivalent to 1-
synchronization error-correction. Here the Levenshtein code [11] of length 8 has 30 codewords.
We recall that a maximal code is not necessarily maximum, that is, having the largest possible
number of codewords, for given er and `. It seems maximum codes are rare, but there are many
random maximal ones having lower rates. The del1-detecting code of [18] has higher rate than
all the random ones generated here.

For the case of block solid codes (last column of the table), we note that the function pickFrom

in the algorithm nonMax has to be modified as the randomly chosen word w should be in OF.

7. Conclusions

We have presented a unified method for generating error control codes, for any rational com-
bination of errors. The method cannot of course replace innovative code design, but should
be helpful in computing various examples of codes. The implementation codes.py is available
to anyone for download and use [5]. In the implementation for generating codes, we allow one
to specify that generated words only come from a certain desirable subset M of A`, which is
represented by a deterministic trellis. This requires changing the function pickFrom in nonMax

so that it chooses randomly words from M . There are a few directions for future research. One
is to work on the efficiency of the implementations, possibly allowing parallel processing, so as
to allow generation of block codes having longer block length. Another direction is to somehow
find a way to specify that the set of generated codewords is a ‘systematic’ code so as to allow
efficient encoding of information. A third direction is to do a systematic study on how one

GENERATING ERROR CONTROL CODES 15

can map a stochastic channel sc, like the binary symmetric channel or one with memory, to an
error specification er (representing a combinatorial channel), so as the available algorithms on
er have a useful meaning on sc as well.

References

[1] André Almeida, Marco Almeida, José Alves, Nelma Moreira, and Rogério Reis. FAdo and
GUItar: Tools for automata manipulation and visualization. In Proceedings of CIAA 2009,
Sydney, Australia, volume 5642 of Lecture Notes in Computer Science, pages 65–74, 2009.

[2] Jean Berstel. Transductions and Context-Free Languages. B.G. Teubner, Stuttgart, 1979.

[3] Eric Z. Chen. Computer construction of quasi-twisted two-weight codes. In Sixth Interna-
tional Workshop on Optimal Codes and Related Topics, pages 62–68. 2009.

[4] Krystian Dudzinski and Stavros Konstantinidis. Formal descriptions of code properties:
decidability, complexity, implementation. International Journal of Foundations of Com-
puter Science, 23:1:67–85, 2012.

[5] FAdo. Tools for formal languages manipulation. Accessed in Jan. 2016. URL: http:

//fado.dcc.fc.up.pt/.

[6] Helmut Jürgenesen and S. S. Yu. Solid codes. Elektron. Informationsverarbeit. Kybernetik.,
26:563–574, 1990.

[7] Stavros Konstantinidis, Casey Meijer, Nelma Moreira, and Rogério Reis. Implementation
of code properties via transducers. In Yo-Sub Han and Kai Salomaa, editors, Proceedings
of CIAA 2016, number 9705 in Lecture Notes in Computer Science, pages 189–201, 2016.
ArXiv version: Symbolic manipulation of code properties. arXiv:1504.04715v1, 2015.

[8] Stavros Konstantinidis, Nelma Moreira, and Rogério Reis. Channels with synchroniza-
tion/substitution errors and computation of error control codes. CoRR, arXiv:1601.06312,
2016. http://arxiv.org/abs/1601.06312v2.

[9] Stavros Konstantinidis and Pedro V. Silva. Maximal error-detecting capabilities of formal
languages. J. Automata, Languages and Combinatorics, 13(1):55–71, 2008.

[10] Clement W. H. Lam. Finding error-correcting codes using computers. In Information
Security, Coding Theory and Related Combinatorics, pages 278–284. 2011.

[11] Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Dokl., 10:707–710, 1966.

[12] Vladimir I. Levenshtein. Maximum number of words in codes without overlaps. Probl.
Inform. Transmission, 6(4):355–357, 1973.

[13] Shu Lin and Daniel J. Costello Jr. Error control coding, 2nd Edition. Pearson, 2005.

[14] Zhenming Liu and Michael Mitzenmacher. Codes for deletion and insertion channels with
segmented errors. In Proceedings of ISIT, Nice, France, 2007, pages 846–849, 2007.

[15] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. Amsterdam,
1977.

[16] Hugues Mercier, Vijay Bhargava, and Vahid Tarokh. A survey of error-correcting codes
for channels with symbol synchronization errors. IEEE Communic. Surveys & Tutorials,
12(1):87–96, 2010.

http://fado.dcc.fc.up.pt/
http://fado.dcc.fc.up.pt/

16 Stavros Konstantinidis, Nelma Moreira, Rogério Reis

[17] Michael Mitzenmacher and Eli Upfal. Probability and Computing. Cambridge Univ. Press,
2005.

[18] Filip Paluncic, Khaled Abdel-Ghaffar, and Hendrik Ferreira. Insertion/deletion detecting
codes and the boundary problem. IEEE Trans. Information Theory, 59(9):5935–5943,
2013.

[19] V. S. Pless and W. C. Huffman, editors. Handbook of Coding Theory. Elsevier, 1998.

[20] Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of Formal Languages, Vol. I.
Springer-Verlag, Berlin, 1997.

[21] C. E. Shannon and W. Weaver. The Mathematical Theory of Communication. University
of Illinois Press, Urbana, 1949.

[22] H. J. Shyr. Free Monoids and Languages. Hon Min Book Company, Taichung, second
edition, 1991.

	1. Introduction
	2. Error Specifications and Error Control Codes
	3. Generating Error Control Codes
	4. Why not Use a Deterministic Algorithm
	5. Implementation and Use
	6. More on Channel Modelling, Testing
	7. Conclusions

