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SUMMARY

The degenerated approach for shell elements of Ahmad and co-workers is revisited in this paper. To
avoid transverse shear locking e;ects in four-node bilinear elements, an alternative formulation based
on the enhanced assumed strain (EAS) method of Simo and Rifai is proposed directed towards the
transverse shear terms of the strain <eld. In the <rst part of the work the analysis of the null transverse
shear strain subspace for the degenerated element and also for the selective reduced integration (SRI)
and assumed natural strain (ANS) formulations is carried out. Locking e;ects are then justi<ed by the
inability of the null transverse shear strain subspace, implicitly de<ned by a given <nite element, to
properly reproduce the required displacement patterns. Illustrating the proposed approach, a remarkably
simple single-element test is described where ANS formulation fails to converge to the correct results,
being characterized by the same performance as the degenerated shell element. The adequate enhance-
ment of the null transverse shear strain subspace is provided by the EAS method, enforcing Kirchho;
hypothesis for low thickness values and leading to a framework for the development of shear-locking-
free shell elements. Numerical linear elastic tests show improved results obtained with the proposed
formulation. Copyright ? 2001 John Wiley & Sons, Ltd.

KEY WORDS: shell elements; enhanced assumed strain method; transverse shear locking; enhanced
transverse shear strain <eld

1. INTRODUCTION

In the <nite element analysis of shell structures, a landmark can be established with the
work of Ahmad et al. [1] leading to the so-called degenerated shell element concept. This
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formulation is obtained by judiciously imposing some chosen kinematic and mechanical as-
sumptions on the three-dimensional continuum, circumventing the use of classical thin shell
theories [2; 3]. In Reference [2] Bucalem and Bathe highlighted as some key features of
this class of elements the applicability to any shell geometry, the use of C0 conforming
displacement-based elements and the adoption of ‘engineering’ degrees of freedom such as
displacements and rotations.
However, it is well known that degenerated formulations possess strong de<ciencies in

reproducing the behaviour of thin shell structures, leading to locking phenomena. For lower-
order elements, like the four-node bilinear element based on a displacement formulation, these
e;ects are responsible for the complete deterioration of the results for thin shells.
The shear locking, a;ecting these elements, can be traced to the fact that no Kirchho;–

Love hypothesis is introduced into the displacement interpolations. The transverse shear strains
cannot then vanish at all points in the element when it is subjected to a pure bending state
[4; 5].
Amongst the approaches to overcome this problem, the simplest and earliest of all was

the use of uniform or selective reduced integration, as <rstly reported in References [6; 7].
In general [2], the uniform reduced integration (URI) leads to spurious zero energy modes
although in some cases a correct solution is obtained. For the selective reduced integration
(SRI) the same problems are posed, but frequently to a smaller degree. In the speci<c case
of plate elements, the work of Belytschko and Tsay [8] pioneered a range of contributions
using stabilization procedures for controlling the kinematics modes.
Other techniques were proposed to alleviate the excess of sti;ness characterizing locking

patterns, most of them being classi<ed as hybrid, mixed or hybrid-mixed methods. For these
formulations one or more independent <eld assumptions for strains, stress and=or incompatible
displacements can be assumed, in conjunction with the usual displacement approximation.
The additional <elds may be discontinuous from element to element so that the corresponding
unknowns can be eliminated at the element level [5; 9]. These methods include, among others,
procedures such as the assumed natural strain (ANS) approach (for bilinear shell elements,
see References [10–12]; for higher-order elements see, for example, References [13–15]) and
the enhanced assumed strain (EAS) formulation [5; 16–19].
The key idea of the ANS method is the replacement, in the minimum potential energy

principle, of selected displacement-related strains by independently assumed strain <elds in
element natural co-ordinates [20]. The variational basis can be found, for example, in the
work of Militello and Felippa [9] and the performance of the elements derived from this
formulation relies strongly in choosing correctly the sample strain positions for the assumed
interpolation. In addition, some de<ciencies in the case of irregular meshes can be pointed
out [5]. Nevertheless, the bilinear MITC4 element of Dvorkin and Bathe [10], falling in that
category, is amongst the most employed shell formulations, ‘which sometimes cause diOculties
for other assumed strain techniques’ [21].
The EAS method, as <rstly proposed by Simo and Rifai [16], uses a three-<eld mixed

functional in terms of displacements, stresses and an enhanced strain <eld, based on the
Hu–Washizu variational principle. As discussed in this reference, the total strain <eld is
built up as a summation of the (compatible) symmetric gradient of the displacement <eld
and the enhanced strain. This latter is not subjected to any interelement continuity require-
ment, and can be related to an ‘incompatible mode’ <eld. Providing a general formulation,
Simo and Rifai presented a bilinear isoparametric plate element with enhanced transverse
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shear strain <eld. For a square con<guration this element proved to be identical to MITC4
element [16].
A deeper application of the enhanced techniques in shell analysis came shortly after

with the work of Andel<nger and Ramm [5] in the linear elastic range. The extension to
non-linear aspects was carried out in subsequent publications (see, for instance, References
[17; 18; 22; 23]).
Relating the low performance of MITC4 in the presence of distorted meshes to in-plane

de<ciencies, Andel<nger and Ramm developed an enhanced membrane and bending strain <eld
composed of seven internal parameters. Despite the improvements obtained, their procedures
were not extended to shear strain terms, as they kept the assumed natural strain approach of
MITC4 in order to attenuate transverse shear locking e;ects.
Within a di;erent philosophy, the present work develops an approach suitable for the treat-

ment of the transverse shear locking phenomenon, relying on the enhanced assumed strain
formulation and applied over the degenerated four-node element.
Following the methodology of the original work of C4esar de S4a and Owen [24] and,

subsequently, C4esar de S4a and Natal Jorge [25] for two-dimensional incompressible problems,
shear locking appearance is related to the inability of a basis of the null transverse shear
strain subspace, implicitly de<ned by each element formulation, to accurately reproduce the
required deformation patterns.
A deep analysis of MITC4 and selective integrated (SRI) formulations, leading to possi-

ble bases for their null transverse shear strain subspaces, reveals the missing terms on the
respective basis for the degenerated element. Performing an enhancement over the covariant
shear strain terms of this element, an enlargement of its subspace is obtained, leading to a
new class of degenerated shell elements with improved behaviour.
The speci<c analysis of the null transverse shear strain subspace carried out in this work

also revealed that MITC4 element lacks two missing components in its basis, when compared
to SRI elements. This same component is not present in the basis of the degenerated element.
In fact, in trying to reproduce the deformation pattern corresponding to this absent component,
both elements reveal a strong deterioration of results. In this speci<c, single element, example
MITC4 and Ahmad et al. formulations provide the same numerical result, while the SRI
approach shows no shear locking.
It is worth noting the important insight over locking phenomena brought forward by the

work of PitkParanta et al. [26] and Chapelle and Bathe [27]. Based on a detailed analysis of
bending and membrane subspaces, those authors developed a class of benchmark tests for the
behaviour characterization of shell elements, which will be used in this paper (for details see
References [28–30]).
An outline of the paper is as follows. In Section 2, the analysis of the null transverse

shear strain subspace implicitly de<ned for each <nite element formulation is showed. Three
architectures of shell <nite elements are described: the original degenerated approach (applied
to the bilinear four-node element), the ANS formulation for MITC4 element and the SRI
method. Di;erent subspace dimensions are then obtained for each element, justifying the dif-
ferent performances of each formulation in dealing with transverse shear locking phenomena.
Based on these results, in Section 3 suitable enhanced interpolation matrices are proposed,
attenuating shear locking e;ects for thin shells. Acting over the four-node degenerated element
a class of new elements, with an enhanced transverse shear strain <eld is presented. Following
an alternative track a di;erent proposal relying on the enhancement of the MITC4 element
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and grouping EAS and ANS techniques is proposed. Finally, Section 4 provides numerical
test problems stating the performance of the presented elements when compared to previous
published results for well-known shell elements available in the literature.

2. BASES FOR THE SUBSPACE OF NULL TRANSVERSE SHEAR STRAINS

2.1. Introduction

In the analysis of shear locking phenomena, attention is focused on the transverse components
of the strain <eld, de<ned in the natural set of co-ordinates (�; �; �). Related to this system,
the displacement dependent strain <eld for a given point within an element can be represented
in a discrete vector form as

E≡Eu =
{
Eu
�� Eu

�� Eu
�� E

u
�� Eu

�� E
u
��

}T ≡Qdn (1)

being Q a matrix grouping di;erential terms, and relating nodal displacements dn with strains.
According to the usual representation of degenerated elements [1; 31], the nodal displace-

ment vector includes three translational degrees of freedom (de<ned in the global co-ordinate
system) and two independent rotational degrees of freedom (de<ned in a local frame) as

dn= { u v w �1 �2 }|Tn (2)

for a given node (n).
The natural strain components described in Equation (1) can be evaluated, for the linear

case [31], from the equation

Eu
�i�j =

1
2

(
@u
@�i

· gj + @u
@�j

· gi
)

for (i; j=1; 2; 3; �1 = �; �2 = �; �3 = �) (3)

based on the displacement vector u and the covariant base vectors

gi=
@x
@�i

(4)

with x being the position vector.
The importance of the described natural strain <eld is related to the imposition of the

Kirchho; constraints for thin shells, requiring that those strains should vanish as thickness
values tends to zero. When applying the Mindlin-type hypothesis, this condition cannot be
satis<ed at all points over a speci<ed domain. However, in an ‘average’ sense [32] this can
be accomplished as follows: ∫

SA
Eu
�� d� d�=0 (5)

∫
SA

Eu
�� d� d�=0 (6)

where SA represents the particular area analysed.
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The assumption that the shear strain <eld Eu
�� is a linear function of � and, in a similar

way, Eu
�� is a linear function of � [32] leads to the equations

∫ 0

−1
Eu
�� d�=0;

∫ +1

0
Eu
�� d�=0 (7)

∫ 0

−1
Eu
�� d�=0;

∫ +1

0
Eu
�� d�=0 (8)

The imposition of these constraints discretely at the Gauss points leads to{
E��

E��

}
=Qshear de = 0 (9)

with de encompassing the nodal degrees of freedom within a speci<ed element. Following
previous works of the authors [24; 25; 33] it is possible to de<ne

I sh = {uh ∈Uh : Qshearuh = 0} (10)

where I sh is the subspace of possible deformations associated with a null transverse shear strain
<eld, and Uh represents an approximation of the linear space of all admissible solutions U .
To avoid the occurrence of transverse shear-locking e;ects, the discrete <nite element so-

lution uh ≡ de must lie on the null space of Qshear. In other words, any required displacement
solution must be a linear combination from the components of a given basis of I sh [25; 33].
If this is not the case, the onset of shear locking is veri<ed.
Distinct <nite element formulations, for a given mesh, will lead to distinct null transverse

shear strain subspaces. In the next sections an analysis over the bilinear degenerated, mixed
interpolated MITC4 and bilinear selective reduced elements is performed, aiming to identify
for each one of the elements their respective subspace I sh and, consequently, to clarify their
ability (or not) to avoid locking behaviours.

2.2. Analysis of the degenerated element

Referring to Equation (9), it is possible to state for a single element (dropping the elemental
indices) that {

E��

E��

}
=

[
Q��

Q��

]
d= 0 (11)

where the former matrix Qshear was decomposed into two sub-matrices Q�� and Q��.
In the following analysis, a square element placed in the xy plane is considered. The normal

to the surface of the element is taken coincident with the z-axis, which is also responsible for
thickness orientation. The element represents then a reference square in the natural co-ordinate
system, with representative dimensions

Dref = [−1; +1]× [−1; +1]= {(�; �) ∈ �2;−16�; �6+ 1} (12)
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With the following con<guration, the in-plane {u v} components of the displacement vector
(2) do not interfere with the transverse shear strain <eld. It is obvious that any deformation
in which only the in-plane degrees of freedom are active will belong to I sh. Therefore, for the
sake of simplicity, these degrees of freedom will be ‘removed’ from the generalized nodal
displacement vector (2), leading to the ‘reduced’ vector

d r = {wn=1 �1|n=1 �2|n=1 (: : : ) wn=4 �1|n=4 �2|n=4}T (13)

speci<c to the bilinear element and associated with the condition{
E��

E��

}
=

[
Q��

Q��

]
d r = 0 (14)

in replacement of (11).
The next step refers to the extension of this equality over all the sample points used in

the numerical integration. For the four-node bilinear element, with a complete 2× 2 Gauss
integration, 8 restrictions in the form of (14) are introduced and two expressions can be
obtained as 



E��(�I; �I)

E��(�II; �II)

E��(�III; �III)

E��(�IV; �IV)




=



Q��(�I; �I)T

Q��(�II; �II)T

Q��(�III; �III)T

Q��(�IV; �IV)T




︸ ︷︷ ︸
4×12

d r = 0 (15)

and 


E��(�I; �I)

E��(�II; �II)

E��(�III; �III)

E��(�IV; �IV)




=



Q��(�I; �I)T

Q��(�II; �II)T

Q��(�III; �III)T

Q��(�IV; �IV)T




︸ ︷︷ ︸
4×12

d r = 0 (16)

where each pair (�k ; �k) represents the natural co-ordinates of a speci<c integration point
(k=I; : : : ; IV). Also, Q��(�k ; �k) and Q��(�k ; �k) represent vectors (12 components) referring
to the same integration point. It is worth noting that Qshear evaluation does not depend on
the numerical integration over the thickness and, therefore, the � orientation was not taken
into account in the following. Therefore a reduced displacement <eld, in the sense of (13)
and satisfying Equations (15) and (16) (simultaneously avoiding the trivial solution d r = 0)
is searched.
After these considerations, the analysis of the degenerated four-node element, character-

ized by a transverse shear strain <eld derivable from (3), provided a matrix Qshear with the
following characteristics:

rank(Qshear)= 8; therefore nullity(Qshear)= 4 (17)
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Figure 1. Basis components for the null transverse shear strain subspace; degenerated
(D) elements (one element mesh).

As a consequence, the element can reproduce four fundamental displacement patterns. In case
a given displacement cannot be obtained as a linear combination of these four terms, transverse
shear locking is veri<ed. The displacement con<gurations forming a basis of the null trans-
verse shear strain subspace for the degenerated element I sh|D are schematically represented in
Figure 1. The arrows in the <gure refer to activated degrees of freedom. The displacement vec-
tor for the whole element (following the representation in Equation (13)) can be represented
as follows:

D1⇒ d r = {1; 0; 0; 1; 0; 0; 1; 0; 0; 1; 0; 0}T

D2⇒ d r = {0; 1; 0;−1; 1; 0;−1; 1; 0; 0; 1; 0}T

D3⇒ d r = {−1; 0; 1;−1; 0; 1; 0; 0; 1; 0; 0; 1}T

D4⇒ d r = {1; 2;−2;−1; 2; 2; 1;−2; 2;−1;−2;−2}T

(18)

The element is able, then, to reproduce these displacement patterns and also any linear com-
binations between them.

2.3. Analysis of the mixed interpolated bilinear element

The described approach is now applied into the four-node bilinear element of Dvorkin and
Bathe [10]. The concept behind the element formulation is well established in the <nite element
literature (see, for instance, References [2; 10; 12; 14; 31] for details) being only summarized
here.

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 53:1721–1750
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The assumed natural strain approach (or, as originally stated, mixed interpolation of ten-
sorial components) applied to the four-node element consists in the reduction of the bilinear
transverse shear <elds to a constant linear one, based on sampling points for each of the two
shear strain components [5]. In a general sense, the interpolated transverse shear strains can
be de<ned as

EANS
�� (�; �; �)=

2∑
p=1

Np(�; �)Eu
��(�p; �p; 0) (19)

EANS
�� (�; �; �)=

2∑
q=1

Nq(�; �)Eu
��(�q; �q; 0) (20)

function of the displacement evaluated strains of Equation (3). In the latter equations, (p)
and (q) represent additional sampling points with natural co-ordinates (�p; �p) and (�q; �q),
along with their respective shape functions (Np) and (Nq).

The analysis of Equations (15) and (16) for this element reveals a matrix Qshear with the
following characteristics:

rank(Qshear)= 4; therefore nullity(Qshear)= 8 (21)

The null transverse shear strain subspace I sh |M for the mixed interpolated MITC4 element
should, then, be represented by a basis with 8 terms, being a possible candidate represented
in Figure 2, with the respective displacement vectors as follows:

M1 ⇒ dr = {1; 0; 0; 1; 0; 0; 1; 0; 0; 1; 0; 0}T

M2 ⇒ dr = {0; 1; 0;−1; 1; 0;−1; 1; 0; 0; 1; 0}T

M3 ⇒ dr = {−1; 0; 1;−1; 0; 1; 0; 0; 1; 0; 0; 1}T

M4 ⇒ dr = {1; 2;−2;−1; 2; 2; 1;−2; 2;−1;−2;−2}T

M5 ⇒ dr = {0; 1; 0; 0;−1; 0; 0; 0; 0; 0; 0; 0}T

M6 ⇒ dr = {0; 0; 0; 0; 0; 0; 0;−1; 0; 0; 1; 0}T

M7 ⇒ dr = {0; 0;−1; 0; 0; 0; 0; 0; 0; 0; 0; 1}T

M8 ⇒ dr = {0; 0; 0; 0; 0;−1; 0; 0; 1; 0; 0; 0}T

(22)

It can be noted that the <rst four terms of MITC4 subspace basis are exactly the same of
the degenerated element. The remaining four terms do not belong to the null transverse shear
strain subspace of the degenerated element.

2.4. The selective reduced element

Starting with the degenerated element, an additional analysis is performed over the selec-
tive reduced integration procedure [6; 7]. For this purpose, a reduced integration (one point
quadrature) is adopted for the calculation of the transverse shear strain terms.
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Figure 2. Basis components for the null transverse shear strain subspace; MITC4
(M) elements (one element mesh).

The analysis of this formulation with Equations (15) and (16) leads to a matrix Qshear

characterized by

rank(Qshear)= 2; therefore nullity(Qshear)= 10 (23)
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Figure 3. Basis components for the null transverse shear strain subspace; selectively reduced integrated
(S) elements (one element mesh).

A possible basis, de<ning the null shear strain subspace I sh |S for the SRI element, is reproduced
in Figure 3, with the corresponding displacement con<gurations

S1 ⇒ dr = {1; 0; 0; 0; 0; 0; 1; 0; 0; 0; 0; 0}T
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S2 ⇒ dr = {0; 0; 0; 1; 0; 0; 0; 0; 0; 1; 0; 0}T
S3 ⇒ dr = {−1; 0; 1;−1; 0; 1; 0; 0; 1; 0; 0; 1}T
S4 ⇒ dr = {0; 1; 0;−1; 1; 0;−1; 1; 0; 0; 1; 0}T
S5 ⇒ dr = {0; 1; 0; 0;−1; 0; 0; 0; 0; 0; 0; 0}T
S6 ⇒ dr = {0; 0; 0; 0; 0; 0; 0;−1; 0; 0; 1; 0}T
S7 ⇒ dr = {0; 0;−1; 0; 0; 0; 0; 0; 0; 0; 0; 1}T
S8 ⇒ dr = {0; 0; 0; 0; 0;−1; 0; 0; 1; 0; 0; 0}T
S9 ⇒ dr = {0; 1; 0; 0; 1; 0; 0;−1; 0; 0;−1; 0}T

S10 ⇒ dr = {0; 0;−1; 0; 0; 1; 0; 0; 1; 0; 0;−1}T

(24)

The subspace basis obtained with this formulation is composed of 10 terms. As described
in the <gure, terms (S3)–(S8) are included in the subspace basis of the MITC4 element.
Additionally, terms M1 and M4 of this last element can be obtained as a linear combination
of the (S) terms above in the form

M1=S1 + S2

and

M4= �1S1 + �2S2 + �3S9 + �4S10; (�1; �2; �3; �4 ∈ �3)

From all the previous analysis, it can be veri<ed that the subspace for the SRI formulation
encompasses the previous ones as the statement

I sh |S ⊃ I sh |M ⊃ I sh |D
is veri<ed.
In addition, from Figure 3 it is interesting to note that some deformation patterns pertaining

to selective reduced integration element are not included amongst the MITC4 and degenerated
element bases, and cannot be spanned by either of them.
For these patterns, the mixed interpolation element will verify the occurrence of locking

phenomenon, performing in the very same manner as the degenerated element. Based on
this conclusion, two example problems are proposed. The adopted values for the examples
are merely indicative and therefore only a qualitative solution is sought, with no physical
meaning intended.

2.4.1. Example 2.1. Consider a single bilinear square element with sides measuring two
units (L=2), so that no distinction needs to be made between physical and isoparametric
co-ordinates. The element possesses a thickness value of (h=0:0002) and the material prop-
erties adopted are a Young’s modulus (E=2:11× 1011) and a Poisson coeOcient (�=0:3).
The element is restrained in such a way that only one type of rotations per node (rotation

type �1, as de<ned in Equation (13)) is allowed as shown in Figure 4. In the <gure the
speci<c rotations activated amongst the total degrees of freedom are indicated. The arrows
also correspond to applied unity moments.
Comparing the last <gure with the patterns represented in Figures 1, 2 and 3, it is possible

to retain some conclusions. First of all the degenerated element cannot reproduce the imposed
deformation from any linear combination of the patterns represented in Figure 1. Relating to
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Figure 4. Allowed degrees of freedom for Ex-
ample 2.1; arrows also indicate directions of the

applied unity moments.

Figure 5. Allowed degrees of freedom for Ex-
ample 2.2; arrows also indicate directions of the

applied unity moments.

the mixed interpolation and selective reduced integration formulations this does not happen,
with the deformation pattern being easily obtained in the form

Example 2:1→
{
M5+M6
S5 + S6

Doing so, both MITC4 and SRI elements are supposed to reproduce the con<guration
imposed, while the degenerated element is expected to lock. In fact, applying unit moments
over the rotational degrees of freedom depicted in the <gure the following results for the
corresponding rotations are obtained:

Degenerated element→ rotation|�1|=2:21801× 10−7

MITC4 element→ rotation|�1|=6:46919

SRI element→ rotation |�1|=6:46919

Qualitatively, the discrepancy is patent between the values obtained for the degenerated and
MITC4=SRI elements. These latter elements present the same response to the imposed load
and boundary conditions, as expected from the null transverse shear strain subspace analysis.

2.4.2. Example 2.2. The same geometry, material and boundary conditions from the previous
example are now applied in this test. The only di;erence is the orientation of the applied
unity-value moments, now represented in Figure 5.
It can be seen that the analysed con<guration can only be obtained from the SRI formulation

(term S9 in Figure 3). Once neither the degenerated nor the mixed interpolated elements can
reproduce the present orientation, it is supposed that both elements reveal a tendency to lock.
In fact this is what actually happens, as can be veri<ed with the following results:

Degenerated element→ rotation |�1|=2:21801× 10−7

MITC4 element→ rotation |�1|=2:21801× 10−7

SRI element→ rotation |�1|=18:48340

The obtained values reveal a poor behaviour of the assumed natural strain formulation, in
opposition of the previous example, with MITC4 and the degenerated element leading to the
same numerical results.
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Figure 6. Shear strain Eu
�� at Gauss points (I; II; III; IV) for the degenerated shell element.

About the SRI element, as its null shear strain subspace reproduces the proposed deforma-
tion, no shear locking e;ects are veri<ed.

3. TREATMENT OF THE TRANSVERSE SHEAR LOCKING
USING THE EAS METHOD

Following a previous work in 2D analysis [25], an enhanced approach acting on the transverse
shear strains is adopted by the use of compatible displacement <elds, adopting the well-known
bubble function

N�(�; �)= (1− �2)(1− �2) (25)

In order to exemplify the following procedures, component (S9) of the null shear strain sub-
space for the SRI formulation (described in (24) and in Example 2:2) is once again analysed.
However, instead of moments, unity values rotations are applied over the activated degrees
of freedom (Figure 6). Focusing on the Eu

�� transverse shear strain term, from Equations (3)
and (4) it can be stated that

2Eu
��=

(
@x
@�

· @u
@�

)
+

(
@x
@�

· @u
@�

)
(26)

Adopting the same geometric and material con<guration of Example 2:2, the displacement
based shear strain in Equation (26) is obtained for each Gauss point for the degenerated
element. From the subspace analysis described in the previous sections, it is clear that this
element cannot reproduce the imposed displacement pattern.
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The deformation values obtained can then be split over the contributions of each term on
the right-hand side of Equation (26), with a schematic representation presented in Figure 6.
As it can be seen, shear strain values are not null at Gauss points for this boundary-load
con<guration, as it would be expected from the subspace basis evaluated at point 2.2.
In order to be possible to force the element to obey the Kirchho; condition (7) an enhanced

strain <eld of the form

UE(^)=M(^)Qe (27)

can be added up, with the resulting strain being de<ned, in the isoparametric space, as

E��=Eu
�� + UE�� (28)

In Equation (27), M(^) de<nes the interpolation matrix relating the enhanced strain <eld and
the vector of internal variables Qe in the isoparametric space, as in the work of Simo and
Rifai [16]. The enhanced strain in physical space can then be obtained with a similar discrete
relation in the form

UUe =MQe (29)

with the M matrix de<ned by transformation rules for rank two tensors (for details, see
References [5; 16]).
With this procedure Equation (28) now provides the missing term for expression (26),

forcing the summation represented in Figure 6 to be zero. The same reasoning is also set for
the Eu

�� analysis, which will include (S10) term into I sh |D for the degenerated element.
Finally, an optimized expression can be developed for the transverse enhanced shear strain

<eld in the form

{
UE��
UE��

}
2

=M(�; �)|2 Q|2 =



@N�
@�

0

0
@N�
@�



{
�1
�2

}
(30)

based on the partial (�; �) derivatives of the bubble function (25) and on the use of a two-
component internal variable vector (Q|2).

The enhancement vector (30) is used, then, to de<ne the total natural strain <eld, through
a generalization of expression (28) in the form{

E��

E��

}
=

{
Eu
��

Eu
��

}
+

{ UE��
UE��

}
2

(31)

With the preceding enriched expression, the subspace dimension for the degenerated element
becomes enlarged, now embracing (S9) and (S10) basis terms, originally belonging only to
the SRI formulation.

3.1. The S4E4 and S4E4 P7 shell elements

The four-node degenerated element, after the enhancement analysis performed in the previous
section, presents an increased subspace dimension. However, an important part of deformation
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con<gurations is still missing when compared to MITC4 and SRI formulations. These con<g-
urations refer to components (S5), (S6), (S7) and (S8) of the subspace basis represented in
Figure 3.
With the EAS method, and following the previous developments, it is possible to conceive

a total shear strain <eld that simultaneously encompasses these four terms and also the two
patterns treated before. To accomplish this objective, a new enhanced shear strain <eld is
introduced in the form

{ UE��
UE��

}
4

=M(�; �)|4 Q|4 =



@N�
@�

0
@N�
@�

0

0
@N�
@�

0
@N�
@�





�1
�2
�3
�4


 (32)

As can be immediately noticed, the M(�; �)|4 matrix above comprises the M(�; �)|2 stated in
Equation (30). This four-variable enhancement, with the correspondent internal variables <eld
(Q|4), now allows the 6 deformation con<gurations that were previously missing ((S5), (S6),
(S7) and (S8) now included and the previous analysed (S9) and (S10)), with the total strain
<eld obtained by generalization of Equation (31).
The explanation why this four-variable enhancement provides six additional displacement

patterns for the basis of the null transverse shear strain subspace comes from the fact that
the eight restrictions (as de<ned in (15) and (16)), imposing the null shear strain at the
Gauss points, result now in only six linear independent equations. As the e;ective number of
elemental degrees of freedom is 16 (12 from the reduced vector (13) plus 4 internal variables),
the <nal number of displacement con<gurations turns out to be 10.
At this point, it is possible to introduce two new four-node bilinear shell elements, both of

them based on the original degenerated formulation. The <rst element possesses an enhance-
ment in the form (32) and is termed S4E4, due to the number of nodes and internal variables,
the (E) letter referring to shear strain enhancement only. The second element proposed en-
compasses not only the preceding shear strain enrichment but also the in-plane enhancement
introduced by Andel<nger and Ramm [5]. In the following examples, this element is labelled
S4E4 P7, where the previous notation was extending to accommodate their in-plane approach
(P letter) using seven internal variables. Following Reference [5] the interpolation matrix for
the in-plane enhancement is de<ned as

M(^)≡M(�; �)=


 � 0 0 0 �� 0 0
0 � 0 0 0 �� 0
0 0 � � 0 0 ��


 (33)

3.2. The S4E6 and S4E6 P7 shell elements

The developed subspace analysis guided so far the choice of the enhanced terms to be included
in the transverse shear strain <eld. As can be stated from the examples presented at the
end of this work, the obtained elements with four additional internal variables provided an
improvement over the original degenerated element. However, their performances were still
far from the desired results.
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Using the enhancement terms obtained from the subspace analysis, it was veri<ed that an
improved performance can be obtained including in (32) the cross derivatives of the bubble
function in order to � and �, leading to a new interpolation matrix of the form

M(�; �)|6 =



@N�
@�

0
@N�
@�

0
@N�
@�

@N�
@�

0

0
@N�
@�

0
@N�
@�

0
@N�
@�

@N�
@�


 (34)

The matrix M(�; �)|6 can then be related, within the context of the present work, to an optimal
choice for the enhanced interpolation, with the internal variable <eld now being represented
as a vector with six components.
Similarly to before, the elements obtained from this formulation can be termed S4E6 and

S4E6 P7, as only shear or shear plus in-plane enhancement is present, respectively.

3.3. A di0erent approach : the MITC4 E2 shell element

Changing the approach adopted herein, the MITC4 element of Dvorkin and Bathe [10] is now
focused. As detailed in the analysis of the null transverse shear strain subspace described in
Section 2.3, the chosen basis of the element has two missing components when compared to
SRI formulation, namely the (S9) and (S10) terms of Figure 3. As detailed in the beginning
of this section, these two components can be included into the deformation <eld with an
enhanced process using two internal variables (Equation (30)). In this way, it is possible to
improve the performance of the MITC4 shell element via the EAS method over the transverse
shear strains. The shell <nite element so obtained is termed MITC4 E2, following the previous
notation, and possesses a total transverse strain <eld in the form{

E��

E��

}
=

{
EANS
��

EANS
��

}
+

{ UE��
UE��

}
2

(35)

with the assumed natural strain terms being as in Equations (19) and (20) and the inter-
polation matrix used in the enhanced strain <eld de<ned in Equation (30). As it would be
expected, a new analysis of Example 2:2 using this element provides the same result as the
SRI formulation.

4. EXAMPLES FOR ELEMENTS ASSESSMENT

In order to assess the performance of the proposed shell elements, several problems selected
from the literature are analysed. The obtained results are compared to those previously pub-
lished using well-known shell element formulations. A list of the analysed shell elements and
the abbreviations used to identify them henceforth is contained in Table I.

4.1. Morley’s 30◦ Skew plate

The skew, simply supported plate originally proposed by Morley [34] is analysed in order to
test the sensitivity of the proposed elements to mesh distortions. The geometric, material and
load data (L=100; h=1; E=105; �=0:3, uniform pressure load Q=1) are based on the
work of Andel<nger and Ramm [5], being represented in Figure 7.
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Table I. List of referenced and proposed shell elements.

Name Description

AHMA4 Bilinear degenerated shell element, based on the approach of Ahmad et al. [1]
EAS7 ANS In-plane bilinear enhanced shell element; Andel<nger and Ramm [5]
MITC4 Mixed interpolated bilinear shell element; Dvorkin and Bathe [10]
SIMO 1990 Enhanced shear formulation, bilinear element; Simo et al. [16]

Present formulations

S4E4 Bilinear degenerated shell element; enhanced transverse shear formulation with 4 internal
variables

S4E4 P7 Bilinear degenerated shell element; enhanced transverse shear formulation with 4 internal
variables and enhanced in-plane formulation of Andel<nger and Ramm [5]

S4E6 Bilinear degenerated shell element; enhanced transverse shear formulation with 6 internal
variables

S4E6 P7 Bilinear degenerated shell element; enhanced transverse shear formulation with 6 internal
variables and enhanced in-plane formulation of Andel<nger and Ramm [5]

MITC4 E2 Original mixed interpolated element from Dvorkin and Bathe [10]; enhanced transverse shear
formulation with 2 internal variables

Figure 7. Morley’s skew plate.

Still following this work, the Kirchho; reference solution of 4.455 presented by Morley is
replaced by the value 4.640, as even for the length to thickness ratio of 100 shear deformation
e;ects cannot be neglected.
The present results are compared with the ones obtained by Andel<nger and Ramm (for

their EAS7 ANS and Dvorkin and Bathe MITC4 elements). Additionally, the results obtained
with the enhanced plate element proposed by Simo and Rifai [16], as implemented by Yunhua
and Eriksson in a recent work [20] are showed. The values for the central point deVection of
the plate are represented in Table II and graphically in Figure 8. For the sake of completeness,
the results obtained with the four-node degenerated shell element are reproduced.
The elements with 6 enhanced variables (S4E6 and S4E6 P7) and also the MITC4 E2

element show remarkably good results even for coarse meshes, leading to the same numerical
values. The elements with 4 enhanced variables (S4E4 and S4E4 P7) reveal some sensitivity
to coarse meshes, converging to the performance of the other elements as the mesh is re<ned.
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Table II. Central point (C) deVection of Morley’s skew plate.

Mesh MITC4 EAS7 ANS SIMO 1990 AHMA4 Ref. solution

4× 4 3.9182 4.2122 3.9305 0.1151 4.6400
8× 8 3.8991 4.2239 3.9841 0.3841 4.6400
16× 16 4.1875 4.3738 4.2727 0.9882 4.6400
32× 32 4.4098 4.4827 4.4668 1.9110 4.6400

Mesh S4E4 S4E4 P7 S4E6 S4E6 P7 MITC4 E2

4× 4 1.9220 1.9220 4.5090 4.5090 4.5090
8× 8 3.4530 3.4530 4.4380 4.4380 4.4380
16× 16 4.2600 4.2600 4.4820 4.4820 4.4820
32× 32 4.5310 4.5310 4.5610 4.5610 4.5610

Figure 8. Central point deVection for Morley’s skew plate.

4.2. Scordelis–Lo roof problem

The geometry of this cylindrical shell, according to Reference [5], is represented in Figure 9,
along with the relevant material properties. This data set is also dealt with in Reference [35],
reporting to the original work of Scordelis and Lo [36].
The physical basis of the problem is a deeply arched roof supported only by diaphragms at

its curved edges (as an aircraft hanger), deforming under its own weight. The geometry is such
that the centre point of the roof moves upwards under the self-weight (directed downward)
load.
For this problem the vertical displacement at the midpoint of the free edge (point A in the

<gure) is taken into account, and a converged numerical solution of 0.3024 is adopted for
comparison purposes [35]. Due to symmetry, only one quarter of the structure is considered
(dashed zone in the <gure).
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Figure 9. Scordelis–Lo roof.

Figure 10. Scordelis–Lo roof. Normalized displacement value at midpoint of free edge (point A).

With these considerations, the obtained results are presented graphically in Figure 10,
with the normalized values (ratio between <nite elements and analytical solutions) listed in
Table III. The results of the presented elements are plotted against the MITC4 element and
also in comparison with the EAS7 ANS element.
From the <gure and table it is evident the better performance of S4E6 P7 element which,

even for the coarser mesh, leads virtually to the correct result. Comparing with EAS7 ANS
element, it is patent the improvement obtained with the shear enhancement of the present
work in comparison with the assumed natural strain method. Once again it can be veri<ed
the good performance of the other enhanced elements proposed, with S4E6 and MITC4 E2
results being almost as good as those obtained with Dvorkin and Bathe element.

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 53:1721–1750



1740 J. M. A. C 4ESAR DA S 4A ET AL.

Table III. Scordelis–Lo roof.

w(f.e.m.)=w(analytical)—midpoint of free edge

Elements 5 nodes per side 7 nodes per side 9 nodes per side

MITC4 0.93651 ∗ 0.97315
EAS7 ANS 1.04068 ∗ 1.00625
AHMA4 0.06806 0.10152 0.13439
S4E4 0.53472 0.83565 0.92593
S4E4 P7 0.57771 0.87864 0.95602
S4E6 0.90542 0.95866 0.96925
S4E6 P7 1.00099 1.01323 1.00165
MITC4 E2 0.90046 0.95800 0.96892

∗Not available.

Figure 11. Partly clamped hyperbolic paraboloid. One half of the structure meshed
with 16× 8 four-node elements.

4.3. Bending-dominated test I – Partly clamped hyperbolic paraboloid

In analysing the asymptotic behaviour of shell elements as the thickness tends to zero, it is
possible to de<ne problems as being membrane or bending dominated. When this distinction
is not clear the asymptotic deformation state is said to pertain to an intermediate state [26].
Following the analysis of Malinen and PitkParanta [30], bending-dominated problems are

known to be hard tests for standard <nite element formulations, which provide a poor ap-
proximation for inextensional displacements, with numerical failure likely to occur.
A particular interesting bending-dominated test problem was introduced in the work of

Chapelle and Bathe [27] and further developed in Reference [28]. The problem consists of a
hyperbolic paraboloid shell structure, loaded by self-weight and clamped along one side, as
represented in Figure 11. The geometric, material and load data are the adopted in
Reference [28], and only one half of the surface needs to be considered in the analysis.
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Figure 12. Convergence in strain energy for the hyperbolic paraboloid problem: h=L=1=100.

For the <nite element mesh, sequences of N ×N=2 elements (N =4; 8; 16; 32; 64), where N is
the subdivisions along the X -axis, were adopted. Following the proposal of Bathe et al. [28],
thickness–length (h=L) relations of 1=100, 1=1000 and 1=10 000 were considered.
For this problem there is no analytical solution, and reference values for the total strain

energy, previously obtained by Bathe et al. with a re<ned mesh of high-order shell elements,
were used [28]. Graphically, we represent the strain energy error of the <nite element solution
in comparison to that reference value, i.e.

Er =
E − Eh

E
=1− Eh

E
(36)

with Eh being the strain energy of the <nite element approximation and E being its reference
value.
The performance of the proposed elements can be veri<ed in Figures 12–14, according to

the thickness values adopted. The results of MITC4 element, as presented in [28], are also
reproduced for comparison.
From the <gures, it can be seen that the proposed elements performed quite well when

compared with the MITC4 element. However, elements S4E4 and S4E4 P7 revealed a strong
sensitivity to the decrease in thickness. For the ratio h=L=1=1000 and with the maximum mesh
re<nement allowed (N =64) the convergence error is about 10 per cent, reaching unacceptable
values for the relation h=L=10000.
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Figure 13. Convergence in strain energy for the hyperbolic paraboloid problem: h=L=1=1000.

In contrast the shell element S4E6 P7 obtained the best results for the ratio h=L=100,
with elements S4E6 and MITC4 E2 showing similar results. For ratios h=L of 1=1000 and
1=10 000 these elements revealed an excess of Vexibility with the lower re<nement meshes
(N =4 and 8), showing however an improved behaviour as the mesh is re<ned.

4.4. Bending-dominated test II – Free cylindrical shell

In this example, a cylindrical shell of uniform thickness h, length 2L and radius R is loaded
by an axially constant pressure distribution. The pressure varies with the angular distance
from the apex (see Figure 1 in Reference [28]) following the function

p(’)=P0 cos(2’) (37)

where the amplitude factor P0 is scaled with the thickness as

P0 =p0h3 (38)

being p0 a constant.
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Figure 14. Convergence in strain energy for the hyperbolic paraboloid problem: h=L=1=10 000.

The cylinder possesses free ends with no kinematical constraints, being self-supported by
the load pattern. The geometry, material and load data are the ones provided by the study of
Bathe et al. in Reference [28].
This problem has been extensively described by the group of Juhani PitkParanta, with the

publication of an analytical locking insight for various shell models early in 1995 [26]. The
reference solutions for the test case are the ones published in the paper of Malinen and
PitkParanta [30].
In this simulation, 1=8 of the structure were modelled by uniform mesh patterns of N × 2N

elements, being N (N =4; 8;16; 32) the number of elements along the axial direction. As for
the previous example, thickness-to-length ratios of 1=100, 1=1000 and 1=10 000 were employed,
and a strain energy analysis was carried out with the results presented in Figures 15–17.
In this example all the proposed elements are performed in a very similar way. For the

thickness–length ratio of 1=100 the MITC4 element behaviour is clearly superior, as for the
most re<ned mesh (32× 64 elements) the proposed elements presents an error of 1.0 per cent,
while Dvorkin and Bathe element leads almost to the correct solution. However, as thickness
values decrease, all elements tend to converge to the same performance. It is particularly
interesting to note that even the 4 enhanced parameters elements S4E4 and S4E4 P7, in
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Figure 15. Convergence in strain energy for the free cylinder problem: h=L=1=100.

Figure 16. Convergence in strain energy for the free cylinder problem: h=L=1=1000.

opposition with the previous example, converged to a correct value for the lower thickness
values.

4.5. Membrane-dominated test I – Clamped cylindrical shell

The geometry and loading for this example are the same as for the previous one, but now the
cylinder presents clamped ends. This modi<cation leads to a membrane-dominated problem,
where pure bending is inhibited but still conducting to a well-posed problem (References
[26–29]).
Although the load pattern remains the same, it is scaled in a way consistent of the membrane

characteristic of the asymptotic behaviour. Doing so, Equation (38) is replaced by

P0 =p0h (39)

that is, the load amplitude now being a linear function of thickness values.
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Figure 17. Convergence in strain energy for the free cylinder problem: h=L=1=10 000.

Figure 18. Convergence in strain energy for the clamped cylinder problem: h=L=1=100.

Using the same mesh con<guration as for the free cylinder problem before, the strain energy
is evaluated for every element presented and for the ratios thickness to length described before.
Reference solutions come from PitkParanta et al. [26; 30] and MITC4 results, as presented by
Bathe et al. [28], are reproduced and the <nal results are indicated in Figures 18–20.
As thickness values tend to zero, the strain energy error of all elements increases. Never-

theless elements MITC4 E2, S4E6 and S4E6 P7 present similar results as Dvorkin and Bathe
element. For the coarser mesh (N =4) MITC4 element provides the best performance with
di;erences between this element and the proposed ones vanishing as re<nement is increased.
It is also noticeable the lower convergence rate of S4E4 and S4E4 P7 elements.
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Figure 19. Convergence in strain energy for the clamped cylinder problem: h=L=1=1000.

Figure 20. Convergence in strain energy for the clamped cylinder problem: h=L=1=10 000.

4.6. Membrane-dominated test II – Clamped hemispherical cap

This benchmark, proposed by Chapelle and Bathe in [27], represents a hemisphere of radius
R and uniform thickness h which is fully clamped and subjected to an axisymmetric pressure
distribution on its outer surface (see Figure 11 in the previous reference). The imposed load
is the same as the cylinder problems before, with the amplitude being scaled linearly with
the thickness.
For the numerical simulation, the pertained data values are those from Reference [28],

including mesh parameters such as the number of divisions in each of the directions of the
structure. As usual with spherical type structures, a demonstrative partition of the shell is
divided into 3 macro-surfaces, each of one being modelled in a mapped way, as can be
seen in the work of Bathe et al. [28]. The results of Dvorkin and Bathe element MITC4
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Figure 21. A 2 × 8 elements mesh for the hemispherical cap problem (only 1=4 of
the total structure is represented).

Figure 22. Convergence in strain energy for the clamped hemispherical cap problem: h=R=1=100.

are reproduced for comparison from the same reference, and the range of thickness to radius
adopted are the same as the previous examples (h=R=1=100; 1=1000; 1=10 000).
This test problem is well suited for assessing distortion sensitivity levels on bilinear <nite

elements, once the modelled surface is only a crude representation of the correct model. For
instance, in Figure 21 a partition (1=4) of the coarsest mesh (with a total of 2× 8 elements) is
represented, and the de<ciencies in the correct representation of the hemispherical cap surface
are clear.
This problem possess no available analytical solution, therefore reference values are taken

from [28], where a 1D axisymmetric shell <nite element model was employed. The compara-
tive results between the present elements and Dvorkin and Bathe MITC4 elements are shown
in Figures 22–24, where N stands for the number of elements along the latitude direction.
From the obtained results it is clear that the proposed elements present good results, although

all the formulations reveal slow convergence behaviour, with element S4E6 P7 showing the
best results among the proposed elements.
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Figure 23. Convergence in strain energy for the clamped hemispherical cap problem: h=R=1=1000.

Figure 24. Convergence in strain energy for the clamped hemispherical cap problem: h=R=1=10 000.

5. CONCLUDING REMARKS

A new insight into the transverse shear locking phenomenon a;ecting four-node degenerated
shell elements was presented in this paper. Locking e;ects were related to the inability of
the basis of the null transverse shear strain subspace, implicitly de<ned in the <nite element
formulations, to reproduce the required displacement <eld.
The proposal of the present work was to enlarge this subspace via the application of the

enhanced assumed method directly over the transverse shear strain <eld. This approach con-
ducted to a new class of four-node elements, with an improved performance when compared
to the original degenerated element.
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The proposed elements di;er with respect to the number of internal variables used and also
relating to the inclusion (or not) of an additional in-plane enhancement. The transverse shear
strain subspace analysis also led to the improvement of the MITC4 element, originally based
on the assumed natural strain approach, and now also enriched with enhanced modes.
The elements proposed were subjected to linear numerical test problems, being compared

to results reported in the literature for the well-known shell element formulations. The per-
formance of the S4E6 and S4E6 P7 elements revealed a strong improvement when compared
to the classical degenerated approach, and also in some examples when compared to other
well-known formulations. The S4E4 and S4E4 P7 performance was not always superior and,
therefore, these elements should not be considered reliable in a general sense. The MITC4 E2
element also performed well, namely in the Morley skew plate, with better results than
elements based on formulations using membrane-based enhancements. The extension of the
presented formulation into non-linear cases is being performed.
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