Optimal State Reductions of Automata with
Partially Specified Behaviors

. iovanni Pichizzini - .
Nelma Moreira!, Giovanni Pighizzini?, and Rogério Reis!

L Centro de Matemética e Faculdade de Ciéncias da Universidade do Porto, Portugal
{nam,rvr}@dcc.fc.up.pt*
2 Dipartimento di Informatica, Universita degli Studi di Milano, Italy
pighizzini@di.unimi.it™™

Abstract. Nondeterministic finite automata with don’t care states,
namely states which neither accept nor reject, are considered. A char-
acterization of deterministic automata compatible with such a device is
obtained. Furthermore, an optimal state bound for the smallest compat-
ible deterministic automata is provided. Finally, it is proved that the
problem of minimizing nondeterministic and deterministic don’t care au-
tomata is NP-complete.

1 Introduction

Finite state automata are well-known and widely investigated language accep-
tors. On each input string z, the behavior of a finite automaton is an answer
yes/no to the question of the membership of x to the accepted language. In some
situations, however, we could have some input sequences for which the answer of
the automaton is not interesting, or even situations where the automaton does
not need to consider all possible strings over the input alphabet. For example,
an automaton could receive its input from another machine or program, which
produces only sequences in a special form, thus excluding all the other sequences
which are definable over the input alphabet. We give a couple of trivial but imme-
diate examples over the alphabet {-,0,1,...,9}. If the inputs of the automaton
represent numbers in decimal notation produced by a (correct) program, the
automaton cannot expect sequences starting by 0 (with the only exception of
the sequence 0) as 00123, sequences starting by -0, and sequences containing
the symbol - after the leftmost position, as 4-9-2014. On the other hand, if the
inputs would represent calendar dates, the last string will be a valid input, while
a string as -1234 will be invalid (unless a strange and counterintuitive format is
used).

* Authors partially funded by the European Regional Development Fund through the
programme COMPETE and by the Portuguese Government through the FCT under
projects PEst-C/MAT/UI0144/2013 and FCOMP-01-0124-FEDER-020486.

** Author partially supported by MIUR under the project PRIN “Automi e Linguaggi
Formali: Aspetti Matematici e Applicativi”, code H41J12000190001.

2 Nelma Moreira, Giovanni Pighizzini, and Rogério Reis

In these cases, we do not need to define the behavior of the automaton,
namely acceptance or rejection, on the strings which are not interesting or will
never appear as input. This suggests us the idea of studying finite automata with
three kinds of states: accepting states, rejecting states, and don’t care states.
We call these models automata with don’t care states or, shortly, don’t care
automata. A quite natural problem we consider in the paper is the state reduction
of these models. Of course, to perform this reduction, we can arbitrarily accept
or reject strings on the which the behavior of the automaton is not specified.

This idea is not completely new, if fact, in digital systems design, Moore
automata (or equivalently Mealy automata) are used to specify several kinds of
algorithms, protocols and processes which then are used in sequential circuits
synthesis. Usually, the automata are incomplete (laking either outputs or tran-
sitions from some inputs), and the elimination of redundant states reduces the
size of the logic needed to be implemented, tested or verified. However, the stan-
dard algorithm for minimizing deterministic complete automata is not enough
for incomplete ones. The first algorithm for the exact solution was described by
Paull and Unger [11], and Pfleeger [13] proved that the minimization of incom-
plete deterministic Moore machines is a NP-complete problem. Since then many
other exact and heuristic algorithms have been proposed, some considering that
the initial machine is nondeterministic [14,8,12,9,3]. The standard Paull and
Unger approach is based on the identification of sets of compatible states and the
obtention of a minimal closed cover. The use of don’t care states has been also
considered for different purposes in the case of automata on infinite words [4].

In this paper, we mainly investigate nondeterministic automata with don’t
care states (dcNFA). Given a such a device A, we are interested in finding a
smallest deterministic finite automaton (DFA) B which is “compatible” with it,
in the sense that all the strings accepted by A are also accepted by B and all the
strings rejected by A are also rejected by B, while on the remaining strings B can
have an arbitrary behavior. This problem can be reformulated as a separation
problem: given two regular languages L and Lo, find a language L with minimal
state complexity that separates Ly and Lo, i.e. such that L; C L C L§ (where
L€ is the complement of L). In the context of model checking, this version of
the problem was considered by Chen et al. [1], but there the general Paull and
Unger algorithm was used.

Here we obtain a precise characterization of the DFAs which are compatible
with a given dcNFA. This result is useful to obtain an upper bound for the num-
ber of states of the smallest compatible DFAs. We also show that this bound is
tight. We also study computational complexity aspects. To this respect, we show
that the problem of obtaining a smallest DFA compatible with a given dcNFA is
NP-complete, and it remains NP-complete if the given don’t care automaton is
deterministic. The paper concludes with some considerations concerning dcNFAs
over one-letter alphabets.

Due to the lack of space, some of the proofs are omitted from this version of
the paper.

Optimal State Reductions of Automata with Partially Specified Behaviors 3

2 Automata with don’t care States

Given an alphabet Y| we consider the usual notions of deterministic finite au-
tomata (DFAs) and nondeterministic finite automata (NFAs) (with multiple
initial states). Given an automaton A, we denote the language accepted by it
as L(A). We also assume that the reader is familiar with the notion of minimal
DFA. We now introduce the main notion we are interested in.

Definition 1. A don’t care nondeterministic finite automaton (deNFA) A is a
tuple (Q, 3,0, I, F® F°), where A® = (Q, X,6,1, F®) and A® = (Q, X, 6,1, F°)
are two NFAs such that L(A®)NL(A®) = 0. A state ¢ € Q is called an accepting
(rejecting) state if ¢ € F'® (q € F°, respectively). If g ¢ FEUF® then q is called
a don’t care state. Associated to A there are the two languages LY(A) = L(AP)
and LO(A) = L(A®) called the accepted and the rejected language by A, respec-
tively.

The automaton A is a don’t care deterministic finite automaton (dcDFA) if
the set I consists exactly of one element i and § is a partial function from @
to Q, namely, for each q € Q, a € X, 0(q,a) contains at most one element.

Notice that given a dcNFA A, its accepted (rejected) language consists of
all words having a computation path from an initial state to an accepting (a
rejecting, resp.) state. Hence, if all the states of A are reachable from the initial
state, then the sets F'® and F'© must be disjoint. As usual, in the deterministic
case we will denote a dcNFA as (Q, X, 6,4, F®, F©) and we will write p = 6(q, a)
instead of p € §(q, a), when d(g, a) is defined. The function 6 can be made total,
in a standard way, by inserting an extra state, called trap or dead state. However,
while in DFAs this state is rejecting, according to our definition in the case of
dcNFAs this state should be a don’t care state. Hence, in a dcNFA with a partial
transition function, a string x € X* leading to an undefined transition is neither
accepted nor rejected.

In this paper, given a don’t care automaton A we are interested in finding
automata that agree with A on its accepted and rejected languages. This leads
to the following definition.

Definition 2. Let A be a dcNFA. A language L is said to be compatible with A
whenever LY A) C L and LZ(A) C L¢. An NFA (or DFA) B is compatible with
A when L(B) is compatible with A.

Since, as already observed, unspecified transitions have different meanings
for DFAs (rejection) and for dcDFAs (don’t care condition), while counting the
number of the states in the case of DFAs we will add the trap state when the
transition function is not total, while in the case of dcDFAs we will never add
any extra state.

Ezxample 3. Consider the dcDFA A represented in Figure 1. We label each ac-
cepting state with a @ and each rejecting state with a ©, leaving don’t care states
unlabeled. Hence, F© = {s5} and F® = {50, s3}. Trivially, L A) = (a3b®)* (¢ +

4 Nelma Moreira, Giovanni Pighizzini, and Rogério Reis
a @—a,@_\a‘
af
b

Fig. 1. The dcDFA A of Example 3.

a®) and L(A) = (a®b®)*(a3b?). The language L = (a®b3)*(e + a + a? + a®) is
compatible with A. Notice that L is accepted by a DFA with the same transition
graph of A (plus an implicit trap state) and with set of final states {so, s1, $2, $3}
In the next sections, we will present several smaller DFAs compatible with A.

Let G = (V, E) be an undirected graph. We recall that each complete sub-
graph of G is called a clique. We also say that a subset @ C V forms a clique if
the subgraph of G induced by a, namely the graph (o, E N (a x @)), is a clique.
Furthermore, a clique o C V is maximal if any other subset of V' which properly
contains « does not form a clique. A cliqgue covering of a graph G is a set of
cliques such that every vertex of G belongs at least to one clique.

A self-verifying automaton (SVFA) A is a dcNFA where it is required that for
each input string there exists at least one computation ending in an accepting or
in a rejecting state, i.e., LY(A) = (L(A))¢. This implies that the only language
compatible with A is its accepted language L®(A). Hence, each SVFA can be
transformed into an equivalent (and unique) minimal DFA. In [7] an optimal
bound for the number of states of the minimal DFA equivalent to any given
SVFA has been obtained. The authors associate with each n-state self-verifying
automaton a graph with n vertices and prove that the state set of the minimum
DFA equivalent to the given SVFA should be isomorphic to the set of the max-
imal cliques of such a graph. In the next sections, we use a similar approach
for obtaining minimal DFAs compatible with a given automata with don’t care
states.

3 Conversion into Compatible Deterministic Automata

In this section we study how to convert any given dcNFA A into compatible
DFAs. In particular we are interested in finding a minimal DFA compatible
with A. As we will see, it is possible to have several minimal nonisomorphic
smallest compatible DFAs.

Let us suppose that all the states of A = (Q, X, 8,1, F® F®) are reachable
from the initial state. For each ¢ € @, we denote by LY and LY, respectively,
the set of strings accepted and the set of strings rejected starting from ¢, that
is, LY ={z € 2* [0(q,x) N F® # 0} and LT = {z € £* | d(¢q,z) N F° # 0}.
Using the fact that ¢ is reachable, it can be immediately verified that those two
languages are disjoint. For the same reason, applying the subset construction
to A, it turns out that L? N L? = () for each subset @ C @ whose states are

Optimal State Reductions of Automata with Partially Specified Behaviors 5

all reachable by a same string, where Ly = U ¢, L;, for x € {®,6}. So, by
suitable marking accepting and rejecting states, from A we can get the subset
dcDFA A, (with only reachable states) with L*(As) = L*(A), for x € {®,5}.

As in [?], to study the structure of DFAs which are compatible with A, we
introduce a compatibility relation on the state set Q. Intuitively, two states p, g
of A are compatible if and only if two computations starting from p and ¢ cannot
give contradictory answers on the same string. Formally:

Definition 4. Two states p,q of A are compatible if and only if
(LYULY)N (LY ULY) = 0.

The compatibility graph of A is the undirected graph whose vertez set is @, and
which contains the edge {p,q} if and only if states p and q are compatible.

It follows from the above discussion that if « is a state of the automaton Ay,
then all states p, ¢ in the set @ must be compatible. Hence, each reachable state
of A, is represented by a clique in the compatibility graph.

In the case of SVFAs, it was proved that if for two reachable subsets o, 5 C @
of the subset automaton the set aU g is a clique of the compatibility graph then
a and f are equivalent [7]. In our case, since the automaton A, deriving from the
subset construction could contain don’t care states, we cannot properly define a
similar equivalence over A, states. However, we can prove the following result
which will allow us to characterize DFAs that are compatible with A in terms
of functions mapping states into cliques of the compatibility graph.

Theorem 5. A DFA A’ = (Q',X,0',i, F') is compatible with a given dcNFA
A=1(Q,%,51,F® F°) if and only if there is a function ¢ : Q' — 2% such that:

1. 1 C (i),

2. forqe Q' a€ X, 5(¢(q),a) C ¢(d'(q,a)),
3. forqe Q', p(q) N F® #£ () implies ¢ € F' and ¢(q) N FC # O implies q & F'.

Furthermore, if A’ is compatible with A then:

4. for each x € X*, §(I,x) C (' (¥, x)),
5. the set #(Q') is a clique covering of the compatibility graph of A.

Proof. First, let us suppose that A’ is compatible with A. For each ¢ € Q’, we
define
#(q)={peQ|Tre X" st.q=08(',x) and p € §(I,x)}.

By considering the empty string, we observe that I C ¢(i'), proving 1. Now,
given a € X, let ¢/ = §'(q,a). To prove 2 we show that p’ € §(¢(q),a) implies p’ €
¢(q"). To this aim, let us consider p € ¢(q) such that p’ € §(p, a). By the definition
of ¢, there is a string x € X* such that ¢ = §'(¢/,z) and p € 6(I,z). Hence,
q =96(¢q,a) =&, xza) and p’ € §(p,a) C 6(I,za). According to the definition
of ¢ this implies p’ € ¢(¢’). Finally, the condition 3 follows immediately from
our choice of ¢.

6 Nelma Moreira, Giovanni Pighizzini, and Rogério Reis

To prove the converse, first of all it is useful to derive 4 from 1 and 2. We
use an induction on the length of the string x. The basis © = € is trivial. Now,
let us consider a nonempty string x = ya with y € X* and a € X, and suppose
condition 4 true for y. Given p € §(I,x), there is a state p’ € §(I,y) such that
p € 6(p',a). Furthermore, ¢ = 0’(¢’, a) where ¢’ = §'(¢/,y). From the induction
hypothesis we get that p’ € ¢(0'(¢/,y)) = #(¢') and, by condition 2, §(é(q'),a) C
#(8'(¢',a)) and, by putting all together, we complete the proof of 4:

pedP,a) So(d(q).a) S d(0'(¢,a)) = ¢(¢'(i', x)).

Now, given € LY A), let p € §(I,2) N F?. Since p € ¢(6'(I,z)), by condition 3
x should be accepted by A’. In a similar way, if x € £L2(A) then x should be
rejected by A’. Hence we conclude that A’ is compatible with A.

Concerning the second part of the theorem, we already proved 4. To prove 5,
first we show that, for each g € @', the set ¢(q) is a clique of the compatibility
graph of A, namely, each two states p,r € ¢(q) are compatible. Let z,u € X*
such that ¢ = 6'(¢/,2) = §'(¢,u), p € §(I,x), and r € §(I,u). By contradiction,
suppose p and r not compatible. Then, there is z € X* such that, without loss of
generality, d(p, z) € F® and §(r, z) € F®. It follows that z distinguishes strings
x and u, which contradicts the fact that these strings lead to the same state in
the automaton A’. This allows us to conclude that p, must be compatible and,
hence, ¢(q) is a clique. Furthermore, since all the states of A are reachable, as a
consequence of 4 for each p € @ there is a state ¢ € Q' such that p € ¢(q). This
completes the proof of 5. a

Using Theorem 5, we now derive a “pseudo-subset construction” which allows
to find some DFAs compatible with A. We remind the reader that we suppose
that all the states of A are reachable from the initial state. Then we define a
DFA A" =(Q', X,0',i, F’) as follows:

— @' is the set of all mazximal cliques of the compatibility graph of A; in the
following, given a maximal clique a C), we use the same name « to denote
the corresponding state in Q’;

— 4/ is a clique that includes the set I of initial states of A;

—forae@,oce X, §(a,0)is astate 8 € Q' such that é(«,0) C G;

— the set I of final states is a subset of @’ that contains those states a s.t.
aNF® £ () and does not contain those states a s.t. o N F© # (), namely,
each state of Q' that contains a state from F'® is marked as final, each state
that contains a state from F'© is marked as nonfinal, while each one of the
remaining states can be freely marked either as final or as nonfinal.

The above definition leaves some degrees of freedom, which allow to obtain
different DFAs. For any possible choice, it can be immediately verified that the
function ¢ : Q" — 29 defined as ¢(a) = « satisfies the conditions of Theorem 5.
Hence, it turns out that each DFA A’, defined as above, is compatible with A.

Ezample 6. Let us consider the dcDFA A of Example 3 (Figure 1). Its compat-
ibility graph is depicted in Figure 2 (left). Applying the above construction we

Optimal State Reductions of Automata with Partially Specified Behaviors 7

obtain 4 different DFAs, which are summarized in the Figure 2 (right). We have
two choices for the initial state and two choices for the transition from state
{s1, $2, 85} on b. These choices are represented by dotted arrows.

b
S5 a
S0 —— S4
S1 gss
N -
52

Fig. 2. The compatibility graph of the dcDFA A in Fig. 1 and four compatible DFAs.

In the previous construction, we used the covering of the compatibility graph
defined by maximal cliques. In general, we could also use a different covering,
provided that the trivial function ¢ mapping each clique of the considered cover
in itself satisfies the conditions 1, 2, and 3 of Theorem 5. For instance, further
DFAs, compatible with the dcDFA A of Example 6, are depicted in Figure 3. We

Fig. 3. More DFAs compatible with the dcDFA A in Figure 2.

can observe that in this example the compatibility graph of A cannot be covered
using less than 3 cliques. Hence, there are no DFAs compatible with A with
less than 3 states, the number of maximal cliques in the compatibility graph.
However, in general the situation can be different, as illustrated in the next
example.

Ezxample 7. Let us consider the dcDFA A depicted in the upper part of Figure 4
with its compatibility graph, which contains 4 maximal cliques. This graph has
the following two coverings consisting each one of two cliques: {{so, s1}, {s2,53}}
and {{so, s3}, {s1, s2}}. For these coverings we obtain two DFAs which are com-
patible with A (see also Figure 4). Since these DFAs have only two states and
each DFA consisting only of one state cannot be compatible with A, it turns out
that they are the smallest DFAs which are compatible with A. In Figure 5 it is
depicted a dcNFA A having the same compatibility graph as A, with two com-
patible DFAs whose states correspond to all maximal cliques of that graph. We

8 Nelma Moreira, Giovanni Pighizzini, and Rogério Reis

So — S1

S3 — S2

a
b a
S@OIECEE
a a b b
Fig. 4. The dcDFA A of Example 7 with its compatibility graph, and two compatible
DFAs.

observe that in the automaton A the strings a, b, bca, and beb lead to the set of
states {so, s1}, {50, s3}, {52, 83}, and {s1, s2}, respectively. Hence, observing the
compatibility graph and using condition 4 of Theorem 5 we can conclude that
in this example all mazimal cliques of the compatibility graph are necessary.
Hence, each DFA compatible with A should have at least 4 states.

Example 7 shows that we can have different dcNFAs A and A with the same
compatibility graph but with smallest compatible DFAs of different sizes. The
following theorem summarizes the situation, providing bounds for such a size in
terms of cliques of the compatibility graph:

Theorem 8. For each dcNFA A, there exists a compatible DFA whose number
of states is bounded by the number of maximal cliques in the compatibility graph
of A. Furthermore, each DFA compatible with A should have at least as many
states as the smallest number of cliques covering the compatibility graph of A.

4 State Complexity

In this section, we study descriptional complexity aspects. First we state an
upper bound for the number of states of smallest DFAs compatible with a given
dcNFA, showing that it can be effectively reached, i.e. it is tight. The arguments
are adapted from those used for SVFAs [7].

Theorem 9. For each integer n > 2 and each n-state dcNFA there exists a
compatible DFA with at most f(n) states, where

3L/l ifn=0 (mod 3),

n) = . “Hifn= mo
f(n) 4. 3ln/31=1 gf 1 (mod 3),
2-3/31 ifn =2 (mod 3).

Furthermore this bound can be effectively reached.

Optimal State Reductions of Automata with Partially Specified Behaviors 9

Fig.5. The dcNFA A of Example 7 (top left), with two compatible DFAs (top right
and bottom).

Proof. The upper bound immediately derives from Theorem 8 and from a result
by Moon and Moser [10] stating that the maximum number of maximal cliques
in a graph with n vertices is given by the function f(n). The lower bound is a
consequence of Theorem 10 in [7], where for each integer n an n-state SVFA A,
with multiple initial states such that the smallest equivalent DFA requires f(n)
states was provided. (See Figure 6 for the case of n multiple of 3.) Since SVFAs
with multiple initial states are a special case of dcNFAs, the claimed result
follows. a

Fig. 6. Automaton A,, of Theorem 9 in the case of n multiple of 3.

The optimality proof in Theorem 9 is a consequence of the optimality of the
same bound for SVFAs with multiple initial states. Since the optimal bound in
the case of SVFAs with a single initial state is slightly different (1+ f(n—1)), one

10 Nelma Moreira, Giovanni Pighizzini, and Rogério Reis

could ask what happens in the case of dcNFAs with a single initial state. We are
going to prove that in this case the optimal bound remains that of Theorem 9.

To this aim, for each n we consider an automaton A/, obtained by modifying
the automaton A,, used to give the optimality in Theorem 9, as follows. We start
from the same set of states of A,, and from the same transition graph. One of
the initial states of A, is chosen as the initial state of A/ . Furthermore, we
add a transition on a new input symbol ¢ from a selected state of A,, to all the
states that in A,, are initial. In this way each time the automaton A/, makes a
transition on the letter ¢, it is able to simulate a computation of A,, on a factor
w € {a,b}*. We show that each DFA compatible with A/, requires f(n) states,
where f is the function given in Theorem 9, by considering the following general
lemma:

Lemma 10. Let X be an alphabet and ¢ ¢ X be an extra symbol. Given a
deNFA A over X, a nonempty set K C (XU {c})*, two languages J',J" C X*,
consider the languages L' = KcLP(A)UJ' and L' = KcLP(A)UJ". If L'NL" =0
then each DFA accepting a language L, with L' C L C L"¢ should have at least
as many states as a smallest DFA compatible with A.

Theorem 11. For each integer n there is an n-state dcNFA with a unique initial
state such that the smallest compatible DFA requires f(n) states, where f(n) is
the function given in Theorem 9.

After considering the restriction to dcNFAs having only one initial state, we
further restrict to the case of deterministic transitions where, clearly, the bound
of Theorem 9 can be reduced. In fact, given an n-state dcDFA A we can just
arbitrarily mark each don’t care state as accepting or rejecting in order to obtain
a compatible DFA with the same number of states. Furthermore, if the set of
don’t care states of A is empty and A is minimal then we clearly cannot obtain
a smaller compatible DFA. Hence, in the deterministic case n is a tight bound.

We can also observe that if A contains a don’t care trap state then a compat-
ible DFA can be always obtained by moving each transition leading to the trap
state to an arbitrarily chosen state and by arbitrarily choosing final states among
the remaining don’t care states. Hence, the resulting DFA contains n — 1 states.
For each n this bound cannot be further reduced. Consider in fact the n-state
automaton consisting of a loop of n — 1 states accepting the language (ab™2)*
and rejecting all the strings in (ab”~2)*ab® with 0 < k < n — 2, plus a don’t
care trap state. Clearly, each two states on the loop are incompatible. Hence,
they belong to different cliques of the compatibility graph. By Theorem 8, we
conclude that each compatible DFA should have at least n — 1 states.

5 Time Complexity

In this section we shortly study time complexity of the reductions of dcDFAs and
dcNFAs to minimal compatible DFAs. In both cases we prove NP-completeness.
Our starting point is the following problem, which has been proved to be NP-
complete by Pfleeger [13]:

Optimal State Reductions of Automata with Partially Specified Behaviors 11

Given an “incomplete” DFA A and k > 0, is there a way to assign a state
to each unspecified transition so that the resulting complete automaton
has a minimal equivalent DFA with at most k states?

A clarification is necessary to explain the meaning of “incomplete” in this con-
text. As already mentioned in the Section 2, reaching an undefined transition
in a DFA is conventionally interpreted as the definitive rejection of the input
and, hence, undefined transitions can be made defined by introducing a trap
state, which is not final and, so, rejecting. In the above mentioned problem, an
undefined transition will never be reached (e.g., because some restrictions on the
form of possible input words) and, hence, it represents a don’t care condition.
Hence, an “incomplete” DFA A = (Q, X, 6,1, F') in the previous problem, can be
transformed in a complete dcDFA by adding a trap state ¢; which is the only
don’t care state, and by choosing F' as the set of accepting states and Q — F
as the set of rejecting states. From this discussion we immediately obtain the
following result.

Theorem 12. The problem of deciding if, given a dcDFA A and an integer k >
0, there exists a compatible DFA with at most k states is NP-hard.

We note that the same result could also be deduced using NP-completeness of
the inference of a DFA from a finite set of words [6]. We can also easily prove
that the problem belongs to NP. However, we can do better, by proving that
the problem is in NP even if A is nondeterministic. This allows us to obtain the
main result of this section:

Theorem 13. The problem of deciding if, given a dcNFA A and an integer k >
0, there exists a compatible DFA with at most k states is NP-complete.

Proof. To show that the problem belongs to NP, we observe that in polynomial
time it is possible to nondeterministically generate a DFA B with at most k
states and verify if it is compatible with A. More into details, compatibility is
verified by checking if LP(A) C L(B) and LZ(A) C (L(B))¢. To do that, from A
and B we build a product (nondeterministic) automaton and verify that for each
reachable state (p, q), when the component p is an accepting state of A then the
component ¢ is a final state of B and when the component p is a rejecting state
of A then the component ¢ is a nonfinal state of B.

NP-hardness follows from Theorem 12. a

6 The Unary Case

As well-known, in the unary case (namely the case of languages and automata
defined over a one letter alphabet, which in the following we assume to be X =
{a}) many state bounds are lower than in the general case. In this section we
shortly present some considerations in this respect for dcNFAs. First of all, using
standard results on diophantine equations, we can prove the following lemma:

12 Nelma Moreira, Giovanni Pighizzini, and Rogério Reis

Lemma 14. A unary deNFA cannot accept a string am™ along a path containing
a state belonging to a loop of length € and reject another string a™ along a
path containing a state belonging to a loop of length £, if £ and ¢ are relatively
prime.

The maximal state gap between n-state unary NFAs and equivalent DFAs
is e®@(Vnlnn) [2]. Using Lemma 14, it is possible to show that the same gap
cannot be reached starting from unary dcNFAs and compatible DFAs. This
happens even in the case of SVFAs. However, it has been shown that the state
gap between unary n-state SVFAs and DFAs grows at least as e®(Vnin?n) [5].
Hence, there is at least the same gap from dcNFAs to DFAs.

Theorem 15. For each sufficiently large integer n there is a dcNFA with at

most n states such that each compatible DFA requires at least e®(Vnln?n),

References

1. Chen, Y.F., Farzan, A., Clarke, E.M., Tsay, Y.K., Wang, B.Y.: Learning minimal
separating DFA’s for compositional verification. In: Kowalewski, S., Philippou, A.
(eds.) Proc. TACAS 2009. LNCS, vol. 5505, pp. 31-45. Springer (2009)

2. Chrobak, M.: Finite automata and unary languages. Theor. Comput. Sci. 47(3),
149-158 (1986)

3. Damiani, M.: The state reduction of nondeterministic finite-state machines. IEEE
Trans. CAD 16(11), 1278-1291 (1997)

4. Eisinger, J., Klaedtke, F.: Don’t care words with an application to the automata-
based approach for real addition. Formal Methods in System Design 33(1-3), 85—
115 (2008), http://dx.doi.org/10.1007/s10703-008-0057-6

5. Geffert, V., Pighizzini, G.: Pairs of complementary unary languages with ”bal-
anced” nondeterministic automata. Algorithmica 63(3), 571-587 (2012)

6. Gold, E.M.: Complexity of automaton identification from given data. Inf. Contr.
37(3), 302-320 (Dec 1978)

7. Jirdskova, G., Pighizzini, G.: Optimal simulation of self-verifying automata by
deterministic automata. Inf. Comput. 209(3), 528-535 (2011)

8. Kam, T., Villa, T., Brayton, R., Sangiovanni-Vincentelli, A.: A fully implicit algo-
rithm for exact state minimization. Proc. ACM/IEEE Design Automation Conf.
pp. 684-690 (1994)

9. Kam, T., Villa, T., Brayton, R., Sangiovanni-Vincentelli, A.: Theory and algo-
rithms for state minimization of nondeterministic FSMs. IEEE Trans. CAD 16(11),
1311-1322 (Nov 1997)

10. Moon, J., Moser, L.: On cliques in graphs. Israel J. Math 3, 23—-28 (1965)

11. Paull, M.C., Unger, S.H.: Minimizing the number of states in incompletely specified
sequential switching functions. IRE Trans. on Elect. Comput. 3, 356-367 (1959)

12. Pena, J.M., Oliveira, A.L.: A new algorithm for exact reduction of incompletely
specified finite state machines. IEEE Trans. CAD 18(11), 1619-1632 (1999)

13. Pfleeger, C.P.: State reduction in incompletely specified finite-state machines. IEEE
Trans. Comput. 22(C), 1099-1102 (Dec 1973)

14. Rho, J.K., Hachtel, G., Somenzi, F., Jacoby, R.: Exact and heuristic algorithms
for the minimization of incompletely specified state machines. IEEE Trans. CAD
13, 167-177 (1994)

