
A HIERARCHICAL CONTROL ARCHITECTURE
FOR MOBILE OFFSHORE BASES

Anouck Girard and J. Karl Hedrick
The University of California at Berkeley*

João Tasso de Figueiredo Borges de Sousa
The University of Porto, Portugal**

* 5141 Etcheverry Hall, University of California at Berkeley, Berkeley, CA 94720, USA
anouck@robotics.eecs.berkeley.edu, khedrick@me.berkeley.edu
** FEUP, Faculdade de Engenharia da Universidade do Porto, R. dos Bragas, 4099 Porto Codex, Portugal
sousa@robotics.eecs.berkeley.edu

ABSTRACT

A hierarchical architecture for Mobile Offshore
Bases (MOB) control is presented. By a control
architecture we mean a specific way of organizing the
motion control and navigation functions performed by
the MOB. It is convenient to organize the functions into
hierarchical layers. This way, a complex design
problem is partitioned into a number of more
manageable sub-problems that are addressed in separate
layers. The decomposition also allows for modular
design and testing and the incorporation of plug-and-
play components.

This paper discusses the MOB require ments and
maps them onto a layered control architecture. The
formalization of the hierarchy is accomplished in terms
of the specific functions accomplished by each layer
and of the interfaces between layers. The
implementation of the layers is discussed and
illustrative examples are provided.

Keywords: Mobile Offshore Base, MOB, Hybrid
System, Control Architecture, Supervisory Control,
Dynamic Positioning

1. INTRODUCTION
The concept of a floating, at-sea base stems from the

necessity for the United States to be able to stage
military and/or humanitarian operations in any part of
the world. A Mobile Offshore Base (MOB) is a large
self-propelled, floating, pre-positioned ocean structure
formed of three to five platforms and reaching up to
1,500 meters in length. The MOB must be able to
accommodate C-17 aircraft operations, and cargo
transfer from container ships. At this stage, feasibility
remains a fundamental question, and control systems

and dynamic positioning technology must be developed
and evaluated. This effort is part of a larger project, as
described in [1]. The CASSETTE (Development And
Demonstration Of Control And SyStem EvaluaTion
TEchniques) project from PATH - UC Berkeley is part
of the MOB technical base effort devoted to
determining the feasibility of dynamic positioning of
multiple MOB platforms . In this project we are
developing an automated Multi-Module Dynamic
Positioning Control System (MMDPCS) for the MOB,
and a simulation template to uniformly support
MMDPCS designs and performance evaluations.

Under this project the team was tasked to virtually
demonstrate the MOB control and evaluation method,
and physically validate the key design issues with scale
models of the MOB.

In this paper, we propose a hierarchical control
architecture for the control and maneuver coordination
of multiple modules within the MOB. Example
maneuvers include, forming or breaking connections
between MOB components, and reorientation of the
entire MOB string in the direction of the wind. The
proposed architecture distributes information and
control authority among modules and deals with
exceptions and faults. It is organized hierarchically,
with the lower layers of the hierarchy consisting of
continuous controllers that interact with the sensors and
actuators to produce the desired positioning and
tracking performance. Higher layers of the hierarchy
will be modeled by discrete event systems used for
maneuver coordination, fault identification and
reconfiguration. These layers sequentially organize the
generation of the optimal coordinated trajectories for all
modules (global control), the optimal trajectories for
each module (module control), the optimal trajectory

tracking schemes and the optimal motor controls (local
control), to name just a few. The de-coupling of
optimization problems eventually compromises the
overall optima lity but makes the problem tractable.
Hence, the architecture represents an empirical
compromise between tractability and optimality. It will
become apparent that the task is formidable, even in a
reduced setting. Here we give an overview of what is
involved, describe the key design concepts and
establish a framework for tackling the problem.

This paper is organized as follows. In section 2, some
of the representative requirements for the MOB are
presented, along with some expected maneuvers and
mission profiles. In section 3, we outline the proposed
solution and describe the control architecture that is the
starting point of our design. In section 4, we briefly
discuss the implementation of the architecture in the
MOB SHIFT framework. Controller design and
implementation are described in section 5. Finally in
section 6, we highlight some of the subtle issues raised
by the design process.

2. MOB REQUIREMENTS
2.1 Terminology
The words "platform" and "module" are used
interchangeably. A Module is a semi-submersible
platform that is used as a component for the MOB.
MMDPCS represents a module's Multi-Module
Dynamic Positioning Control System. A MOB is
defined as a set of independent modules providing
landing capabilities for conventional take-off and
landing of aircraft. Up Time is the fraction of the
mission duration when the MOB is available for air
operations. The term "docking" was used to represent
the action of assembling two modules end-to-end.

2.2 Modes of operation
One of the MOB mission requirement under analysis

is the capability to support sea and air operations. In
order to achieve this goal the MOB is required to:
• Be aligned with the dominant wind, local currents,

waves, etc. that may introduce transverse
perturbations.

• Remain operational for CTOL (conventional take-
off and landing) aircraft through Sea State 6.

• Disassemble to survive worse environments, wind
and wave drift forces, deriving from Sea State 7.

• Reassemble when the environment reduces to Sea
State 6.

The operational availability for air operations is the
single most important measure of effectiveness of this
capability. The anticipated modes of operation are as
follows:
• Unassembled mode: each individual module

maintains a prescribed position and orientation.

• Assembled mode: the MOB assembly maintains a
general position and orientation, and the individual
modules maintain relative positions and
orientations.

• Transitioning modules: independent modules are in
preparation for mechanically
connecting/disconnecting the modules end-to-end.
Each transitioning mode corresponds to some
prescribed sequence of operations. There are two
major transitioning modes:
• the normal mode where the assembling and

disassembling operations are executed one
platform at a time, and the

• emergency mode, where disassembling is
executed as fast as possible under survival
conditions deriving form Sea State 7.

The MOB operation requires adaptation to the
environmental conditions. By adaptation we mean the
downgrading of some specifications to be able to fully
accomplish the operational requirements. A lattice of
preferred operating modes is provided as a constraint
that will be used to trigger the required adaptation
schemes. This lattice does not include fault-recovery
modes that are treated separately in the architecture.

2.3 Mission profiles
 An example of a typical mission is presented below.
 In a first time, several independent modules assemble

to form a MOB. This requires position and speed
controllers for each module, a dynamic positioning
controller for the immobile module(s) and a docking
controller for the approaching module.

 1

2

3

 Figure 1.
 From unassembled mode to assembled mode.

 Then, the group goes to and maintains a desired
position while aligning with the wind. After a given
period of time, the MOB breaks-up and the modules
return to independent operation. This phase assumes
that the assembled MOB will be able to perform
dynamic positioning, alignment into the wind and wind
tracking. Also, individual modules need speed and
position control for the disassembly phase.

 1

 2

 3

 1

 2

 3

 1

 2

 3

 Figure 2.
 From assembled mode to unassembled mode.

 Examining this profile, we extracted a finite, exhaustive
number of maneuvers that can be used to form all MOB
missions. Should the need for additional maneuvers
arise, the architecture is sufficiently flexible to
accommodate them with minimal changes.

3. OUTLINE OF PROPOSED SOLUTION
Due to their unusual size and weight, very large

floating structures in general, and Mobile Offshore
Bases in particular, raise some specific control issues.
The description requirements are very complex since
the whole system includes both continuous activities
and discrete-event features (i.e., constitutes a hybrid
system) evolving in several time scales. The dynamic
nature of the problem stems from the existence of
multiple vehicles whose roles, relative positions, and
dependencies change during operations. To meet these
complex system description requirements, the
architecture is modeled as a dynamic network of hybrid
systems using the SHIFT [9] formalism and
specification language.

3.1 Assumptions
For the purpose of MMDPCS design and

performance evaluation, the MOB system comprises
the following elements:
1) Hierarchical control architecture.
2) Independent systems:

a) Semi-submersible platform.
b) Power plant.
c) Thrusters.
d) Sensors.
e) Flexible bridges (de-couples motion from
other platforms in the MOB).
f) Connectors (couples the motion with that of
other platforms in the MOB).

The following assumptions were considered in the
design of the MOB SHIFT Evaluation Framework [12].
1) Fixed number of modules.
2) Thruster and relative position sensor failures are

the only physical failures modeled in the MOB
SHIFT simulation framework.

3) Relative position sensor failures are the unique
cause for drive-off.

4) The connectors and bridges are 100% reliable.
However, the current version of the hierarchical
control architecture does not prevent stress beyond
a prescribed limit. Hence, induced physical failures
may occur.

5) The current version of the hierarchical control
architecture does not include fault detection and
recovery schemes, except for the thrust allocation
unit that accommodates some types of failures.

6) All faults are observable.

3.2 Design Process
The control architecture design will consist of the

following steps:
1) Deciding on the number of levels, their role, their

descriptive language and the way they interact.
2) Identifying the information that is needed at each

level to make meaningful decisions.
3) Designing interfaces to the sensing and

communication architecture.
The design process benefited from the PATH

experience in the motion coordination of multiple
vehicles [2]. The PATH architecture design organizes
individual motions into a small number of prototypical
maneuvers that are used as atoms for more complex
prototypical maneuvers involving the motion
coordination of several vehicles. Prototypical motions
can then be verified for safety and consistency as
required by the safe operation of the whole system.
This same organization was mapped onto the formal
layered PATH architecture.

Although less structured than an automated highway,
the control and coordination of the MOB can be
decomposed according to the same principles. The
movement of modules is realized through basic
maneuvers (as described below) that are coordinated.

To complete a mission as described in section 2.3,
five separate controllers are necessary:
• go to a specified location (move MOB),
• assemble with other modules (assemble MOB),
• dynamically position (DP MOB) and align in the

wind (align MOB in wind),
• split up MOB.
Hence there are five different specific maneuvers for
each module to perform. These maneuvers, in turn,
require the consideration of a finite number of atomic
control laws:

a) The "go to a point" law allows the module to
move to a specified location.

b) The "trajectory tracking" law is a more refined
version of the previous one, which allows you to
track a trajectory. This is particularly useful for
assembling and splitting up the modules of a
MOB.

c) The "decelerate to assemble" law is used to
control the speed of the platform accurately

while assembling. This is necessary to avoid
collisions and increase the precision of the
assembling maneuvers.

d) The "dynamic positioning" law is used to
maintain the alignment of the platforms and
control their inertial and relative positions.

e) The "leaderless", "first as leader", "middle as
leader" and "follower" laws all refer to different
schemes to distribute the control between
platforms. These are described in more detail in
[7] and in section 5.1.1.

After identifying the atomic laws, the requirements in
terms of actuator, sensor and communication
capabilities were laid out, as shown in figure 3.

Figure 3.
System requirements for atomic laws.

The atomic laws can be combined to form all the basic
maneuver laws, as illustrated in figure 4. A collision
avoidance law is presented to make the set complete,
but has not been implemented or tested yet.

Figure 4.
Combination of atomic laws to obtain basic laws.

Each basic maneuver is paired with a compatible
reference generator.
At this point, a controller was designed for each of the
basic maneuvers. Each basic maneuver requires a

hybrid controller that coordinates the execution of the
underlying atomic laws and the corresponding
reference generator according to the logic encapsulated
in a state machine. The controllers and reference
generators all use the laws described in figures 3 and 4.

Figure 5.
Organization of basic maneuver control.

The dependencies for each of the five aforementioned
controllers are listed in figure 6. Identifying the
dependencies of each controller on communications,
sensors and actuators is particularly useful in the
context of fault tolerant architectures. It allows for
reconfiguration of the system in the presence of failure,
for example having two functioning platforms
following one with multiple thruster failures to remain
operational.

Figure 6.
System requirements for controllers.

3.3 Overview of Architecture
To deal with mission handling and control as well as

dynamic positioning of the platforms and safety issues,
a three-layer software architecture (as presented in
figure 7) that moves from discrete to continuous signals
was used [2,3,4]. It should be noted that our design is
not necessarily unique or optimal, but as a preliminary

actuator capabilities

thrusters

sensor capabilities

positions (earth-fixed)

velocities (body-fixed)

relative distance (fore)

communications capabilities

module to module

 1

 1

 1

 1

 1

 go to a point law

 trajectory tracking law

decelerate to assemble law

 follower law

&

&

&

&

clock ticks 1

first-leader law&

middle-leader law

relative distance (aft) 1

&

dynamic positioning law

leaderless law

go to a point law

 decelerate to assemble law

trajectory tracking law

 follower law

split up law

 assemble law

 leaderless law

leader law

communications capabilities

module to module 1

&

&

&

&

collision avoidance law

communications capabilities

module to module 1 needed for all controllers

leader law

 assemble law

follower law

leaderless law
align MOB wind controller

 assemble MOB controller

 split up MOB controller

move MOB controller

&

&

&

&

collision avoidance law

split up law

&

OR

command center to module 1 needed for all controllers

DP MOB controller&

State Machines - Logic

Reference Generation
optimal control,

graph search

Leaderless Control
atomic laws

Switches between maneuvers

Desired position/speedActual position/speed

approach is sufficient to prove our point. Different
alternatives for hybrid system design can be found in
[5,6].

Supervisory Control

Maneuver Coordination

MOB Stability and Control

VehicleContinuous Time

Discrete Time
Commander

Communications

Failure/Event Management

Monitors, Fault Detection

 Figure 7.
Hierarchical Control Architecture for the MOB.

• MOB stability and control layer: the automated
modules. The module dynamical models are given
in terms of nonlinear ordinary differential
equations. This level deals with continuous signals,
and interfaces directly with the platform hardware.
It contains several dynamic-positioning algorithms,
a thruster allocation scheme, and sensor data
processing and monitoring for fault detection.
Control laws are given as vehicle state or
observation feedback policies for controlling the
vehicle dynamics. Sensor processing at the MOB
stability and control layer includes environmental
monitors that are used to signal changes in the
environmental conditions. The corresponding
events are sent to the maneuver coordination layer
that will promote the change to the next preferred
mode.

• Maneuver coordination layer: control and
observation subsystems responsible for safe
execution of atomic maneuvers such as assemble,
split, wind tracking, and go to a location.
Maneuvers may include several modes according
to the lattice of preferred operating modes. Mode
changes are triggered by events generated by the
stability layer monitors. This feature provides a
first level of dynamic reconfiguration that is further
extended to accommodate fault handling. The
coordination layer 's primary concerns are to deal
with configuration changes of the MOB and to
optimize its alignment and fuel consumption,
without putting the platforms at risk. With these
criteria in mind, it computes optimal positions for
each platform. It also monitors incidents and reacts
to minimize their impact on maneuvers and
maximize safety.

• Supervisory control layer: control strategies that
the modules follow in order to minimize fuel

consumption and maximize safety and efficiency.
Discrete commands are given to achieve high-level
goals of overall coordination and maneuvering of
the mobile offshore bases. This layer monitors the
evolution of the system with respect to global
mission goals. It receives commands and translates
them into specific maneuvers that the platforms
need to carry out. In the current design, finite state
machines are used to represent the communication
protocols and organize them in a systematic way.

• Interfaces between layers:
a) Vehicle: the platforms input actuator commands

(can be desired thrust and orientation for each
thruster or direct voltage commands to thruster
motors) from the stability and control layer, and
output information on whether the thrusters and
sensors are functioning properly.

b) MOB stability and control layer: the MOB stability
and control layer inputs set points in either position
or speed from the maneuver coordination layer,
and outputs state information to the maneuver
coordination layer.

c) Maneuver coordination layer: the maneuver
coordination layer inputs specific maneuvers to
execute from the supervisory control layer, and
outputs state information and information about the
status of the current on-going maneuver to the
supervisory control layer.

d) Supervisory control layer: the supervisory control
layer inputs commands and outputs all state and
on-going maneuver information as well as
information regarding whether the global mission
goals are being met.

e) Commander: the commander inputs all available
state, maneuver and mission information and
outputs high-level commands for the MOB to
execute.

4 MOB SHIFT SIMULATION
The structure of the SHIFT simulation environment

is as presented in figure 8.

 Figure 8.
Organization of the MOB SHIFT architecture.

Each MOB is equipped with a control system, a
physical layer containing a physical model of the
platform and a disturbance processor. Each component
and its underlying model is described in detail in [10],
as well as the connections between components.

5 CONTROLLER DESIGN
In this section we give a brief description of the multi-
layered control design that is necessary for mission
control of a MOB. Each layer will be examined
individually. The set of controllers described here is not
unique; it corresponds to the particular approach
developed by the University of California, Berkeley. In
this section we present a sketch of the controller
designs for this control architecture, with special
emphasis on dynamic positioning, one of the major
thrusts of the CASSETTE developments. This
architectural concept was partly implemented in SHIFT
as part of the MOB SHIFT evaluation framework. The
controller interfaces can be reused to incorporate other
dynamic positioning controllers into the MOB-SHIFT
framework, so comparisons can be made under the
same set of assumptions.

5.1 MOB stability and control layer
The primary focus of the MOB stability and control

layer is to ensure smooth operation of a single module
and to inform the coordination layer of whether set
points are reached or not.

Berkeley Backup
Controller

Thruster Allocation

Position or speed command

forces and moments X,Y,N

Thruster Control

individual thruster thrust and slew rate

Module
resultant force system

Model Predictive
Controller

Other DP
Controllers

Figure 9.
Organization of the MOB stability and control layer.

The organization of the stability and control layer is
presented in figure 9. It contains several different
dynamic positioning algorithms and a thruster
allocation scheme.

5.1.1 Dynamic Positioning (DP) algorithms
Two different dynamic positioning algorithms are being
developed and tested using MOB-SHIFT.

5.1.1.1 Berkeley Backup Controller (BBC)
The CASSETTE team at the University of California,

Berkeley has developed a non-linear DP controller for
MOBs . The approach uses multiple sliding surface
control, dynamic surface control, and the Slotine and Li
algorithm [13] and can be implemented in either robust
or adaptive form. Detailed equations and control laws
and surfaces are given in [7]. The controller is used in
different forms to implement all of the several atomic
laws as described in section 3.2 and figure 3. It inputs a
position or a speed command, and outputs a force
system to be applied on the module. The controller also
uses information sent by the maneuver coordination
layer that regards which multiple module scheme to use
(if any), and whether to use integral control or not.

The controller can be used in several coordination
schemes to coordinate the movements of multiple
platforms.

• The first concept tested was a “follow-the-leader”
scheme were the first module in the string is
designated as leader, and is controlled to track a
desired inertial position (x, y, ψ). The second and
third modules respectively track the first and
second module. In other words, each module
“sees” only the module located directly in front of
him. A drawback of this approach is that “string
stability” problems may appear, i.e. spacing errors
may propagate and amplify along the string,
potentially causing a collision [11].

• The second concept to be evaluated was a “follow-
the-leader” scheme where the middle module was
chosen as leader. String stability is not a problem
for a three-module string because the end modules
directly track the leader, and is less of a problem
for longer strings because the string is half as long
on each side.

• The final concept to be tested was a leaderless
control scheme where each module is controlled to
track both an inertial reference and its position
relative to neighboring modules.

As shown in [7], the leaderless control scheme was able
to maintain the fastest alignment of platforms and the
better alignment performance in time. The controller
was tested for a variety of disturbances and
environments.

An example of a typical dynamic positioning test run is
given in figure 10. Plots show movements in x, y and
psi versus time. The platforms are displaced form their
original position and return to their desired position.
There is no overshoot or steady state error.

Figure 10.
Example DP simulation run.

5.1.1.2 Model Predictive Controller (MPC)
A model predictive controller was developed by

SSCI, and is described fully in [8]. In terms of
interfaces and dependencies, the controller is described
in figure 11.

Figure 11.
Dependencies for the MPC simple control law.

5.1.2 Thruster allocation scheme
An allocation scheme for multiple thrusters was

developed. The approach is based on linear
programming. It allows us to consider many of the real-
world thruster characteristics, such as maximum thrust
capability and thrust rate, maximum slew rate of the
thrusters etc.. The thruster allocation scheme inputs a
desired force system for a given module, and thrust and
azimuth commands are computed for each individual
thruster so that energy consumption is minimized and
the desired force system for the module is achieved.
The approach was programmed and tested, and full
equations and details of the computation as well as
results appear in [14].

5.2 Maneuver coordination layer
The maneuver coordination layer interfaces high-

level supervisory control (discrete) with low-level
continuous control of the module. It contains several
controllers as well as some logic for switching between
controllers. The five controllers in the maneuver
coordination layer (dock, split, go to, align in wind and
DP) send either speed or position set points to the
controller described in section 5.1.1.1.

Supervisory Control

Dock Split Go to
Align

in Wind
DP

Leaderless Controller

Figure 12.
Organization of the maneuver coordination layer.

Each controller is formed of a control law, and a
“protocol” that is used to coordinate maneuvers. The
current design uses protocols in the form of finite state
machines to organize the maneuvers in a systematic
way. They receive the commands from the supervisory
controller and aggregated information from the
individual platforms, then use this information to
decide on a control policy and issue commands to the
MOB stability and control layer.

As an example, the protocol for the docking
controller is given here. It is formed of two state
machines, one for each module involved.

Leaderless
Operation

Available
to Join

Blocked
Waiting
to Join

check if other modules are trying to join

error/time_out

start

joined

Abort

time_out

error logged

Figure 13.
State machine for immobile module.

For simplicity, we assume only one module is moving
during docking. We call this module the “mobile
module”. The state machine containing the logic for the
mobile module is presented in figure 14. The other

thrusters

sensor capabilities

position - earth-fixed

velocities - earth fixed

velocities - body fixed

force due to wind

velocities due to currents (body-fixed)

communications capabilities

module to module

 1

 1

 1

 1

 1

 1

 1

model predictive
simple law
Forces and Moment
X,Y,N

&

clock ticks 1

MOB-index (1,2,3,…) 1

MOB-flag (leader (=0) or not (!=0)) 1

others

disturbances

• neglects heave and roll motions

module must be in dynamic positioning, and as a
simplification is assumed to be “immobile”. The state
machine containing the logic for the immobile module
is presented in figure 13.

The immobile module gets a request asking it
whether it is available to assemble, if not a time out
occurs and the maneuver is aborted and if yes “blocks”
itself so that no other module may dock while the
maneuver is taking place.

When the maneuver is complete, the module goes
back to leaderless operation, and is once again available
to assemble.

Independent
Operation Wait

Assemble

ask for permission

start

joined

Abort Approach

time-out

time-out

time-out
close

enough

Assembled
Operation

error logged

goes to leaderless, leader or
follower depending on
higher level plan

Figure 14.
State machine for mobile module.

The mobile module asks the immobile module for
permission to dock. If it is not granted, the module goes
back to independent operation, otherwise the module
starts its approach towards the immobile module. It is
aimed at the closest corner of a 3000m grid centered
about the immobile module. When the mobile module
enters the grid, a fuzzy logic system that computes
desired velocities is activated.

When the platforms have assembled, the MMDPCS
is activated, the immobile module is made available for
other modules to assemble themselves.

Figure 15.
Preliminary results (in Matlab) for docking controller.

Preliminary results for the fuzzy-logic docking
controller are shown in figure 15. It shows the
trajectory of the mobile module for four different runs,
one starting at each corner of the grid. Originally, the
mobile module is traveling in a direction that is 280
degrees from that of the immobile module with a speed
of two knots. The docking controller has yet to be
ported to MOB SHIFT.

5.3 Supervisory control layer
The supervisory control layer resides on top of the

architecture and is concerned with the planning and
execution of the MOB mission.

The supervisory controller commands the maneuver
layer to execute a sequence of proper behaviors, which
enable the MOB to accomplish the overall mission. It
also allows for the coordinated operation of several
MOBs.

PLAN

Dispatcher

Supervisory
Controller

Get next
command

Send next
command

Command
done

“Interpreted”
command

Figure 16.
Mission plan execution.

Commands are specified in a mission plan, that
contains instructions such as “do dynamic positioning
with modules number 2, 4, 3, 1, 7 at position x, y, ψ for
time t” as presented in figure 16.

The dispatcher then reads the commands and
reformulates them so that the supervisory controller can
interpret them. It also acknowledges whether
commands have been completed or aborted as indicated
by the supervisory controller. A sketch of the
supervisory controller is presented in figure 17.

The MOB can be in two states , a default state named
“Idle”, and the “MOB” state where the MOB is active.
In this design, four commands can be given. The
“Start” command that adds the first module to the
MOB, a “Join” command for adding additional
modules, a “Split” command that removes modules
from the MOB, and an “Idle” command that returns the

MOB to idle if necessary. An “emergency split”
command can also be implemented to split up
(disconnect and send to a reference point) all of the
modules forming a MOB at the same time.

Idle

MOB

START command
[uid, ref]

JOIN command
[uid, ref, stern/bow of MOB]

SPLIT command
{if n_mob > 1}
[uid, ref]

Default state

IDLE command
[uid, ref]

Figure 17.
MOB state machine.

We see that each layer of the control hierarchy
involves different entities and algorithms that relate
entities at one layer to entities at the adjacent layers.
Moreover, there is a theoretical framework at each layer
which provides a meaning to its entities, and relations
between those frameworks that are operational in terms
of those algorithms.

6 CONCLUDING REMARKS
In this paper we have proposed a hierarchical control

architecture for the MOB. A hierarchical structure for
control and planning has been adopted to provide a
systematic design framework for this complex system.
SHIFT, a hybrid systems programming language
developed at California PATH, was used to develop a
virtual simulation tool in which the architecture was
tested and evaluated. A reduced version of the
architecture will support the physical validation of the
key design issues with three scale models (1:150) of the
generic MOB. The implementation will be done in
TEJA, an object-oriented framework for implementing
real-time, event-driven, distributed multi-agent control
systems, from Teja Inc.

Acknowledgements: The material is based upon
work supported by the U.S. Office of Naval Research's
MOB Program under grant number N00014-98-1-0744.
The authors would like to thank Prof. William Webster,
Jim Misener, Prof. Pravin Varaiya and Akash
Deshpande for helpful discussions providing insight
into this problem.

References

[1] R. Zueck, P. Palo and R. Taylor, "Mobile Offshore

Base: Research Spin-Offs", Proc. Of the ISOPE
Conference, Brest, France, June 1999, pp 10-16.

[2] P. Varaiya, "Smart Cars on Smart Roads: Problems
of Control", IEEE Trans. Of AC, Vol 38, No. 2,
February 1993

[3] F. Eskafi, D. Khorrambadi, and P. Varaiya,
"SmartPath: An Automated Highway System
Simulator", Tech Rep PATH Tech Memo 92-3,
Institute of Transportation Studies, University of
California, Berkeley, CA 94720, October 1992

[4] A. J. Healey, D.B. Marco and R. B. McGhee,
Autonomous Underwater Vehicle Control
Coordination Using A Tri-Level Hybrid Software
Architecture, Proc. of 1996 IEEE Conference on
robotics and Automation, Minneapolis, Minnesota,
April 1996, pp 2149-2159.

[5] A. Girard, "A Convenient State Machine Formalism
for High-Level Control of Autonomous Underwater
Vehicles", Master’s Thesis, Florida Atlantic
University, Boca Raton, FL 33431, May 1998

[6] D. N. Godbole, J. Lygeros and S. Sastry,
"Hierarchical Hybrid Control: An IVHS Case
Study", in Hybrid Systems II (P. Antsaklis, A.
Nerode and S. Sastry, eds.), no 999 in LNCS,
Springer Verlag, 1995.

[7] K. Hedrick, A. Girard and B. Kaku, "A Coordinated
DP Methodology for the MOB", Proc. Of the
ISOPE Conference, Brest, France, June 1999, pp
70-75.

[8] V. Manikonda, M. Gopinathan, P. Arambel and R.
K. Mehra, "Nonlinear Model Predictive Control
Design for Coordinated Dynamic Positioning of a
Multi-Platform Mobile Offshore Base", accepted for
the VLFS’99 Conference, Honolulu, Hawaii,
September 1999.

[9] www.path.berkeley.edu/shift/

[10] J. Sousa, N. Kourjanskaia, and A. Girard, "The
MOB SHIFT Simulation Framework", accepted for
the VLFS’99 Conference, Honolulu, Hawaii,
September 1999.

[11] D. Swaroop and J. K. Hedrick, “String Stability of
Interconnected Systems”, IEEE Transactions on
Automatic Control, March 1996, Vol. 41, N3, pp
349-357

[12] “Technical Progress Report #3”, March 1999,

CASSETTE Project, University of California at
Berkeley, Partners for Advanced Transit and
Highways.

[13] J.J.E. Slotine and W. Li “Applied Nonlinear
Control”, Prentice Hall, Englewod Cliffs, NJ, 1991.

[14] W.C. Webster and J. Sousa, “Optimum Allocation
for Multiple Thrusters”, Proc. Of the ISOPE
Conference, Brest, France, June 1999, pp 83-89.

