
Deciding Kleene Algebra Terms Equivalence in Coq

Nelma Moreiraa, David Pereirab, Simão Melo de Sousac

aCMUP & DCC-FC – University of Porto, Rua do Campo Alegre 1021, 4169-007, Porto, Portugal
bCISTER Research Centre – ISEP/IPP, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal

cLIACC & DI – University of Beira Interior, Rua Marquês d´Avila e Bolama, 6201-001, Covilhã, Portugal

Abstract

This paper presents a mechanically verified implementation of an algorithm for deciding the equivalence of Kleene

algebra terms within the Coq proof assistant. The algorithm decides equivalence of two given regular expressions

through an iterated process of testing the equivalence of their partial derivatives and does not require the construction

of the corresponding automata. Recent theoretical and experimental research provides evidence that this method

is, on average, more efficient than the classical methods based in automata. We present some performance tests,

comparisons with similar approaches, and also introduce a generalization of the algorithm to decide the equivalence

of terms of Kleene algebra with tests. The motivation for the work presented in this paper is that of using the libraries

developed as trusted frameworks for carrying out certified program verification.

Keywords: proof assistants, regular expressions, Kleene algebra with tests, program verification

1. Introduction

Formal languages are one of the pillars of Computer Science. Amongst the several computational models of formal

languages, that of regular expression is one of the most widely known and used. The notion of regular expressions

has its origins in the seminal work of Kleene, where the author introduced them as a specification language for

deterministic finite automata (DFA) [?]. Nowadays, regular expressions find applications in a wide variety of areas

due to their capability of expressing patterns in a succinct and comprehensive way. They abound in technologies

deriving from the World Wide Web, in text processors, in structured languages such as XML, and are a core element

of programming languages like Perl [?] and Esterel [?]. More recently, regular expressions have been successfully

applied in the runtime verification of programs [? ?].

In the past years, much attention has been given to the mechanization of Kleene algebra (KA) – the algebra of

regular expressions – within proof assistants. Formally, a KA is an idempotent semiring together with the Kleene star

operator ·⋆, that is characterized axiomatically. J.-C. Filliâtre [?] provided a first formalisation of the Kleene theorem

for regular languages [?] within the Coq proof assistant [?]. Höfner and Struth [?] investigated the automated

reasoning in variants of Kleene algebras with Prover9 and Mace4 [?]. Pereira and Moreira [?] implemented in

Coq an abstract specification of Kleene algebra with tests (KAT) [?] and the proofs that propositional Hoare logic

deduction rules are theorems of KAT. An obvious follow up of that work was to implement a certified procedure for

deciding equivalence of KA terms, i.e., regular expressions. A first step was the proof of the correctness of the partial

derivative automaton construction from a regular expression [?]. In this paper we describe the mechanization of

a decision procedure based on partial derivatives that was proposed by Almeida et al. [?], and that is a functional

variant of the rewrite system introduced by Antimirov and Mosses in [?]. This procedure decides regular expression

equivalence through an iterated process of testing the equivalence of their partial derivatives.

Similar approaches based on the computation of a bisimulation between the two regular expressions were used

recently. In 1971, Hopcroft and Karp [?] presented an almost linear algorithm for equivalence of two DFA. By trans-

forming regular expressions into equivalent DFAs, Hopcroft and Karp’s method can be used for regular expressions

Email addresses: nam@ncc.up.pt (Nelma Moreira), dmrpe@isep.ipp.pt (David Pereira), desousa@di.ubi.pt (Simão Melo de

Sousa)

Preprint submitted to The Journal of Logic and Algebraic Programming August 7, 2015

equivalence. A comparison of that method with the method here proposed is discussed by Almeida et. al. [? ?].

There it is conjectured that a direct method should perform better on average, and that is corroborated by theoretical

studies based on analytic combinatorics [?]. Hopcroft and Karp’s method was used by Braibant and Pous [?] to

formally verify Kozen’s proof of the completeness of Kleene algebra [?] in Coq.

Independently of the work presented here, Coquand and Siles [?] mechanically verified an algorithm for deciding

regular expression equivalence based on Brzozowski’s derivatives [?] and an inductive definition of finite sets called

Kuratowski-finite sets. Based on the same notion of derivative, Krauss and Nipkow [?] provide an elegant and concise

formalisation of Rutten’s co-algebraic approach of regular expression equivalence [?] in the Isabelle proof assistant

[?], but they do not address the termination of the decision procedure. Komendantsky provides a novel functional

construction of the partial derivative automaton [?], and also made contributions [?] to the mechanization of

concepts related to the Mirkin’s construction [?] of that automata. More recently, Andrea Asperti formalized a

decision procedure for the equivalence of pointed regular expressions [?], that is both compact and efficient.

Besides avoiding the need for building DFAs, our use of partial derivatives also avoids the necessary normali-

sation of regular expressions modulo ACI (i.e., the normalization modulo associativity, idempotence and commu-

tativity of the union of regular expressions) in order to ensure the finiteness of Brzozowski’s derivatives. Like in

other approaches [?], our method also includes a refutation step that improves the detection of inequivalent regular

expressions.

Although the algorithm we have chosen to verify seems straightforward, the process of its mechanical verification

in a theorem prover based in a type theory raises several issues which are quite different from a usual implementation

in standard programming languages. The Coq proof assistant allows users to specify and implement programs, and

also to prove that the implemented programs are compliant with their specification. In this sense, the first task is

the effort of formalizing the underlying algebraic theory. Afterwards, and in order to encode the decision procedure,

we have to provide a formal proof of its termination since our procedure is a general recursive one, whereas Coq’s

type system accepts only provable terminating functions. Finally, a formal proof must be provided in order to ensure

that the functional behavior of the implemented procedure is correct wrt. regular expression equivalence. Moreover,

the encoding effort must be conducted with care in order to obtain a solution that is able to compute inside Coq, or

extracted and compiled as an OCaml development, both with reasonable performances.

1.1. Paper organization

This paper is organized as follows. In Section 2 we provide a concise introduction to the Coq proof assistant. In

Section 3 we review some of the concepts of formal languages that we need to formalise in order to implement the

decision procedure; in Section 4 we describe the formalisation of the decision procedure, its proofs of correctness and

completeness, and comment on the procedure’s computational efficiency; in Section ?? we describe the generalization

of the decision procedure to decide KAT terms equivalence, and show how this procedure is useful in program veri-

fication; finally, in Section ?? we present our conclusions about the work presented in this paper, and point to future

research directions. The work presented here is an extended version of the work previously presented in [? ?], and

the corresponding development in Coq is available at [?].

2. An Overview of the Coq Proof Assistant

The Coq proof assistant [?] is an implementation of Paulin-Mohring’s Calculus of Inductive Constructions (CIC)

[?]. The CIC is a rich typed λ-calculus that features polymorphism, dependent types, and that extends Coquand and

Huet’s Calculus of Constructions (CC) [?] with very expressive (co-)inductive types.

The CIC is built upon the Curry-Howard Isomorphism (CHI) programs-as-proofs principle [?], where a typing

relation t : A is interpreted either as a term t that has the type A, or as t being a proof of the proposition A. Hence,

the CIC is simultaneously a functional programming language with a very expressive type system and a higher-order

logic, and so, users can define specifications of programs, and also build proofs concerning those specifications.

In the CIC there exists no distinction between terms and types. Therefore, all types also have their own type,

called a sort, and each sort belongs to the well-formed set S = {Prop,Set,Type(i) | i ∈ N}, where Type(i) is the type

of smaller sorts Type(j) with j < i, including the sorts Prop and Set which ensure a strict separation between logical

types and informative types: the former is the type of propositions and proofs, whereas the latter accommodates

2

data types and functions defined over those data types. An immediate effect of the non-existing distinction between

types and terms in CIC is that computations occur both in programs and in proofs. A fundamental feature of Coq’s

underlying type system is the support for dependent product types Πx : A.B which extends functional types A→ B in

the sense that the type of Πx : A.B is the type of functions that map each instance of x of type A to a type of B where

x may occur in it. If x does not occur in B then the dependent product corresponds to the function type A→ B.

Inductive definitions are a key ingredient of Coq. Inductive types are introduced by a collection of constructors,

each with its own arity. A term of an inductive type is a composition of such constructors and if T is the type under

consideration, then its constructors are functions whose final type is T , or an application of T to arguments. Using

pattern matching, we can implement recursive functions by deconstructing the given term and producing new terms

for each constructor. For instance, it is straightforward to define Peano natural numbers and a function plus that

implements addition on these numbers:

Inductive nat : Set :=

| 0 : nat

| S : nat → nat .

Fixpoint plus (n m :nat) : nat :=

match n with

| O ⇒ m

| S p ⇒ S (p + m) end

where "n + m" := (plus n m) .

The definition of plus is accepted by Coq’s type-checker because it exhaustively pattern-matches over all the con-

structors of nat, and because the recursive calls are performed on terms that are structurally smaller than the recursive

argument. This is a strong requirement of CIC that forces all functions to be terminating.

We can define inductive types that are more complex that nat, namely, inductive types that depend on values. A

classic example is the family of vectors of length n ∈ N, whose elements have a type A:

Inductive vect (A : Type) : nat → Type :=

| vnil : vect A 0

| vcons : ∀ n : nat , A → vect A n → vect A (S n)

Given the definition of vect, we can define the concatenation of vectors, as follows:

Fixpoint app (n :nat) (l1 :vect A n) (n′ :nat) (l2 :vect A n′) {struct l1 } : vect (n+n′) :=

match l1 in (vect _ m′) return (vect A (m′ + n′)) with

| vnil ⇒ l2
| vcons n0 v l′

1
⇒ vcons A (n0 + n′) v (app n0 l′

1
n′ l2)

end .

Note that there is a difference between the pattern-matching construction used in the definition of plus and the one

used to implement app: in the latter, the returning type depends on the sizes of the vectors given as arguments;

therefore, the extended match construction in app has to bind the dependent argument m′ to ensure that the final return

type is a vector whose size is n + n′.

In Coq’s environment, the primitive way to construct a proof is to explicitly build CIC terms. However, proofs can

be built more conveniently, in an interactive and backward fashion through the usage of high-level commands called

tactics. The CIC terms built by tactics are always verified by Coq’s type checker, which ensures that possible errors

in the tactics do not interfere with the soundness of the proof construction process.

We finish our brief introduction to Coq addressing the development of non structurally recursive functions. Above

we have seen pattern matching over (dependent) inductive types, and whose decreasing criteria is structural recursion.

However, this approach is not always possible and the way to deal with this problem is via an encoding of the original

formulation into an equivalent function that is structurally recursive. There are several techniques available to address

the development of non-structurally decreasing functions in Coq, which are described in detail in [?]; here we will

consider the method for defining well-founded recursive functions.

A given binary relation R over a set S is said to be well-founded if for all elements x ∈ S , there exists no infinite

sequence (x, x0, x1, x2, . . .) of elements of S such that (xi+1, xi) ∈ R, for all i ∈ N. Well-founded relations are available

in Coq through the definition of the inductive predicate Acc and the predicate well_founded :

Inductive Acc (A : Type) (R : A → A → Prop) (x : A) : Prop :=

| Acc_intro : (∀ y : A , R y x → Acc A R y) → Acc A R x

3

Since the type Acc is inductively defined, we can use it as the structurally recursive argument in the definition of a

function. Thankfully, Coq provides a high-level command named Function [?] that eases the burden of manually

constructing a recursive function over Acc predicates. The command Function allows users to explicitly state that the

target function is going to be defined over a proof that asserts that the underlying recursive measure is well-founded.

For further information about the details of the Coq proof assistant, we point the reader to the works of Bertot and

Casterán [?], of Chlipala [?], and of Pierce et. al. [?].

3. Preliminaries of Formal Languages

In this section we introduce some classic concepts of formal languages that we will need in the work we are

about to describe. These concepts can be found in the introductory chapters of classical textbooks such as the one by

Hopcroft and Ullman [?] or the one by Kozen [?]. The encoding in Coq of the several definitions that we are about

to introduce can be seen in [?].

3.1. Alphabets, Words and Languages

An alphabet Σ is a non-empty finite set of objects usually called symbols (or letters). A word (or string) over an

alphabet Σ is a finite sequence of symbols from Σ. A language is any finite or infinite set of words over an alphabet

Σ. Given an alphabet Σ, the set of all words over Σ, denoted by Σ⋆, is inductively defined as follows: the empty word

ǫ is an element of Σ⋆ and, if w ∈ Σ⋆ and a ∈ Σ, then aw is also a member of Σ⋆. The constant languages are the

empty language, the language containing only ǫ, and the language containing only a symbol a ∈ Σ. The operations

over languages include the usual Boolean set operations (union, intersection, and complement), plus concatenation,

power and Kleene star. The concatenation of two languages L1 and L2 is defined by L1L2 = {wu |w ∈ L1 ∧ u ∈ L2}.

The power of a language L, denoted by Ln, with ∈ N, is inductively defined by L0
= {ǫ}, and Ln+1

= LLn, for n ∈ N.

The Kleene star of a language L is the union of all the finite powers of L, that is,

L⋆ =
⋃

i≥0

Li. (1)

We denote language equality by L1 = L2. Finally, we introduce the concept of the left-quotient of a language L with

respect to a word w ∈ Σ⋆, which is defined as Dw(L) = {v |wv ∈ L}. In particular, if w = a, with a ∈ Σ, we say that

Da(L) is the left-quotient of L with respect to the symbol a.

3.2. Regular Expressions

Regular expressions are inductively defined over an alphabet Σ, as follows: the constants 0 and 1 are regular

expressions; all the symbols a ∈ Σ are regular expressions; if α and β are regular expressions, then their union α + β

and their concatenation αβ are regular expressions as well; finally, if α is a regular expression, then so is its Kleene star

α⋆. The syntactic equality of two regular expressions α and β is denoted by α ≡ β. The set of all regular expressions

over an alphabet Σ is the set REΣ. The length of a regular expression α is the total number of constants, symbols and

operators of α; the alphabetic length of a regular expression α is the total number of occurrences of symbols of Σ in

α. The previous two measures are denoted by |α| and by |α|Σ, respectively.

Regular expressions denote regular languages. The language of a regular expression α, denoted L(α), is induc-

tively defined in the expected way: the languages of the constants 0 and 1 are, respectively, the sets ∅ and {ǫ}; the

language of the regular expression a, with a ∈ Σ, is the set {a}; if α and β are regular expressions, then the languages

denoted by the expressions α+ β, αβ, and α⋆ are, respectively, the languages L(α)∪L(β), L(α)L(β), and L(α)⋆. The

language of a finite set of regular expressions S is defined by

L(S) =
⋃

αi∈S

L(αi).

Two regular expressions α and β are said to be equivalent if they denote the same language, and we write α ∼ β

whenever that is the case1. Naturally, two sets of regular expressions S 1 and S 2 are equivalent if L(S 1) = L(S 2), and

1As the reader will notice, we overload the notation "∼" whenever equivalence by means of language equality is considered.

4

we write S 1 ∼ S 2. Given a set of regular expressions S = {α1, α2, . . . , αn} we define
∑

S = α1 + α2 + . . . + αn,

whose language is

L
(
∑

S
)

= L(α1) ∪ L(α2) ∪ · · · ∪ L(αn).

We say that a regular expression α is nullable if ǫ ∈ L(α) and non-nullable otherwise. Moreover, we consider the

Boolean function ε(·) such that the ε(α) = true if and only if ǫ ∈ L(α) holds. Nullability extends to sets of regular

expressions in a straightforward way: a set S is nullable if ε(α) evaluates positively, that is, if ε(α) = true for at least

one α ∈ S . We denote the nullability of a set of regular expressions S by ε(S). Two sets of regular expressions S 1

and S 2 are equi-nullable if ε(S 1) = ε(S 2). We also consider the right-concatenation S ⊙ α of a regular expression

α with a set of regular expressions S , which is defined as follows: S ⊙ α = ∅ if α ≡ 0, S ⊙ α = S if α ≡ 1, and

S ⊙ α = {βα | β ∈ S } otherwise. We usually omit the operator ⊙ and write Sα instead.

3.3. Derivatives of Regular Expressions

The notion of derivative of a regular expression α was introduced by Brzozowski in the 1960’s [?], and was

motivated by the construction of sequential circuits directly from regular expressions extended with intersection and

complement. In the same decade, Mirkin introduced the notion of prebase and base of a regular expression as a method

to construct non-deterministic finite automata (NFA) that recognise the corresponding languages [?]. Mirkin’s

definition is a generalisation of Brzozowski’s derivatives for NFA and was independently re-discovered almost thirty

years later by Antimirov [?], who coined it as the partial derivatives of a regular expression.

Let α be a regular expression and let a ∈ Σ. The set ∂a(α) of partial derivatives of the regular expression α with

respect to a is inductively defined as follows:

∂a(0) = ∅ ∂a(α + β) = ∂a(α) ∪ ∂a(β)

∂a(1) = ∅ ∂a(αβ) =

{

∂a(α)β ∪ ∂a(β) if ε(α) = true,

∂a(α)β otherwise.

∂a(b) =

{

{ε} if a ≡ b,

∅ otherwise.
∂a(α⋆) = ∂a(α)α⋆

The operation of partial derivation naturally extends to a set of regular expressions S as follows:

∂a(S) =
⋃

α∈S

∂a(α).

The language of the set of partial derivatives ∂a(α) is the left-quotient of L(α), i.e., L(∂a(α)) = Da(L(α)). The set

of partial derivatives is extended to words in the following way: given a regular expression α and a word w ∈ Σ⋆,

the partial derivative ∂w(α) of α with respect to w is defined inductively by ∂ε(α) = {α}, and ∂wa(α) = ∂a(∂w(α)). We

can use partial derivatives and nullability of regular expressions to determine if a word w ∈ Σ⋆ is a member of some

language L(α). For that, it is enough to check the value computed by ε(∂w(α)): if ε(∂w(α)) = true then we have

w ∈ L(α); otherwise, w < L(α) holds.

Example 1. The word derivative of the regular expression ab⋆ with respect to abb is given by the following compu-

tation:

∂abb(α) = ∂b(∂b(∂a(ab⋆)))

= ∂b(∂b(∂a(a)b⋆))

= ∂b(∂b({b⋆}))

= ∂b(∂b(b)b⋆)

= ∂b({b⋆})

= {b⋆}.

From the nullability of the resulting set of regular expression {b⋆}, we easily conclude that abb ∈ L(α) since ε(b⋆) =

true.

5

Finally, we present the set of partial derivatives of a given regular expression α, which is defined by

PD(α) =
⋃

w∈Σ⋆

(∂w(α)).

Antimirov proved in [?] that given a regular expression α, the set PD(α) is always finite and its cardinality has an

upper bound of |α|Σ + 1. Champarnaud and Ziadi [?] introduced an elegant recursive function for calculating the

support of a given regular expression α, and from which it is easy to calculate PD(α). The function, denoted by π(α),

is recursively defined as follows:

π(0) = ∅

π(1) = ∅

π(a) = {ε}

π(α + β) = π(α) ∪ π(β)

π(αβ) = π(α)β ∪ π(β)

π(α⋆) = π(α)α⋆

Champarnaud and Ziadi proved that PD(α) = {α} ∪ π(α) holds for all regular expressions α, and once again we

conclude that |PD(α)| ≤ |α|Σ + 1.

4. A Procedure for Regular Expressions Equivalence

In this section we present the decision procedure EQUIVP for deciding regular expression equivalence, and de-

scribe its implementation in Coq. The base concepts for this mechanization were already presented in the previous

sections. The procedure EQUIVP follows along the lines of the work of Almeida et. al. [?], and has its origins in the

rewrite system proposed by Antimirov and Mosses [?] to decide regular expression equivalence using Brzozowski’s

derivatives.

4.1. Partial Derivatives and Regular Expression Equivalence

Given a regular expression α, it holds that

α ∼ ε(α) ∪
⋃

a∈Σ

a
(

∑

∂a(α)
)

. (2)

We overload the notation ε(α) in the sense that in the current context ε(α) = {ε} if α is nullable, and ε(α) = ∅

otherwise. Following the equivalence (2), checking if α ∼ β is tantamount to checking the equivalence

ε(α) ∪
⋃

a∈Σ

a
(

∑

∂a(α)
)

∼ ε(β) ∪
⋃

a∈Σ

a
(

∑

∂a(β)
)

.

This will be an essential ingredient for the decision method because deciding if α ∼ β resumes to checking if ε(α) =

ε(β) and if ∂a(α) ∼ ∂a(β), for each a ∈ Σ. Moreover, since partial derivatives are finite, and since testing if a

word w ∈ Σ⋆ belongs to L(α) is equivalent to checking syntactically that ε(∂w(α)) = true, we obtain the following

equivalence:

(∀w ∈ Σ⋆, ε(∂w(α)) = ε(∂w(β)))↔ α ∼ β. (3)

In the opposite situation, we can prove that α and β are not equivalent by showing that

ε(∂w(α)) , ε(∂w(β))→ α ≁ β, (4)

for w ∈ Σ⋆. Equation (3) can be seen as an iterative process of testing regular expression equivalence by testing

the equivalence of their derivatives. Equation (4) can be seen as the point where we find a counterexample of two

derivatives during the same iterative process. In the next section we will describe a decision procedure that constructs a

bisimulation that leads to Equation (3), or that finds a counterexample like in (4) which proves that such a bisimulation

cannot exist.

6

4.2. The Procedure EQUIVP

Recall from the previous section that a proof of the equivalence of regular expressions can be obtained by an

iterated process of checking the equivalence of their partial derivatives. Such an iterated process is given in Algorithm

1 presented below. Given two regular expressions α and β the procedure EQUIVP corresponds to the iterated process

of deciding the equivalence of their derivatives, in the way noted in Equation (3). The procedure works over pairs of

sets of regular expressions (S α, S β) such that S α = ∂w(α) and S β = ∂w(β), for some word w ∈ Σ⋆. From now on we

will refer to these pairs of sets of partial derivatives simply by derivatives.

Algorithm 1 The procedure EQUIVP.

Require: S = {({α}, {β})}, H = ∅

Ensure: true or false

1: procedure EQUIVP(S , H)

2: while S , ∅ do

3: (S α, S β)← POP(S)

4: if ε(S α) , ε(S β) then

5: return false

6: end if

7: H ← H ∪ {(S α, S β)}

8: for a ∈ Σ do

9: (S ′α, S
′
β
)← ∂a(S α, S β)

10: if (S ′α, S
′
β
) < H then

11: S ← S ∪ {(S ′α, S
′
β
)}

12: end if

13: end for

14: end while

15: return true

16: end procedure

EQUIVP requires two arguments: a set H that serves as an accumulator for the derivatives (S α, S β) already pro-

cessed; and a set S that serves as a working set that gathers new derivatives (S ′α, S
′
β
) yet to be processed. The set H

ensures the termination of EQUIVP due to the finiteness of the set of partial derivatives. The set S has no influence

in the termination argument. When EQUIVP terminates, then it must do so in one of two possible configurations:

either the set H contains all the derivatives of α and β and all of them are equi-nullable; or a counterexample (S α, S β)

such that ε(S α) , ε(S β) was found. By Equation (3), we conclude that we have α ∼ β in the first case, whereas in

the second case we must conclude that α ≁ β. Below, we give an example that shows how EQUIVP handles regular

expression equivalence.

Example 2. Suppose we want to check that α = (ab)⋆a and β = a(ba)⋆ are equivalent. Considering that s0 corre-

sponds to the pair ({(ab)⋆a}, {a(ba)⋆}), we must show that

EQUIVP({s0}, ∅) = true.

The computation of EQUIVP for these particular α and β involves the construction of the new derivatives s1 =

({1, b(ab)⋆a}, {(ba)⋆}) and s2 = (∅, ∅). We can trace the computation by the following table

i S i Hi drvs.

0 {s0} ∅ ∂a(s0) = s1, ∂b(s0) = s2

1 {s1, s2} {s0} ∂a(s1) = s2, ∂b(s1) = s0

2 {s2} {s0, s1} ∂a(s2) = s2, ∂b(s2) = s2

3 ∅ {s0, s1, s2} true

where i is the iteration number, and S i and Hi are the arguments of EQUIVP in that same iteration. The trace

terminates with S 2 = ∅ and thus we can conclude that α ∼ β.

7

4.3. Implementation

4.3.1. Representation of Derivatives

The main data type used in EQUIVP is the type of pairs of sets of regular expressions. Each pair (S α, S β) represents

a word derivative (∂w(α), ∂w(β)), where w ∈ Σ⋆. The type of derivatives Drv is defined as follows:

Record Drv (α β :re) := mkDrv {

dp : > set re ∗ set re ;

w : word ;

cw : dp = (∂w(α) ,∂w(β))

} .

The type Drv is a dependent record composed of three parameters: a pair of sets of regular expressions dp that

corresponds to the actual pair (S α, S β); a word w; a proof term cw that ensures that (S α, S β) = (∂w(α), ∂w(β)). The

use of the type Drv instead of a pair of sets of regular expressions is necessary because EQUIVP’s domain is the set of

pairs resulting from derivations and not arbitrary pairs of sets of regular expressions on Σ.

The equality relation defined over Drv terms considers only the projection dp, that is, two terms d1 and d2 of

type Drv α β are equal if (dp d1) = (dp d2). This implies that each derivative will be considered only once along the

execution of EQUIVP. If the derivative d1 is already in the accumulator set, then all derivatives d2 that are computed

afterwards will fail the membership test of line 10 of Algorithm 1. This directly implies the impossibility of the

eventual non-terminating computations due to the repetition of derivatives.

As a final remark, the type Drv also provides a straightforward way to relate the result of the computation of

EQUIVP to the (in-)equivalence of α and β: on one hand, if H is the set returned by EQUIVP, then checking the

nullability of its elements is tantamount to proving the equivalence of the corresponding regular expressions, since

we expect H to contain all the derivatives; on the other hand, if EQUIVP returns a term t:Drv α β, then ε(t) = false,

which implies that the word w t is a witness of in-equivalence, and can be presented to the user.

4.3.2. Extended Derivation and Nullability

The notions of derivative with respect to a symbol and with respect to a word are also extended to the type Drv. The

derivation of a value of type Drv α β representing the pair (S α, S β) is obtained by calculating the derivative ∂a(S α, S β),

updating the word w, and also by automatically building the associated proof term for the parameter cw. The function

implementing the derivation of Drv terms, and its extension to sets of Drv terms, and to the derivation with respect to

a word, are given below2. Note that ∂a(S α, S β) = (∂a(S α), ∂a(S β)), and therefore ∂a(∂w(α), ∂w(β)) = (∂wa(α), ∂wa(β)).

Definition Drv_pdrv (α β :re) (x :Drv α β) (a :A) : Drv α β .

refine (match x with mkDrv α β K w P ⇒ mkDrv α β (pdrvp K a) (w++[a]) _ end) .

abstract ((* Proof that ∂a(∂w(α), ∂w(β)) = (∂wa(α), ∂wa(β)) *)) .

Defined .

Definition Drv_pdrv_set (x :Drv α β) (s :set A) : set (Drv α β) := fold (fun y :A ⇒ add (Drv_pdrv x y))

s ∅ .

Definition Drv_wpdrv (α β :re) (w :word) : Drv α β .

refine (mkDrv α β (∂w(α), ∂w(β)) w _) .

abstract ((* Proof that (∂w(α), ∂w(β)) = (∂w(α), ∂w(β)) *)) .

Defined .

We also extend the notion of nullable regular expression to terms of type Drv, and to sets of values of type Drv.

Checking the nullability of a Drv term denoting the pair (S α, S β) is tantamount at checking that ε(S α) = ε(S β).

Definition c_of_rep (x :set re ∗ set re) := Bool .eqb (c_of_re_set (fst x)) (c_of_re_set (snd x)) .

Definition c_of_Drv (x :Drv α β) := c_of_rep (dp x) .

Definition c_of_Drv_set (s :set (Drv α β)) : bool := fold (fun x ⇒ andb (c_of_Drv x)) s true .

2For the sake of clarity we briefly describe de purpose of the tactic abstract that is used for building these definition. The tactic abstract

saves the proof of the goal under consideration as an auxiliary lemma. This makes the actual proof term opaque in the context that abstract is

used, which makes computation much more efficient in terms containing proofs as (dependent) arguments.

8

All the previous functions were implemented using the proof mode of Coq instead of trying a direct definition, that

is, we used tactics to construct the definitions instead of providing the lambda term that implements them, which in

this case facilitated the implementation. In particular, in this way we are able to wrap the proofs in the tactic abstract,

which dramatically improves the performance of the computation.

4.3.3. Computation of New Derivatives

The while-loop of EQUIVP – lines 2 to 14 of Algorithm 1 – describes the process of testing the equivalence of the

derivatives of two given regular expressions α and β. In each iteration, either a witness of inequivalence is found, or

new derivatives (S α, S β) are computed and the sets S and H are updated accordingly. The expected behaviour of each

iteration of the loop is implemented by the function step, presented below, and which also corresponds to the for-loop

from lines 8 to 13 of Algorithm 1.

Definition step (H S :set (Drv α β)) (Σ :set A) : ((set (Drv αβ) ∗ set (Drv α β)) ∗ step_case α β)

:=

match choose S with

| None ⇒ ((H ,S) ,termtrue α β H)

| Some (S α, S β) ⇒

if c_of_Drv _ _ (S α, S β) then

let H′ := add (S α, S β) H in

let S ′ := remove (S α, S β) S in

let ns := Drv_pdrv_set_filtered α β (S α, S β) H′ Σ in

((H′ ,ns ∪ S ′) ,proceed α β)

else

((H ,S) ,termfalse α β (S α, S β))

end .

The step function proceeds as follows: it obtains a pair (S α, S β) from the set S , and tests it for equi-nullability. If

S α and S β are not equi-nullable, then step returns a pair ((H,S),termfalse α β (S α, S β)), that serves as a witness

of α ≁ β. If, on the contrary, S α and S β are equi-nullable, then step generates a new set of derivatives by the

symbols a ∈ Σ, (S ′α, S
′
β
) = (∂a(S α), ∂a(S β)), such that (S ′α, S

′
β
) are not elements of {(S α, S β)} ∪ H. These new

derivatives are added to S and (S α, S β) is added to H. The computation of new derivatives is performed by the

function Drv_pdrv_set_filtered, defined as follows:

Definition Drv_pdrv_set_filtered (x :Drv α β) (H :set (Drv α β)) (sig :set A) : set (Drv α β) :=

filter (fun y ⇒ negb (y ∈ H)) (Drv_pdrv_set x sig) .

Note that this is precisely what prevents the whole process from entering potential infinite loops, since each derivative

is considered only once during the execution of EQUIVP and because the number of derivatives is always finite.

Finally, we present the type step_case below. This type is built from three constructors: the constructor proceed

represents the fact that there is not yet information that allows to decide if the regular expressions under consideration

are equivalent or not; the constructor termtrue indicates that no more elements exist in S , and that H should contain

all the derivatives; finally, the constructor termfalse indicates that step has found a proof of in-equivalence of the

regular expressions under consideration.

Inductive step_case (α β :re) : Type :=

| proceed : step_case α β

| termtrue : set (Drv α β) → step_case α β

| termfalse : Drv α β → step_case α β .

4.3.4. Termination

Clearly, the procedure EQUIVP is general recursive. This means that the procedure’s iterative process cannot be

directly encoded in Coq’s underlying type system. Therefore, we have devised a well-founded relation establishing a

recursive measure that defines the course-of-values that makes EQUIVP terminate. This well-founded relation will be

the structural recursive argument for our encoding of EQUIVP. The decreasing measure (of the recursive calls) used

in EQUIVP is defined as follows: in each recursive call, the cardinality of the accumulator set H increases by one unit

due to the computation of step. The maximum size that H can reach is upper bounded by 2(|α|Σ+1) × 2(|β|Σ+1)
+ 1 due

9

to the upper bounds of the cardinalities of both PD(α) and PD(β), the cardinality of the cartesian product, and the

cardinality of the powerset. Therefore, if stepH S _ = (H′, _, _), then the following relation

(2(|α|Σ+1) × 2(|β|Σ+1)
+ 1) − |H′| < (2(|α|Σ+1) × 2(|β|Σ+1)

+ 1) − |H|, (5)

holds. In terms of its implementation in Coq, we first define and prove the following:

Definition lim_cardN (z :N) : relation (set A) :=

fun x y :set A ⇒ nat_of_N z − (cardinal x) < nat_of_N z − (cardinal y) .

Lemma lim_cardN_wf : ∀ z , well_founded (lim_cardN z) .

Next, we establish the upper bound of the number of derivatives, and define the relation LLim that is the relation

that actually implements (5). The encoding in Coq goes as follows:

Definition MAX_re (α :re) := | α | Σ + 1 .

Definition MAX (α β :re) := (2MAX_re(α) × 2MAX_re(β)) + 1 .

Definition LLim (α β :re) := lim_cardN (Drv α β) (MAX α β) .

Theorem LLim_wf (α β :re) : well_founded (LLim α β) .

4.3.5. The Iterator

We now present the development of a recursive function that implements the main loop of Algorithm 1. This

recursive function is an iterator that calls the function step a finite number of times starting with two initial sets S and

H. This iterator, named iterate, is defined as follows:

Function iterate (α β :re) (H S :set (Drv α β)) (sig :set A) (D :DP α β H S) {wf (LLim α β) H } : term_cases

α β :=

let ((H′ ,S ′ ,next) := step H S in

match next with

| termfalse x ⇒ NotOk α β x

| termtrue h ⇒ Ok α β h

| proceed ⇒ iterate α β H′ S ′ sig (DP_upd α β H S sig D)

end .

Proof .

abstract (apply DP_wf) .

exact (guard α β 100 (LLim_wf α β)) .

Defined .

The function iterate is recursively decreasing on a proof that LLim is well-founded. The type annotation wf LLim

α β adds this information to the inner mechanisms of Function, so that iterate is constructed in such a way that

Coq’s type-checker accepts it. The proof that LLim is well-founded is computed by the function guard. This function

was introduced by Barras and Gonthier3 and builds a term made of 2100 constructors Acc on the front of the actual

proof of the well-foundness of LLim, which turns out to be also a proof of the well-foundness of LLim as well. The

number of such constructors may vary, and we have chose this because it is sufficiently large to cover our practical

experiments.

Moreover, in order to validate LLim along the computation of iterate, we must provide evidence that the sets S

and H remain disjoint in all the recursive calls of iterate. The last parameter of the definition of iterate, D, has the

type DP which packs together a proof that the sets H and S are disjoint (in all recursive calls) and that all the elements

in the set H are equi-nullable. The proof that S and H are disjoint is needed to ensure that LLim is valid in all recursive

calls, whereas the proof that all the elements of H are equi-nullable is required to prove the equivalence of the regular

expressions under consideration, following Equation (3). The definition of type DP is the following:

Inductive DP (α β :re) (H S : set (Drv α β)) : Prop :=

| is_dp : H ∩ S = ∅ → c_of_Drv_set α β H = true → DP α β H S .

In the definition of the recursive branch of iterate, the function DP_upd is used to build a new term of type DP

that proves that the updated sets H and S remain disjoint, and that all the elements in H remain equi-nullable.

3This idea was proposed by Barras, and then improved by Gonthier in a discussion that occured in the Coq-Club mailing list.

10

Lemma DP_upd : ∀ (α β :re) (H S : set (Drv α β)) (sig : set A) ,

DP α β H S → DP α β (fst (fst (step α β H S sig))) (snd (fst (step α β H S sig))) .

The output of iterate is a value of type term_cases, which is defined as follows:

Inductive term_cases (α β :re) : Type :=

| Ok : set (Drv α β) → term_cases α β

| NotOk : Drv α β → term_cases α β .

The type term_cases is made of two constructors that determine what possible outcome we can obtain from computing

iterate: either it returns a set S of derivatives, packed in the constructor Ok, or it returns a sole pair (S α, S β), packed in

the constructor NotOk. The first should be used to prove equivalence, whereas the second should be used for exhibiting

a witness of in-equivalence.

The Function command produces proof obligations that have to be discharged in order to be accepted by Coq’s

type checker. One of the proof obligations generated by iterate is that, when performing a recursive call, the new

cardinalities of H and S still satisfy the underlying well-founded relation. The lemma DP_wf serves this purpose and

is defined as follows:

Lemma DP_wf : ∀ (α β :re) (H S : set (Drv α β)) (sig : set A) ,

DP α β H S → snd (step α β H S sig) = proceed α β → LLim α β (fst (fst (step α β H S sig))) H .

The second proof obligation generated by Function is discharged by the exact term that represents the well-founded

relation under consideration. In the code below we give the complete definition of EQUIVP. The function equivP is

simply a wrapper defined over iterate: it establishes the correct input for the arguments H and S and pattern matches

over the result of iterate, returning the expected Boolean value.

Definition equivP_aux (α β :re) (H S :set (Drv α β)) (Σ :set A) (D :DP α β H S) :=

let H′ := iterate α β H S Σ D in match H′ with | Ok _ ⇒ true | NotOk _ ⇒ false end .

Definition mkDP_ini : DP α β ∅ {Drv_1st α β } .

abstract (constructor ; [split ;intros ;try (inversion H) | vm_compute] ;reflexivity) .

Defined .

Definition equivP (α β :re) := equivP_aux α β ∅ {Drv_1st α β} (setSy α ∪ setSy β) (mkDP_ini α β) .

The function mkDP_ini builds the term of type DP that ensures that {({α}, {β})} ∩ ∅ = ∅ and that ε(∅) = false holds.

The final decision procedure, equivP, calls the function equivP_aux with the adequate arguments, and the function

equivP_aux simply pattern matches over a term of term_cases and returns a Boolean value accordingly.

We note that in the definition of equivP we instantiate the parameter representing the input alphabet by the union

of two sets, both computed by the function setSy. This function returns the set of all symbols that exist in a given

regular expression. It turns out that for deciding regular expressions (in)equivalence we need not to consider a fixed

alphabet Σ, since only the symbols that exist in the regular expressions being tested are important and used in the

derivations. In fact, the input alphabet can even be an infinite alphabet.

4.4. Correctness

In order to prove the correctness of equivP with respect to language equivalence, we proceed as follows. Suppose

that equivP α β = true. To prove that this implies regular expression equivalence we must prove that the set of all

the derivatives is computed by the function iterate, and also that all the elements of that set are equi-nullable. This

leads to (3), which in turn implies language equivalence.

To prove that iterate computes the desired set of derivatives we must show that, in each of its recursive calls, the

accumulator set H keeps a set of values whose derivatives have been already computed (they are also in H), or that

such derivatives are still in the working set S , waiting to be selected for further processing. This property is formally

defined in Coq as follows:

Definition invP (α β :re) (H S :set (Drv α β)) (Σ :set A) := ∀ x :Drv α β , x ∈ H → ∀ a : A , a ∈ Σ → (

Drv_pdrv α β x a) ∈ (H ∪ S) .

We must prove that invP is an invariant of iterate. This requires a proof asserting that invP is satisfied by the

computation of step as stated in the next proposition.

11

Proposition 1. Let α and β be two regular expressions, and let S , S ′, H, and H′ be finite sets of values of type Drv α

β. If invP(H,S) holds and if step α β H S Σ = ((H′,S ′),proceed α β), then invP(H′,S ′) also holds.

The next step is to prove that invP is an invariant of iterate. This proof indeed shows that if invP is satisfied in

all the recursive calls of iterate, then this function must return a value Ok α β H′ and invP H′ ∅ must be satisfied.

This is stated in the next proposition.

Proposition 2. Let α and β be two regular expressions. Let S , H, and H′ be finite sets of values of type Drv α β,

and let Σ be an alphabet. If invP(α,β,H,S) holds, and if iterate α β H S Σ D = Ok α β H′, then invP(α,β,H′,∅) also

holds.

In Coq, the two previous propositions are defined as follows:

Lemma invP_step : ∀ α β H S Σ ,

invP α β H S Σ → invP α β (fst (fst (step α β H S Σ))) (snd (fst (step α β H S Σ))) Σ .

Lemma invP_iterate : ∀ α β H S Σ D x ,

invP α β H S Σ → iterate α β H S Σ D = Ok α β x → invP α β x ∅ .

The Propositions 1 and 2 are not enough to prove the correctness of equivP with respect to language equivalence. We

still have to prove that the derivatives that are computed are all equi-nullable, and also prove that the pair containing

the regular expressions being tested for equivalence is in the set of derivatives returned by iterate. For that, we

strengthen the invariant invP with as follows:

Definition invP_final (α β :re) (H S :set (Drv α β)) (s :set A) :=

(Drv_1st α β) ∈ (H ∪ S) ∧

(∀ x :Drv α β , x ∈ (H ∪ S) → c_of_Drv α β x = true) ∧

invP α β H S s .

We start by proving that, if we are testing α ∼ β, then the pair {({α}, {β})} is an element of the set returned by iterate.

But first we must introduce two generic properties that will allow us to conclude that.

Proposition 3. Let α and β be two regular expressions. Let H, H′, and S ′ be sets of values of type Drv α β. Finally,

let Σ be an alphabet, and let D be a value of type DP α β H S . If it holds that iterate α β H S Σ D = Ok α β H′, then

it also holds that H ⊆ H′.

Corollary 1. Let α and β be two regular expressions. Let γ be a value of type Drv α β. Let H, H′, and S ′ be sets of

values of type Drv α β. Finally, let Σ be an alphabet, and let D be a value of type DP α β H S . If it holds that iterate

α β H S Σ D = Ok α β H′ and that choose S = Some γ, then it also holds that {γ} ∪ H ⊆ H′.

From Proposition 3 and Corollary 1 we are able to prove that the original pair is always returned by the iterate

function, whenever it returns a value Ok α β H.

Proposition 4. Let α and β be two regular expressions, let H′ be a finite set of values of type Drv α β, let Σ be an

alphabet, and let D be a value of type DP α β ∅ {({α}, {β})}. Hence,

iterate α β ∅ {({α}, {β})} Σ D = Ok α β H′ → ({α}, {β}) ∈ H′.

Now, we proceed in the proof by showing that all the elements of the set packed in a value Ok α β H′ enjoy

equi-nullability. This is straightforward, due to the last parameter of iterate. Recall that a value of type DP always

contains a proof of that fact.

Proposition 5. Let α and β be two regular expressions. Let H, H′, and S ′ be set of values of type Drv α β. Finally, let

Σ be an alphabet and D be a value of type DP α β H S . If it holds that iterate α β H S Σ D = Ok α β H′, then it also

holds that ∀γ ∈ H′, ε(γ) = true.

Using Propositions 4 and 5 we can establish the intermediate result that will take us to prove the correctness of

equivP with respect to language equivalence.

12

Proposition 6. Let α and β be two regular expressions. Let H, H′, and S ′ be set of values of type Drv α β. Finally,

let Σ be an alphabet, and let D be a value of type DP α β H S . If it holds that iterate α β H S Σ D = Ok α β H′, then

invP_final α β H′ ∅.

The last intermediate logical condition that we need to establish is that invP_final implies language equivalence,

when instantiated with the correct parameters. The following lemma gives us exactly that.

Proposition 7. Let α and β be two regular expressions. Let H′ be a set of values of type Drv α β. If it holds that

invP_final α β H′ ∅ (setSy α ∪ setSy β), then α and β are equivalent.

Finally, we can state the theorem that ensures that if equivP returns true, then we have the equivalence of the

regular expressions under consideration.

Lemma 1. Let α and β be two regular expressions. Thus, if equivP α β = true holds, then α and β are equivalent.

4.5. Completeness

To prove that equivP α β = false implies the inequivalence of two given regular expressions α and β, we must

prove that the value γ in the term NotOk α β γ returned by iterate α β S H Σ D is a witness that there is a word

w ∈ Σ⋆ such that w ∈ L(α) and w < L(β), or the other way around. This leads us to the following lemma about

iterate.

Proposition 8. Let α and β be regular expressions, let S and H be set of values of type Drv α β. Let Σ be an alphabet,

γ a term of type Drv, and D a value of type DP α β S H. If iterate α β S H Σ D = NotOk α β γ, then, considering

that γ represents the pair of sets of regular expressions (S α, S β), we have ε(S α) , ε(S β).

Next, we just need to prove that the pair in the value returned by iterate does imply inequivalence.

Proposition 9. Let α and β be regular expressions, let S and H be set of values of type Drv α β, let Σ be an alpha-

bet, and let D be a value of type DP α β S H. Hence, if iterate α β S H Σ D = NotOk α β γ then α and β are not

equivalent.

The previous two lemmas allow us to conclude that equivP is correct with respect to the in-equivalence of regular

expressions.

Lemma 2. Let α and β be two regular expressions. Hence, if equivP α β = false then α and β are not equivalent.

4.6. Tactics and Automation

In this section we describe two Coq proof tactics that are able to automatically prove the (in)equivalence of regular

expressions, as well as relational algebra equations.

4.6.1. Tactic for Deciding Regular Expressions Equivalence

The expected way to prove the equivalence of two regular expressions α and β, using our development, can be

summarised as follows: first we look into the goal, which must be of the form α ∼ β or α ≁ β; secondly, we transform

such goal into the equivalent one that is formulated using equivP, on which we can perform computation. The main

tactic, dec_re, pattern matches on the goal and decides whether the goal is an equivalence, an in-equivalence, or a

subset relation. In the former two cases, dec_re applies the corresponding auxiliary tactics, re_inequiv or re_equiv,

and reduces the equivalence into a call to equivP, and then performs computation in order to try to solve the goal by

reflexivity. In the case of a goal representing a subset relation, dec_re first changes it into an equivalence (since we

know that α ≤ β = α + β ∼ β) and, after that, call the auxiliary tactic re_equiv to prove the goal.

13

