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Abstract—A new approach towards the design of optimal multiple drug experimental cancer chemother-
apy is presenied. Once an adequate model is specified, an optimization procedure is used in order o
achicve an optimal compromise between after treatment tumor size and toxic effects on healthy tissues.
In our approach we consider a model including cancer celi population growth and pharmacokinetic dy-
namics. These elements of the model are essential in order to aliow less empirical relationships beiween
multiple drug delivery policies, and their effects on cancer and normal cells. The desired multiple drug
dosage schedule is computed by minimizing a customizable cost function subject to dynamic constraints
expressed by the model. However, this additional dynamic wealth increases the complexity of the problem
which. in general, cannot be solved in a closed form. Therefore, we propose an iterative optimization
algorithm of the projecied gradicnt type where the Maximum Principle of Pontryagin is used to select the

optimat control policy.
Key words: combination chemotherapy: optimization.

NOMENCLATURE

N total number of compartments.
Nw number of compartments assigned to phase W.
x = col(xy,..., x,) being x; the tumor cell population in the ith compartment.
B p fraction of cells that after mitosis goes to phase Gy.
' d; cell death rate in the ith compartment.
r; cell transition rate from the ith to the { 4 Ith compartment.
¢ matrix specifying the state dependence of the dynamics.

*This research was partislly supported by CNPg (Brasil) and INICT (Poriugal) under grant
no. $10040/89-3. Part of this rescarch is under the Catholic University/ Hospital of Oncology - INAMPS
Cientific Agreement.
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number of drugs considered.

being z; the ith drug concentration at the tumor cells.

effect of the ith drug concentration on the tumor growth
model.

effect of drugs administration rate in the pharmacokinetic
model.

state variable satisfying y(0) = yo and where z =
col(z, ¢%, v, w).

with Z, 1= col (Ejl, ey Z”,) and Z,.j the ith drug concentra-
tion at the jth tissue.

where ci(r) is the ith drug concentration at serum level.
auxiliary variables in the drug concentration model at serum
level.

auxiliary variables in the drug concentration model at serum
level.

absorption rate of the ith drug concentration at serum level.
elimination rate of the ith drug concentration at serum level.
coefficients of the drug concentration model at serum level.
ith drug administration rate at time f.

number of tissues considered.

coefficients of the generalized pharmacodynamic model.
overall state variable dependence of the global model.
non-linear effects (such as saturation and the interaction of
other drugs) at the jth tissue in the pharmacokinetic model.
state variable dependence of the pharmacokinetic model.
instantaneous administration rate constraints of the given set
of drugs.

final treatment time.

cost objective as a function of the control function «.
weight penalizing the final tumor size.

weight penalizing toxic effects accumulated in the selected
tissues.

adjoint variable defined in the statement of the Maximum
Principle.

cone of feasible control directions at u; with negative polar
C%(u").

projection of z on §2.
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i. INTRODUCTION

In this article, a new approach involving the application of optimal control to combi-
nation chemotherapy is proposed. By combination chemotherapy, we mean treatment
protocols involving more than one drug. We introduce an optimization algorithm with
the goal of defining a treatment protocol which minimizes an adequate cost function
subject to some dynamic constraints representing the underlying biological system.
Although we consider an instance where this is reasonably described by a multicom-
partmental model, our approach may easily be adapted to take into account more.
complex and possibly nonlinear, time varying models.

Unfortunately, due to the similarity of biochemical processes occurring in both
normal and cancer cells, chemotherapeutic elimination of tumors is impossible without
serious damage being caused to the normal cells. This difficulty has motivated several
authors, e.g. [1-6], to investigate the use of engineering techniques in order to design
optimal single drug chemotherapies. The main goal is to find the best (in the sense of
maximizing the patient’s life expectancy) post-treatment compromise between tumor
size and damage caused to healthy tissues. A good review appears in Swan [7].
Although some of the simulated results seem to agree fairly well with what one
expects from the clinical point of view, empirical considerations (see, e.g. [8]) suggest
that differences of behavior between normal and cancer cells may be better exploited
by combining the action of several cycle- and phase-specific drugs.

When dealing with the optimal design of multiple drug chemotherapy [9], we ob-
served that the added complexity with respect to the single drug case makes it too cum-
bersome, if not impossible, to obtain a closed form solution as in Pereira ef al. {10},
or deduce it via mathematical analysis like in Swan [3] and Sundareshan and Fun-
dakowski {5). Therefore, in order to solve the above problem, we propose an iterative
optimization algorithm developed in Pereira et al. {10]. Here, a projected gradient
search direction technique permits us to update the current optimal control estimate
and the necessary conditions of optimality in the form of a Maximum Principle of
Pontryagin [11] are used as a stopping condition. We extend some of our previous
work [9] in the sense that the model now incorporates pharmacokinetic considera-
tions. This additional model wealth allows a more realistic description of the drug
concentration profiles at the various tissues as a response to a given combination
chemotherapeutic protocol. Therefore, better treatment strategies may be obtained as
solutions to the optimal control problem with these dynamic constraints.

2. THE MODEL
!

The computation of a combination chemotherapy that, for a given patient, achieves
the best compromise between after treatment tumor size and damage to healthy tissues
requires an adequate mathematical formulation. The model should be able to describe
not only the growth of the relevant cell populations subjected to certain concentrations
of a given set of drugs, but also the dynamic response of their serum and tissue
concentrations to any given administration policy. A list of symbols used in the
definition of the model and in the statement of the optimal control problem is presented
in the Nomenclature.
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Figure 1. The cell cycle.

We start by dealing with the model component concerming the tumor growth. In
order to make this paper self contained, we present nexi some classical material on
cell kinetics. One of the main advantages of using cell kinetics to model tumor growth
is to avoid difficulties inherent to the complexity and incompleteness of biochemical
equations underlying the cell matoration process [5]. Furthermore, by taking advan-
tage of differences in behavior between cancer and normal cells and of the phase and
cycle specificity of a wide range of drugs, they allow the choice of a set of drugs and
the respective dosage schedule [12].

The classic diagram presented in Fig. | illustrates the cell cycle phenomena. This
periodic process consists in a number of transformations giving, in general, the origin
to two daughter cells with a diploid amount of DNA in phase M (mitosis). Then, they
either enter Go, a usually long resting phase, or G during which RNA and protein
are synthesized. DNA is produced during the S (synthesis) phase in such a way that
at the beginning of G, phase the cell has a tetraploid amount of DNA. During this
stage, RNA and protein are synthesized in preparation for cell division.

By organizing the cell population in various compartments defined by the amount
of DNA and/or RNA, Takahashi {13, 14} and Sundareshan and Fundakowski {s1,
among others (see Eisen | 15] for a review), described the maturation process of a cell

population as solution of

xi(0) = x, for 1<i<N,
Xi(t) = ~(ri +d)xi () +risix_i@t),  for 1<i< NG, or Ngye1 <i < N,
X0 (1) = —(ry +di)xy (1) + 201 - PIryxp (1),

and
x’NGW (1 = —(rNG”H + (I,V(W)x,\,(;”H (1Y + 2pryxpy(n)

where x is the time derivative of x, N is the total number of compartments, Ny is the
number of compartments assigned to phase W, x = (x;, ..., Xy) is the population
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distribution, p is the fraction of cells that after mitosis goes to phase G,, and d; ai
ri are, respectively, the death rate in the ith compartment and the transition rate fro
the ith to the i + Ith compartment. A more compact form is £ (1) = ¢px(r), x(0) = x
where xo is the initial population distribution and @ is the following matrix

[~(n +dy) ] 0 0 0 2ry (i - p)
ry -—(rz +l]2) 0 0 0 0
0 ry —(r] +d3) 0 0 0
0 0 1] e -(qu,u + dNG“”) 0 2ryp
0 0 0 0 ey Hdy ) o ;
0 0 0 0 ot ~(ry +dly)

Details concerning the estimation of the above parameters values via an algorithm of
Narendra and Kudva [16] based on the second method of Lyapunov are described ir
Sundaraeshan and Fundakowski {51].

In principle, it is possible to design an adequate drug dosage schedule that, by
modifying transition and death rates in some compartments, aliows tumor growth
control. Previous investigations [8, 12, 17} based on experimental data permitted the
incorporation of significant simplifying assumptions. They concluded that it may be
quite reasonable to assume that the fractional rate of killed cells in a given com-
partment varies linearly with the drug concentration. This hypothesis was used by
Sundareshan and Fundakowski [5] and Bahrami and Kim [1] for a single drug case.
If independence of effects of a given set of M drugs is also assumed, then,

M
i) = [«p -y Bia(:)}x(r), x(0) = xo 0
i=1

where z;(r) is the concentration at time ¢ of the ithdrug, i = 1, ..., M, at the tissue
where the tumor is located and B; reflects the effect of the ith drug on the transition
and death rates of each compartment. We would like to note that, in any given
particular case, other (possibly non-linear) relationships between drug concentrations
and tissue growth may be incorporated into the model if suggested by the underlying
experimental evidence.

Now, we turn to the model component describing tissue and serum pharmacoki-
netics. Since these vary considerably from drug to drug and, possibly, from patient
to patient, e.g. with renal deficiencies, they play an important role in the definition
of a patient-tailored and drug-tailored combination chemotherapy. A review of gen-
eral pharmacokinetic models is presented in Cherruault [18] and Eisen [15] where
the convenience of compartmental models is emphasized and specific identification
methods are proposed.

In Pedreira and Muniz [19), it is shown that a second-order linear system provides
a good model for the serum concentration of each drug. Let us consider the following
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model for the serum concentration, c; (1), of the ith drug:

) = ayvi (1) + agwy (1) (2)
where v; and tvu,- are auxiliary variables satisfying

i(1) = —Keivi(£) + u;(r)

and
wi(t) = —Kow; (1) + 1; (1)

where the absorption rate, K,;, the elimination rate, Kei, oy < 0 and ay; > 0
are parameters associated with the ith drug that may be estimated by optimization
techniques, e.g. Hooke and Jeeves (see Polak [20]), based on in vivo measurements
(see Pereira er al. [9]), and u; (1) is the ith drug administration rate at time .

It is quite reasonable to assume [21] that the drug concentration variation in the
tissue is proportional to the difference between the serum and tissue concentrations.
This assumption and the influence of other drugs may be taken into account in the
foHowing general equation describing the dynamics of the ith drug at the jth tissue:

(1) (3)

Jrog )

0 =K+ 17 0+ f,(z

where fj takes into account non-linear effects such as saturation and the interaction of

other drugs and 7, = col(Z,,, ..., E,.M) with z'j,. denoting the ith drug concentration
at the jth tissue. This function together with the coefficients Kj; and lj‘., [ =
L....M, j=1,..., P, will have to be estimated. Here, M is the total number

of drugs and P is the number of tissues considered. We would like to note that the
tumor itself is one of the above mentioned P tissues, i.e. Z; = Zj, for a given k
between | and P.

The dynamics relating cell and tissue drug concentrations are not very well under-
stood from the biological point of view. However, since the delay between a given
drug concentration value at cell and corresponding tissue level is quite small, it seems
reasonable to neglect the respective dynamics. However, as soon as a model of this
dynamic process is known and proved relevant, it may be easily accommodated by
adding new components to the pharmacokinetic model.

By putting together (2) and (3) one gets

i) = f )+ Du(),  2(0) = 2

where f-' is the resulting non-linear function and D is a matrix describing how u(r), a
M-vector whose components are administration rates for each drug at time ¢, affects
the state vector z, and zg is the initial value of z.

The components of z are 7z, ¢*, v and w, where z and ¢ = col (Cf,...,c;,)
are drug concentrations considered at, respectively, the tissue and serum levels and
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v=col(y,..., vy) and w = col (wy, ..., w,,) are the auxiliary variables requir
to define the dynamics of the various drugs concentration at serum level.
Let us define D := col (D, D), y :=col(x, z) and

M
S, y) = col ( [¢ -y B,-é,-(r)]x. f@

i=}

\

Then, model equations may be written as
¥() = f{t, y(O) + Da(r),  y(0) = yp, u(t) € 2, forallr €0, T] (4

where 2, C RM is the subset of instantaneous constraints of the given set of drug:
T is the final treatment time and Yo is the initial state.

A final note concerning the model is in order. Knowledge in this important fiel
is evolving very fast and, in the near future, better models dispensing with some o
the simplifying assumptions we adopted may replace the one in (3). However, the
general framework provided by the set of differential equations, boundary condition:
and static control constraints in the form of an inclusion will still permit the use of
the solution method we describe in the next section.

3. THE SOLUTION METHOD

In order to evaluate a given treatment strategy, one must define an objective function
based on clinical considerations. This cost function should reflect two different con-
flicting elements: after treatment tumor size and toxicity effects. The optimal drug
delivery strategy is the one that is feasible and minimizes the cost function. Therefore,
it may be seen as the solution to an optimal control problem whose dynamical and
control constraints realistically describe the particular situation at hand. The statement
of this problem is as follows:

T
19 Minimize a'x(T) +/ ‘Z(¢) dt
0

subjectto y(r) = £(r, y(1)) + Du(r),
. y(0) = yo,
u(ty e Q, C RM.

Here, a’ denotes the transpose of vector a, Yo Yoo X, 2, u, S, [ and D maintain the
meaning of the previous section, and a and b are positive vector valued weights pe-
nalizing, respectively, the final tumor size and toxic effects accumulated in serum and
selected tissues. Terms a'x(T) and for b'z(1) dt deserve some comments. By choos-
ing a given component of a 1o be greater than others, we are forcing the optimization
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procedure to eliminate a larger percentage of the population in the compartment cor-
responding to the selected component. On the other hand, the components of b which
should be chosen larger are those that correspond to the healthier and more sensitive
tissues where the presence of drugs should be most avoided. The values of coeffi-
cients a and b should be chosen on a case by case basis and the relative value of their
components should reflect the clinical goals to be attained.

In general, it is very difficult to obtain a closed form solution to this problem.
Therefore, we propose a search direction of the projected gradient type (see Pereira
et al. [10]) in order to find an optimal patient-tailored drug dosage schedule. The
satisfaction of necessary conditions of optimality in the form of a Maximum Principle
of Pontryagin (see Pontryagin et al. [11]) is used to detect the convergence of the
iterative improvement of control estimates. The statement of the necessary conditions
of optimality may be parnticularized for this problem as follows:

Let (y,u) be a minimizing process for (P). Then, there is an adjoint function,
p: [0, T} — R", satisfying the adjoint differential equation

=P = p'Of,(t. y(1)) — (0, 1),
=p(T) = (a’,0)

(f, denotes the Jacobian of f with respect to y) and such that, for almost all ¢ in
[0, T}, u(r) maximizes the map

u—> p'()Du in Q.

The algorithm described below will produce, after a number of iterations, a control
policy close to a local minimizer of the cost function [10]:

1. Initialization. Set i := 0 and choose a feasible conirol policy u;.

2. Estimates update. Integrate the state and adjoint variable differential equations in
order to get y; and p;; compute 5})(:).

3. Test of optimality. Compute Cry(u;), the cone of feasible control directions at u;: if
5}7(!) € Cg,(u,-), the negative polar of Cig(u;), then stop since the optimal policy
has been found. Otherwise:

4. Control update. Define s; and set Ui (1) = Po (u,(t) — s,-ﬁ};(l)) (in particular,
we may choose s; as a minimizer of 5 — J(Pq, (u; — sE}))); seti =i+ ! and
20 to step 2).

Here St as the cost function in s dependence on woand Py () is the projection
of 2on 2, Usually this operation s computationally quite expensive, However, in
practice, very cfficient algorithms may be constructed by taking advantage of the
fact that contrel constraint sets are well approximated by polytopes. Reasonably
low computational cost is achieved by approximately computing the step size which
solves, at each iteration, the one-dimensional minimization problem.
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By using relatively standard arguments, it is concluded in Pereira ef al. {10] that,
under some fairly usual hypotheses on the data of this problem and adequate choice
of stepsize in each iteration, this algorithm produces a strictly decreasing sequence of
controls converging to another satisfying the necessary conditions of optimality. Since
the cost function is not convex, several local minima may exist and the one that will
be given as the solution of the problem depends on the chosen initial control strategy
estimate. Therefore, in order to select the one yielding the lowest cost, solutions
obtained when starting the algorithm from any element of a given set of estimates
should be compared. For a given situation, this set of initial control estimates may
be based on a chemotherapic treatment protocol selected after clinical analysis.

In order to provide an idea of the use of the above algorithm in the definition of an
optimal combination dosage schedule, we present the following scenario.

Let us consider a hypothetical tumor whose growth dynamics, based on that of
a test tube collection of cells, is modelled by a seven comparimental model, with
two compartments assigned to phase Go-Gy, two to G3-M and three to phase S.
These compartmenis were suggested by relative phase duration and transition rate
considerations obtained via analysis of several DNA histograms of the cell population.
The estimation procedure mentioned in the previous section yielded p = 0.9 and the
values for the remzining parameters of matrix ¢ in equation (1) are given in Table 1.
Our hypothetical tumor whose initial size estimate is 9.85 units (1 unit = 10° cells)
corresponding to a state age vector Xo = col (0.95, 2.6, 1.3, 1.1, L1, 14, 1.4
is to be controlled by a combination chemotherapy based on two drugs, an S phase
specific and a cycle specific one, applied during 60 h.

Since data concerning the pharmacokinetic model are not available, we also intro-
duce an additional simplification by neglecting its dynamics. This is simply achieved
by replacing 7 by the drug administration rates described by a two component vec-
tor u which was normalized to take values on the set 2(k) = [0, 1} x {0, 1] for all k.
Observe that this means that the toxicity effects of the two drugs are assumed to be
independent of each other,

Let us assume that our goal is to find a compromise between the minimization
of the total amount of the administered drugs and that of the tumor size, with no
particular emphasis on any subpopulation. Also assume that the S phase specific drug
is considered one and a half times more toxic than the cycle specific one and that
life expectancy is maximized if the ratio between tumor size and the total weighted
amount of drug is equal to 7/5. A set of values reflecting the described criteria
include all components of g are equal to 1 and b = col (3/7, 2/7).

Table 1.
Compartmental model parameter values

Compartment

1 2 3 4 5 6 7
r 0.016 0.083 0.150 0.160 0.140 0.100 0.090
d; 0.0013 0.0012 0.005 0.005 0.003 0.001 0.001
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Table 2.
Optimal coatrol policy with a cycle- and
a S-specific drugs
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Figure 2. Cell population and cost function evolution as the iterative procedure converges.

Given the smalier computational burden and the relatively small error observed in
simulation trials, we will consider a discretized version of the above optimal control
problem with a time unit of three hours where the state transition matrix was approx-
imated to first order. When we assign a certain value to a drug at a time k, what we
mean is that between times k and k + | that amount of drug is kept constant at tumor
cells.

Starting with an initial policy of half of full amount of either drug, the algorithm
converged in 13 iterations producing the optimal control policy listed in Table 2
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yielding a final tumor size of 5.079 x 10® cells and a value for the cost function
of 8.079.
The behaviour of the algorithm can be assessed by inspecting Fig. 2.

4. FINAL REMARKS

We present a new approach concerning the optimal cancer combination chemother-
apy problem. Although in the above hypothetical example only population growth
dynamics were considered, the algorithm is independent of the specific nature of
these equations and may be applied to the case where celi population growth and
pharmacokinetics are associated in the same model. Since the more precise the math-
ematical description of the underlying biological system, the more meaningful is the
outcome of the employed optimization procedure, we believe that the proposed ap-
proach represents a promising tool towards the definition of at least suboptimal cancer
chemotherapies. We also point out that, by permitting multiple drug therapies, more
realistic situations may be considered if realistic mathematical models are available.

We accounted for the toxicity effects by penalizing the drug concentration, instead
of using directly the total amount of the administered drug. One should notice that,
by using the drug delivery rate in the penalty function, one is, in fact, assuming that
the drug is directly applied to the cell. We avoided this undesirable simplification by
considering the dynamic relationship between the drug administration policy and its
corresponding concentration profile at the cell level. Unfortunately, these advantages
increase the complexity of the problem which is dealt with by using an iterative
algorithm. Since the optimization technique we propose is quite flexible, a wide
range of dynamical models may be considered as physical constraints. Therefore, we
hope that this approach wiil aliow the incorporation of some of the future advances in
the medical and biochemical fields, specially those related to the cell maturation and
pharmacokinetics. The success of application will always depend on proper medical
support in each step of the process, and also, on the incorporation of future scientific
developments, specially those coming from the biochemical field.
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