
Position Automaton Construction for
Regular Expressions with Intersection?

Sabine Broda, António Machiavelo, Nelma Moreira, and Rogério Reis

CMUP, Faculdade de Ciências da Universidade do Porto, Portugal
sbb@dcc.fc.up.pt,ajmachia@fc.up.pt,{nam,rvr}@dcc.fc.up.pt

Abstract. Positions and derivatives are two essential notions in the con-
version methods from regular expressions to equivalent finite automata.
Partial derivative based methods have recently been extended to regu-
lar expressions with intersection. In this paper, we present a position
automaton construction for those expressions. This construction gener-
alizes the notion of position making it compatible with intersection. The
resulting automaton is homogeneous and has the partial derivative au-
tomaton as its quotient.

1 Introduction

The position automaton, introduced by Glushkov [12], permits the conversion
of a simple regular expression (involving only the sum, concatenation and star
operations) into an equivalent nondeterministic finite automaton (NFA) without
ε-transitions. The states in the position automaton (Apos) correspond to the
positions of letters in the corresponding regular expression plus an additional
initial state. McNaughton and Yamada [15] also used the positions of a regular
expression to define an automaton, however they directly computed a determin-
istic version of the position automaton. The position automaton has been well
studied [8,3] and is considered the standard automaton simulation of a regular
expression [16]. Some of its interesting properties are: homogeneity, i.e. for each
state, all in-transitions have the same label (letter); whenever deterministic, these
automata characterize certain families of unambiguous regular expressions, and
can be computed in quadratic time [4]; other automata simulations of regular
expressions are quotients of the Apos, e.g. partial derivative automata (Apd) [9]
and follow automata [14].

Many authors observed that the position automaton construction could not
directly be extended to regular expressions with intersection [3,6], as intersection
(and also complementation) is not compatible with the notion of position. In fact,
considering positions of letters in the expression (ab?)∩a, whose language is {a},
we obtain the regular expression (a1b

?
2) ∩ a3. Interpreting a1 and a3 as distinct

alphabet symbols, the language described by this expression is empty and there is

? This work was partially supported by CMUP (UID/MAT/00144/2013), which is
funded by FCT (Portugal) with national (MEC) and European structural funds
through the programs FEDER, under the partnership agreement PT2020.



2 S. Broda, A. Machiavelo, N. Moreira, R. Reis

no longer a correspondence between the languages of (ab?)∩a and (a1b
?
2)∩a3, as

it is the case for expressions without intersection. However, the conversions from
expressions to automata based on the notion of derivative or partial derivative
can still be extended to regular expressions with intersection [5,7,2]. In this
paper, we present a position automaton construction for regular expressions
with intersection by generalizing the notion of position. Instead of positions,
sets of positions are considered in such a way that marking a regular expression
is made compatible with the intersection operation. We also show that the partial
derivative automaton is a quotient of the position automaton.

2 Preliminaries

In this section we recall the basic definitions we use throughout this paper and
the notation. For further details we refer to [13,17].

Let Σ be an alphabet (set of letters). A word over Σ is a finite sequence of
letters, where ε is the empty word. The size of a word x, |x|, is the number of
alphabet symbols in x. Σ? denotes the set of all words over Σ, and a language
over Σ is any subset of Σ?. The concatenation of two languages L1 and L2

is defined by L1 · L2 = { xy | x ∈ L1, y ∈ L2 }, and L? denotes the set
{ x1x2 · · ·xn | n ≥ 0, xi ∈ L }. The left quotient of a language L ⊆ Σ? w.r.t. a
word x ∈ Σ? is the language x−1L = { y | xy ∈ L }.

The set RE∩ of regular expressions with intersection over Σ is defined by the
following grammar

α, β := ∅ | ε | a ∈ Σ | (α+ β) | (α · β) | (α?) | (α ∩ β), (1)

where the concatenation operator · is often omitted. We consider RE∩ expressions
modulo the standard equations for ∅ and ε, i.e. α+ ∅ = ∅+α = α · ε = ε ·α = α,
α ·∅ = ∅·α = α∩∅ = ∅∩α = ∅, and ∅? = ε. Throughout this paper we often refer
to regular expressions with intersection just as regular expressions. The set of
alphabet symbols with occurrences in α is denoted byΣα. Expressions containing
no occurrence of the operator ∩ are called simple regular expressions. A linear
regular expression is a regular expression in which every alphabet symbol occurs
at most once. We let |α|, |α|Σ and |α|∩ denote for α ∈ RE∩ the number of
symbols, the number of occurrences of alphabet symbols and the number of
occurrences of the binary operator ∩, respectively. The language L(α) for α ∈
RE∩ is defined as usual, with L(α∩β) = L(α)∩L(β). The language of S ⊆ RE∩ is
L(S) = ∪α∈SL(α). Given an expression α ∈ RE∩, we define ε(α) = ε if ε ∈ L(α),
and ε(α) = ∅ otherwise. A recursive definition of ε : RE∩ −→ {∅, ε} is given by
the following: ε(a) = ε(∅) = ∅, ε(ε) = ε(α?) = ε, ε(α + β) = ε(α) + ε(β), and
ε(αβ) = ε(α ∩ β) = ε(α) · ε(β).

A nondeterministic finite automaton (NFA) is a tuple A = 〈S,Σ, S0, δ, F 〉,
where S is a finite set of states, Σ is a finite alphabet, S0 ⊆ S a set of initial
states, δ : S × Σ −→ P(S) the transition function, and F ⊆ S a set of final
states. The extension of δ to sets of states and words is defined by δ(X, ε) = X
and δ(X, ax) = δ(∪s∈Xδ(s, a), x). A word x ∈ Σ? is accepted by A if and only



Position Automaton Construction for Reg. Expr. with Intersection 3

if δ(S0, x) ∩ F 6= ∅. The language of A, L(A), is the set of words accepted
by A. The right language of a state s, Ls, is the language accepted by A if
we take S0 = {s}. An NFA is initially connected or accessible if each state is
reachable from an initial state and it is trimmed if, moreover, the right language
of each state is non-empty. Given A, we denote by Aac and At the result of
removing unreachable states from A and trimming A, respectively. It is clear
that L(A) = L(Aac) = L(At).

We say that an equivalence relation ≡ over S is right invariant w.r.t. A iff

1. ∀s, t ∈ S, s ≡ t ∧ s ∈ F =⇒ t ∈ F
2. ∀s, t ∈ S,∀a ∈ Σ, s ≡ t =⇒ ∀s1 ∈ δ(s, a) ∃t1 ∈ δ(t, a), s1 ≡ t1.

If ≡ is right invariant, then we can define the quotient automaton A/≡ in the
usual way, and L(A/≡) = L(A).

The notions of partial derivatives and partial derivative automata were intro-
duced by Antimirov [1] for simple regular expressions. Bastos et al. [2] presented
an extension of the Antimirov construction from RE∩ expressions.

Definition 1. For α ∈ RE∩ and a ∈ Σ, the set ∂a(α) of partial derivatives of
α w.r.t. a is defined by:

∂a(∅) = ∂a(ε) = ∅

∂a(b) =

{
{ε}, if a = b

∅ otherwise

∂a(α?) = ∂a(α)� α?

∂a(α+ β) = ∂a(α) ∪ ∂a(β)

∂a(αβ) =

{
∂a(α)� β ∪ ∂a(β), if ε(α) = ε

∂a(α)β, otherwise

∂a(α ∩ β) = ∂a(α) ∩· ∂a(β),

where for S, T ⊆ RE∩ and β ∈ RE∩, S � β = { αβ | α ∈ S }, β�S = { βα | α ∈
S }, and S ∩· T = { α ∩ β | α ∈ S, β ∈ T }.

This definition is extended to any word w by ∂ε(α) = {α}, ∂wa(α) =⋃
αi∈∂w(α) ∂a(αi), and ∂w(R) =

⋃
αi∈R ∂w(αi), where R ⊆ RE∩. The set of par-

tial derivatives of an expression α is ∂(α) =
⋃
w∈Σ? ∂w(α). As for simple regular

expressions, the partial derivative automaton of an expression α ∈ RE∩ is defined
by Apd(α) = 〈∂(α), Σ, {α}, δpd, Fpd〉, where Fpd = { γ ∈ ∂(α) | ε(γ) = ε } and
δpd(γ, a) = ∂a(γ). It follows that L(Apd(α)) is exactly L(α) and by construction
Apd(α) is accessible. Bastos et al. [2] showed also that |∂(α)| ≤ 2|α|Σ−|α|∩−1 + 1
and asymptotically and on average an upper bound for the number of states is
(1.056 + o(1))n, where n is the size of the expression.

3 Indexed Expressions

Given an alphabet Σ and a nonempty set of indexes J ⊆ N, let ΣJ = { aj |
a ∈ Σ, j ∈ J }. An indexed regular expression is a regular expression over the
alphabet ΣJ such that for all ai, bj ∈ ΣJ occurring in the expression, a 6= b
implies i 6= j. We let ρ, ρ1, ρ2, . . . denote indexed regular expressions. If ρ is an
indexed expression, then ρ is the regular expression over the alphabet Σ obtained
by removing the indexes. The set of all indexes occurring in ρ is denoted by



4 S. Broda, A. Machiavelo, N. Moreira, R. Reis

ind(ρ) = { i | ai ∈ Σρ }. Given an indexed expression ρ and i ∈ ind(ρ), `ρ(i) is
the letter indexed by i in ρ. From now on, we will simply write `(i) for `ρ(i) since
it will always be clear that we are referring to a specific expression ρ. Given an
indexed expression ρ, let

Iρ = { I ⊆ ind(ρ) | I 6= ∅ and ∀i1, i2 ∈ I, `(i1) = `(i2) }.

For I ∈ Iρ we extend the definition of ` by `(I) = `(i), i ∈ I. Finally, we
say that ρ is well-indexed if for all subterms of ρ of the form ρ1 ∩ ρ2 one has
ind(ρ1) ∩ ind(ρ2) = ∅.

Example 2. For ρ = a1(a4b
?
5 ∩ a4) one has ρ = a(ab? ∩ a), ind(ρ) = {1, 4, 5},

`(4) = `({1, 4}) = a and Iρ = {{1}, {4}, {5}, {1, 4}}. However, this expression is
not well-indexed, since a4 occurs on both sides of an intersection.

Definition 3. Consider an indexed expression ρ. For L ⊆ I?ρ and x = I1 · · · In ∈
L, we define `(x) = `(I1) · · · `(In) and `(L) = { `(x) | x ∈ L }. The indexed
intersection of two words x = I1 · · · Im, y = J1 · · · Jn ∈ I?ρ is defined by x ∩I y =
(I1∪J1) · · · (In∪Jn) if `(x) = `(y)1, and undefined otherwise. Then, the indexed
intersection of two languages L1, L2 ∈ I?ρ is defined as follows:

L1 ∩I L2 = { x ∩I y | x ∈ L1, y ∈ L2 }.

We define the index-language LI(ρ) ⊆ I?ρ associated to ρ as follows.

LI(∅) = ∅,
LI(ε) = {ε},

LI(ai) = {{i}},
LI(ρ?) = LI(ρ)?,

LI(ρ1 + ρ2) = LI(ρ1) ∪ LI(ρ2),
LI(ρ1 · ρ2) = LI(ρ1) · LI(ρ2),
LI(ρ1 ∩ ρ2) = LI(ρ1) ∩I LI(ρ2).

Example 4. For ρ = (a1a2+b3+a4)?∩(a5+b6)?, we have LI(ρ) = {{4, 5}, {3, 6},
{1, 5}{2, 5}, {4, 5}{4, 5}, {4, 5}{3, 6}, . . .}, and `(LI(ρ)) = {a, b, aa, ab, . . .} (since
`({1, 5}{2, 5}) = `({4, 5}{4, 5}) = aa).

Proposition 5. Given an indexed expression ρ, one has `(LI(ρ)) = L(ρ).

4 A Position Automaton for RE∩ Expressions

Let α ∈ RE∩. We define the set of positions in α by pos(α) = {1, . . . , |α|Σ}. As
usual, we let α denote the expression obtained from α by indexing each letter
with its position in α. The same notation is used to remove the indexes, as
already stated, thus, α = α. Note that for α ∈ RE∩, the indexed expression α is
always linear (thus well-indexed), and also pos(α) = ind(α).

Given an indexed linear expression ρ we define the following sets:

First′(ρ) = { I | Ix ∈ LI(ρ) },
Last′(ρ) = { I | xI ∈ LI(ρ) },

Follow′(ρ) = { (I, J) | xIJy ∈ LI(ρ) }.
1 Note that `(x) = `(y) implies that m = n and that `(x ∩I y) = `(x) = `(y).



Position Automaton Construction for Reg. Expr. with Intersection 5

Then, given α ∈ RE∩, we define First(α) = First′(α), Last(α) = Last′(α), and
Follow(α) = Follow′(α).

Definition 6. The position automaton of an expression α ∈ RE∩ is

Apos(α) = 〈Spos, Σ, {{0}}, δpos, Fpos〉,

where Spos = {{0}} ∪ {I ∈ Iα | xIy ∈ LI(α) for some x, y ∈ I?α },
δpos = { (I, `(J), J) | (I, J) ∈ Follow(α) } ∪ { ({0}, `(I), I) | I ∈ First(α) },

Fpos =

{
Last(α) ∪ {{0}}, if ε(α) = ε;

Fpos = Last(α), otherwise.

Proposition 7. Given an expression α ∈ RE∩, one has L(Apos(α)) = L(α).

Note that for regular expressions without intersection (simple regular ex-
pressions) the automaton is, by the definition of LI , isomorphic to the classic
position automaton, with the difference that now states are labelled with sin-
gletons {i} instead of i ∈ pos(α) ∪ {0}. We now give definitions for recursively
computing sets corresponding to First, Last and Follow. These definitions lead to
supersets of the corresponding sets but we will proof that extra elements can be
discarded and if we trim the resulting NFA we obtain Apos.

Definition 8. Given a indexed well-indexed expression ρ, let Fst(ρ) ⊆ Iρ be
inductively defined as follows,

Fst(∅) = Fst(ε) = ∅
Fst(ai) = {{i}}
Fst(ρ?) = Fst(ρ)

Fst(ρ1 + ρ2) = Fst(ρ1) ∪ Fst(ρ2)

Fst(ρ1 · ρ2) =

{
Fst(ρ1) ∪ Fst(ρ2), if ε(ρ1) = ε

Fst(ρ1), otherwise

Fst(ρ1 ∩ ρ2) = Fst(ρ1)⊗ Fst(ρ2).

where for F1, F2 ⊆ Iρ, F1 ⊗ F2 = { I1 ∪ I2 | `(I1) = `(I2) and I1 ∈ F1, I2 ∈ F2 }.

By construction, all elements I ∈ Fst(ρ) are non-empty and such that `(i1) =
`(i2) for all i1, i2 ∈ I, guaranting that ⊗ is well defined and Fst(ρ) ⊆ Iρ.

Example 9. We have Fst(a?1b
?
2∩a3) = Fst(a?1b

?
2)⊗Fst(a3) = {{1}, {2}}⊗{{3}} =

{{1, 3}}.

Definition 10. Given a well-indexed expression ρ, the set Lst(ρ) ⊆ Iρ is defined
as Fst(ρ), with the difference that for concatenation we have:

Lst(ρ1 · ρ2) =

{
Lst(ρ1) ∪ Lst(ρ2), if ε(ρ2) = ε

Lst(ρ2), otherwise.



6 S. Broda, A. Machiavelo, N. Moreira, R. Reis

The set Fol(ρ) ⊆ Iρ × Iρ is inductively defined as follows,

Fol(∅) = Fol(ε) = Fol(ai) = ∅
Fol(ρ?) = Fol(ρ) ∪ Lst(ρ)× Fst(ρ)

Fol(ρ1 + ρ2) = Fol(ρ1) ∪ Fol(ρ2)
Fol(ρ1 ∩ ρ2) = Fol(ρ1)⊗ Fol(ρ2)

Fol(ρ1 · ρ2) = Fol(ρ1) ∪ Fol(ρ2) ∪ Lst(ρ1)× Fst(ρ2).

where, for S1, S2 ⊆ Iρ × Iρ,

S1 ⊗ S2 = { (I1 ∪ I2, J1 ∪ J2) | (I1, J1) ∈ S1, (I2, J2) ∈ S2 and

`(I1) = `(I2), `(J1) = `(J2) }.

In the next definition we will use the projection functions on the first and
second coordinates, π1 and π2, respectively.

Definition 11. Given α ∈ RE∩, let Aposi(α) = 〈Sposi, Σ, {{0}}, δposi, Fposi〉 be
the NFA where Sposi = {{0}}∪Fst(α)∪Lst(α)∪π1(Fol(α))∪π2(Fol(α)), and δposi

and Fposi are defined as δpos and Fpos, substituting the functions First, Last and
Follow, by Fst, Lst and Fol, respectively.

We will now show that L(Apos(α)) = L(Aposi(α)), and that Apos(α) is ob-
tained by trimming Aposi(α), as the result of the two following lemmas. An
example is presented at the end of this section.

Lemma 12. Given an indexed linear expression ρ, one has: 1) First′(ρ) ⊆ Fst(ρ);
2) Last′(ρ) ⊆ Lst(ρ); 3) Follow′(ρ) ⊆ Fol(ρ).

Example 13. For ρ = (a1∩ b2)c3d4, we have ({3}, {4}) ∈ Fol(ρ), but ({3}, {4}) 6∈
Follow(ρ). Thus, Fol(ρ) 6⊆ Follow(ρ).

The previous Lemma shows that for any α ∈ RE∩, Apos(α) is a subautoma-
ton of Aposi(α), and thus L(Apos(α)) ⊆ L(Aposi(α)). We now show that both
recognize the same language and can be made isomorphic by trimming Aposi.

Lemma 14. Given an indexed linear expression ρ and some n ≥ 1, if In ∈
Lst(ρ) and there exist I1, . . . , In ∈ Iρ such that

({0}, `(I1), I1), (I1, `(I2), I2), . . . , (In−1, `(In), In) ∈ δposi,

then I1 · · · In ∈ LI(ρ).

Theorem 15. For any α ∈ RE∩, L(Apos(α)) = L(Aposi(α)).

From these results, it follows that if we trim the automaton Aposi we obtain
exactly Apos.

Example 16. Consider α = (ba?b + a) ∩ (aa + b)?. Then α = (b1a
?
2b3 + a4) ∩

(a5a6 + b7)?, Fst(α) = {{1, 7}, {4, 5}}, Lst(α) = {{3, 7}, {4, 6}}, and Fol(α) =
{({2, 5}, {2, 6}), ({2, 6}, {2, 5}), ({2, 6}, {3, 7}), ({1, 7}, {2, 5}), ({1, 7}, {3, 7})}.

The automaton Aposi(α) is represented in Figure 1. The trimmed automaton,
Aposi(α)t, is obtained removing the states labeled by {4, 5} and {4, 6}, and the
correspondent transitions.



Position Automaton Construction for Reg. Expr. with Intersection 7

{0} {1, 7}

{4, 5}

{2, 5} {2, 6}

{3, 7}{4, 6}

b

a

a

b

a

a
b

Fig. 1. Aposi((ba
?b + a) ∩ (aa + b)?)

5 A c-Continuation Automaton for RE∩ Expressions

In the case of simple regular expressions, Champarnaud and Ziadi [9] defined a
nondeterministic automaton isomorphic to the position automaton, called the
c-continuation automaton, in order to show that the partial derivative automa-
ton can be seen as a quotient of the position automaton. With the same purpose,
in this section, we present a c-continuation automaton for expressions with inter-
section. Moreover, instead of considering derivatives of regular expressions [5],
we use partial derivatives to restate some known results for simple regular ex-
pressions.

The notion of continuation was defined by Berry and Sethy [3], and developed
by Champarnaud and Ziadi [9], by Ilie and Yu [14], and by Chen and Yu [10].
Given a ∈ Σ and a linear simple expression α, the set of partial derivatives
∂xa(α), for any word x ∈ Σ?, is either ∅ or has a unique element γ called
the continuation of a in α. Note that using partial derivatives, continuations
and non-null c-continuations coincide. Furthermore, the continuation can be
obtained by some refinement of the inductive definition of partial derivatives,
exploring the linearity of α. In order to establish similar results for linear well-
indexed expressions, we introduce the notion of partial index-derivative of a
well-indexed expression ρ w.r.t. an index I ∈ Iρ.

Given a well-indexed expression ρ, a subexpression τ of ρ, and a set of indexes
I ∈ Iρ, let I

∣∣
τ

denote the set of indexes in I that occur in τ . This definition is

naturally extended to words x = I1 · · · In ∈ I?ρ by x
∣∣
τ

= I1
∣∣
τ
· · · In

∣∣
τ
, for n ≥ 0.

Definition 17. The set of partial index-derivatives of a well-indexed expression
ρ by I ∈ Iρ ∪ {∅}, ∂I(ρ), is defined by

∂I(∅) = ∂I(ε) = ∅

∂I(ai) =

{
{ε}, if I = {i}
∅, otherwise

∂I(ρ
?) = ∂I(ρ)� ρ?

∂I(ρ1 + ρ2) = ∂I(ρ1) ∪ ∂I(ρ2)

∂I(ρ1 · ρ2) =

{
∂I(ρ1)� ρ2 ∪ ∂I(ρ2), if ε(ρ1) = ε

∂I(ρ1)� ρ2, otherwise

∂I(ρ1 ∩ ρ2) =

{
∂I|ρ1 (ρ1) ∩· ∂I|ρ2 (ρ2), if I = I

∣∣
ρ1
∪ I
∣∣
ρ2

∅, otherwise.



8 S. Broda, A. Machiavelo, N. Moreira, R. Reis

The set of partial index-derivatives of ρ by a word x ∈ I?ρ is then inductively
defined by ∂ε(ρ) = {ρ} and ∂xI(ρ) =

⋃
ρ′∈∂x(ρ) ∂I(ρ

′). If S is a set of well-indexed

expressions, ∂x(S) =
⋃
ρ∈S ∂x(ρ).

It is straightforward to see that ∂∅(ρ) = ∅ for all ρ. Although ∅ 6∈ Iρ, the
notion of partial index-derivative includes the derivative by an empty set of
indexes, in order to guarantee that the derivative of an intersection is well-
defined. Also note that the partial index-derivative of a well-indexed expression
is still well-indexed. Finally, the set of partial index-derivatives of ρ by all I ∈ Iρ
can be calculated simultaneously using an extension of the linear form defined
by Antimirov [1], i.e. considering pairs (I, ρ′) where ρ′ ∈ ∂I(ρ). The following
lemma is proved by induction on n.

Lemma 18. If x = I1 · · · In and ∂x(ρ) 6= ∅, then x = x
∣∣
ρ
.

Example 19. We have ∂{1,3}(a
?
1b
?
2 ∩ a3) = ∂{1}(a

?
1b
?
2) ∩· ∂{3}(a3) = {a?1b?2 ∩ ε}.

Proposition 20. Consider a well-indexed expression ρ and I ∈ Iρ. Then,

I−1LI(ρ) = LI(∂I(ρ)) and LI(ρ) = LI
(⋃

I∈Iρ (I� ∂I(ρ)) ∪ ε(ρ)
)
.

Corollary 21. For every well-indexed expression ρ ∈ RE∩ and word x ∈ I?ρ ,
one has x−1LI(ρ) = LI(∂x(ρ)) and LI(ρ) = LI(

⋃
x∈I?ρ

(x� ∂x(ρ)) ∪ ε(ρ)).

The following is an adaptation, for partial index-derivatives and intersection,
of a result due to Berry and Sethi [3].

Proposition 22. Consider a linear indexed expression ρ ∈ RE∩ and xI ∈ I?ρ ,
and let suff(x) denote the set of all suffixes of x. The partial index-derivative
∂xI(ρ) of ρ satisfies:

∂xI(∅) = ∂xI(ε) = ∅,

∂xI(ai) =

{
{ε}, if xI = {i},
∅, otherwise,

∂xI(ρ1 + ρ2) =


∂xI(ρ1), if xI = (xI)

∣∣
ρ1
,

∂xI(ρ2), if xI = (xI)
∣∣
ρ2
,

∅ otherwise

∂xI(ρ1 · ρ2) =


∂xI(ρ1)� ρ2, if xI = (xI)

∣∣
ρ1
,

∂zI(ρ2), if x = yz, ε(∂y(ρ1)) = ε, zI = (zI)
∣∣
ρ2
,

∅, otherwise,

∂xI(ρ
?) ⊆

⋃
v∈suff(x)

∂vI(ρ)� ρ?,

∂xI(ρ1 ∩ ρ2) =

{
∂(xI)|ρ1 (ρ1) ∩· ∂(xI)|ρ2 (ρ2), if xI = (xI)

∣∣
ρ1
∩I (xI)

∣∣
ρ2
,

∅, otherwise.



Position Automaton Construction for Reg. Expr. with Intersection 9

The previous proposition implies that if ∂xI(ρ) 6= ∅, then it has only one
element for every x ∈ I?ρ . This fact is proved in Proposition 24 and the unique
element (if exists) is defined below.

Definition 23. Given a linear indexed expression ρ and a set of indexes I, the
c-continuation cI(ρ) of ρ w.r.t. I is defined by the following rules.

cI(∅) = cI(ε) = ∅

cI(ai) =

{
ε, if I = {i}
∅, otherwise

cI(ρ
?) = cI(ρ)ρ?

cI(ρ1 + ρ2) =

{
cI(ρ1), if cI(ρ1) 6= ∅
cI(ρ2), otherwise

cI(ρ1 · ρ2) =

{
cI(ρ1) · ρ2, if cI(ρ1) 6= ∅
cI(ρ2), otherwise

cI(ρ1 ∩ ρ2) =

{
cI|ρ1 (ρ1) ∩ cI|ρ2 (ρ2), if I = I

∣∣
ρ1
∪ I
∣∣
ρ1

∅, otherwise.

It is easy to verify that cI(ρ) 6= ∅ implies I ⊆ ind(ρ), i.e. I
∣∣
ρ

= I.

Proposition 24. Consider a linear indexed expression ρ and I ∈ Iρ. Then, for
every x ∈ I?ρ such that ∂xI(ρ) 6= ∅, one has ∂xI(ρ) = {cI(ρ)} and cI(ρ) 6= ∅.

Proof. We proceed by induction on the structure of ρ. For ∅ and ε the set
of partial index-derivatives is ∅. Let ρ be ai. We need to prove that ∀I ∈
Iai∀x ∈ I?ai (∂xI(ai) 6= ∅ =⇒ ∂xI(ai) = {cI(ai)} 6= {∅}) . Let ∂xI(ai) 6= ∅, then
by Proposition 22, ∂xI(ai) = {ε} and xI = {i}. Then I = {i} and cI(ai) = ε.
Thus, we conclude that ∂xI(ai) = {cI(ai)} 6= {∅}. Let us suppose that for ρi,
i = 1, 2 we have ∀I ∈ Iρi∀x ∈ I?ρi (∂xI(ρi) 6= ∅ =⇒ ∂xI(ρi) = {cI(ρi)} 6= {∅}).
Let ρ = ρ1 + ρ2 be such that ∂xI(ρ1 + ρ2) 6= ∅. Then, ∂xI(ρ1 + ρ2) = ∂xI(ρi)
with xI = (xI)

∣∣
ρi

, for some i ∈ {1, 2}. By the induction hypothesis, ∂xI(ρi) =

{cI(ρi)} 6= {∅}. Thus, cI(ρi) 6= ∅ and cI(ρ1 + ρ2) = cI(ρi). Let ρ = ρ1ρ2. If
∂xI(ρ1ρ2) 6= ∅ then we have to consider two cases. Let ∂xI(ρ1ρ2) = ∂xI(ρ1)� ρ2
and xI = (xI)

∣∣
ρ1

. Then, ∂xI(ρ1) 6= ∅ and ∂xI(ρ1) = {cI(ρ1)}. We conclude that

cI(ρ1) 6= ∅ and cI(ρ1ρ2) = cI(ρ1). In the second case, ∂xI(ρ1ρ2) = ∂zI(ρ2) 6= ∅,
x = yz, ε(∂y(ρ1)) = ε and zI = (zI)

∣∣
ρ2

. We conclude that y = y
∣∣
ρ1

and

I = I
∣∣
ρ2

. Then, cI(ρ1) = ∅ and cI(ρ1ρ2) = cI(ρ2). By the induction hypothe-

sis, ∂zI(ρ2) = {cI(ρ2)} and the result follows. Let ρ = ρ?1. If ∂xI(ρ
?
1) 6= ∅, we

can write ∂xI(ρ
?
1) = ∂v1I(ρ1) � ρ?1 ∪ · · · ∪ ∂vnI(ρ1) � ρ?1, with n ≥ 1, such that

for all 1 ≤ i ≤ n, x = uivi and ∂viI(ρ1) � ρ?1 6= ∅. By the induction hypothesis,
each nonempty set of partial index-derivatives ∂viI(ρ1) is equal to {cI(ρ1)} 6= {∅}.
Thus, ∂xI(ρ

?
1) = {cI(ρ1)ρ?1}. Finally, let ρ = ρ1∩ρ2 be such that ∂xI(ρ1∩ρ2) 6= ∅.

Then ∂xI(ρ1 ∩ ρ2) = ∂(xI)|ρ1 (ρ1) ∩· ∂(xI)|ρ2 (ρ2), xI = (xI)
∣∣
ρ1
∩I (xI)

∣∣
ρ2

and

∂(xI)|ρi (ρi) 6= ∅, for i = 1, 2. Moreover, ∂(xI)|ρi (ρi) = {cI|ρi (ρi)}. The result
follows by the induction hypothesis and from the definition of cI(ρ1 ∩ ρ2). ut

This result guarantees that, given a linear indexed expression ρ and I ∈ Iρ,
all sets of partial index-derivatives ∂xI(ρ) different from ∅ are singletons with an
unique c-continuation cI(ρ) of ρ w.r.t. I.



10 S. Broda, A. Machiavelo, N. Moreira, R. Reis

Lemma 25. Consider a linear indexed expression ρ. Then, I ∈ Lst(ρ) if and
only if ε(cI(ρ)) = ε.

Lemma 26. Consider a linear indexed expression ρ and sets of indexes I, J ∈
I?ρ . Then, (I, J) ∈ Fol(ρ) if and only if J ∈ Fst(cI(ρ)).

Definition 27. The c-continuation automaton of an expression α ∈ RE∩ is

Ac(α) = 〈Sc, Σ, {({0}, c{0}(α))}, δc, Fc〉,

where Sc = { (I, cI(α)) | I ∈ Sposi }, Fc = { ( I, cI(α)) | ε(cI(α)) = ε },
c{0}(α) = α, δc = { ((I, cI(α)), `(J), (J, cJ(α))) | J ∈ Fst(cI(α)) }.

By Lemma 25, Lemma 26, and considering ϕ : Sc → Sposi such that ϕ((I, cI(α))) =
I, the following holds.

Theorem 28. For α ∈ RE∩, we have Aposi(α) ' Ac(α).

Example 29. Consider the expression α = (b1a
?
2b3 + a4) ∩ (a5a6 + b7)?, from

Example 16, and let ρ2 = (a5a6 + b7)?. We have the following c-continuations:
c{1,7}(α) = a?2b3 ∩ ρ2, c{4,5}(α) = ε ∩ a6ρ2, c{4,6}(α) = ε ∩ ρ2, c{2,5}(α) =
a?2b3 ∩ a6ρ2, c{2,6}(α) = a?2b3 ∩ ρ2, and c{3,7}(α) = ε ∩ ρ2.

6 The Apd as a Quotient of Apos

Using Ac we show that the partial derivative automaton Apd is a quotient of
Apos. This extends the corresponding result for simple regular expressions, al-
though the proof cannot use the same technique. Recall that, for a simple regular
expression α, one builds Apd(α), and then shows that when its transitions are

unmarked, the result Apd(α) is isomorphic to a quotient of Ac(α). However, with
α ∈ RE∩, this method cannot be used because, as mentioned in the introduction,
intersection does not commute with marking. For α ∈ RE∩, we will present a
direct isomorphism between Apd(α) and a quotient of Ac(α). The next lemmas
will be needed to build that isomorphism.

Lemma 30. Consider a linear indexed expression ρ and I ∈ Iρ. If I ∈ Fst(ρ),
then cI(ρ) 6= ∅ and cI(ρ) ∈ ∂I(ρ).

Lemma 31. Consider a linear indexed expression ρ and I, J ∈ Iρ, such that
J ∈ Fst(cI(ρ)). Then, cJ(ρ) ∈ ∂J(cI(ρ)).

Lemma 32. Consider well-indexed expressions ρ′, ρ and I ∈ Iρ, such that ρ′ ∈
∂I(ρ). Then, ρ′ ∈ ∂`(I)(ρ).

Lemma 33. Consider a well-indexed expression ρ, a ∈ Σ and β ∈ ∂a(ρ). Then,
there exist I ∈ Iρ and ρ′ ∈ ∂I(ρ) with `(I) = a and ρ′ = β. Furthermore, for
x = a1 · · · an ∈ Σ?, if β ∈ ∂x(ρ), there exist I1 · · · In ∈ I?ρ and ρ′ ∈ ∂I1···In(ρ)

with `(I1 · · · In) = x and ρ′ = β.



Position Automaton Construction for Reg. Expr. with Intersection 11

Given α ∈ RE∩, consider Ac(α) and the equivalence relation ≡` on Sc given
by (I, cI(α)) ≡` (J, cJ(α)) if and only if cI(α) = cJ(α), for I, J ∈ Iα ∪ {{0}}.
Lemma 34. The relation ≡` is right invariant w.r.t. Ac.

Theorem 35. For α ∈ RE∩, Apd(α) ' Ac(α)ac/≡`.
Proof. Let Ac(α)ac/≡` = (S`, Σ, δ`, [({0}, α)], F`). We define the map ϕ : S` →
∂(α) , by ϕ([(I, cI(α))]) = cI(α). We have to show that: 1) ϕ is well-defined; 2) ϕ
is bijective; 3) ϕ(δ`(s, a)) = δpd(ϕ(s), a) for every s ∈ S`, a ∈ Σ; 4) ϕ(F`) = Fpd;
5) ϕ([({0}, c{0}(α))]) = α.

Claim 1) follows from lemmas 30 and 31. The last two are obvious. That ϕ is
injective follows from the definition of ≡`. Furthermore, if β ∈ ∂(α), then there
are terms β0 = α, β1, . . . , βn = β and letters a1, . . . , an ∈ Σ, with n ≥ 0, such
that βi+1 ∈ ∂ai+1(βi) for 0 ≤ i ≤ n−1. It follows from Lemma 33 that there exist

I1 · · · In ∈ I?ρ and ρ′ ∈ ∂I1···In(α) with `(I1 · · · In) = a1 · · · an and ρ′ = β. Further-
more, by Proposition 24, we know that ∂I1···In(α) = {cIn(α)}, with cIn(α) 6= ∅.
Thus, [(In, cIn(α))] ∈ S` and we conclude that ϕ is surjective. For 3) we consider
both inclusions. Consider β ∈ ϕ(δ`(s, a)), for s ∈ S` and a ∈ Σ. Then, there ex-
ist I, J ∈ Iα such that [(I, cI(α))] = s, cJ(α) = β, (J, cJ(α)) ∈ δc((I, cI(α)), `(J))
and `(J) = a, i.e. J ∈ Fst(cI(α)). By Lemma 31, we have cJ(α) ∈ ∂J(cI(α))
and by Lemma 32, cJ(α) ∈ ∂a(cI(α)). Thus, cJ(α) ∈ δpd(cI(α), a). Now, let

β ∈ δpd(τ, a), where τ = cI(α), for some I ∈ Iα and a ∈ Σ. Then, there is a
sequence of terms τ0 = α, τ1, . . . , τn = τ and a sequence of letters a1, . . . , an ∈ Σ
such that τi+1 ∈ ∂ai+1

(τi), for 0 ≤ i ≤ n− 1, and β ∈ ∂a(τ), i.e. β ∈ ∂a1···ana(α).
By Lemma 33, there exist J1, . . . , Jn, J ∈ Iα, with `(J1 · · · JnJ) = a1 · · · ana,
and ρ′ ∈ ∂J1···JnJ(α) such that ρ′ = β. By Proposition 24, ρ′ = cJ(α). On
the other hand, it is straightforward to show by structural induction on a well-
indexed expression ρ, that ∂J(ρ) 6= ∅ implies J ∈ Fst(ρ). Thus, [(J, cJ(α))] ∈
δ`([(I, cI(α))], `(J)) and consequently β = cJ(α) ∈ ϕ(δ`([(I, cI(α))], a)). ut
Example 36. Consider α = (ba?b+ a) ∩ (aa+ b)? from examples 16 and 29. Set
β = (aa+ b)?. For the positions present in Ac(α)ac, we have c{4,5}(α) = ε ∩ aβ,

c{3,7}(α) = ε ∩ β, c{2,5}(α) = a?b ∩ aβ, and c{1,7}(α) = c{2,6}(α) = a?b ∩ β.
Merging states ({1, 7}, c{1,7}(α)) and ({2, 6}, c{2,6}(α)) in Ac(α)ac, one obtains
an NFA isomorphic to Apd(α), which is represented in Figure 2.

α

a?b ∩ β

ε ∩ aβ

a?b ∩ aβ ε ∩ β

b

a

a

b

a

Fig. 2. Apd((ba?b + a) ∩ (aa + b)?)



12 S. Broda, A. Machiavelo, N. Moreira, R. Reis

7 Final Remarks

For simple regular expressions of size n, the size of Apos(α) is O(n2), and using
Ac(α) it is possible to efficiently compute Apd(α) [9]. For regular expressions
with intersection the conversion to NFA’s has exponential computational com-
plexity [11] and both the size of Apos and Apd can be exponential in the size of
the regular expression. On the average case, however, the size of these automata
seem to be much smaller [2], and thus feasible for practical applications. In this
scenario, algorithms for building Apd using Apos seem worthwhile to develop.

References

1. Antimirov, V.: Partial derivatives of regular expressions and finite automaton con-
structions. Theoret. Comput. Sci. 155(2), 291–319 (1996)

2. Bastos, R., Broda, S., Machiavelo, A., Moreira, N., Reis, R.: Partial derivative au-
tomaton for regular expressions with intersection. In: 18th DCFS. LNCS, Springer
(2016)

3. Berry, G., Sethi, R.: From regular expressions to deterministic automata. Theoret.
Comput. Sci. 48, 117–126 (1986)

4. Brüggemann-Klein, A.: Regular expressions into finite automata. Theoret. Com-
put. Sci. 48, 197–213 (1993)

5. Brzozowski, J.: Derivatives of regular expressions. JACM 11(4), 481–494 (1964)
6. Caron, P., Champarnaud, J., Mignot, L.: Partial derivatives of an extended regular

expression. In: Dediu, A.H., Inenaga, S., Mart́ın-Vide, C. (eds.) 5th LATA. LNCS,
vol. 6638, pp. 179–191. Springer (2011)

7. Caron, P., Champarnaud, J., Mignot, L.: A general framework for the derivation
of regular expressions. RAIRO - Theor. Inf. and Applic. 48(3), 281–305 (2014)

8. Caron, P., Ziadi, D.: Characterization of Glushkov automata. Theoret. Comput.
Sci. 233(1-2), 75–90 (2000)

9. Champarnaud, J.M., Ziadi, D.: Canonical derivatives, partial derivatives and finite
automaton constructions. Theoret. Comput. Sci. 289, 137–163 (2002)

10. Chen, H., Yu, S.: Derivatives of regular expressions and an application. In: Dinneen,
M.J., Khoussainov, B., Nies, A. (eds.) Computation, Physics and Beyond, WTCS
2012. LNCS, vol. 7160, pp. 343–356. Springer (2012)

11. Gelade, W.: Succinctness of regular expressions with interleaving, intersection and
counting. Theor. Comput. Sci. 411(31-33), 2987–2998 (2010)

12. Glushkov, V.M.: The abstract theory of automata. Russian Math. Surveys 16, 1–53
(1961)

13. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison Wesley (1979)

14. Ilie, L., Yu, S.: Follow automata. Inf. Comput. 186(1), 140–162 (2003)
15. McNaughton, R., Yamada, H.: Regular expressions and state graphs for automata.

IEEE Transactions on Electronic Computers 9, 39–47 (1960)
16. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009)
17. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of

Formal Languages, vol. 1, pp. 41–110. Springer (1997)


	Position Automaton Construction for Regular Expressions with Intersection

